离散信号与系统的Z域分析

合集下载

第七章离散时间信号与系统的Z域分析总结

第七章离散时间信号与系统的Z域分析总结
当 z > a 时,这是无穷递缩等比级数。
1 z X ( z) = 此时, = 1 − az −1 z − a
z > a 收敛域:
0
j Im[ z ]
a
*收敛域一定在模最大的极点 所在的圆外。
Re[ z ]
信号与系统
第7章 离散时间信号与系统的z域分析
13 /82
3.左边指数序列 x(n) = −b nu (−n − 1)
的形式 ,其中x2+Ax+B是实数范围内的不可约 多项式,而且k是正整数。这时称各分式为原 分式的“部分分式”。
信号与系统
第7章 离散时间信号与系统的z域分析
19 /82
M X ( z ) 通常, 可表成有理分式形式: b z −i ∑ i B( z ) = i =0N X ( z) = A( z ) 1 + ∑ ai z −i
z −n < ∞
n1 ≤ n ≤ n2 ;
信号与系统
第7章 离散时间信号与系统的z域分析
7 /82
因此,当时,只要,则 n= z − n 1/ z n , ≥0 同样,当时,只要,则 n <= 0 z z ,
n −n
z≠0 z≠∞ z
z −n < ∞
−n
<∞
所以收敛域至少包含,也就是除 0< z <∞ “有限平面” z= (0, ∞) z 。 ∞外的开域,即所谓
9 /82
(3)左边序列
x(n), n ≤ n2 x ( n) = n > n2 0,
X ( z)
n = −∞
= x ( n) z ∑ ∑ x ( n) z
−n n = −∞
n2

信号与系统第8章 离散时间系统的z域分析

信号与系统第8章 离散时间系统的z域分析

零状态响应为
Yf
(z)
(1 z 1 z 2 ) 2 3z 1 z 2
1 1 z 1
1/ 6 0.5 5 / 6 1 z1 1 z1 1 0.5z1
yf [k] Z 1{Yf (z)}{1/ 6 0.5(1)k (5/ 6)(0.5)k}u[k]
y[k] yx[k] yf [k] {1/ 6 3.5(1)k (4 / 3)(0.5)k}u[k]
离散时间信号与系统的Z域分析
• 离散时间信号的Z域分析 • 离散时间系统的Z域分析 • 离散时间系统函数与系统特

离散时间信号的Z域分析
• 理想取样信号的拉普拉斯变换 • 单边Z变换定义 • 单边Z变换的收敛域 • 常用序列的Z变换 • 单边Z变换的性质 • Z反变换
理想取样信号的拉普拉斯变换
fs (t) f (t) (t kT) f (kT) (t kT)
Re(z)
三、常用序列的Z变换
1) Z{ (k)} 1, z 0
2) 3)
Z{u(k)} 1 1 z
Z{aku(k)}
1 , 1
1 a
z
z
1
1 z
a
4)
Z{e
j0k
u(k
)}
1
e
1
j0
z
1
z z e j0
5)
Z{e-
j0k u (k
)}
1
1 e- j0
z
1
z z e- j0
z e j0 z e j0
解代数方程
二阶系统响应的z域求解
y[k] a1 y[k 1] a2 y[k 2] b0 f [k] b1 f [k 1] k 0
初始状态为y[1], y[2] 对差分方程两边做Z变换,利用

中北大学精品课程-7_离散时间信号与系统的z域分析

中北大学精品课程-7_离散时间信号与系统的z域分析

7 离散时间信号与系统的Z域分析
例 利用部分分式法,求 1 X ( z) , z 2 的z反变换。 1 1 (1 2 z )(1 0.5z )
1 z2 X ( z) 1 1 (1 2 z )(1 0.5 z ) ( z 2)( z 0.5) X ( z) z A1 A2 z ( z 2)( z 0.5) z 2 z 0.5
7 离散时间信号与系统的Z域分析
§ 7.2 Z反变换
7 离散时间信号与系统的Z域分析
7.2.1部分分式展开法 1.z变换式的一般形式
bi z i 1 ai z i
i 1 i 0 N M
B( z ) X ( z) A( z )
7 离散时间信号与系统的Z域分析
因此,X(z)可以展成以下部分分式形式
7 离散时间信号与系统的Z域分析
第7章 离散时间信号与系统的Z域分析
7.1 离散信号的Z变换 7.2 Z反变换 7.3 Z变换的基本性质和定理 7.4 Z变换与拉普拉斯变换傅里叶变换的关系 7.5 序列的傅里叶变换的定义和性质 7.6 利用Z变换求解差分方程 7.7 离散系统的系统函数和频率响应
7.8 离散系统的信号的流图
双边序列指n为任意值时,x(n)皆有值的序列,即左边序列 和右边序列之和。
X ( z)
n
x ( n) z x ( n) z
n n 0

n

n
x ( n) z
1
第一项为右边序列(因果)其收敛域为: z 第二项为左边序列,其收敛域为: 当Rx-<Rx+时,其收敛域为
*第一项为有限长序列,第二项为z的负幂级数,
7 离散时间信号与系统的Z域分析

7.离散时间信号与系统的z域分析

7.离散时间信号与系统的z域分析

第七章离散时间系统的Z域分析7.1 学习要求1.熟练掌握信号的Z域分析方法:Z变换的定义、收敛区及基本性质,能够应用长除法和部分分式分解法求Z反变换。

2.掌握序列的傅里叶变换的定义和基本性质,并了解Z变换与拉普拉斯变换、傅里叶变换的关系。

3.掌握离散系统响应的Z变换分析方法:深刻理解离散系统的系统函数的概念,掌握离散时间系统的时域和Z域框图与流图描述形式。

7.2 学习重点1.z变换,z反变换定义、基本性质、计算方法。

2.离散时间系统的z域分析。

3.离散时间系统的频率响应特性。

7.3知识结构7.4内容摘要7.4.1 Z变换1.定义∑∞-∞=-=n nz n x z X )()( 表示为:)()]([z X n x Z =。

2. 收敛域 (1) 有限长序列12(),()0,x n n n n x n n ≤≤⎧=⎨⎩其他当0,021>>n n 时,收敛条件为0>z ;当0,021<<n n 时,收敛条件为∞<z ;当0,021><n n 时,收敛条件为∞<<z 0。

(2) 右边序列11(),()0,x n n n x n n n ≥⎧=⎨<⎩当01>n 时,收敛域为1x R z >,1x R 为最小收敛半径;当01<n 时,收敛域为∞<<z R x 1。

(3) 左边序列2(),()0,x n n n x n n ≤⎧=⎨⎩其他 当02<n ,收敛域为2x R z <,2x R 为最大收敛半径; 当02>n ,收敛域为20x R z <<。

(4) 双边序列双边序列指n 为任意值时,)(n x 皆有值的序列,即左边序列和右边序列之和。

其z 变换:∑∑∑∞=--∞=--∞-∞=-+==1)()()()(n n nnn nzn x zn x zn x z X双边序列的收敛域为一环形区域21x x R z R <<。

离散时间信号与系统的Z域分析

离散时间信号与系统的Z域分析

《信号与系统》课程实验报告变换。

zz z z z z F 2112)(232+++-=一、实验原理的验证 1、离散系统零极点图实验原理如下:离散系统可以用差分方程描述:∑∑==-=-Mm m Ni i m k f b i k y a 0)()(Z 变换后可得系统函数:NN MM z a z a a z b z b b z F z Y z H ----++++++==......)()()(110110 可以用root 函数可分别求零点和极点。

例7-4 求系统函数零极点图131)(45+-+=z z z z H实验结果如下:2、离散系统的频率特性实验原理如下:离散系统的频率特性可由系统函数求出,既令ωj e z =,函数freqz 可计算频率特性,调用格式是:[H ,W]=freqz(b,a,n),b 和a 是系统函数分子分母系数,n 是π-0范围内n 个等份点,默认值为512,H 是频率响应函数值,W 是相应频率点; 例7-5 系统函数z z z H 5.0)(-=10个频率点的计算结果为幅频特性曲线相频特性曲线freqz语句直接画图例7-7已知系统函数114/11)1(4/5)(----=z z z H ,画频率响应和零极点图。

零极点图幅频特性曲线相频特性曲线二、已知离散系统的系统函数如下所示:1422)(232+-++=z z z z z H试用MATLAB 实现下列分析过程: (1)求出系统的零极点位置;(2)绘出系统的零极点图,根据零极点图判断系统的稳定性; (3)绘出系统单位响应的时域波形,并分析系统稳定性与系统单位响应时域特性的关系。

(1)由计算结果可知:系统的极点为p0=-3.3028、p1=1、p2=0.3028。

由计算结果可知:系统的零点为z0=1.4142i 、z1=-1.4142i 。

(2)系统的零极点图如下:程序清单如下: a=[1 2 -4 1]; b=[1 0 2]; ljdt(a,b)p=roots(a)q=roots(b)pa=abs(p)由图可知:第一个极点(p0)在单位圆外部,第二个极点(p1)在单位圆上,第三个极点(p2)在单位圆内部,因为有一个极点在单位圆外部,故该系统是不稳定的系统(稳定系统要求极点全部在单位圆内)。

《信号与系统》第六章 离散系统z域分析

《信号与系统》第六章  离散系统z域分析

(z
z2 1)(z
2)
z2
z2 z
2
其收敛域如下,分别求其相对应的原序列f(k)。 (1) |z| > 2 (2) |z|< 1 (3) 1< |z| < 2
解(1) 由于F(z)的收敛域在半径为2的圆外,故f(k) 为因果序列。用长除法将F(z)展开为z-1的幂级数:
z2/(z2-z-2)=1+ z-1 + 3z-2 + 5z-3 + …
例:f1(k)=2k(k)←→F1(z)=
z z2
, z>2
f2(k)=
–2k(–
k
–1)←→F2(z)=
z
z
2
, z<2
对单边z变换,其收敛域比较简单,一定
是某个圆以外的区域。可以省略。
常用序列的z变换: (k) ←→ 1 ,z>0
(k)
z ,z>1
–(– k –1)
z 1 ,z<1
书p276
若 f(k) ←→ F(z) , <z< , 且有常数a0
则 akf(k) ←→ F(z/a) , a<z<a
证明:
Z[akf(k)]=
ak f (k)z k
f (k)
z k
F( z )
k
k
a
a
例1:akε(k) ←→ z
za
例2:cos(k)ε(k) ←→? cos(k)ε(k)=0.5(ejk+ e-jk)ε(k) ←→
方程取单边z变换yzz1yzy12z2yzy2y1z1fz2z2fz12224212121221212222212211??????????????????????????zzzzzzzzzzfzzzzzyyzzy1221221242kkyzzzzzzzzzykkzizi??????????????231212123121221kkyzzzzzzzykkzszs?????????????二系统函数zazbzfzyzhzs??2与时域的关系

第六章 离散系统的z域分析

第六章 离散系统的z域分析
3z 例: 2δ(k)+ 3ε(k) ←→ 2 + δ ε z −1
第1-12页 12页
z > 1
青岛科技大学信息科学技术学院
信号与系统 电子教案
6.2
z变换的性质 z变换的性质
二、移位特性
双边z 双边z变换
若: f (k) ←→F (z) , α<z<β,且有整数 β 且有整数m>0, , 则: f(k±m) ←→ z±mF(z), α<z<β ± , β
2 2
z > a
青岛科技大学信息科学技术学院
信号与系统 电子教案
6.2
z变换的性质 z变换的性质
四、卷积定理
若: f1 (k) ←→F1(z) , α1<z<β1 β f2 (k) ←→F2(z) , α2<z<β2 β 则: f1(k) * f2(k) ←→ F1(z)F2(z), , 例 收敛域至少为 相交部分 求单边序列 (k+1)akε(k)的z变换,(0<a<1)。 的 变换, 。 变换
三、z域尺度变换(序列乘ak) 域尺度变换(序列乘a
若: f (k) ←→F (z) , α<z<β,且对整数m>0, β 且对整数 , 则: ak f(k) ←→ F(z/a), αa<z<βa , β 变换。 例:求指数衰减正弦序列 aksin(βk)ε(k) 的z变换。 β 解:
6.1 z 变 换
b k , k < 0 f 2 (k ) = b k ε (−k − 1) = 0, k ≥ 0
解: 反因果序列的 变换为: 反因果序列的z变换为 变换为:

离散信号与系统的Z域分析

离散信号与系统的Z域分析
序列相加减(线性加权)后,所得序列z变换的ROC,有 可能比原序列z变换的ROC大。位移特性常用来分析单边 周期信号,单边周期信号总具有相似的形式。
8 离散信号与系统的 Z 域分析 p 16
例: F(z) = 1/(za) |z| a 求f [k]。 解:
1 F ( z) z 1 1 az
z 例: (3) u[k ] , z 3 z 3
k
类似于傅氏、拉氏变换的尺度变换特性。
1 1 s L f (at ) F ( j ) f (at ) F ( ), a a a a
F
8 离散信号与系统的 Z 域分析 p 18
a 0, a 0
例*:求aksin(0k) u[k] 的z变换及收敛域
1 cos 0 z 1 1 2 z 1 cos 0 z 2 sin 0 z 1 1 2 z 1 cos 0 z 2
五、单边z变换的主要性质
f [k ] F ( z), z R f
f1[k ] F1 ( z), z R f 1
1 2
sin 0 z 1 za 2 2 z 1 cos 0 z 2
8 离散信号与系统的 Z 域分析 p 19
五、单边z变换的主要性质
4. z域微分特性(时域线性加权)
dF ( z ) kf [k ] z dz
Z
Z Rf
m d m d F ( z) Z m m 或写成 : ( z ) F ( z ) k f [k ] ( z ) m dz dz
2 2
8 离散信号与系统的 Z 域分析 p 13
五、单边z变换的主要性质
2. 位移特性(记忆)
因果序列的位移

信号与系统chapter 7离散时间信号与系统的Z域分析

信号与系统chapter 7离散时间信号与系统的Z域分析

由此可见,位移特性Z域表达式中包含了系统的起始条 件,把时域差分方程转换为Z域代数方程,因此,可以方便 求出Z域的零输入响应和两状态响应。
式(7.3)又称为左移序性质,与拉普拉斯变换的时域 微分特性相当。式(7.4)又称右移序性质,与拉普拉斯变 换的时域积分特性相当。
进一步,对于因果序列 x ( n ) , x ( 1 ) 0 ,x ( 2 ) 0 , ,则
Z [nx(n)u(n)]zdd zn∞ 0znx(n)zdd zX(z)
求下列序列的Z变换。
(1) n 2 u ( n )
n(n 1)
(2)
u(n)
解:(1 )Z[n2 u(n)] zd d z 2zz 1 zd d z2 zd d z zz 1
dz
z2 z
z [
]
, z 1
zlnz1 1ln1 zzlnzz1,z1
(2)因为
Z1
u(n 1) , z 1 z 1
根据Z域积分特性,可得
∞1
X(z)
x 1dx∞
1
z dxln ,z1
2
z x1
z x(x1 )
z1
§ 6. 卷积和定理
若 x1(n)u(n) ZX 1(z),z Rx;x2(n)u(n) ZX2(z),z Rx,则 :
第七章 离散时间信号与系统的Z域分析
7.1引言 7.2 Z 变换 7.3 Z 变换的性质 7.4 反变换 7.5离散时间系统的 Z 域分析 7.6离散时间系统的系统函数与系统特性 7.7离散时间系统的模拟
7.1 引 言
按照与连续时间信号与系统相同的分析方法,本章将
讨论离散时间信号与系统的 z 域分析。
§ 4. Z域微分特性

离散信号与系统的 Z 域分析

离散信号与系统的 Z 域分析

第 六 章 离散信号与系统的 Z 域分析引言与线性连续系统的频域分析和复频域分析类似,线性离散系统的频域分析是输入信号分解为基本信号e jΩk 之和,则系统的响应为基本信号的响应之和。

这种方法的数学描述是离散时间傅里叶变换和逆变换。

如果把复指数信号e jΩk 扩展为复指数信号Z k ,Z=re jΩ ,并以Zk 为基本信号, 把输入信号分解为基本信号Z k 之和, 则响应为基本信号Z k 的响应之和。

这种方法的数学描述为Z 变换及其逆变换,这种方法称为离散信号与系统的Z 域分析法.如果把离散信号看成连续时间信号的 抽样值序列,则Z 变换可由拉普拉斯变换引入.因此离散信号与系统的Z 域分析 和连续时间信号与系统的复频域分析有许多相似之处.通过Z 变换,离散时间信 号的卷积运算变成代算,离散时间系统的差分方程变成Z 域的代数方程,因此可 以比较方便的分析系统的响应。

Z 变换从拉普拉斯变换到Z 变换对连续信号f(t)进行理想抽样,即f(t)乘以单位冲击序列δT (t),T 为 抽样间隔,得到抽样信号为f s (t)=f(t)δT (t)= =对fs(t)取双边拉普拉斯变换,得F s (s)=£[fs(t)]=令z=e sT , 则Fs(s)=F(z) ,得F(z)=因为T为常数,所以通常用f(k)表示f(kT),于是变为F(z)=称为f(k)的双边Z变换,z为复变量。

z和s的关系为:z=e sTs=(1/T)㏑z由复变函数理论,可以得到f(k)= ∮cF(z)z k-1 dz式(7.1-5)称为F(z)的双边Z逆变换(后面讨论).双边Z变换的定义和收敛域§双边 Z 变换的定义对于离散序列f(k)(k=0,±1,±2,┄),函数(z的幂级数)F(z)=称为f(k)的双边Z变换,记为F(z)=Z[f(k)].F(z)又称为f(k)的象函数,f(k)又 称为F(z)的原函数.为了表示方便,f(k)与F(z)之间的对应关系可表示为 f(k) F(z)§双边 Z 变换的收敛域f(k)的双边Z变换为一无穷级数,因此存在级数是否收敛的问题.只有当 (7.1-6)式的级数收敛,F(z)才存在.F(z)存在或级数收敛的充分条件是 ∞在f(k)给定的条件下,式(7.1-6)级数是否收敛取决于z的取值.在z复平面上, 使级数收敛的z取值区域称为F(Z)的收敛域。

信号与系统课后习题答案第7章

信号与系统课后习题答案第7章

143
第7章 离散信号与系统的Z域分析 144
第7章 离散信号与系统的Z域分析
题图 7.7
145
第7章 离散信号与系统的Z域分析 146
第7章 离散信号与系统的Z域分析
题解图 7.31
147
第7章 离散信号与系统的Z域分析
(2) 由H(z)写出系统传输算子: 对应算子方程和差分方程为
148
7.25 已知一阶、二阶因果离散系统的系统函数分别如下, 求离散系统的差分方程。
111
第7章 离散信号与系统的Z域分析 112
第7章 离散信号与系统的Z域分析 113
第7章 离散信号与系统的Z域分析 114
第7章 离散信号与系统的Z域分析
7.26 已知离散系统如题图7.5所示。 (1) 画出系统的信号流图; (2) 用梅森公式求系统函数H(z); (3) 写出系统的差分方程。
① 或者
② 容易验证式①、②表示同一序列。
57
第7章 离散信号与系统的Z域分析 58
第7章 离散信号与系统的Z域分析 59
第7章 离散信号与系统的Z域分析 60
第7章 离散信号与系统的Z域分析 61
第7章 离散信号与系统的Z域分析
也可以将Yzs(z)表示为
再取Z逆变换,得 ②
自然,式①、②为同一序列。
44
第7章 离散信号与系统的Z域分析 45
第7章 离散信号与系统的Z域分析 46
第7章 离散信号与系统的Z域分析
7.10 已知因果序列f(k)满足的方程如下,求f(k)。
47
第7章 离散信号与系统的Z域分析 48
第7章 离散信号与系统的Z域分析
(2) 已知K域方程为
49

《信号与系统》讲义教案第6章离散信号与系统的Z域分析

《信号与系统》讲义教案第6章离散信号与系统的Z域分析

第 6 章离散信号与系统的Z 域分析6.0 引言与拉氏变换是连续时间傅立叶变换的推广相对应,Z 变换是离散时间傅立叶变换的推广。

Z 变换的基本思想、许多性质及其分析方法都与拉氏变换有相似之处。

当然, Z 变换与拉氏变换也存在着一些重要的差异。

6.1 双边 Z 变换6.1.1双边Z变换的定义前面讨论过,单位脉冲响应为h[n] 的离散时间 LTI 系统对复指数输入z n的响应y[n]为y[ n]H ( z) z n(6.1)其中H ( z)h[ n] z n(6.2)n式 (6. 2) 就称为 h[n] 的双边 Z 变换。

当 z= e j时, Z 变换就转变为傅立叶变换。

因此一个离散时间信号的双边Z 变换定义为:X ( z)x[ n]z n(6.3)n式中 z 是一个复变量。

而x[n]与它的双边z 变换之间的关系可以记做zx[n]X (z)6.1.2双边Z变换的收敛域x[n] 的双边 Z 变换为一无穷级数,因此存在级数是否收敛的问题,即一方面并非所有信号的Z 变换都存在;另一方面即使某信号的Z 变换存在,但并非Z 平面上的所有点都能使X(z)收敛。

那些能够使X(z)存在的点的集合,就构成了X(z)的收敛域,记为ROC。

只有当式 (6.3) 的级数收敛,X (z) 才存在。

X ( z) 存在或级数收敛的充分条件是x[n]z n(6.4)n在 x[ n] 给定的条件下,式 (6.4)级数是否收敛取决于 z 的取值。

在 z 复平面上,使式 (6.4)级数收敛的 z取值区域就是 X(z)的收敛域。

6.1.3零极点图如果X(z) 是有理函数,将其分子多项式与分母多项式分别因式分解可以得到:N ( z)(z z i )X ( z)i(6.5)M(zD ( z)z p )p则由其全部的零极点即可表示出X ( z) ,最多相差一个常数因子。

在Z 平面上表示出全部的零极点,即构成X ( z) 的几何表示——零极点图。

信号与系统 第六章离散系统的Z域分析

信号与系统  第六章离散系统的Z域分析
j
Z平面

k 1 k (1 z ) ( 3z ) 3 k 1 k 0


0
|z|<3时,第一项收敛于
z ,对应于左边序列。 z 3 z |z|>1/3时,第二项收敛于 ,对应于右边序列。 1 收敛域 z3
1 3
3
1 当 | z | 3 时, 3
8 z z 3 z F ( z) 1 z 3 z 3 ( z 3)( z 1 3)
应用尺度变换:
k

sin k (k )
z a
z sin z 2 2 z cos 1
0< a <1
sin a z sin a sin k (k ) z 2 z ( a ) 2( a ) cos 1 z 2 2 a z cos a 2
§6.2
Z变换的性质
| k-3|(k)
解:(1) F z
k k k z 1
k 1
(2) 双边z变换: F z
k
f k z


k
2 1 z 2z 3 2 z z
2
0 z
单边z变换: F z f k z
k 0
长春理工大学
零点:0 极点:3,1/3
§6.1
Z 变换
Z变换的收敛域
收敛域内不包含任何极点,在极点处,F(z)为无穷大, Z变换不收敛。 有限长序列的收敛域为整个Z平面, 可能不含z=0, z=。 因果有限长序列: F(z)=f (1)z -1+ f (2)z -2+· · · · |z|>0 反因果有限长序列: F(z)=f (-1)z 1+ f (-2)z2+· · · · |z|< 如果是因果序列,收敛域为|z|>0圆的外部。 如果是左边序列,收敛域为|z|<0 。 如果是双边序列,收敛域由圆环组成。

离散系统的Z域分析

离散系统的Z域分析
F(z)
2、系统函数的求解 (1)由定义求 (2)已知差分方程 y(n) a1y(n 1) aN y(n N ) b0 f (n) b1 f (n 1) bM f (n M )
离散时间信号与系统的Z域分析
在零状态条件下有:
Yf (z) a1z1Yf (z) aN zNYf (z)
y1(n) D
2
+
6 _
y(n)
解: 由框图得
y1(n) f (n) 2 y1(n 1)
y(n) y1(n) 6 y1(n 1)
离散时间信号与系统的Z域分析
在零状态下,取Z变换得
Y1(z) F (z) 2z1Y1(z)
Yf (z) Y1(z) 6z1Y1(z)
F (z) (2z1 1)Y1(z) Yf (z) (1 6z1)Y1(z)
b0F (z) b1z1F (z) bM zM F (z)
6-19
源码
故:
H
(z)
Yf (z) F(z)
b0 b1z1 ... bM zM 1 a1z1 ... aN zN
6-20 源码
(3)已知 h(n)
6-21
源码
h(n) H (z)
6-22
源码
离散时间信号与系统的Z域分析
例2 系统框图如图所示,
离散时间信号与系统的Z域分析
信号与系统分析
(2)由于
H (z) z2 z[ z ] z[ 1 1 ]
z2 2z 1 (z 1)2
(z 1)2 z 1
故 h(n) (n 1)(1)nU (n)
离散时间信号与系统的Z域分析
例3 如图所示离散系统,当输入f (n) (2)nU (n)
求其零状态响应 y f (n)

第七章 离散信号与系统的Z域分析

第七章 离散信号与系统的Z域分析

f (k ) 3k (k 1) 3k (k 2)
31 3k 1 (k 1) 32 3k 2 (k 2)
由表7.1
根据双边Z变换位移性质,得: z z2 3k 1 (k 1) z z 3 z 3
z 3 (k ) z 3
(2) 无限长因果序列双边Z变换的收敛域为|z|>|z0|,z0为复数、虚数或实数, 即收敛域为半径为|z0|的圆外区域。 (3) 无限长反因果序列双边Z变换的收敛域为|z|<|z0|,即收敛域为以|z0|为 半径的圆内区域。
(4) 无限长双边序列双边Z变换的收敛域为|z1|<|z|<|z2|,即收敛域位于以|z1| 为半径和以|z2|为半径的两个圆之间的环状区域。
k 0
f (i) z
( i m )
z
1
m
i m
f (i) z

i
z [ f (i) z
m i i 0

i m
f (i) z
1
i
]
z m [ F ( z )
i m

f (i) z i ]
z
7.2 Z变换的性质
例 7.2-3 已知f(k)=3k[ε(k+1)-ε(k-2)],求f(k)的双边Z变换 及其收敛域。 解: f(k)可以表示为
(5) 不同序列的双边Z变换可能相同,即序列与其双边Z变换不是一一对 应的。序列的双边Z变换连同收敛域一起与序列才是一一对应的。
7.1 Z 变 换
7.1.3 常用序列的双边Z变换
(1) f (k ) (k )
F ( z)
k
(k ) z k (0) z 0 1

第六章离散系统的Z域分析

第六章离散系统的Z域分析

z z F (z) ( a z b ) za zb
a z 当 1且 1即a z b 收敛 z b
j Im [z ]
b
0
a
Re [ z ]
5
由上可知 (1) z变换的收敛域与f(k) 与z值的范围有关,两 个不同的序列由于收敛域不同可能对应于同一个z 变换,为了单值的确定z变换对应的序列,在给出 序列的z变换式的同时,必须明确其收敛域。
m
n m
f (n)z
1
n m
f (n)z
n
1
n
]
]
14
z f ( k m ) ( k ) f ( k m )z
k 0

k
z
m
f (k m )z
k 0

( k m )
z
m
z [ f ( n)z
n 0
m m 1 n 0
据定义
zkf ( k )
k 1
z ( kz
k
d k d z z f (k ) z F ( z ) dz k dz
时域序列线性加权的z变换为原序列象函数微 20 分后乘以(z)
kf (k )z dz ) f ( k ) z [ dz
k k
k

k
] f (k )
推广:
m
d m k f ( k ) ( z ) F ( z ) ( 1 z 2 ) dz
d m ( z ) F ( z )表示对F ( z )求导并乘以 ( z )共m次 dz
z 例4、 若 已 知 z[ ( k )] ,求 斜 变 序 列 k ( k )的z变 换 z 1

第10章 离散时间信号与系统的Z域分析

第10章 离散时间信号与系统的Z域分析
例: 已知 f (n) a 解
n m 1
n
n
u (m 1),
m 1
n
求f(n)的双边Z变换F(z)。
u (m 1) u (m 1)
m
n
z 1 u ( n 1) z z 1 z 1
1
|z|>1
根据部分和性质,则
z u (m 1) m u (m 1) ( z 1) 2 m 1
x( n)un
4 4 x( n 2)u( n) 4 x ( n 2)u( n)
1O 1
n
1O 1
n
1O 1
n
xn mun, xn mun较xnun的长度有所增减。
若x(n)为双边序列,并 x(n)U(n) X(z),则
1 n x(n m)U (n) z X ( z ) x(n) z n m m
12
4、时域卷积定理:

f1 (n) F1 ( z )
f 2 ( n) F2 ( z )
R x1 Z R x 2
R y1 Z R y 2
则 f1 (n) * f 2 (n) F1 ( z ) F2 ( z )
max( R x 1 , R y 1 ) z min( R x 2 , R y 2 )

f ( n) z n
收敛域
不同f(n)的z变换,由于收敛域不同,可能对应于相同的z变换,故在
确定z变换时,必须指明收敛域。
例:
a n f1 (n) 0
n n 0
n0 n0
a z
n n 0 n
j Im( z )

§6.4 离散系统的Z域分析

§6.4 离散系统的Z域分析

z 2z 9z 8z z2 z z4 2 Y ( z) 1 2 z 5z 6 z 4 z 2 z 3 z 4 1 5z 6 z

y(k ) [2(2) k 9(3) k 8(4) k ]U (k )
1 k 例2: 已知h(k ) ( ) U (k ), f (k ) G5 (k ), 求系统零状态响应 f (k ). y 2 z z z 2z z 5 解: H ( z ) )(1 z ) [ ](1 z 5 ) Y ( z) H ( z) F ( z) ( )( 1 z 1 z 1 z 1 z 1 z 2 2 2
i N

1
y (i) z i
a N a N 1 z 1 a0 z N
3)求反变换,得差分方程时域解。
Y ( z ) y (k )
信号与系统
例: 已知某线性时不变系统数学模型如下: y(k)-5y(k-1)+6y(k-2)=0 初始状态y(-1)=4,y(-2)=1,求零输入响应y(k)。 解: 对差分方程进行Z变换(用移序性质) ;
z z 5 F ( z) z z 1 z 1
1 k 1 k 5 y f (k ) [2 ( ) ]U (k ) [2 ( ) ]U (k 5) 2 2
信号与系统
3、全响应Z域求解: y (k ) y x (k ) y f (k ) 例1: 已知系统框图,列出系统的差分方程;
2
4
信号与系统
y(n) x(n) 2 y(n 1) 4 y(n 2) y(n) 2 y(n 1) 4 y(n 2) x(n) n (n 2) 2为二阶差分方程 后向差分方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
N
|a|
Re z
ROC : z a
(2)
F ( z) z
k 0
N 1
k
1 z 1 z 1
ROC: z 0
按理说,有限长序列z变换的收敛域应为整个z平面,但 因为z≠0,需去除该点,所以 | z | > 0
8 离散信号与系统的 Z 域分析 p 7
四、常用因果序列的z变换
8 离散信号与系统的 Z 域分析 p 11
理解:
f [k ] {1, 2, 3, 4, 5, 6} f [k 2] {0, 0, 1, 2, 3, 4, 5, 6}



由左边移到 右边的部分
f [k 2]u[k ] {0, 0, 0, 2, 3, 4, 5, 6} f [k 2]u[k 2] {0, 0, 0, ( z)} a u[k 1]
1
k 1
8 离散信号与系统的 Z 域分析 p 17
五、单边z变换的主要性质
3. 指数加权特性
z a f [k ] F ( ) a
k Z
k
z a Rf
1 1 , z 1 a u[k ] , z a u[k ] 1 1 1 a z 1 z
双边z变换*
8 离散信号与系统的 Z 域分析 p 2
一、Z变换的定义
课本是从离散时间傅氏变换(DTFT)引出 z 变换的, 其思想:对于一些不存在傅氏变换的离散序列,可以乘上 一个衰减序列 r-k,使之衰减,于是有:
FT[ f [k ] r k ]
k
k jk f [ k ] r e j k f [ k ]( r e )
一、Z变换的定义
从拉普拉斯变换也可以引出 z 变换。对理想抽样信 号,求其拉氏变换,即得:

f s (t ) f (t ) (t kT ) f (kT ) (t kT )
k k
两边做拉氏变换
Fs (s) L[ f s (t )]

令e sT z, 为了方便,f [KT] 仍用 f [K]表示
解:
sin( 0 k )u[k ]
z
sin 0 z
1
1 2
1 2 z cos 0 z
z 1
利用z变换的指数加权特性,可得
k sin( 0 k )u[k ]
sin 0 ( z / ) 1 1 2( z / ) cos 0 ( z / )
1 1 a u[k ] , 1 z 1 1 az 1 ( ) a
k Z
z a
利用z域微分特性,可得
1 d 1 az 1 k 1 az Z{ka u[k ]} z ,z a 1 2 dz (1 az )
0
k
0
k
0
k
Z{ f [k 1]u[k ]} z 1F ( z) f [1] Z{ f [k 2]u[k ]} z 1Z{ f [k 1]u[k ]} f [2] z F ( z) z f [1] f [2]
8 离散信号与系统的 Z 域分析 p 15
2
z

1 cos 0 z 1 j sin 0 z 1 1 2 z 1 cos 0 z 2
cos( 0 k )u[k ] sin( 0 k )u[k ]
8 离散信号与系统的 Z 域分析 p 9
1 cos 0 z 1 1 2 z 1 cos 0 z 2 sin 0 z 1 1 2 z 1 cos 0 z 2
1 2
sin 0 z 1 za 2 2 z 1 cos 0 z 2
8 离散信号与系统的 Z 域分析 p 19
五、单边z变换的主要性质
4. z域微分特性(时域线性加权)
dF ( z ) kf [k ] z dz
Z
Z Rf
m d m d F ( z) Z m m 或写成 : ( z ) F ( z ) k f [k ] ( z ) m dz dz

即f [k 2]u[k ] f [k 2]u[k 2]
k 2 z f [k n]u[k ] F ( z ) z n z n
f [k ]
k n
1

1
f [k ] z k
由左边移到右 边部分的z变换
原来序列的z变换
8 离散信号与系统的 Z 域分析 p 12
n k Z f [k n]u[k ] z [ F ( z ) f [k ]z ] k n k 0 1
|z|> Rf |z|> Rf
8 离散信号与系统的 Z 域分析 p 14
五、单边Z变换的主要性质
非因果序列的位移
f [k ]
f [k 1]
f [k 2]
五、单边z变换的主要性质
f [k ] F ( z), z R f
f1[k ] F1 ( z), z R f 1
z
z
f 2 [k ] F2 ( z), z R f 2
z
1.线性特性
af1[k ] bf2 [k ] aF 1 ( z) bF 2 ( z)
课本中只讨论因果序列信号(右边序列信号的特例), 对因果信号而言,若存在z变换,则其双边z变换与单边z 变换是相同的,收敛域也相同。 此处根据定义求z变换
(1) f [k ] [k ]
F ( z)
k k [ k ] z 1, z 0, 即全z平面
f [k ] [k m], m为正整数 .
F1 ( z )
k k m [ k m ] z z
z 0
8 离散信号与系统的 Z 域分析 p 8
四、常用因果序列的Z变换
1) Z{ [k ]} 1,
k
z0
2) Z{ u[k ]}
1 1 z
1 1 e
j 0
1
za
1
3) Z{e j0k u[k ]}
如果原序列是非因果序列(求单边变换时乘u[k]):
Z f [k n]u[k ] z n [ F ( z ) k n n 1 k f [ k ] z ], z R f 1
Z f [k n]u[k ] z n [ F ( z ) f [k ]z k ], z R f k 0
z f [k ] F ( z)
三、单边z变换及其收敛域
单边z 变换 收敛域(ROC):
使上式级数收敛的所有z的范围称为F(z)的收敛域 收敛域为z平面中某个圆 的外部区域。可仿照极点 法求其半径。
Im z
ROC Re z
F ( z ) f [k ]z k
k 0

z Rf
L{ f s (t )} f [k ]z k F ( z )
k
k
f (kT )e

ksT
z域到频域、s域的映射关系: z
8 离散信号与系统的 Z 域分析 p 4
re , z e
j
sT
二、z变换定义及符号表示
双边z变换 z反变换
F ( z ) f [k ]z k
z 例: (3) u[k ] , z 3 z 3
k
类似于傅氏、拉氏变换的尺度变换特性。
1 1 s L f (at ) F ( j ) f (at ) F ( ), a a a a
F
8 离散信号与系统的 Z 域分析 p 18
a 0, a 0
例*:求aksin(0k) u[k] 的z变换及收敛域
2 2
8 离散信号与系统的 Z 域分析 p 13
五、单边z变换的主要性质
2. 位移特性(记忆)
因果序列的位移
f [k n] u[k n] z nF(z) 非因果序列的位移
n 1
|z|> Rf
Z f [k n]u[k ] z n [ F ( z ) f [k ]z k ]
序列相加减(线性加权)后,所得序列z变换的ROC,有 可能比原序列z变换的ROC大。位移特性常用来分析单边 周期信号,单边周期信号总具有相似的形式。
8 离散信号与系统的 Z 域分析 p 16
例: F(z) = 1/(za) |z| a 求f [k]。 解:
1 F ( z) z 1 1 az
8 离散信号与系统的 Z 域分析 p 6
例:求以下序列的Z变换及收敛域。
(1) f [k ] a u[k ]
k
(2)
1 0 k N 1, N为有限值 f [k ] 0 其它
Im z
解:根据定义式:
(1)
F ( z) a z
k k 0

k
1 1 1 az
位移特性(常见二阶形式,常用于求解差分方程)
f [k n]u[k n] z F ( z), z R f
Z
Z f [k n]u[k ] z n [ F ( z ) k n
n

1
f [k ]z k ], z R f
Z{ f [k 1]} z F ( z ) f [1] Z{ f [k 2]} z F ( z ) z f [1] f [2]
k
1 k 1 f [k ] F ( z ) z dz c 2 πj
物理意义: 将离散信号分解为不同频率复指数esTk的线性组合 符号表示 正变换:F(z) = Z{f [k]} 或
8 离散信号与系统的 Z 域分析 p 5
相关文档
最新文档