流体阻力与水头损失
流体力学流动阻力和水头损失
hj c
hw=hf+ hj
hf c-d u22/(2g)
u2
c
d
特点:1)沿程阻力均匀地分布在整个均匀流流段上; 2)沿程阻力与管段的长度成正比。
2018/10/25 流动阻力和水头损失 3
第四章 流动阻力和水头损失
2、局部水头(阻力)损失hj
定义:局部区域内液体质点由于相对运动产生较大 能量损失。
故 hf = ’ l/(A)= l/(R’)
流动阻力和水头损失 28
2018/10/25
第四章 流动阻力和水头损失
或 = R’(hf /l)= R’J’ R’——流束的水力半径,R’=A/’ J’——流束的水力坡度(或坡能),J’=hf /l 上式为流束的均匀流沿程水头损失与切应力的 关系,称为流束的均匀流方程,推导过程没有涉 及产生能损的原因,故对层流或紊流均适用。 按上述相同的方法可求得圆管的均匀流方程 0 = R (hf /l)= RJ
2018/10/25 流动阻力和水头损失 25
第四章 流动阻力和水头损失
4-3均匀流基本方程
一、均匀流方程切向应力分布
均匀流中只产生沿程水头损失,流层间的粘性 阻力(切应力)是造成沿程水头损失的直接原因。
任取一圆柱体流束,对于恒定流的圆管均匀流 段,其内部的圆柱体也必处于平衡状态,分析其受力:
2018/10/25
层流时,粘性起主要作用,在管壁处因液体被 粘附在管壁上,故流速为0。
牛顿液体: = du/dy = du/d(r0-r) = - du/dr
2018/10/25
流动阻力和水头损失
32
第四章 流动阻力和水头损失
二、速度分布
上式代入均匀流方程 = R’(hf /l)= R’J
流体流动阻力及水头损失
高级住宅和别墅
每人每日
300---400
2.3—1.8
设计秒流量计算
1、住宅、集体宿舍、旅馆、医院、幼儿园、办公楼、学校等建筑物的生活给水管道设计秒流量的计算公式。
=0.2a +k
式中: ----计算管段的给水设计秒流量,L/S
---计算管段的卫生器具给水当量总数
a\k根据建筑物用途而定的系数,
表2-8住宅生活用水量及小时变化系数
住宅类别和卫生有大器具设置标准
单位
生活用水量定额(最高日)/L
小时变化系数
有大便器,洗涤盆,无沐浴设备
每人每日
85--180
3.0---2.5
有大便器,洗涤盆和沐浴设备
每人每日
130--220
2.8---2.3
有大便器,洗涤盆\沐浴设备和热水供应
每人每日
170--300
沿程阻力和沿程水头损失
流体在流动时,流体的黏滞力及流体与管壁的摩擦力统称为沿程摩擦阻力。流体流动时,刻服沿程阻力而造成的水头损失称为沿程水头损失。
用符号hy=入
Hy-----沿程水头损失m
ᄉ-----沿程阻力系数
L----管段长度
D-----管段直径
。。。
二、局部阻力和局部水头损失
当流体经过三通、大小头、弯头、阀门等配件或配件时,由于这些局部障碍的影响使流体流动状况发生急剧变化,流体质点互相碰撞,产生漩涡,而产生另一种阻力。
Hj=§ §:局部阻力系数
用水定额
;建筑物的生活日用水量是随季节而每日变化的,即使一年中用水最高的那一天也是不均匀的。因此根据统计资料,我国规范提供了安按人按日的最高日用水定额,并提供了小时变化系数,按以上定额就可以计算出最高日最大时的用水量。但是,建筑物内的用水量是随时变化的,要计算管道的管径与水压,就要建立设计秒流量计算中心式,而室内用水量是通过各用水设备的配水龙头出水的,因此测定各种用水设备的额定流量对建立设计秒流量计算公式是尤其重要的。
流体阻力和水头损失计算大题真题
20
t/ s
ux ux (t)
T
ux (t)d t
u =0
x
T
式中, T 为较长的时段
29
p (utx) //c( kmN/.sm - 2 )
工程流体力学
1000 900 800 700 600 500 400 300 200 100 0 0
瞬时流速
时均流速
30
4.流体阻力与水头损失
ux'
ux
流体呈现什么状态,取决于扰动的惯性作用与粘性的稳定作用相互 作用的结果。
23
23
工程流体力学
§4.4
4.流体阻力与水头损失
圆管中的紊流
自然界和工程中的大多数流动都是紊 流。工业生产中的许多工艺流程,如流体 的运输、掺混、热传、冷却和燃烧等过程 都涉及紊流问题,因此,紊流更具普遍性。
由于紊流的复杂性,目前只能在实验 的基础上,分析研究紊流的运动情况,在 带有某些假设的条件下,得出一些半经验 的结论。
1
1
工程流体力学
4.流体阻力与水头损失
§4.1 管路中流动阻力产生的原因及分类
一、流阻产生的原因
主要原因是由于管壁界面的限制,使 液流与管壁接触,发生质点与管壁间的摩 擦(沿程阻力损失)和撞击(局部阻力损 失),消耗能量,形成阻力。
液流的粘性,是造成流阻的根本原因。
体阻力与水头损失
流体质点在运动过程中,不断地互相掺混,
引起质点间的碰撞和摩擦,产生了无数旋涡,形 成了紊流的脉动性,这些旋涡是造成速度等参数 脉动的原因。紊流是一种不规则的流动状态,其 流动参数随时间和空间作随机变化,因而本质上 是三维非定常流动,且流动空间分布着无数大小 和形状各不相同的旋涡。因此,可以简单地说, 紊流是随机的三维非定常有旋流动。流动参数的 变化称为脉动现象。
流动阻力与水头损失 工程流体力学.ppt
uz t
uz x
dx dt
uz y
dy dt
uz z
dz dt
f 1 p 2u u +u • u
dt
质量力 压差力
粘性力
当地加 速度力
迁移加速度
§4-4 相似原理与量纲分析
一、量纲基本概念
单位(unit) :量度各种物理量数值大小的标准量,称单位。如长度
单位为m或cm等。——“量”的表征。
工程流体力学
第四章 流动阻力与水头损失
§4-1管路中流动阻力产生的原因及分类
一、阻力产生的原因 1)流体质点与管壁之间的摩擦撞击 2)管壁的粗糙度,引起涡流 3)管路的长度
湿周 R
水力半径
=2R
A Rh X
§4-1管路中流动阻力产生的原因及分类
一、流动阻力的分类
沿程水头损失 水头损失
局部水头损失
vc ——上临界流速
O
lgvc lgvc’ lgv
层 流: 过渡流: 紊 流:
v vc
vc v vc
v vc
临界雷诺数 雷诺数 Re vd
υ
Re c 2000 ——下临界雷诺数 Rec 14000 ——上临界雷诺数
工程上常用的圆管临界雷诺数
层 流: 过渡流: 紊 流:
Re Re c Re c Re Rec Re Rec
如:速度:dim v=LT-1;加速度dim a=LT-2;力dim F=MLT-2;
动力粘度dim =ML -1 T-1
• 量纲公式:
dim q LTM
• 量纲一的量(无量纲数、纯数,如相似准数):=0,=0,=0,即
dim q=1,如、及组合量Re等。
Re vd ,
水流阻力和水头损失资料
V —管道中有效截面上的平均流速,m/s。
二、局部阻力与局部损失
在管道系统中通常装有阀门、弯管、变截面管等局部装置。流 体流经这些局部装置时流速将重新分布,流体质点与质点及与 局部装置之间发生碰撞、产生漩涡,使流体的流动受到阻碍, 由于这种阻碍是发生在局部的急变流动区段,所以称为局部阻 力。流体为克服局部阻力所损失的能量,称为局部损失。
主要内容:
水头损失的物理概念及其分类 沿程水头损失与切应力的关系 液体运动的两种流态 圆管中的层流运动及其沿程水头损失的计算 紊流特征 沿程阻力系数的变化规律
计算沿程水头损失的经验公式——谢才公式 局部水头损失
边界层的概念
水头损失的物理概念及其分类
产生损失的内因
物理性质—— 粘滞性和惯性
产生水 损耗机
态?
【解】 (1)雷诺数
Re Vd
V 4qV 4 0.01 1.27
d 2 3.14 0.12
(m/s)
Re
1.27 0.1 1106
1.27105
2300
故水在管道中是紊流状态。
(2)
Re
Vd
1.27 0.1 1.14 104
1114 2300
故油在管中是层流状态。
紊流形成过程的分析
——阻力速度
§4.3圆管层流的沿程阻力系数
质点运动特征(图示):液体质点是分层有条不紊、互不混杂地运动着
切应力: dux
dr
流速分布(推演):
ux
gJ 4
(r02 r 2 )
断面平均流速:V
udA
A
A
gJ 32
d2
1 2
umax
PPT-第5章流动阻力与水头损失
最大流速:
流量:
夫凹呀檬馈蜜狰丧鲁闽求靳扼砚盖淑垮颤岛壕眷驶傍蛤堆挠筋烤浓迭码羹【PPT】-第5章流动阻力与水头损失【PPT】-第5章流动阻力与水头损失
§5.4 圆管中的层流运动
二、断面平均流速
芥傅亦圆圆烹攻斩庶陪袁雷捐隶到炎寝蘸听拔瓤犬回澄吊晃貉车驾要跪臂【PPT】-第5章流动阻力与水头损失【PPT】-第5章流动阻力与水头损失
二、判别标准
1.试验发现
邯鹅兽拖盒惩猖摸竟异逼撇赘悍国哩伦札夫定桌街樊履轮微雍柴劈信佬咕【PPT】-第5章流动阻力与水头损失【PPT】-第5章流动阻力与水头损失
§5.2 黏性流体的流动型态
2.判别标准
圆管:取
非圆管:
定义水力半径 为特征长度.相对于圆管有
并巴诚形酬朽猖嘴畜梧飞凡摩链碴宋础谋迭稽魏摘履显做且椭篡杨症操澜【PPT】-第5章流动阻力与水头损失【PPT】-第5章流动阻力与水头损失
(3)
法融拙紧纠咬耪弗圭瞪佩多消京航寸俘或碎菏乡迪缸时誉气惟蔡赠绚止权【PPT】-第5章流动阻力与水头损失【PPT】-第5章流动阻力与水头损失
§5.3 恒定均匀流基本方程
二、过流断面上切应力τ的分布
仿上述推导,可得任意r处的切应力:
考虑到 ,有
故 (线性分布)
适合紊流区的公式:
烧茫烧答舵喧洗佃跪送捡沁竿奎沽究豪兰尤默言线惶闻虱涪淀麻诸携番褥【PPT】-第5章流动阻力与水头损失【PPT】-第5章流动阻力与水头损失
§5.5 圆管中的紊流运动
★为便于应用,莫迪将其制成莫迪图。
Lewis Moody
疚怂橡禹局设厨捐听极盗肥逸溅攘浙拯豁暇阮号收躲摔楼脸邢剩环钱捻贰【PPT】-第5章流动阻力与水头损失【PPT】-第5章流动阻力与水头损失
流体力学课件第四章流动阻力和水头损失
l v hf d 2g
2
r w g J 2
w v 8
定义壁剪切速度(摩擦速度) 则
w v
*
v v
*
8
§4-4 圆管中的层流
层流的流动特征
du dy
du du dy dr
du dr
g J
r 2
r du g J 2 dr
层流 紊流
§4-3 沿程水头损失与剪应力的关系
均匀流动方程式
P G cos P2 T 0 1
P p1 A1 1
P2 p2 A2
T w l
G cos gAl cos gA( z1 z2 )
w l p1 p2 ( z1 ) ( z2 ) g g gA
v2 hj 2g
§4-2 粘性流体的两种流态
两种流态
v小
' c
v小
v > vc
v大 v大
临界流速。 下临界流速 vc ——由紊流转化为层流时的流速称为下 临界流速。
vc' ——由层流转化为紊流时的流速称为上 上临界流速
vv
层流 紊流
' c
紊流 层流
a-b-c-e-f f-e-d-b-a
第四章 流动阻力和水头损失
水头损失产生的原因: 一是流体具有粘滞性, 二是流动边界的影响。
§4-1 流动阻力和水头损失的分类
沿程阻力和沿程水头损失
在边界沿程无变化(边壁形状、尺寸、过 流方向均无变化)的均匀流段上,产生的流动 阻力称为沿程阻力或摩擦阻力。由于沿程阻力 做功而引起的水头损失称为沿程水头损失。均 匀流中只有沿程水头损失 h f 。
流体阻力和水头损失计算大题真题
折算压强
19
工程流体力学
4.流体阻力与水头损失
【例题1】油在管径d=100mm、长度L=16km的管道中流动。若管
道水平放置,油的密度 =915kg/m3, =1.86×10-4 m2/s, 求每小时通过50t油的阻力损失。
• 解:
50 1000 Q 0.0152 m3 / s 915 3600 Qm
Re C
vc d
2000 ~ 2300
习惯上取2000,即:
Re≤2000认定为层流, Re Re C Re>2000认定为紊流。 Re Re C
11
11
工程流体力学
4.流体阻力与水头损失
【例题4-2】水管径d=100mm,流速v=0.5m/s,水的运动粘
度 水 10 6 m 2 / s,问管内水的流态?如果管中是油,流速 不变,运动粘度 油 3110 6 m2 / s 求管内油的流态? 解:水的雷诺数
几个与接触面有关的概念
1、过流断面A 是指垂直于流线包含整个流体周界的运动流体 横截面。 2、湿周X: 是在过流截面上,流体与固体接触的长度(m)。 3、水力半径R:
过流截面A R 湿周X 4、当量直径:
当一非圆形过流截面与某圆形过流截面的水力半径 相等时,此圆断面直径称为该非圆过流截面的当量直径。
9
9
工程流体力学
4.流体阻力与水头损失
三、流态的判断标准—雷诺数
1、雷诺数
流体的流动状态是层流还是紊流,与流速v、 管径d和流体的黏性等物理性质有关。雷诺根据大 量的实验数据证明,流体的临界流速v与流体的动 力黏度 成正比,与管内径d和流体的密度 成反 比。 惯性力与粘性力的比可用雷诺数Re来表示,即:平均流速vd vd Re
流体力学 第6章
6.5 紊流运动
紊流的形成过程
选定流层
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
13600 ( 1) 0.3 4.23m 900
设为层流
4Q v 2 2.73m/s d
6.4 圆管中的层流运动
64 l v2 hf vd d 2 g
解得
2 gd 2 hf 8.54106 m 2 /s 64lv
7.69103 Pa s
【解】 列细管测量段前、后 断面的伯努利方程
p1 p2 hf g g
p1 p2 p1 p2 hf g g g
6.4 圆管中的层流运动
p1 g (h hp ) p2 gh p hp p1 p2 ( p ) ghp
h
p p1 p2 hf ( 1)hp g g
2r0
w v 8
6.3 沿程水头损失与剪应力的关系
w v 8
w 定义 v
—— 壁剪切速度,则
v v
8
(6 -11)
上式表明了为沿程阻力系数λ和壁面剪应力τw的关系 式。
6.4 圆管中的层流运动
6.4.1 流动特征
①有序性:水流呈层状流动,各层的质点互不掺混, 质点作有序的直线运动。
6.2.2 雷诺数 1. 圆管流雷诺数
流体力学 沿程阻力和水头损失
局部水头损失:局部区域内由于水流边界条件发生变化所产生 的能量损失。常用hj表示。
在管道系统中装有阀门、弯管、变截面管等局部装臵。流体流 经这些局部装臵时流速将重新分布,流体质点之间及与局部装 臵之间发生碰撞、产生漩涡,使流体的流动受到阻碍,由于这 种阻碍是发生在局部的急变流动区段,所以称为局部阻力。流 体为克服局部阻力所损失的能量,称为局部损失。
当流速较大,各流层的液体质点形成涡
体,在流动过程中,互相混掺,这种型 态的流动叫做紊流。
水流由层流转化为紊流时的流速称为上 临界流速,用Vc’来表示。
水流从紊流转变为层流的流速称为下 临界流速,用Vc来表示。
实验证实:Vc’>Vc。
当液体流速V>Vc’时,液体属于紊流; 当液体流速V<Vc时,液体属于层流; 当Vc’<V<Vc时,可以是层流也可以是紊流,液流形态是不 稳定的。例如原来是层流,但在噪声、机械振动、固体表 面粗糙度的影响下,可变为紊流。
l
( z1
代入上式 ,各项用 gA 除之,整理后
p1 p l ) ( z2 2 ) g g A g
因断面1-1及2-2的流速水头相等,则能量方程为
( z1 p1 p ) ( z2 2 ) h f g g
有 h f l l A g R g
在所实验的管段上,因为水平直管路中流体作稳定流时,根据 能量方程可以写出其沿程水头损失就等于两断面间的压力水头 p1 p2 差,即
hf
lg h f
C
C
改变流量,将hf与v对 应关系绘于双对数坐标纸 上,得到 h f v关系曲线.
45 0
h f v关系曲线图
lg c lg c
工程流体力学课件4流动阻力和水头损失
流体流经局部障碍时,流动状态发生急剧变化,产生漩涡 和二次流,使得流体的速度分布和方向发生变化,导致水 头损失。
影响因素
局部障碍的形式、流体流速、流体性质等。
总水头损失
总水头损失
01
指流体在管道或渠道中流动过程中所损失的总水头,
等于沿程水头损失和局部水头损失之和。
计算方法
02 总水头损失等于沿程水头损失和局部水头损失的代数
水利工程中的流动阻力与水头损失分析
水利工程中的流动阻力来 源
在水利工程中,流动阻力主要来自水体与边 界的摩擦力、水流内部的各种阻力等。这些 阻力会导致水头损失,影响水利工程的正常 运行。
水头损失对水利工程效益 的影响
水头损失的大小直接影响到水利工程的效益 。在设计水利工程时,应充分考虑水头损失 的影响,合理选择水泵和水轮机的型号,确
保工程效益最大化。
THANKS
工程流体力学课件4流 动阻力和水头损失
目录
Contents
• 流动阻力的概念 • 水头损失的种类 • 流动阻力和水头损失的计算 • 工程实例分析
01 流动阻力的概念
定义与分类
定义
流动阻力是指流体在流动过程中受到的阻碍作用,导致流体机械能的损失。
分类
分为内阻力和外阻力。内阻力是由于流体内部摩擦力引起的,如层流内摩擦力 和湍流内摩擦力;外阻力是指流体在流动过程中受到的外部阻碍,如流体与管 道壁面的摩擦力。
计算公式
阻力系数通常通过实验测定,也可以通过经验公式进行估算。常用的经验公式有达西韦斯巴赫公式和莫迪图等。
影响因素
阻力系数的大小受到流体的物理性质、管道的几何形状和尺寸、流动状态等多种因素的 影响。在工程实际中,需要根据具体情况进行实验测定或经验估算。
工程流体力学 流动阻力与水头损失
第四章 流动阻力和水头损失主要内容] 阻力产生的原因及分类 ] 两种流态] 实际流体运动微分方程式(N -S 方程) ] 因次分析方法、相似原理 ] 水头损失的计算方法第一节 流动阻力产生的原因及分类一、基本概念1、湿周:管子断面上流体与固体壁接触的边界周长。
以 χ 表示。
单位:米2、水力半径:断面面积和湿周之比。
χA R =单位:米例: 圆管: 442d d d R ==ππ正方:442a a a R ==圆环流: 明渠流:()()()4422d D d D d DR −=+−=ππ42212aaaR ==3、绝对粗糙度:壁面上粗糙突起的高度。
4、平均粗糙度:壁面上粗糙颗粒的平均高度或突起高度的平均值。
以Δ表示。
5、相对粗糙度:Δ/D (D——管径)。
二、阻力产生的原因1、外因:(a )管子的几何形状与几何尺寸。
面积: A 1=a 2 A 2=a 2 A 3=3a 2/4 湿周: a 41=χ a 52=χ a 43=χ水力半径: R 1=0.25a > R 2=0.2a > R 3=0.1875a 实验结论: 阻力1 < 阻力2 < 阻力3 水力半径R ,与阻力成反比。
R ↑,阻力↓ (b )管壁的粗糙度。
Δ↑ ,阻力↑ (c )管长。
与 h f 成正比。
L ↑,阻力↑ 2、内因:流体在流动中永远存在质点的摩擦和撞击现象,流体质点由于相互摩擦所表现出的粘性,以及质点撞击引起速度变化所表现出的惯性,才是流动阻力产生的根本原因。
沿程阻力:粘性造成的摩擦阻力和惯性造成的能量消耗。
局部阻力:液流中流速重新分布,旋涡中粘性力做功和质点碰撞产生动量交换。
三、阻力的分类1、沿程阻力与沿程水头损失(1) 沿程阻力:沿着管路直管段所产生的阻力(管路直径不变,计算公式不变) (2) 沿程水头损失:克服沿程阻力所消耗的能量∑h f =h f1+ h f2+ h f3 2、局部阻力与局部阻力损失(1) 局部阻力:液流流经局部装置时所产生的阻力。
第5章 流体阻力和水头损失
沿程水头损失与流速的关系
当流速由小变大时,实验点落 在曲线ABC 上。其中AB 段是 直线,其斜率为1,流态为层 流。这说明层流的沿程水头损 失h f与平均速度υ的1次方成正 比。曲线BC 的斜率大于1,流 态为湍流,其中B点附近的曲 线斜率约为1.75,hf与v的1.75 次方成正比。C 点附近的曲线 斜率约为2,hf与υ的2次方成 正比。B点是流态从层流变为 湍流的分界点。 当流速由大变小时,流态由湍 流逐渐变为层流,实验点落在 曲线CDA 上。其中DA段的斜 率为1,流态为层流。D点是流 态从湍流变为层流的分界点。
2.局部阻力和局部水头损失 流体因固体边界急剧改变而引起速度重新分布, 质点间进行剧烈动量交换而产生的阻力称为局 部阻力。 其相应的水头损失称为局部水头损失,用hj表 示。 3.总水头损失 在实际流体总流伯努利方程中,hw项应包括所 取两过流断面间所有的水头损失,即
hw h f h j
令
64 Re
(5-14)
则
l 2 hf d 2g
(5-15)
式(5-15)为达西公式,适用于有压管流、明渠流、层流或
紊流。 λ:沿程阻力系数,在圆管层流中只与雷诺数成反比,与管 壁粗糙程度无关。
【例】粘性流体在圆管中作层流运动,已知管道直径d = 0.12 m,流量Q = 0.01m3/s,求管轴线上的流体速度umax, 以及点速度等于断面平均速度的点位置。 解
第5章 流动阻力和水头损失
水头损失:实际流体具有粘性,流体在运 动过程中因克服粘性阻力而耗损的机械能 称为水头损失,总流单位重量流体的平均 机械能损失。 水头损失主要来源于边界层的粘性摩擦力 以及因为边界层分离而出现的压差阻力。 流体的流动有层流和湍流(紊流)两种流 态。
流体力学 水力学 流动阻力和水头损失
控制流体流速:通过调节阀门、泵等设备控制流体的流速避免过高的流速导致阻力增大。
控制流体压力:通过调节阀门、泵等设备控制流体的压力避免过高的压力导致阻力增大。
避免压力波动:通过安装压力调节器、缓冲器等设备避免流体压力的波动减少阻力和水头损失。
采用低阻力管道:选择低阻力的管道如光滑的管道、低阻力的弯头、阀门等减少阻力和水头损 失。
质量守恒方程:描述流体 的质量变化
动量守恒方程:描述流体 的动量守恒
能量守恒方程:描述流体 的能量守恒
流体:液体和气体统称为流体
水力学:研究水流运动规ቤተ መጻሕፍቲ ባይዱ的科学
流体力学:研究流体运动规律的科学
流体运动:流体在力的作用下产生的运 动
流动阻力:流体在运动过程中受到的阻 力
水头损失:水流在流动过程中损失的能 量
采用低压降流体处 理技术如采用低压 降泵、低压降阀等
采用高效流体处理 技术如采用高效过 滤器、高效换热器 等
采用节能流体处理 技术如采用节能泵、 节能阀等
采用智能流体处理 技术如采用智能控 制阀、智能流量计 等
流动阻力和水头损 失的应用实例
流动阻力:在给排水工程中流动阻力主要来源于管道的摩擦和弯道、阀门等设备的阻力
压力:流体压力越大流动阻力越大 水头损失越大
流体密度:流体密度越大流动阻力 越大水头损失越大
添加标题
添加标题
添加标题
添加标题
温度:流体温度越高流动阻力越大 水头损失越大
流体粘度:流体粘度越大流动阻力 越大水头损失越大
流动阻力和水头损 失的控制和减小方 法
管道材料:选择 具有低摩擦系数、 耐腐蚀、耐磨损 的材料如不锈钢、 聚乙烯等
水力学基本原理
水力学定义:研究液体和气体在运动状态下的力学规律 研究对象:液体和气体在运动状态下的力学规律 研究内容:包括流体静力学、流体动力学、流体热力学等 应用领域:水利工程、船舶工程、航空工程、环境工程等
第四章 流动阻力和水头损失
2.粗糙区:希弗林松公式
k 0.11 d
0.25
3.舍维列夫公式: 适用于旧钢管和旧铸铁 管 紊流过渡区,v≤1.2m/s
m3 2.0
雷诺实验揭示了沿程水头损失与流速的关系。当
v<vc时,hf~v1.0;当v>vc时, hf~v1.75~2.0 。
发现了流体流动中存在两种性质不同的形态,即
层流和紊流: 层流——流体呈层状流动,各层质点互不掺混; 紊流——流体质点的运动轨迹极不规则,各层 质点相互掺混,且产生随机脉动。
切应力分布:
r 0 r0
1.切应力分布 2.层流、紊流均适用
§4-4 圆管中的层流运动
1.流动特性
流体呈层状流动,各层质点互不掺混
层流中的切应力为粘性切应力
du dy
其中 y=r0-r
Hale Waihona Puke du dr2.断面流速分布
du 牛顿内摩擦定律 dr r 又 g J 2
总水头损失=沿程水头损失+局部水头损失
二、流动阻力
hw——流体粘性引起
1.沿程阻力——沿程损失(长度损失、摩擦损失)
l v hf d 2g
λ——沿程阻力系数
2.局部阻力——局部损失
2
达西-魏斯巴赫公式
v hj 2g
ζ——局部阻力系数
2
3.总能量损失
**说明几点
hw h f h j
d ux u x y l1 u x y l1 dy d ux u x u x y l1 u x y l1 dy
(2) 横向脉动速度 u x
流体阻力和水头损失
1
2
逐渐开大阀门B,玻璃管内流速增大到某一临界值υc'时,颜色水纤流出现抖
动。再开大阀门B,颜色水纤流破散并与周围清水混合,使玻璃管的整个断面都
带有颜色。表明此时质点的运动轨迹极不规则,各层质点相互掺混,这种流动状
态称为湍流。
将以上实验按相反顺序进行,先开大阀门B,使玻璃管内为湍流,然后逐渐
关小阀门B,则按相反顺序重演前面实验中发生的现象。只是由湍流转变为层流
的流速υc小于由层流转变为湍流的流速υc'。
流体阻力和水头损失
1.3 黏性流体的两种流态——层流和湍流
C D
(a)
υ小 υ小
hf
(b)
E
A
B (c)
1
2
υc'>υc υ大υ大
流态转变的流速分别称为上临界流速υc'和下临界流速υc。实验发现,上临界 流速υc'是不稳定的,受起始扰动的影响很大。在水箱水位恒定、管路入口平顺、 管壁光滑、阀门开启轻缓的条件下,υc'可比υc大许多。下临界流速υc是稳定的, 不受起始扰动的影响,对任何起始湍流,当流速υ小于υc'值,只要管路足够长, 流动终将发展为层流。实际流动中,扰动难以避免,因此,把下临界流速υc作为 流态转变的临界流速。当υ<υc时,流动是层流;当υ>υc时,流动是湍流。
1 2
1 2
112
2
22
2g 2g
流体阻力和水头损失
1.3 黏性流体的两种流态——层流和湍流
C D
(a)
hf
(b)
E
A
B (c)
1
2
υ小 υ小 υc'>υc υ大υ大
又因断面1和2之间只有沿程水头损失,而无局部水头损失,故hw=hf,因此,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢圆管流的起始段
图6-6中起始段长度l’:从进口速度接近均匀到管中 心流速到达最大值的距离。
且 式中α,b为系数,随入口后的距离而改变。 在计算hf时,若管长l >>l´,则不考虑起始段,否则要 加以考虑分别计算。
➢沿程水头损失公式
(1)魏斯巴赫(Weisbach)公式 实验表明:
式中:λ——沿程阻力系数。 R——水力半径,R=A/P。 适用范围:适用于任意形状等截面流道的恒定均匀流。 (2)圆管流的达西-魏斯巴赫公式(简称为D-W公式) 圆管的R=d/4,则: 适用范围:适用于圆管紊流或层流,为恒定均匀管流的通用公式。
临界流速νc( 或νc’)与管道直径d、流体密度ρ和动力黏度µ有关。
雷诺实验
实验结果(右图)的数学表达式:
层流: m1=1.0, hf=k1v , 即沿程水头损失与 流线的一次方成正比。 紊流: m2=1.75~2.0, hf =k2v 1.75~2.0 ,即沿 程水头损失hf与流速的1.75~2.0次方成正比 。
圆管流:
Re c
cd
2300或非圆管流:
式中:R——水力半径,R=A/P; A——过水断面面积; P——湿周,即断面中固体边界与
流体相接触部分的周长。
第三节 沿程水头损失与切应力的关系
1.恒定均匀流的沿程水头损失
在均匀流中,有v1=v2,上图列1-1断面与2-2断面的能量方程: 可得: 说明:(1)在均匀流情况下,两过水断面间的沿程水头损失等于两过水断面间的 测压管水头的差值,即液体用于克服阻力所消耗的能量全部由势能提供。
1.层流
层流,亦称片流:是指流体质点不相互混杂,流体作有序的成层流动。
特点: (1)有序性。水流呈层状流动,各层的质点互不混掺,质点作 有序的直线运动。 (2)粘性占主要作用,遵循牛顿内摩擦定律。 (3)能量损失与流速的一次方成正比。 (4)在流速较小且雷诺数Re较小时发生。
2.紊流
紊流,亦称湍流:是指局部速度、压力等力学量在时间和空间中发 生不规则脉动的流体运动。
2.最大流速
圆管层流的最大速度在管轴上(r=0): 3.断面平均流速
即圆管层流的平均流速是最大流速的一半。
第四节 沿程损失
圆管层流的沿程水头损失可由式 求得:
式中:
——沿程阻力系数。
物理意义: 圆管层流中,沿程水头损失与断面平均流速的一次方成 正比,而与管壁粗糙度无关。 适用范围: 1.只适用于均匀流情况,在管路进口附近无效。 2.推导中引用了层流的流速分布公式,但可扩展到紊流 ,紊流时l值不是常数。
4.1.1 内流和外流
按流体与约束流动的固体边界的位置关系,可将流体分 为内流和外流。 内流:流体在约束流动的固体边界内部。(管道、明渠) 外流:流体在约束流动的固体边界外部。(流体绕流桥墩、 船舶、飞机、汽车等)故外流也称绕流。 本章重点:内流的流动阻力包括沿程阻力和局部阻力。
4.1.2 沿程阻力与沿程水头损失
第一节 概述
本章主要研究恒定流动时,流动阻力和水头损失的规律。 对于粘性流体的两种流态——层流与紊流,通常可用下临界 雷诺数来判别,它在管道与渠道内流动的阻力规律和水头损 失的计算方法是不同的。对于流速,圆管层流为旋转抛物面 分布,而圆管紊流的粘性底层为线性分布,紊流核心区为对 数规律分布或指数规律分布。对于水头损失的计算,层流不 用分区,而紊流通常需分为水力光滑管区、水力粗糙管区及 过渡区来考虑。本章最后还阐述了有关的边界层、绕流阻力 及紊流扩散等概念。
4.1.4 总水头损失
实际工程中,一般研究范围内大多是两种水头损失并存, 机械能损失是由沿程阻力和局部阻力共同贡献;
两过流断面间的总水头损失等于沿程水头损失和局部水头 损失之和:
hw hf hm
水头损失
第二节 流动形态及其判别
一、两种流态的运动特征
1883年英国物理学家雷诺(Reynolds O.)通过试验观察到液体中存在层 流和紊流两种流态。
特点: (1)无序性、随机性、有旋性、混掺性。 流体质点不再成层流动, 而是呈现不规则紊动,流层间质点相互混掺,为无序的随机运动。 (2)紊流受粘性和紊动的共同作用。 (3)水头损失与流速的1.75~2次方成正比。 (4)在流速较大且雷诺数较大时发生。
二、雷诺实验
如图所示,实验曲线分为三部分: (1)ab段:当υ<υc 时,流动为稳定的层流。 (2)ef段:当υ>υ''时,流动只能是紊流。 (3)be段:当υc<υ<υ''时,流动可能是层流(bc 段),也可能是紊流(bde段),取决于水流的 原来状态。
层流:
紊流:
三、层流、紊流的判别标准——临界雷诺数
临界雷诺数:
Re c
cd
cd
上临界雷诺数:层流→紊流时的临界雷诺数,它易受外界干 扰,数值不稳定。 下临界雷诺数:紊流→层流时的临界雷诺数,是流态的判别
标准,它只取决于水流边界的形状,即水流的过水断面形状。
(问题)变直径管流中,细断面直径d1,粗断面直径d2=2d1,则粗 细断面雷诺数关系是:Re1=2Re2
同理 可得:
所以圆管层
流的切应力
或
分布为
物理意义:圆管均匀流的过水断面上,切应力呈直线分布,管壁处 切应力为最大值τ0,管轴处切应力为零(图(b))。
三、流速分布
牛顿内摩擦定律:
积分得:
1.圆管层流的流速分布
物理意义: 圆管层 流过水断面上流速分 布呈旋转抛物面分布。
又边界上 r=r0时, u=0代入得:
(2)总水头线坡度J沿程不变,总水头线是一倾斜的直线。
2.均匀流基本方程式
取断面1及2间的 流体为控制体:
均匀流基本方程式:
式中:R=A/P为水力半径。J=hf/L 为水力坡度
适用范围:适用于有压或无压的恒定均匀层 流或均匀紊流。
二、过流断面上切应力分布
如图(a)所示一水平恒定圆管均匀
流,R=r0/2,则由 0 gRJ 可得 :
当流体在约束流动的固体边界内做均匀流动时,产生的流 动阻力称为沿程阻力或摩擦阻力。
由沿程阻力做功引起的水头损失称沿程水头损失(hf)。 沿程水头损失沿流程均匀分布,与流程长度成正比。
4.1.3 局部阻力与局部水头损失
局部阻力:当约束流动的固体边界急剧改变,使流速分布 发生变化而产生的流动阻力;其相应的水头损失称局部水 头损失(hm)。 局部水头损失一般发生在管道入口、转弯、突扩(缩)、 三通、阀门等附近的局部流段上。