八年级数学培优资料

合集下载

学而思八年级数学培优讲义

学而思八年级数学培优讲义

学而思八年级数学培优讲义学而思八年级数学培优讲义旨在帮助学生巩固课堂所学知识,提高数学素养,为初中阶段的学习打下坚实基础。

以下是八年级数学培优讲义的部分内容:一、有理数及其运算1. 有理数的分类:整数、分数、正有理数、负有理数、零。

2. 有理数的加法:同号相加,异号相减;绝对值相加,符号决定和的大小。

3. 有理数的减法:减法转化为加法,被减数、减数与差的的关系。

4. 有理数的乘法:符号规律,绝对值相乘。

5. 有理数的除法:除法转化为乘法,商的变化规律。

6. 有理数的乘方:乘方的意义,乘方运算规则。

二、几何知识1.点、线、面的基本概念:点的坐标,线段的平行、垂直,平面的性质。

2.三角形的基本概念:三角形的分类,三角形的边角关系,三角形的判定。

3. 四边形的基本概念:四边形的分类,四边形的对边、对角线、内角和。

4.平行四边形的性质:对边平行且相等,对角线互相平分,平行四边形的判定。

5.矩形、菱形、正方形的性质:矩形的对角线相等,菱形的对角线垂直,正方形的性质。

三、函数与方程1.函数的基本概念:函数的定义,函数的图像,函数的性质。

2.一次函数:一次函数的解析式,一次函数的图像,一次函数与直线。

3.方程的基本概念:方程的定义,方程的解法,方程的应用。

4. 一元一次方程:一元一次方程的解法,一元一次方程的应用。

5. 一元二次方程:一元二次方程的解法,一元二次方程的应用。

四、三角形和四边形的几何证明1.三角形的证明:全等三角形的判定,相似三角形的判定。

2. 四边形的证明:平行四边形的判定,矩形、菱形、正方形的判定。

3.几何证明的方法:综合法、分析法、反证法。

五、统计与概率1.统计的基本概念:数据的收集、整理、分析。

2.频数与频率:频数分布表,频率分布表,概率的基本概念。

3.事件的概率:等可能事件的概率,条件概率,独立事件的概率。

4.统计的应用:平均数、中位数、众数,概率的应用。

通过学习八年级数学培优讲义,学生可以系统地回顾和巩固课堂所学知识,提高自己的数学能力,为初中阶段的学习打下坚实基础。

人教版八年级数学培优题精选18例(含答案)-word文档资料

人教版八年级数学培优题精选18例(含答案)-word文档资料

解:(1)若第二次购物没有超过 300 元,则两次所购物品价值为 180 + 288 = 468(元),这两次购物合并成一次性付款可以节省:468 × 10% = 46.8 (元)。

(2)若第二次购物超过 300 元,设所购物品价值为 x 元,则 90% x = 288 ,解得 x = 320 , 即第二次购物价值为 320 元。

两次所购物品价值为 180 + 320 = 500 > 300 , 所以享受 9 折优惠,因此应付 500 × 90% = 450 (元)。

这两次购物合并成一次性付款可以节省:180 + 288 - 450 = 18 (元)。

答:若这两次购物合并成一次性付款可以节省 46.8 元或 18 元。

例题17、因长期干旱,甲水库蓄水量降到了正常水位的最低值。

为灌溉需要,由乙水库向甲水库匀速供水,20 h 后,甲水库打开一个排灌闸为农田匀速灌溉,又经过 20 h ,甲水库打开另一个排灌闸为农田匀速灌溉,在经过 40 h ,乙水库停止供水。

甲水库的每个排泄闸的灌溉速度相同,图中的折线表示甲水库蓄水量 Q (万 m^3)与时间 t(h)之间的函数关系。

求:八年级数学培优题精选18例(含答案)(1)线段 BC 的函数表达式;(2)乙水库供水速度和甲水库一个排泄闸的灌溉速度;(3)乙水库停止供水后,经过多长时间甲水库蓄水量又降到了正常水位的最低值。

解:(1)BC 的表达式为: Q = 5t + 400 (20 ≤ t ≤ 40);(2)设乙水库的供水速度为 x 万3m/h ,m /h , 甲为 y 万3八年级数学培优题精选18例(含答案)∴乙水库的供水速度为 15 万3mm /h , 甲水库一个排泄闸的灌溉速度为 10 万3/h 。

(3)∵正常水位的最低值为 a = 500 - 15×20 = 200 ,∴(400 - 200)÷(2 × 10) = 10 h ,∴ 10 小时后降到了正常水位的最低值。

八年级数学培优:完全平方数和完全平方式知识点及竞赛训练(含答案)

八年级数学培优:完全平方数和完全平方式知识点及竞赛训练(含答案)

完全平方数和完全平方式一、内容提要(一)、定义1. 如果一个数恰好是某个有理数的平方,那么这个数叫做完全平方数.例如0,1,0.36,254,121都是完全平方数. 在整数集合里,完全平方数,都是整数的平方.2. 如果一个整式是另一个整式的平方,那么这个整式叫做完全平方式.如果没有特别说明,完全平方式是在实数范围内研究的.例如:在有理数范围 m 2, (a+b -2)2, 4x 2-12x+9, 144都是完全平方式.在实数范围 (a+3)2, x 2+22x+2, 3也都是完全平方式.(二)、整数集合里,完全平方数的性质和判定1. 整数的平方的末位数字只能是0,1,4,5,6,9.所以凡是末位数字为2,3,7,8的整数必不是平方数.2. 若n 是完全平方数,且能被质数p 整除, 则它也能被p 2整除..若整数m 能被q 整除,但不能被q 2整除, 则m 不是完全平方数.例如:3402能被2整除,但不能被4整除,所以3402不是完全平方数.又如:444能被3整除,但不能被9整除,所以444不是完全平方数.(三)、完全平方式的性质和判定在实数范围内如果 ax 2+bx+c (a ≠0)是完全平方式,则b 2-4ac=0且a>0;如果 b 2-4ac=0且a>0;则ax 2+bx+c (a ≠0)是完全平方式.在有理数范围内当b 2-4ac=0且a 是有理数的平方时,ax 2+bx+c 是完全平方式.(四)、完全平方式和完全平方数的关系1. 完全平方式(ax+b )2 中当a, b 都是有理数时, x 取任何有理数,其值都是完全平方数;当a, b 中有一个无理数时,则x 只有一些特殊值能使其值为完全平方数.2. 某些代数式虽不是完全平方式,但当字母取特殊值时,其值可能是完全平方数.例如: n 2+9, 当n=4时,其值是完全平方数.所以,完全平方式和完全平方数,既有联系又有区别.(五)、完全平方数与一元二次方程的有理数根的关系1. 在整系数方程ax 2+bx+c=0(a ≠0)中① 若b 2-4ac 是完全平方数,则方程有有理数根;② 若方程有有理数根,则b 2-4ac 是完全平方数.2. 在整系数方程x 2+px+q=0中① 若p 2-4q 是整数的平方,则方程有两个整数根;② 若方程有两个整数根,则p 2-4q 是整数的平方.二、例题例1. 求证:五个连续整数的平方和不是完全平方数.证明:设五个连续整数为m -2, m -1, m, m+1, m+2. 其平方和为S.那么S =(m -2)2+(m -1)2+m 2+(m+1)2+(m+2)2=5(m 2+2).∵m 2的个位数只能是0,1,4,5,6,9∴m 2+2的个位数只能是2,3,6,7,8,1∴m 2+2不能被5整除.而5(m 2+2)能被5整除,即S 能被5整除,但不能被25整除.∴五个连续整数的平方和不是完全平方数.例2 m 取什么实数时,(m -1)x 2+2mx+3m -2 是完全平方式?解:根据在实数范围内完全平方式的判定,得当且仅当⎩⎨⎧>-010m △=时,(m -1)x 2+2mx+3m -2 是完全平方式 △=0,即(2m )2-4(m -1)(3m -2)=0.解这个方程, 得 m 1=0.5, m 2=2.解不等式 m -1>0 , 得m>1.即⎩⎨⎧>==125.0m m m 或 它们的公共解是 m=2.答:当m=2时,(m -1)x 2+2mx+3m -2 是完全平方式.例3. 已知: (x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式.求证: a=b=c.证明:把已知代数式整理成关于x 的二次三项式,得原式=3x 2+2(a+b+c)x+ab+ac+bc∵它是完全平方式,∴△=0.即 4(a+b+c)2-12(ab+ac+bc)=0.∴ 2a 2+2b 2+2c 2-2ab -2bc -2ca=0,(a -b)2+(b -c)2+(c -a)2=0.要使等式成立,必须且只需:⎪⎩⎪⎨⎧=-=-=-000a c c b b a解这个方程组,得a=b=c.例4. 已知方程x 2-5x+k=0有两个整数解,求k 的非负整数解.解:根据整系数简化的一元二次方程有两个整数根时,△是完全平方数.可设△= m 2 (m 为整数),即(-5)2-4k=m 2 (m 为整数),解得,k=4252m -. ∵ k 是非负整数,∴ ⎪⎩⎪⎨⎧-≥-的倍数是42502522m m 由25-m 2≥0, 得 5≤m , 即-5≤m ≤5;由25-m 2是4的倍数,得 m=±1, ±3, ±5.以 m 的公共解±1, ±3, ±5,分别代入k=4252m -. 求得k= 6, 4, 0.答:当k=6, 4, 0时,方程x 2-5x+k=0有两个整数解例5.求证:当k为整数时,方程4x2+8kx+(k2+1)=0没有有理数根.证明:(用反证法)设方程有有理数根,那么△是整数的平方.∵△=(8k)2-16(k2+1)=16(3k2-1).设3k2-1=m2(m是整数).由3k2-m2=1,可知k和m是一奇一偶,下面按奇偶性讨论3k2=m2+1能否成立.当k为偶数,m为奇数时,左边k2是4的倍数,3k2也是4的倍数;右边m2除以4余1,m2+1除以4余2.∴等式不能成立.;当k为奇数,m为偶数时,左边k2除以4余1,3k2除以4余3右边m2是4的倍数,m2+1除以4余1∴等式也不能成立.综上所述,不论k, m取何整数,3k2=m2+1都不能成立.∴3k2-1不是整数的平方,16(3k2-1)也不是整数的平方.∴当k为整数时,方程4x2+8kx+(k2+1)=0没有有理数根三、练习1.如果m是整数,那么m2+1的个位数只能是____.2.如果n是奇数,那么n2-1除以4余数是__,n2+2除以8余数是___,3n2除以4的余数是__.3.如果k不是3的倍数,那么k2-1 除以3余数是_____.4.一个整数其中三个数字是1,其余的都是0,问这个数是平方数吗?为什么?5.一串连续正整数的平方12,22,32,………,1234567892的和的个位数是__.6.m取什么值时,代数式x2-2m(x-4)-15是完全平方式?7.m取什么正整数时,方程x2-7x+m=0的两个根都是整数?8.a, b, c满足什么条件时,代数式(c-b)x2+2(b-a)x+a-b是一个完全平方式?9.判断下列计算的结果,是不是一个完全平方数:①四个连续整数的积;②两个奇数的平方和.10.一个四位数加上38或减去138都是平方数,试求这个四位数.11. 已知四位数aabb 是平方数,试求a, b.12. 已知:n 是自然数且n>1. 求证:2n -1不是完全平方数.13. 已知:整系数的多项式4x 4+ax 3+13x 2+bx+1 是完全平方数,求整数a 和b 的值.14. 已知:a, b 是自然数且互质,试求方程x 2-abx+21(a+b)=0的自然数解.参考答案1. 1,2,5,6,7,02. 0,3,33. 04. 不是平方数,因为能被3整除而不能被9整除5. 5。

八年级数学暑期培优(二)

八年级数学暑期培优(二)

八年级数学暑期培优(二)一、选择题:1.要使分式11x +有意义,则x 必须满足的条件是 A .x ≠1 B .x ≠-1 C .x ≠0 D .x >12.下列各式化简正确的是A .13455=B .21233=C .1316224=D .234323= 3.反比例函数1m y x-=的图象在第一、第三象限,则m 可能取的一个值为 A .0 B .1 C .2 D .34.若a 、b 为实数,且满足22a b -+-,则b -a 的值为A .2B .0C .-2D .以上都不对5.下列说法中错误的是A .所有的等边三角形都相似B .所有的等腰三角形都相似C .有一对锐角相等的两个直角三角形相似D .全等的三角形一定相似6.若关于x 的方程1011m x x x --=--有增根,则m 的值是 A .-1 B .1 C .2 D .37.下列命题中,真命题是A .四边相等的四边形是正方形B .对角线相等的菱形是正方形C .正方形的两条对角线相等,但不互相垂直平分D .矩形、菱形、正方形都具有“对角线相等”的性质8.已知反比例函数2y x=-,下列结论不正确的是 A .图象经过点(-2,1) B .图象在第二、四象限C .当x <0时,y 随着x 的增大而增大D .当x >-1时,y >29.某单位向一所希望小学赠送1080件文具,现用A 、B 两种不同的包装箱进行包装,已知每个B 型包装箱比A 型包装箱多装15件文具,单独使用B 型包装箱比单独使用A 型包装箱可少用12个.设A 型包装箱每个可以装x 件文具,根据题意列方程为A .108010801215x x =+-B .108010801215x x =--C .108010801215x x =-+D .108010801215x x =++ 10.如图,已知AD 为△ABC 的角平分线,DE//AB 交AC 于E ,若23AE EC =,则AB AC值为 A .23 B .13 C .25 D .35 二、填空题:11.2a b b ÷(a ≥0,b >0)= .12.已知菱形ABCD 的边长为2,∠BAD =120°,则菱形的对角线长是 .13.如图,正方形ABOC 的边长为2,反比例函数k y x=的图象过点A , 则k = . 14.一个不透明的口袋中,装有红球6个,白球9个,黑球3个,这些球除颜色不同外没有任何区别,从中任意摸出一个球,要使摸到黑球的概率为14,需要往这个口袋再放入同种黑球个 . 15.如果32311x m x x -=+++,则m = .16.已知关于x 的分式方程211a x +=+的解是非负数,则a 的取值范围是 . 17.命题“直角三角形中,两个锐角互余”的逆命题是 .18.如图,C 为线段AB 上的一点,△ACM 、△CBN 都是等边三角形,BM 与CN 交于D 点.若AC =3,BC =2,则CD = .三、解答题:19.计算:221112a a a a a ---÷+. 20.解方程:21133x x x x =+++.21.先化简,再求值:2321121x x x x x -⎛⎫--÷ ⎪--+⎝⎭,其中x =-2.22.一只不透明的袋子有1个白球和2红个球, 这些球除颜色以外都相同,搅匀后从中任意摸出1个球,记下颜色放回搅匀,再从中摸出1个球,则两次都摸出红球的概率是多少?(要求画出树状图或列出表格)23.(本题满分7分)如图,在四边形ABCD 中,点E 是AD 上一点,EC//AB , EB ∥DC . S △ABE =3,S △BCE =2.(1)求证:△ABE ∽△ECD ;(2)求△ECD 的面积.24.(本题满分8分)如图,直线y=x+m与反比例函数kyx=相交于点A(6,2),与x轴交于B点,点C在直线AB上且23ABBC=.过B、C分别作y轴的平行线交双曲线kyx=于D、E两点.(1)求m、k的值;(2)求点D、E坐标.25.(本题满分9分)常富物流公司运送60kg货物后,考虑到为了节约运送时间,公司调整了原有的的运送方式,调整后每天运送的货物重量是原来的2倍.结果一共用9天完成了480kg货物的运送任务,问常富物流公司原来每天运送货物是多少?26.(本题满分9分)如图,四边形ABCD中,AC⊥AB.∠ADB=∠ACB,过点A作AE⊥BC,垂足为E,交BD于点F.(1)求证:AB2=BF·BD;(2)求证:∠BDC=90°.27.如图1,在直角梯形ABCD中,AD∥BC,∠A=90°,BD⊥DC,BC=10cm,CD=6cm.在线段BC、CD上有动点F、E,点F以每秒2cm的速度,在线段BC上从点B向点C匀速运动;同时点E以每秒1cm 的速度,在线段CD上从点C向点D匀速运动.当点F到达点C时,点E同时停止运动.设点F运动的时间为t(秒).(1)求AD的长;(2)设四边形BFED的面积为y,求y关于t的函数关系式,并写出函数定义域;(3)点F、E在运动过程中,如果△CEF与△BDC相似,求线段BF的长.图1 备用图28.(2011江西南昌)某数学兴趣小组开展了一次活动,过程如下:设∠BAC =θ(0°<θ<90°).现把小棒依次摆放在两射线A B ,AC 之间,并使小棒两端分别落在两射线上. 活动一:如图甲所示,从点A 1开始,依次向右摆放小棒,使小棒与小棒在两端点处互相垂直,A 1A 2为第1根小棒. 数学思考:(1)小棒能无限摆下去吗?答: .(填“能”或“不能”)(2)设AA 1=A 1A 2=A 2A 3=1.①θ= 度;②若记小棒A 2n-1A 2n 的长度为a n (n 为正整数,如A 1A 2=a 1,A 3A 4=a 2,),求此时a 2,a 3的值,并直接写出a n (用含n 的式子表示).图甲 图乙活动二:如图乙所示,从点A 1开始,用等长的小棒依次向右摆放,其中A 1A 2为第1根小棒,且A 1A 2= AA 1. 数学思考:(3)若已经向右摆放了3根小棒,则1θ= ,2θ= ,3θ= ;(用含θ的式子表示)(4)若只能..摆放4根小棒,求θ的范围.。

八年级数学培优资料(全套)

八年级数学培优资料(全套)

八年级数学培优资料(全套)目录第01讲全等三角形的性质与判定6经典·考题·赏析6演练巩固·反馈提高10培优升级·奥赛检测12第02讲角平分线的性质与判定14经典·考题·赏析15培优升级·奥赛检测18第3讲轴对称及轴对称变换19经典·考题·赏析19演练巩固·反馈提高23培优升级·奥赛检测24第4讲等腰三角形27经典·考题·赏析27培优升级·奥赛检测34第五讲等边三角形36经典考题赏析36巩固练习反馈提高39第06讲实数41经典·考题·赏析41演练巩固反馈提高43培优升级奥赛检测44第7讲变量与函数45经典·考题·赏析46演练巩固·反馈提高49第8讲一次函数的图象与性质50经典·考题·赏析51演练巩固·反馈提高54培优升级·奥赛检测57第9讲一次函数与方程、不等式58经典·考题·赏析58演练巩固·反馈提高61第10讲一次函数的应用62经典·考题·赏析62演练巩固反馈提高69第11讲幂的运算72经典·考题·赏析72演练巩固反馈提高73培优升级奥赛检测74第12讲整式的乘除75经典·考题·赏析76演练巩固·反馈提高78第13讲因式分解及其应用80经典·考题·赏析80演练巩固反馈提高83培优升级奥赛检测84第14讲分式的概念•性质与运算85经典•考题•赏析86演练巩固反馈提高89培优升级奥赛检测90第15讲分式的化简求值与证明91经典•考题•赏析92演练巩固反馈提高96培优升级奥赛检测97第16讲分式方程及其应用99经典·考题·赏析99演练巩固·反馈提高102培优升级·奥赛检测104第17讲反比例函数的图象与性质106经典·考题·赏析106演练巩固·反馈提高110培优升级·奥赛检测113第18讲反比例函数的应用115经典·考题·赏析115演练巩固反馈提高119培优升级奥赛检测120第19讲勾股定理122经典·考题·赏析122演练巩固·反馈提高127培优升级•奥赛检测129第20讲平行四边形131经典•考题•赏析131演练巩固反馈提高135培优升级奥赛检测137第21讲菱形与矩形139经典·考题·赏析139演练巩固反馈提高141培优升级奥赛检测143第22讲正方形145经典•考题•赏析145演练巩固·反馈提高150培优升级·奥赛检测152第23讲梯形154经典•考题•赏析154演练巩固反馈提高. 155培优升级奥赛检测158第24讲数据的分析161经典·考题·赏析161演练巩固·反馈提高165培优升级·奥赛检测166模拟测试卷(一)169模拟测试卷(二) 172模拟测试卷(三)174A F CEDB B AC DE F第01讲 全等三角形的性质与判定考点·方法·破译1.能够完全重合的两个三角形叫全等三角形.全等三角形的形状和大小完全相同;2.全等三角形性质:①全等三角形对应边相等,对应角相等;②全等三角形对应高、角平分线、中线相等;③全等三角形对应周长相等,面积相等;3.全等三角形判定方法有:SAS ,ASA ,AAS ,SSS ,对于两个直角三角形全等的判定方法,除上述方法外,还有HL 法;4.证明两个三角形全等的关键,就是证明两个三角形满足判定方法中的三个条件,具体分析步骤是先找出两个三角形中相等的边或角,再根据选定的判定方法,确定还需要证明哪些相等的边或角,再设法对它们进行证明;5..证明两个三角形全等,根据条件,有时能直接进行证明,有时要证的两个三角形并不全等,这时需要添加辅助线构造全等三角形,构造全等三角形常用的方法有:平移、翻折、旋转、等倍延长线中线、截取等等.经典·考题·赏析【例1】如图,AB ∥EF ∥DC ,∠ABC =90°,AB =CD ,那么图中有全等三角形( ) A .5对 B .4对 C .3对 D .2对【解法指导】从题设题设条件出发,首先找到比较明显的一对全等三角形,并由此推出结论作为下面有用的条件,从而推出第二对,第三对全等三角形.这种逐步推进的方法常用到.解:⑴∵AB ∥EF ∥DC ,∠ABC =90. ∴∠DCB =90. 在△ABC 和△DCB 中 AB DC ABC DCB BC CB =⎧⎪=⎨⎪=⎩∠∠ ∴△ABC ≌∴△DCB (SAS ) ∴∠A =∠D⑵在△ABE 和△DCE 中A DAED DEC AB DC =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△ABE ≌∴△DCE ∴BE =CE ⑶在Rt △EFB 和Rt △EFC 中BE CEEF EF =⎧⎨=⎩∴Rt △EFB ≌Rt △EFC (HL )故选C .【变式题组】 01.(天津)下列判断中错误的是( )A .有两角和一边对应相等的两个三角形全等B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等 02.(丽水)已知命题:如图,点A 、D 、B 、E 在同一条直线上,且AD =BE ,∠A =∠FDE ,则△ABC ≌△DEF .判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.03.(上海)已知线段AC 与BD 相交于点O , 连接AB 、DC ,E 为OB 的中点,F 为OC 的中点,连接EF (如图所示).⑴添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC ; ⑵分别将“∠A =∠D ”记为①,“∠OEF =∠OFE ”记为②,“AB =DC ”记为③,添加①、③,以②为结论构成命题1;添加条件②、③,以①为结论构成命题2.命题1是______命题,命题2是_______命题(选择“真”或“假”填入空格).【例2】已知AB =DC ,AE =DF ,CF =FB . 求证:AF =DE .【解法指导】想证AF =DE ,首先要找出AF 和DE 所在的三角形.AF 在△AFB 和△AEF 中,而DE 在△CDE 和△DEF 中,因而只需证明△ABF ≌△DCE 或△AEF ≌△DFE 即可.然后再根据已知条件找出证明它们全等的条件.证明:∵FB =CE ∴FB +EF =CE +EF ,即BE =CF在△ABE 和△DCF 中, AB DCAE DF BE CF =⎧⎪=⎨⎪=⎩∴△ABE ≌△DCF (SSS ) ∴∠B =∠C在△ABF 和△DCE 中, AB DC B C BF CE =⎧⎪=⎨⎪=⎩∠∠ ∴△ABF ≌△DCE ∴AF =DE【变式题组】01.如图,AD 、BE 是锐角△ABC 的高,相交于点O ,若BO =AC ,BC =7,CD =2,则AO 的长为( ) A .2 B .3 C .4 D .502.如图,在△ABC 中,AB =AC ,∠BAC =90°,AE 是过A 点的一条直线,AE ⊥CE 于E ,BD ⊥AE于D ,DE =4cm ,CE =2cm ,则BD =__________. \ 03.(北京)已知:如图,在△ABC 中,∠ ACB =90°,CD ⊥AB 于点D ,点E 在AC 上,CE =BC ,过点E 作AC 的垂线,交CD 的延长线于点F . 求证:AB =FC .AE第1题图A BCDEBCDO第2题图A B C D O FE A C EFBD点B 顺时针方向旋转,这时AC 与DF 相交于点O .⑴当△DEF 旋转至如图②位置,点B (E )、C 、D 在同一直线上时,∠AFD 与∠DCA 的数量关系是________________;⑵当△DEF 继续旋转至如图③位置时,⑴中的结论成立吗?请说明理由_____________.【解法指导】⑴∠AFD =∠DCA⑵∠AFD =∠DCA 理由如下:由△ABC ≌△DEF ,∴AB =DE ,BC =EF , ∠ABC =∠DEF , ∠BAC =∠EDF ∴∠ABC -∠FBC =∠DEF -∠CBF , ∴∠ABF =∠DEC在△ABF 和△DEC 中, AB DE ABF DEC BF EC =⎧⎪=⎨⎪=⎩∠∠∴△ABF ≌△DEC ∠BAF =∠DEC ∴∠BAC -∠BAF =∠EDF -∠EDC , ∴∠F AC =∠CDF∵∠AOD =∠F AC +∠AFD =∠CDF +∠DCA∴∠AFD =∠DCA 【变式题组】 01.(绍兴)如图,D 、E 分别为△ABC 的AC 、BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P ∠CDE =48°,则∠APD 等于( ) A .42° B .48° C .52° D .58°02.如图,Rt △ABC 沿直角边BC 所在的直线向右平移得到△DEF ,下列结论中错误的是( )A .△ABC ≌△DEFB .∠DEF =90° D .EC =CF03.一张长方形纸片沿对角线剪开,得到两种三角形纸片,再将这两张三角形纸片摆成如下图形式,使点B 、F 、C 、D 在同一条直线上. ⑴求证:AB ⊥ED ;⑵若PB =BC ,找出图中与此条件有关的一对全等三角形,并证明.EFB ACDG第2题图B (E )OC F 图③DA【例4】(第21高,点P 在BD 的延长线,BP =AC ,点Q 在CE 上,CQ =AB. 求证:⑴ AP =AQ ;⑵AP ⊥AQ【解法指导】证明线段或角相等,也就是证线段或角所在的两三角形全等.经观察,证AP =AQ ,也就是证△APD 和△AQE ,或△APB 和△QAC 全等,由已知条件BP =AC ,CQ =AB ,应该证△APB ≌△QAC ,已具备两组边对应相等,于是再证夹角∠1=∠2即可. 证AP ⊥AQ ,即证∠P AQ =90°,∠P AD +∠QAC =90°就可以.证明:⑴∵BD 、CE 分别是△ABC 的两边上的高, ∴∠BDA =∠CEA =90°, ∴∠1+∠BAD =90°,∠2+∠BAD =90°,∴∠1=∠2.在△APB 和△QAC 中, 2AB QC BP CA =⎧⎪=⎨⎪=⎩∠1∠ ∴△APB ≌△QAC , ∴AP =AQ⑵∵△APB ≌△QAC ,∴∠P =∠CAQ , ∴∠P +∠P AD =90° ∵∠CAQ +∠P AD =90°,∴AP ⊥AQ 【变式题组】01.如图,已知AB =AE ,∠B =∠E ,BA =ED ,点F 是CD 的中点,求证:AF ⊥CD .02.(湖州市竞赛试题)如图,在一个房间内有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA 为am ,此时梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面的墙上,此时梯子顶端距地面的垂直距离NB 为bm ,梯子倾斜角为45°,这间房子的宽度是( )A .2a bm + B .2a bm - C .bm D .am03.如图,已知五边形ABCDE 中,∠ ABC =∠AED =90°,AB =CD =AE =BC +DE =2,则五边形ABCDE 的面积为__________AECBA 75° C45° BNM第2题图第3题图D21ABC PQ E F D演练巩固·反馈提高01.(海南)已知图中的两个三角形全等,则∠α度数是( )A .72°B .60°C .58°D .50°02.如图,△ACB ≌△A /C /B /,∠ BCB /=30°,则∠ACA /的度数是( )A .20°B .30°C .35°D .40° 03.(牡丹江)尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得△OCP ≌△ODP 的根据是( ) A .SAS B .ASA C .AAS D .SSS 04.(江西)如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A . CB =CD B .∠BAC =∠DAC 05将它们的一个锐角顶点放在一起,如图,当A 、B 、D 不在一条直线上时,下面的结论不正确的是( ) A . △ABE ≌△CBD B . ∠ABE =∠CBD C . ∠ABC =∠EBD =45° D . AC ∥BE06.如图,△ABC 和共顶点A ,AB =AE ,∠1=∠2,∠B =∠E . BC 交AD 于M ,DE 交AC 于N ,小华说:“一定有△ABC ≌△AED .”小明说:“△ABM ≌△AEN .”那么( ) A . 小华、小明都对 B . 小华、小明都不对 C . 小华对、小明不对 D .小华不对、小明对07.如图,已知AC =EC , BC =CD , AB =ED ,如果∠BCA =119°,∠ACD =98°,那么∠ECA 的度数是___________.08.如图,△ABC ≌△ADE ,BC 延长线交DE 于F ,∠B =25°,∠ACB =105°,∠DAC =10°,则∠DFB 的度数为_______.09.如图,在Rt △ABC 中,∠C =90°, DE ⊥AB 于D , BC =BD . AC =3,那么AE +DE =______第1题图 a αc ca50° b72°58°10.如图,BA ⊥AC , CD ∥AB . BC =DE ,且BC ⊥DE ,若AB =2, CD =6,则AE =_____.11.如图, AB =CD , AB ∥CD . BC =12cm ,同时有P 、Q 两只蚂蚁从点C 出发,沿CB 方向爬行,Pcm /s , Qcm /s . 求爬行时间t 为多少时,△APB ≌△QDC .12.如图, △ABC 中,∠BCA =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D .⑴求证:AE =CD ;⑵若AC =12cm , 求BD 的长.13.(吉林)如图,AB =AC ,AD ⊥BC 于点D ,AD 等于AE ,AB 平分∠DAE 交DE 于点F , 请你写出图中三对全等三角形,并选取其中一对加以证明.14.如图,将等腰直角三角板ABC 的直角顶点C 放在直线l 上,从另两个顶点A 、B 分别作l 的垂线,垂足分别为D 、E . ⑴找出图中的全等三角形,并加以证明; ⑵若DE =a ,求梯形DABE 的面积.15.如图,AC ⊥BC , AD ⊥BD , AD =BC ,CE ⊥AB ,DF ⊥AB 垂足分别是E 、F .求证:CE =DF .16.我们知道,两边及其中一边的对角分别对应相等的两个角形不一定全等,那么在什么情况下,它们会全等? ⑴阅读与证明:对于这两个三角形均为直角三角形,显然它们全等;对于这两个三角形均为钝角三角形,可证明它们全等(证明略); 对于这两个三角形均为锐角三角形,它们也全等,可证明如下;已知△ABC 、△A 1B 1C 1均为锐角三角形,AB =A 1B 1,BC =B 1C 1,∠C =∠C 1.求证:△ABC ≌D A C .QP.BD B AC EFAE BF D CA EF C D B △A 1B 1C 1.(请你将下列证明过程补充完整)⑵归纳与叙述:由⑴可得一个正确结论,请你写出这个结论.培优升级·奥赛检测01.如图,在△ABC 中,AB =AC ,E 、F 分别是AB 、AC 上的点,且AE =AF ,BF 、CE 相交于点O ,连接AO 并延长交BC 于点D ,则图中全等三角形有( ) A .4对 B .5对 C .6对 D .7对02.如图,在△ABC 中,AB =AC ,OC =OD ,下列结论中:①∠A =∠B ②DE =CE ,③连接DE ,则OE 平分∠AOB ,正确的是( ) A .①② B .②③ C .①③ D .①②③03.如图,A 在DE 上,F 在AB 上,且AC =CE , ∠1=∠2=∠3, 则DE 的长等于()A .DCB . BC C . ABD .AE +AC04.下面有四个命题,其中真命题是( )A .两个三角形有两边及一角对应相等,这两个三角形全等B .两边和第三边上的高对应相等的两个三角形全等C . 有一角和一边对应相等的两个直角三角形全等D . 两边和第三边上的中线对应相等的两个三角形全等05.在△ABC 中,高AD 和BE 所在直线相交于H 点,且BH =AC ,则∠ABC =_______. 06.如图,EB 交AC 于点M , 交FC 于点D , AB 交FC 于点N ,∠E =∠F =90°,∠B =∠C , AE =AF . 给出下列结论:①∠1=∠2;②BE =CF ; ③△ACN ≌△ABM ; ④CD =DB ,其中正确的结论有___________.(填序号)07.如图,AD 为在△ABC 的高,E 为AC 上一点,BE 交AD 于点F ,且有BF =AC ,FD =CD .⑴求证:BE ⊥AC ;⑵若把条件“BF =AC ”和结论“BE ⊥AC ”互换,这个命题成立吗?证明你的判定.08.如图,D 为在△ABC 的边BC 上一点,且CD =AB ,∠BDA =∠BAD ,AE 是△ABD 的中线.求证:AC =2AE .F 第6题图 21A B C E N M 321 A D E B C F A D E CO AE O BF C D 第1题图 B 第2题图 第3题图 A B CD A 1 B 1C 1D 1A B C DEAE B D C 09.如图,在凸四边形ABCD 中,E 为△ACD 内一点,满足AC =AD ,AB =AE , ∠BAE +∠BCE=90°, ∠BAC =∠EAD .求证:∠CED =90°.10.(沈阳)将两个全等的直角三角形ABC 和DBE 按图①方式摆放,其中∠ACB =∠DEB =90°,∠A =∠D =30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .⑴求证:AF +EF =DE ;⑵若将图①中△DBE 绕点B 顺时针方向旋转角α,且0°<α<60°,其他条件不变,请在图②中画出变换后的图形,并直接写出(1)中结论是否仍然成立;⑶若将图①中△DBE 绕点B 按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③你认为(1)中结论还成立吗?若成立,写出证明过程;若不成立,请写出此时AF 、EF 与DE 之间的关系,并说明理由。

人教版八年级数学上册培优资料

人教版八年级数学上册培优资料

精品文档第1讲 认识三角形考点·方法·破译1.了解与三角形有关的线段(边、高、中线、角平分线),会画出任意三角形的高、中线、角平分线. 2.知道三角形两边的和大于第三边,两边之差小于第三边. 3.了解与三角形有关的角(内角、外角) .4.掌握三角形三内角和等于180°,三角形的一个外角等于与它不相邻的两个内角的和. 5.会用方程的思想解与三角形基本要素相关的问题.6.会从复杂的图形中找到基本图形,从而寻求解决问题的方法.经典·考题·赏析【例1】若的三边分别为4,x ,9,则x 的取值范围是______________,周长l 的取值范围是______________ ;当周长为奇数时,x =______________.【解法指导】运用三角形三边关系,即第三边小于两边之和而大于两边之差故5<x <13,18<l <26;周长为19时,x =6,周长为21时,x =8,周长为23时,x =10,周长为25时,x =12,【变式题组】01.若△ABC 的三边分别为4,x ,9,且9为最长边,则x 的取值范围是_________,周长l 的取值范围是__________. 02.设△ABC 三边为a ,b ,c 的长度均为正整数,且a <b <c ,a +b +c =13,则以a ,b ,c 为边的三角形,共有______________个. 03.用9根同样长的火柴棒在桌面上摆一个三角形(不许折断)并全部用完,能摆出不同形状的三角形个数是( ).A .1B .2C .3D .4【例2】已知等腰三角形的一边长为18cm ,周长为58cm ,试求三角形三边的长.【解法指导】对等腰三角形,题目没有交代底边和腰,要给予讨论.当18cm 为腰时,底边为58-18×2=22,则三边为18,18,22. 当18cm 为底边时,腰为58182=20,则三边为20,20,18.此两种情况都符合两边之和大于第三边.解:18cm ,18cm ,22cm 或18cm , 20,20cm . 【变式题组】01.已知等腰三角形两边长分别为6cm ,12cm ,则这个三角形的周长是( )A .24cmB .30cmC .24cm 或30cmD .18cm02.已知三角形的两边长分别是4cm 和9cm ,则下列长度的四条线段中能作为第三条边的是( )A .13cmB .6cmC .5cmD .4cm03.等腰三角形一腰上的中线把这个等腰三角形的周长分成12和10两部分,则此等腰三角形的腰长为________.【例3】如图AD 是△ABC 的中线,DE 是△ADC 的中线,EF 是△DEC 的中线,FG 是△EFC 的中线,若S △GFC =1cm 2,则S △ABC =______________.【解法指导】中线将原三角形面积一分为二,由FG 为△EFC 的中线,知S △EFC =2S △GFC =2.又由EF 为△DEC 中线,S △DEC =2S △EFC =4.同理S △ADC =8,S △ABC =16.【变式题组】01.如图,已知点D 、E 、F 分别是BC 、AD 、BE 的中点,S △ABC =4,则S △EFC =______________.(第1题图)CC【例4】已知,如图,则∠A+∠B+∠C+∠D+∠E=_______.【解法指导】这是本章的一个基本图形,其基本方法为构造三角形或四边形内角和,结合八字形角的关系即,∠A+∠B=∠C+∠D.故连结BC有∠A+∠D=∠DBC+∠ACB,∴∠A+∠B+∠C+∠D+∠E=180°【变式题组】01.如图,则∠A+∠B+∠C+∠D+∠E=______________.02.如图,则∠A+∠B+∠C+∠D+∠E +∠F=______________.03.如图,则∠A+∠B+∠C+∠D+∠E +∠F=____________.【例5】如图,已知∠A=70°,BO、CO分别平分∠ABC、∠ACB.则∠BOC =______________.【解法指导】这是本章另一个基本图形,其结论为∠BOC=12∠A+90°.证法如下: ∠BOC=180°-∠OBC-∠OCB=180°-12∠ABC-12∠ACB=180°-12(180°-∠A)=90°+12∠A.所以∠BOC=125°.【变式题组】01.如图,∠A=70°,∠B=40°,∠C=20°,则∠BOC=______________.(第1题图)B C02. 点P、O分别是∠ABC、∠ACB的三等分线的交点,则∠OPC=_________.03.如图,∠O=140°,∠P=100°,BP、CP分别平分∠ABO、∠ACO,则∠A=______________.【例6】如图,已知∠B=35°,∠C=47°,AD⊥BC,AE平分∠BAC,则∠EAD=______________.【解法指导】∵∠EAD=90°-∠AED=90°-(∠B+∠BAE)=90°-∠B-12(180°-∠B-∠C)=90°-∠B-90°+12∠B+12∠C=12(∠C-∠B) ,故∠EAD=6°.【变式题组】01.(改)如图,已知∠B=39°,∠C=61°,BD⊥AC,AE平分∠BAC,则∠BFE=__________.(说明:原题题、图不符.由已知得∠A=98°, BD⊥AC,则点D在CA的延长线上.)02.如图,在△ABC中,∠ACB=40°,AD平分∠BAC,∠ACB的外角平分线交AD的延长线(第2题图)(第1题图)(第2题图)B C(第3题图)C(例6题图)E D(例4题图)(第3题图)EC于点P ,点F 是BC 上一动点(F 、D 不重合) ,过点F 作EF ⊥BC 交于点E ,下列结论:①∠P +∠DEF 为定值,②∠P -∠DEF 为定值中,有且只有一个答案正确,请你作出判断,并说明理由. 【例7】如图,在平面内将△ABC 绕点A 逆时针旋转至△AB ′C ′,使CC ′∥AB ,若∠BAC =70°,则旋转角α=______________.【解法指导】利用平移、旋转不改变图形的形状这条性质来解题.∵CC ′∥AB ,∴∠C ′CA =∠CAB =70°,又AC =AC ′,∴∠C ′AC =180°-2×70°=40°【变式题组】 01如图,用等腰直角三角形板画∠AOB =45°,并将三角板沿OB 方向平移到如图所示的虚线后绕点M 逆时针方向旋转22°,则三角板的斜边与射线OA 的直角α=______________.(第1题图)M02.如图,在平面内将△AOB 绕点O 顺时针旋转α角度得到△OA ′B ′,若点A ′在AB 上时,则旋转角α=___________.(∠AOB =90°,∠B =30°)03.如图,△ABE 和△ACD 是△ABC 沿着AB 边,AC 边翻折180°形成的,若∠BAC =130°,则∠α=________.演练巩固·反馈提高01.如图,图中三角形的个数为( )A .5个B .6个C .7个D .8个02.如果三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( )A .锐角三角形B .钝角三角形C .直角三角形D .不确定 03.有4条线段,长度分别是4cm ,8cm ,10cm ,12cm ,选其中三条组成三角形,可以组成三角形的个数是( )A .1个 B .2个 C .3个 D .4个 04.下列语句中,正确的是( )A .三角形的一个外角大于任何一个内角B .三角形的一个外角等于这个三角形的两个内角的和C .三角形的外角中,至少有两个钝角D .三角形的外角中,至少有一个钝角 05.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .无法确定 06.若一个三角形的一个外角大于与它相邻的内角,则这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .无法确定07.如果等腰三角形的一边长是5cm ,另一边长是9cm ,则这个三角形的周长是______________.08.三角形三条边长是三个连续的自然数,且三角形的周长不大于18,则这个三角形的三条边长分别是________. 09.如图,在△ABC 中,∠A =42°,∠B 与∠C 的三等分线,分别交于点D 、E ,则∠BDC 的度数是______________.(第9题图)10.如图,光线l 照射到平面镜上,然后在平面镜Ⅰ、Ⅱ之间来回反射,已知∠α=55,∠γ=75°,∠β=______________. 11.如图,点D 、E 、F 分别是BC 、AD 、BE 的中点,且S △EFC =1,则S △ABC =__________.12.如图,已知: ∠1=∠2,∠3=∠4,∠BAC =63°,则∠DAC =____________.(第2题图)(第3题图)(第10题图)(第11题图)(第12题图)13.如图,已知点D、E是BC上的点,且BE=AB,CD=CA,∠DAE=13∠BAC,求∠BAC的度数培优升级·奥赛检测01.在△ABC中,2∠A=3∠B,且∠C-30°=∠A+∠B,则△ABC是()A.锐角三角形B.钝角三角形C.有一个角是30°的直角三角形D.等腰直角三角形02.已知三角形的三边a、b、c的长都是整数,且a≤b≤c,如果b=7,则这样的三角形共有() A.21个B.28个C.49个D.54个03.在△ABC中,∠A=50°,高BE、CF交于O点,则∠BOC=______________.04.在等腰△ABC中,一腰上的高与另一腰的夹角为26°,则底角的度数为______.05.如图,BP平分∠ABC交CD于点F,DP平分∠ADC交AB于点E,若∠A=40°,∠C=38°,则∠P=______________.06.周长为30,且各边长互不相等且都是整数的三角形有多少个?07.设△ABC三边a、b、c的长度均为自然数,且周长不大于30,并满足(a-b) 2+(a-c) 2+(b-c) 2=26,问满足条件的三角形有多少个?(注:全等三角形只算一个)08.在一次数学小组活动后,小明清理课桌上的三角形模型,经清点,共有11个钝角,15个直角,100个锐角,于是他把这些数据写在“数学园地”上征答:“共有多少个锐角三角形?”你能回答这个问题吗?09.现有长为150cm的铁丝,要截成n(n>2)小段,每段的长为不小于1cm的整数,如果其中任意3小段都不能拼成三角形,试求n的最大值,此时有几种方法将该铁丝截成满足条件的n段?10.如图,在△BCD中,BE平分∠DBC交CD于F,延长BC至G,CE平分∠DCG,且EC、DB的延长线交于A点,若∠A=30°,∠DFE=75°.(1)求证: ∠DFE=∠A+∠D+∠E;(2)求∠E的度数;(3)若在上图中∠CBE与∠GCE的平分线交于E1,∠CBE1与∠GCE1的平分线交于E2,作∠CBE2与∠GCE2的平分线E3,依次类推,∠CBE n与∠GCE n的平分线交于E n+1,请用含有n的式子表示∠E n+1的度数.11.如图,已知OABC是一个长方形,其中顶点A、B的坐标分别为(0,a)和(9,a).点E在AB上,且AE=13AB.点F在OC上,且OF=13OC,点G在OA上,且使△GEC的面积为16,试求α的值.12.如图,已知四边形ABCD中,∠A+∠DCB=180°,两组对边延长后分别交于P、Q两点,∠P、∠Q的平分线交于M,求证PM⊥QM.第2讲认识多边形考点·方法·破译1.了解多边形的有关概念,探索并了解多边形内角和和外角和公式.2.通过探索平面图形的镶嵌,知道任意一个三角形、四边形、或正六边形可以镶嵌平面,并能进行镶嵌设计.经典·考题·赏析【例1】如图所示是一个六边形.(1)从顶点A出发画这个多边形的所有对角线,这样的对角线有几条?它们将六边形分成几个三角形?(2)画出此六边形的所有对角线,数一数共有几条?【解法指导】本题主要考查多边形对角线的定义,对于n边形,从n边形的一个顶点出发,可引(n-3)条对角线,它们将这n边形分成(n-2)个三角形,n边形一共有(3)2n n条对角线,解:(1)从顶点A出发,共可画三条对角线,如图所示,它们分别是AC、AD、AE.将六边形分成四个三角形:△ABC、△ACD、△ADE、△AEF;(2)六边形共有9条对角线.【变式题组】01.下列图形中,凸多边形有( ) A.1个B.2个C.3个D.4个02.过m边形一个顶点有7条对角线,n边形没有对角线,k边形对角线条数等于边数,则m=_,n=_,k=_. 03.已知多边形的边数恰好是从这个多边形的一个顶点出发的对角线条数的2倍,则此多边形的边数是.【例2】(1)八边形的内角和是多少度?(2)几边形的内角和是八边形内角和的2倍?【解法指导】(1)多边形的内角和公式的推导:从n边形一个顶点作对角线,可以作(n-3)条对角线,并且将n 边形分成(n-2)个三角形,这(n-2)个三角形内角和恰好是多边形内角和,等于(n-2)·1800;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.解:(1)八边形的内角和为(8-2)×1800=10800;(2)设n边形的内角和是八边形内角和的2倍,则有(n-2)×1800=10800×2,解得n=14. 故十四边形的内角和是八边形内角和的2倍.【变式题组】01.已知n边形的内角和为21600,求n边形的边数.02.如果一个正多边的一个内角是1080,则这个多边形是()A.正方形B.正五边形C.正六边形D.正七边形03.已知一个多边形的内角和为10800,则这个多边形的边数是()A.8 B.7 C.6 D.504.如图,∠1、∠2、∠3、∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=700,则∠AED的度数为()A.1100B.1080C.1050D.10005.当多边形的边数增加1时,它的内角和与外角和()A.都不变B .内角和增加1800,外角和不变C .内角和增加1800,外角和减少1800D .都增加1800【例3】一只蚂蚁从点A 出发,每爬行5cm 便左转600,则这只蚂蚁需要爬行多少路程才能回到点A ?解:蚂蚁爬行的路程构成一个正多边形,其路程就是这个正多边形的周长,根据已知可得这个正多边形的每个外角均为600,则这个多边形的边数为036060=6.所以这只蚂蚁需要爬行5×6=30(cm )才能回到点A .【解法指导】多边形的外角和为3600.(1)多边形的外角和恒等于3600,它与边数的多少无关.(2)多边形的外角和的推导方法:由于多边形的每个内角与它相邻的外角是邻补角,所以n 边形内角和加外角和等于1800·n ,外角和等于n ·1800-(n -2)·1800=3600.(3)多边的外角和为什么等于3600,还可以这样理解:从多边形的一个顶点A 出发,沿多边形的各边走过各顶点,再回到点A ,然后转向出发点时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所转的各个角的和等于一个周角,所以多边形的外角和等于3600.(4) 多边形的外角和为3600的作用:①已知各相等外角度数求多边形边数;②已知多边形边数,求各相等外角的度数.【变式题组】 01.(无锡)八边形的内角和为_____.度.02.如图所示,已知△ABC 中,∠A =400,剪去∠A 后成四边形,则∠1+∠2=___ 03.(资阳)n (n 为整数,且n ≥3)边形的内角和比(n +1)边形的内角和少____度. 04.(株洲)如图所示,小明在操场上从点A 出发,沿直线前进10米后向左转400,再沿直线前进10米后,又向左转400,……,照这样下去,他第一次回到出发地A 点时,一共走了_____米.【例4】已知两个多边形的内角和为18000,且两多边形的边数之比为2:5,求这两个多边形的边数.【解法指导】两个多边形的边数之比为2:5,可设两个多边形的边数为2x 和5x ,利用多边形的内角可列方程. 解:设这两个多边形的边数分别是2x 和5x ,则由多边形内角和定理可得: (2x -2)·1800+(5x -2)·1800=18000,解得x =2,∴2x =4,5x =10, 故这两个多边形的边数分别为4和10. 【变式题组】01.一个多边形除去一个角后,其余各内角的和为22100,这个多边形是___________ 02.若一个多边形的外角和是其内角和的25,则此多边形的边数为_____ 03.每一个内角都相等的多边形,它的一个外角等于一个内角的23,则这个多边形是( )A .三角形B .四边形C .五边形D .六边形 04.内角和与其外角和相等的多边形是___________【例5】某人到瓷砖商店去购买一种多边形瓷砖,用来铺设无缝地面,他购买的瓷砖不可以是( ) A .正三角形 B .长方形 C .正八边形 D .正六边形【解法指导】根据平面镶嵌的定义可知:在一个顶点处各多边形的内角和为3600,由于正三角形、长方形、正六边形的内角都是3600的约数,因此它们可以用来完成平面镶嵌,而正八边形的每个内角为1350,不是3600的约数,所以正八边形不能把平面镶嵌. 解:选C .【变式题组】01.用一种如下形状的地砖,不能把地面铺成既无缝隙,又不重叠的是( )A .正三角形B .正方形C .长方形D .正五边形 02.小明家装修房屋,用同样的正多边形瓷砖铺地,顶点连着顶点,要铺满地面而不重叠,瓷砖的形状可能有( )A .正三角形、正方形、正六边形B .正三角形、正方形、正五边形C .正方形、正五边形D .正三角形、正方形、正五边形、正六边形 03.只用下列正多边形•能作平面镶嵌的是( )A .正五边形B .正六边形C .正八边形D .正十边形04.(晋江市)如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后将其中的一个正方形再剪成四个小正方形,共得7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;……,根据以上操作,若要得到2011个小正方形,则需要操作的次数是( )A .669B .670C .671D .672【例6】有一个十一边形,它由若干个边长为1的等边三角形和边长为1的正方形无重叠、无间隙地拼成,求此十一边形各内角的大小,并画出图形.【解法指导】正三角形的每个内角为600,正方形的每个内角为900,它们无重叠、无间隙可拼成600、900、1200、1500四种角度,根据十一边形内角和即可判断每种角的个数.解:因为正三角形和正方形的内角分别为600、900,由此可拼成600、900、1200、1500四种角度,十一边形内角和为(n -2)×1800=(11-2)×1800=16200.因为1200×11<16200<1500×11,所以这个十一边形的内角只有1200和1500两种.设1200的角有m 个,1500的角有n 个,则有1200m +1500n =16200,即4m +5n =54 此方程有唯一正整数解110m n =⎧⎨=⎩,所以这个十一边形内角中有1个角为1200,10个角为1500,此十一边形如图所示.【变式题组】01.如图是某广场地面的一部分,地面的中央是一块正六边形的地砖,周围用正三角形和正方形的大理石砖镶嵌,从里向外共铺了12层(不包括中央的正六边形地砖),每一层的外边界都围成一个正多边形,若中央正六边形的地砖边长为0.5m ,则第12层的外边界所围成的多边形的周长是___________.02.小明的书房地面为210cm ×300cm 的长方形,若仅从方便平面镶嵌的角度出发,最适宜选用的地砖规格为( )A .30cm ×30cm 的正方形,B .50cm ×50cm 的正方形,C .60cm ×60cm 的正方形,D .120cm ×120cm 的正方形, 03.正m 边形、正n 边形及正p 边形各取一个内角,其和为3600,求111m n p++的值. 演练巩固·反馈提高01.在一个顶点处,若正n 边形的几个内角的和为______,则此正n 边形可铺满地面,没有空隙. 02.(宜昌市)如图,用同样规格的黑白两种正方形瓷砖铺设正方形地面,观察图形并猜想填空:当黑色瓷砖为20块时,白色瓷砖为______块,当白色瓷砖为n 2(n 为正整数)块时,黑色瓷砖为______块. 03.(嘉峪关)用黑白两种颜色的正六边形地板砖按图所示的规律拼成如下若干地板图案:则第n 个图案中白色的地板砖有______块.04.如图所示的图案是由正六边形密铺而成,黑色正六边形周围的第一层有六个白色正六边形,则第n 层有______个白色正六边形.05.如果只用一种正多边形作平面镶嵌,而且在每一个正多边形的每一个顶点周围都有6个正多边形,则该正多边形的边数为( )A .3 B . 4 C .5 D .6 06.下列不能镶嵌的正多边组合是( )A .正三角形与正六边形B .正方形与正六边形C .正三角形与正方形D .正五边形与正十边形 07.用两种以上的正多边形镶嵌必须具备的条件是( )A .边长相同B .在每一点的交接处各多边形的内角和为1800C .边长之间互为整数倍D .在每一点的交接处各多边形的内角和为3600,且边长相等 08.(荆门市)用三块正多边形的木板铺地,拼在一起且相交于一点的各边完全吻合,其中两块木板的边数都是8,则第三块木板的边数是()A.4 B.5 C.6 D.809.[自贡(课改)]张珊的父母打算购买形状和大小都相同的正多边形瓷砖来铺卫生间的地面,张珊特意提醒父母,为了保证铺地面时既没缝隙、又不重叠,所购瓷砖形状不能是()A.正三角形B.正方形C.正六边形D.正八边形10.我们常常见到如图所示那样图案的地板,它们分别是由正方形、等边三角形的材料铺成的,(1)为什么用这样形状的材料能铺成平整、无空隙的地板?(2)你想一想能否用一些全等的任意四边形或不等边三角形镶嵌成地板,请画出图形.11.某单位的地板由三种各角相等、各边也相等的多边形铺成,假设它们的边数为x、y、z,你能找出x、y、z之间有何种数量关系吗?请说明理由.12.黑色正三角形与白色正六边形的边长相等,用它们镶嵌图案,方法如下:白色正六边形分上下两行,上面一行的正六边形个数比下面一行少一个,正六边形之间的空隙用黑色的正三角形嵌满,按第1,2,3个图案[如图(1)、(2)、(3)]规律依次下去,则第n个图案中黑色正三角形和白色正六边形的个数分别是()A.n2+n+2,2n+1 B.2n+2,2n+1 C.4n,n2-n+3 D.4n,2n+1培优升级·奥赛检测01.在一个多边形中,除了两个内角外,其余内角之和为20020,则这个多边形的边数为()A.12 B.12或13 C.14 D.14或1502.有一个边长为4m的正六边形客厅,用边长为50cm的正三角形瓷砖铺满,则需要这种瓷砖()A.216块B.288块C.384块D.512块03.如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数等于()A.3600 B.4500C.5400D.720004.从凸n边形的一个顶点引出的所有对角线把这个凸n边形分成了m个小三角形,若m等于这个凸n边形对角线条数的49,那么此n边形的内角和为___________.05.如图,已知DC∥AB,∠BAE=∠BCD,AE⊥DE,∠D=1300,求∠B的度数.06.如图,小亮从点A出发,沿直线前进10米后向左转300,再沿直线前进10米,又向左转300,……,照这样下去,他第一次回到出发点A时,一共走了______米.07.如图,两直线AB、CD平行,则∠1+∠2+∠3+∠4+∠5+∠6=()A.6300B.7200C.8000D.900008.将一个宽度相等且足够长的纸条打开个结,如(1),然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形,ABCDE,其中∠BAC=_______.09.矩形ABCD的边长为16,宽为12,沿着对角线BD剪开,得到两个三角形,将这两个三角形拼出各种凸四边形,设这些四边形中周长最大为m,周长最小为n,则m+n的值为()A.120 B.128 C.136 D.14410.对正方形ABCD分划如图①,其中E、F分别是BC、CD的中点,M、N、G分别是OB、OD、EF的中点,沿分划线可以剪出一副由七块部件组成的“七巧板”(1)如果设正方形OGFN的边长为1,这七块部件的各块长中,从小到大的四个不同值分别为1、x1、x2、x3,那么x1=___;各内角中最小内角是___度,最大内角是___度;用它们拼成一个五边形如图②,其面积是__.(2)请用这块七巧板,既不留下一丝空白,又不相互重叠,拼出两种边数不同的凸多边形,画在下面格点图中,并使凸多边形的顶点落在格点图的小黑点上(格点图中上下左右相邻两点距离都为1).(3)某合作学习小组在玩七巧板时发现:“七巧板拼成的多边形,其边数不能超过8”.你认为这个结论正确吗?请说明B ACDEF 理由.11.(方案设计题)我们常见到如图的图案地面,它们分别是全用正方形或全用正六边形形状的材料铺成的,这样的材料能铺成平整、无空隙的地面.(1)你能不能另外想一个用一种多边形(不一定是正多边形)的材料铺地的方案,把你想到的方案画成草图; (2)请你再画一个用两种不同正多边形材料铺地的草图.12.(俄罗斯萨温布竞赛题)如图,在凸六边形ABCDEF 中,已知∠A +∠B +∠C =∠D +∠E +∠F 成立,试证明:该六边形必有两条对边是平行的.第3讲 全等三角形的性质与判定考点·方法·破译1.能够完全重合的两个三角形叫全等三角形.全等三角形的形状和大小完全相同;2.全等三角形性质:①全等三角形对应边相等,对应角相等;②全等三角形对应高、角平分线、中线相等;③全等三角形对应周长相等,面积相等;3.全等三角形判定方法有:SAS ,ASA ,AAS ,SSS ,对于两个直角三角形全等的判定方法,除上述方法外,还有HL 法;4.证明两个三角形全等的关键,就是证明两个三角形满足判定方法中的三个条件,具体分析步骤是先找出两个三角形中相等的边或角,再根据选定的判定方法,确定还需要证明哪些相等的边或角,再设法对它们进行证明;5..证明两个三角形全等,根据条件,有时能直接进行证明,有时要证的两个三角形并不全等,这时需要添加辅助线构造全等三角形,构造全等三角形常用的方法有:平移、翻折、旋转、等倍延长线中线、截取等等.经典·考题·赏析【例1】如图,AB ∥EF ∥DC ,∠ABC =90°,AB =CD ,那么图中有全等三角形( ) A .5对 B .4对 C .3对 D .2对【解法指导】从题设题设条件出发,首先找到比较明显的一对全等三角形,并由此推出结论作为下面有用的条件,从而推出第二对,第三对全等三角形.这种逐步推进的方法常用到.解:⑴∵AB ∥EF ∥DC ,∠ABC =90. ∴∠DCB =90. 在△ABC 和△DCB 中AB DC ABC DCB BC CB =⎧⎪=⎨⎪=⎩∠∠ ∴△ABC ≌∴△DCB (SAS ) ∴∠A =∠D ⑵在△ABE 和△DCE 中A DAED DEC AB DC =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△ABE ≌∴△DCE ∴BE =CE ⑶在Rt △EFB 和Rt △EFC 中A FC ED B BE CEEF EF=⎧⎨=⎩ ∴Rt △EFB ≌Rt △EFC (HL )故选C . 【变式题组】 01.(天津)下列判断中错误的是( )A .有两角和一边对应相等的两个三角形全等B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等 02.(丽水)已知命题:如图,点A 、D 、B 、E 在同一条直线上,且AD =BE ,∠A=∠FDE ,则△ABC ≌△DEF .判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.03.已知线段AC 与BD 相交于点O , 连接AB 、DC ,E 为OB 的中点,F 为OC 的中点,连接EF (如图所示). ⑴添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC ;⑵分别将“∠A =∠D ”记为①,“∠OEF =∠OFE ”记为②,“AB =DC ”记为③,添加①、③,以②为结论构成命题1;添加条件②、③,以①为结论构成命题2.命题1是____命题,命题2是_____命题(选择“真”或“假”填入空格). 【例2】已知AB =DC ,AE =DF ,CF =FB . 求证:AF =DE .【解法指导】想证AF =DE ,首先要找出AF 和DE 所在的三角形.AF 在△AFB 和△AEF 中,而DE 在△CDE 和△DEF 中,因而只需证明△ABF ≌△DCE 或△AEF ≌△DFE 即可.然后再根据已知条件找出证明它们全等的条件.证明:∵FB =CE ∴FB +EF =CE +EF ,即BE =CF在△ABE 和△DCF 中, AB DCAE DF BE CF =⎧⎪=⎨⎪=⎩∴△ABE ≌△DCF (SSS ) ∴∠B =∠C在△ABF 和△DCE 中, AB DCB C BF CE =⎧⎪=⎨⎪=⎩∠∠ ∴△ABF ≌△DCE ∴AF =DE【变式题组】01.如图,AD 、BE 是锐角△ABC 的高,相交于点O ,若BO =AC ,BC =7,CD =2,则AO 的长为( )A .2B .3C .4D .502.如图,在△ABC 中,AB =AC ,∠BAC =90°,AE 是过A 点的一条直线,AE ⊥CE 于E ,BD ⊥AE 于D ,DE =4cm ,CE=2cm ,则BD =__________. 03.(北京)已知:如图,在△ABC 中,∠ ACB =90°,CD ⊥AB 于点D ,点E 在AC 上,CE =BC ,过点E 作AC 的垂线,AE第1题图A BCDEBCDO第2题图AFEC BDA B C D OFE A CEFBD交CD 的延长线于点F . 求证:AB =FC .【例3】如图①,△ABC ≌△DEF ,将△ABC 和△DEF 的顶点B 和顶点E 重合,把△DEF 绕点B 顺时针方向旋转,这时AC 与DF 相交于点O .⑴当△DEF 旋转至如图②位置,点B (E )、C 、D 在同一直线上时,∠AFD 与∠DCA 的数量关系是__________; ⑵当△DEF 继续旋转至如图③位置时,⑴中的结论成立吗?请说明理由_____________.【解法指导】⑴∠AFD =∠DCA⑵∠AFD =∠DCA 理由如下:由△ABC ≌△DEF ,∴AB =DE ,BC =EF , ∠ABC =∠DEF , ∠BAC =∠EDF ∴∠ABC -∠FBC =∠DEF -∠CBF , ∴∠ABF =∠DEC在△ABF 和△DEC 中, AB DE ABF DEC BF EC =⎧⎪=⎨⎪=⎩∠∠∴△ABF ≌△DEC ∠BAF =∠DEC ∴∠BAC -∠BAF =∠EDF -∠EDC , ∴∠FAC =∠CDF ∵∠AOD =∠FAC +∠AFD =∠CDF +∠DCA ,∴∠AFD =∠DCA【变式题组】 01.(绍兴)如图,D 、E 分别为△ABC 的AC 、BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若∠CDE =48°,则∠APD 等于( ) A .42° B .48° C .52° D .58°02.如图,Rt △ABC 沿直角边BC 所在的直线向右平移得到△DEF ,下列结论中错误的是( )A .△ABC ≌△DEFB .∠DEF =90°C . AC =DFD .EC =CF03.一张长方形纸片沿对角线剪开,得到两种三角形纸片,再将这两张三角形纸片摆成如下图形式,使点B 、F 、C 、D 在同一条直线上. ⑴求证:AB ⊥ED ;⑵若PB =BC ,找出图中与此条件有关的一对全等三角形,并证明.EFB ACDG第2题图B (E )OC F 图③DA【例4】(第21届江苏竞赛试题)已知,如图,BD 、CE 分别是△ABC 的边A C 和AB 边上的高,点P 在BD 的延长线,BP =AC ,点Q 在CE 上,CQ =AB. 求证:⑴ AP =AQ ;⑵AP ⊥AQ【解法指导】证明线段或角相等,也就是证线段或角所在的两三角形全等.经观察,证AP =AQ ,也就是证△APD 和△AQE ,或△APB 和△QAC 全等,由已知条件BP =AC ,CQ =AB ,应该证△APB ≌△QAC ,已具备两组边对应相等,于是再证夹角∠1=∠2即可. 证AP ⊥AQ ,即证∠PAQ =90°,∠PAD +∠QAC =90°就可以.证明:⑴∵BD 、CE 分别是△ABC 的两边上的高,∴∠BDA =∠CEA =90°, ∴∠1+∠BAD =90°,∠2+∠BAD =90°,∴∠1=∠2. 在△APB 和△QAC 中, 2AB QC BP CA =⎧⎪=⎨⎪=⎩∠1∠ ∴△APB ≌△QAC ,∴AP =AQ⑵∵△APB ≌△QAC ,∴∠P =∠CAQ , ∴∠P +∠PAD =90° ∵∠CAQ +∠PAD =90°,∴AP ⊥AQ 【变式题组】01.如图,已知AB =AE ,∠B =∠E ,BA =ED ,点F 是CD 的中点,求证:AF ⊥CD .02.梯子的倾斜角为75°梯子倾斜角为45°,这间房子的宽度是( )A .2a bm + B .2a bm - C .bm D .am03.如图,已知五边形ABCDE 中,∠ ABC =∠AED =90°,AB =CD =AE =BC +DE =2,则五边形ABCDE 的面积为__________演练巩固·反馈提高01.(海南)已知图中的两个三角形全等,则∠α度数是( )AECBA 75° C45° BNM第2题图第3题图D21ABCP QE F D。

最新人教版八年级数学上册培优辅导资料(最新全13-15章)

最新人教版八年级数学上册培优辅导资料(最新全13-15章)

2017年下学期八年级数学上册辅导讲义第1讲等腰三角形性质及判定【学习目标】1. 掌握等腰三角形的性质,并能利用它证明两个角相等、两条线段相等以及两条直线垂直.2. 掌握等腰三角形的判定定理.3. 熟练运用等腰三角形的判定定理与性质定理进行推理和计算.【要点梳理】要点一、等腰三角形的定义有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.如图所示,在△ABC中,AB=AC,则它叫等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.要点诠释:等腰直角三角形的两个底角相等,且都等于45°.等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A=180°-2∠B,∠B=∠C=1802A︒-∠.要点二、等腰三角形的性质1.等腰三角形的性质性质1:等腰三角形的两个底角相等(简称“等边对等角”).性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).2.等腰三角形的性质的作用性质1证明同一个三角形中的两角相等.是证明角相等的一个重要依据.性质2用来证明线段相等,角相等,垂直关系等.3.等腰三角形是轴对称图形等腰三角形底边上的高(顶角平分线或底边上的中线)所在直线是它的对称轴,通常情况只有一条对称轴.要点三、等腰三角形的判定如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).要点诠释:等腰三角形的判定是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据.等腰三角形的性质定理和判定定理是互逆定理.【典型例题】类型一、等腰三角形中有关度数的计算题1、如图,在△ABC中,D在BC上,且AB=AC=BD,∠1=30°,求∠2的度数.EACF 举一反三:【变式】已知:如图,D 、E 分别为AB 、AC 上的点,AC =BC =BD ,AD =AE ,DE =CE ,求∠B 的度数.类型二、等腰三角形中的分类讨论2、在等腰三角形中,有一个角为40°,求其余各角.3、已知等腰三角形的周长为13,一边长为3,求其余各边.举一反三:【变式】已知等腰三角形的底边BC =8cm ,且|AC -BC|=2cm ,那么腰AC 的长为( ). A .10cm 或6cm B .10cm C .6cm D .8cm 或6cm类型三、等腰三角形性质和判定综合应用4、已知:如图,△ABC 中,∠ACB =45°,AD⊥BC 于D ,CF 交AD 于点F ,连接BF 并延长交AC 于点E ,∠BAD =∠FCD . 求证:(1)△ABD≌△CFD;(2)BE⊥AC.举一反三:【变式】如图所示,在直角梯形ABCD 中,∠ABC =90°,AD ∥BC ,AB =BC ,E 是AB 的中点,CE ⊥BD . (1)求证:BE =AD ;(2)求证:AC 是线段ED 的垂直平分线;(3)△DBC 是等腰三角形吗?并说明理由.【巩固练习】一.选择题1. 已知一个等腰三角形两边长分别为5,6,则它的周长为( )A .16B .17C .16或17D .10或122. 若一个三角形的三个外角度数比为2:3:3,则这个三角形是( ) A. 等腰三角形 B. 等边三角形 C. 直角三角形 D. 等腰直角三角形3. 将两个全等的且有一个角为30°的直角三角形拼成如图所示形状,两条长直角边在同一条直线上,则图中等腰三角形的个数是( ) A. 4个 B. 3个 C. 2个 D. 1个4. 如图,在△ABC 中,∠ABC 、∠ACB 的平分线相交于F ,过F 作DE ∥BC ,交AB 于D ,交AC 于E ,那么下列结论正确的有( )①△BDF ,△CEF 都是等腰三角形; ②DE =DB +CE ;③AD +DE +AE =AB +AC ; ④BF =CF. A .1个 B .2个 C .3个 D .4个 5. 如图,D 是AB 边上的中点,将ABC ∆沿过D 的直线折叠,使点A 落在BC 上F 处,若50B ∠=︒,则BDF ∠度数是( ) A .60° B.70° C.80° D.不确定6. 如图,ΔABC 中,AB =AC ,∠BAC =108°,若AD 、AE 三等分∠BAC ,则图中等腰三角形有 ( ) A .4个 B .5个 C .6个 D .7个二.填空题7.如图,△ABC 中,D 为AC 边上一点,AD =BD =BC ,若∠A =40°,则∠CBD =_____°.8. 等腰三角形的顶角比其中一个底角大30°,则顶角的度数为 .9. 如图,△ABC 是等腰直角三角形,∠C =90°,BD 平分∠CBA交AC于点D,DE⊥AB于E.若△ADE的周长为8cm,则AB =_________cm.10. 等腰三角形的一个角是70°,则它的顶角的度数是 .11. 如图,△ABC中,BO、CO分别平分∠ABC、∠ACB,OM∥AB,ON∥AC,BC=10cm,则ΔOMN的周长=______cm.12. 如图,四边形ABCD中,AB=AD,∠B=∠D,若CD=1.8cm,则BC=______.三.解答题13.已知:如图,ΔABC中,AB=AC,D是AB上一点,延长CA至E,使AE=AD.试确定ED与BC的位置关系,并证明你的结论.14. 已知:如图,AD是∠BAC的平分线,∠B=∠EAC,EF⊥AD于F.求证:EF平分∠AEB.15. 如图,在△ABC中,∠BAC=60°,∠ACB=40°,P、Q分别在BC、CA上,并且AP、BQ分别为∠BAC、∠ABC的角平分线,求证:BQ+AQ=AB+BP.21N MFE D B CA EP QDCA B第2讲 等边三角形考点 方法 破译1.等边三角形及其性质:三边都相等的三角形叫做等边三角形,等边三角形的三个内角都相等,并且每一个角都等于60.等边三角形是轴对称图形,对称轴是顶角平分线或底边上的高、中线所在直线;2.等边三角形的判定:三边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角为60°的等腰三角形是等边三角形;3.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半,反之也成立.经典 考题 赏析【例1】如图,△DAC 和△EBC 均是等边三角形,A 、C 、B 三点在一条直线上.AE 、BD 分别与CD 、CE 交于点M 、N .(1)求证:△ACE ≌△DCB ; (2)求∠AFD 的度数; (3)判断△CMN 的形状。

八年级数学培优专题一、一次函数培优训练经典题型

八年级数学培优专题一、一次函数培优训练经典题型

一次函数培优经典题型(最新)一、正比例函数的定义1、若y=(m+1)x+m2﹣1是关于x的正比例函数,则m的值为.2、已知函数y=(m+2)x﹣m2+4(m是常数)是正比例函数,则m=.二、一次函数的图象1、在同一平面直角坐标系中,函数y=kx﹣b与y=bx+k的图象不可能是()A.B.C.D.2、如果ab>0,bc<0,则一次函数y=﹣x+的图象的大致形状是()A.B.C.D.3、一次函数y=kx+k的图象可能是()A.B.C.D.4、如图,三个正比例函数的图象分别对应的解析式是:①y=ax,②y=bx,③y=cx,请用“>”表示a,b,c的不等关系.三、一次函数的性质1、已知直线y=kx+b过点A(﹣3,y1),B(4,y2),若k<0,则y1与y2大小关系为()A.y1>y2B.y1<y2C.y1=y2D.不能确定2、当1≤x≤10时,一次函数y=﹣3x+b的最大值为17,则b=.3、已知一次函数y=mx﹣2m(m为常数),当﹣1≤x≤3时,y有最大值6,则m的值为()A.﹣B.﹣2C.2或6D.﹣2或64、已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣2≤y≤4,则k的值为()A.3B.﹣3C.3或﹣3D.k的值不确定5、在平面直角坐标系中,已知一次函数y=kx+b(k,b为常数且k≠0).(1)当b=3k+6时,该函数恒经过一点,则该点的坐标为;(2)当﹣2≤x≤2时,﹣8≤y≤4,则该函数的解析式为.6、一次函数y=ax﹣a+1(a为常数,且a<0).(1)若点(2,﹣3)在一次函数y=ax﹣a+1的图象上,求a的值;(2)当﹣1≤x≤2时,函数有最大值2,求a的值.四、一次函数图象与系数的关系1、若一次函数y=(m﹣2)x+m+1的图象经过一、二、四象限,则m的取值范围是()A.m<﹣1B.m<2C.﹣1<m<2D.m>﹣12、一次函数y=(2k﹣1)x+k的图象不经过第三象限,则k的取值范围是()A.k>0B.C.k≥0D.3、关于x的一次函数y=(k﹣2)x+k2﹣4k+4,若﹣1≤x≤1时,y>0总成立,则k的取值范围是()A.k<1或k>3B.k>1C.k<3D.1<k<34、一次函数y=(3﹣a)x+b﹣2在直角坐标系中的图象如图所示,化简:﹣|2﹣b|=.5、关于x的一次函数y=(2a+1)x+a﹣2,若y随x的增大而增大,且图象与y轴的交点在原点下方,则实数a的取值范围是.6、函数y=3x+k﹣2的图象不经过第二象限,则k的取值范围是.7、设,则一次函数y=kx﹣k的图象一定过第_________象限.五、一次函数图象与几何变换1、直线y=﹣5x向上平移2个单位长度,得到的直线的解析式为()A.y=5x+2B.y=﹣5x+2C.y=5x﹣2D.y=﹣5x﹣2 2、在平面直角坐标系中,将正比例函数y=﹣2x的图象向右平移3个单位长度得到一次函数y=kx+b(k≠0)的图象,则该一次函数的解析式为()A.y=﹣2x+3B.y=﹣2x+6C.y=﹣2x﹣3D.y=﹣2x﹣63、若直线l1:y=kx+b(k≠0)是由直线l2:y=4x+2向左平移m(m>0)个单位得到,则下列各点中,可能在直线l1上的是()A.(0,1)B.(2,﹣1)C.(﹣1,2)D.(3,0)4、在平面直角坐标系中,将函数y=x的图象绕坐标原点逆时针旋转90°,再向上平移1个单位长度,所得直线的函数表达式为()A.y=﹣x+1B.y=x+1C.y=﹣x﹣1D.y=x﹣15、若一次函数y=kx+b与y=﹣2x+1的图象关于y轴对称,则k、b的值分别等于.六、待定系数法求一次函数解析式1、P(8,m),A(2,4),B(﹣2,﹣2)三点在同一直线上,则m的值为.2、已知y﹣2与x成正比例,且当x=﹣1时y=5,则y与x的函数关系式是.3、已知y﹣1与x成正比例,当x=﹣2时,y=4.(1)求出y与x的函数关系式;(2)设点(a,﹣2)在这个函数的图象上,求a的值.4、已知y=y1+y2,y1与x2成正比例,y2与x﹣2成正比例,当x=1时,y=5;当x=﹣1时,y=11,求y与x之间的函数表达式,并求当x=2时y的值.5、已知y﹣3与2x+4成正比例,且当x=﹣1时,y=7.(1)求y与x的函数关系式;(2)求此函数图象与坐标轴围成的面积.七、一次函数与一元一次方程1、如图,直线y=x+5和直线y=ax+b相交于点P,观察其图象可知方程x+5=ax+b的解()A.x=15B.x=25B.C.x=10D.x=202、如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则关于x的方程kx+b=4的解是()A.x=1B.x=2C.x=3D.x=43、如图,一次函数y=ax+b与正比例函数y=kx的图象交于点P(﹣2,﹣1),则关于x的方程ax+b=kx的解是.4、根据一次函数y=kx+b的图象,直接写出下列问题的答案:(1)关于x的方程kx+b=0的解;(2)代数式k+b的值;(3)关于x的方程kx+b=﹣3的解.八、一次函数中的面积问题1、若一次函数y=2x+b与坐标轴围成的三角形面积为9,则这个一次函数的解析式为.2、直线y=kx+b经过点(0,3),且与两坐标轴构成的直角三角形的面积是6,则k为.3、如图,一次函数y=x﹣4的图象与x轴,y轴分别交于点A,点B,过点A作直线l将△ABO分成周长相等的两部分,则直线l的函数解析式为.4、如图,在平面直角坐标系xOy中,A(2,0),B(2,4),C(0,4).若直线y=kx﹣2k+1(k是常数)将四边形OABC分成面积相等的两部分,则k的值为.5、如图所示,在直角坐标系中,矩形OABC的顶点B的坐标为(12,5),直线恰好将矩形OABC分成面积相等的两部分.那么b=.6、如图,在平面直角坐标系中,四边形ABCO是正方形,点B的坐标为(4,4),直线y=mx﹣2恰好把正方形ABCO的面积分成相等的两部分,则m=.1、甲乙两人骑自行车分别从A,B两地同时出发相向而行,甲匀速骑行到B地,乙匀速骑行到A地,甲的速度大于乙的速度,两人分别到达目的地后停止骑行.两人之间的距离y(米)和骑行的时间x(秒)之间的函数关系图象如图所示,现给出下列结论:①a=450;②b=150;③甲的速度为10米/秒;④当甲、乙相距50米时,甲出发了55秒或65秒.其中正确的结论有()A.①②B.①③C.②④D.③④2、甲、乙两车从A地出发,沿同一路线驶向B地.甲车先出发匀速驶向B地,40min后乙出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地,甲乙两车距A地的路程y(km)与乙车行驶时间x(h)之间的函数图象如图所示.(1)a的值是,甲的速度是km/h.(2)求线段EF所表示的y与x的函数关系式;(3)若甲乙两车距离不超过10km时,车载通话机可以进行通话,则两车在行驶过程中可以通话的总时长为多少小时?1、如图,直线与x轴,y轴分别交于点A,B,点C,D分别是AB,AO的中点,点P是y轴上一动点,则PC+PD的最小值是.2、若直线AB:y=x+4与x轴、y轴分别交于点B和点A,直线CD:y=﹣x+2与x轴、y轴分别交于点D和点C,线段AB与CD的中点分别是M,N,点P为x轴上一动点.(1)点M的坐标为;(2)当PM+PN的值最小时,点P的坐标为.3、如图,在平面直角坐标系中,一次函数的图象分别与x、y轴交于点A、B,点C在y轴上,AC平分∠OAB,则线段BC=.4、如图,点C的坐标是(2,2),A为坐标原点,CB⊥x轴于B,CD⊥y轴于D,点E是线段BC的中点,过点A的直线y=kx交线段DC于点F,连接EF,若AF平分∠DFE,则k的值为.5、如图,一次函数y=kx+b的图象经过点A(0,3)和点B(2,0),以线段AB为边在第一象限内作等腰直角△ABC使∠BAC=90°(1)求一次函数的解析式;(2)求出点C的坐标;(3)点P是y轴上一动点,当PC最小时,求点P的坐标.6、如图,直线l:y=kx+b(k≠0)与坐标轴分别交于点A,B,以OA为边在y=8.轴的右侧作正方形AOBC,且S△AOB(1)求直线l的解析式;(2)如图1,点D是x轴上一动点,点E在AD的右侧,∠ADE=90°,AD =DE.①当AE+CE最小时,求E点的坐标;②如图2,点D是线段OB的中点,另一动点H在直线BE上,且∠HAC=∠BAD,请求出点H的坐标.。

人教版2024-2025学年八年级数学上册期中培优试题

人教版2024-2025学年八年级数学上册期中培优试题

人教版2024-2025学年八年级数学上册期中培优试题一、单选题1.下列选项中的四个标志中,是轴对称图形的是( )A .B .C .D .2.一个多边形少算一个内角,其余内角之和是1500°,则这个多边形的边数是( ) A .8 B .9 C .10 D .113.已知点()11,5P a -和2(2,1)Pb -关于x 轴对称,则2013()a b +的值为( ) A .0 B .1- C .1 D .()20113- 4.如图,点E 在AC 上,则A B C D DEB ∠+∠+∠+∠+∠的度数是( )A .90°B .180°C .270°D .360° 5.已知ABC DCB V V ≌,若10BC =,6AB =,7AC =,则CD =( )A .10B .7C .6D .6或7 6.如图,已知ABC V 中,ABC ACB ∠∠=,以点B 为圆心,AB 长为半径的弧分别交AC ,BC 于点D ,E ,连接BD ,ED ,若105CED ∠=︒,求ABC ∠的度数为( )度A .80B .70C .60D .507.ABC V 中,090A B C θαθθααθ∠=-∠=∠=+︒<<<︒,,,.若BAC ∠与BCA ∠的平分线相交于P 点,则APC ∠=( )A .90°B .105°C .120°D .150°8.如图,在△ABC 中,∠ACD =20°,∠B =45°,BC 的垂直平分线分别交AB 、BC 于点D 、E ,则∠A 的度数是( )A .60°B .65°C .70°D .75°9.下图的方格纸中有若干个点,若A 、B 两点关于过某点的直线对称,这个点可能是().A .P 1B .P 2C .P 3D .P 410.在平面直角坐标系中,点A 的坐标是()1,0,点B 的坐标是(),点C 在坐标平面内,以A ,B ,C 为顶点构成的三角形是等腰三角形,且底角为30°,则满足条件的点C 的个数为( )A .3B .4C .5D .6二、填空题11.ABC V 中,30A ∠=︒,高BE ,CF 所在的直线交于点O ,BOC ∠的度数是. 12.AD 为ABC V 的中线,AE 为ABC V 的高,ABD △的面积为14,7,2AE CE ==则DE 的长为.13.如图,△AFD 和△CEB ,点A 、E 、F 、C 同一直线上,在给出的下列条件中,①AE =CF ,②∠D =∠B ,③AD =CB ,④DF BE ∥,选出三个条件可以证明AFD CEB △≌△的是.(用序号表示,写出一种即可).14.如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面积为12,则图中△BEF 的面积为.15.如图,等边△ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点,若AE =2,当EF+CF 取得最小值时,则∠BCF 的度数为.三、解答题16.如图,在ABC V 中,AB AC =,点D 、E 分别在AB 、AC 的延长线上,且13BCD ACB ∠=∠,13CBE ABC ∠=∠.求证:BE CD =.17.如图,在66⨯的方格纸中,线段AB 的两个端分别落在格点上,请按要求画图:(1)在图1中画一个格点四边形APBQ ,且AB 与PQ 垂直.(2)在图2中画一个以AB 为中位线的格点DEF V .18.如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D ,DE ⊥AB 于E ,点F 在射线CA 上,且BD=FD .(1)当点F 在线段CA 上时.①求证:BE=CF ;②若AC=6,AF=2,求CD 的长; (2)若∠ADF=15°,求∠BAC 的度数.19.如图,在ABC V 中,BO 平分ABC ∠,CO 平分ACB ∠,过点O 作BC 的平行线与AB ,AC 分别相交于点M ,N .若5AB =,6AC =,求AMN V 的周长.20.已知:如图,AC ∥DF ,AC =DF ,AB =DE .求证:(1)△ABC ≌△DEF ;(2)BC ∥EF .21.如图,ABC V 中,11AB =,5AC =,BAC ∠的平分线AD 与边BC 的垂直平分线DG 相交于点D ,过点D 分别作DE AB ⊥,DF AC ⊥,垂足分别为E 、F ,求BE 的长度.22.如图,CN 是等边△ABC 的外角∠ACM 内部的一条射线,点A 关于CN 的对称点为D ,连接AD ,BD ,CD ,其中AD ,BD 分别交射线CN 于点E ,P .(1)依题意补全图形;(2)若∠ACN =α,求∠BDC 的大小(用含α的式子表示);(3)用等式表示线段PB ,PC 与PE 之间的数量关系,并证明.23.如图,ABC V 中,点O 为AC 边上的一个动点,过点O 作直线MN BC ∥,设MN 交BCA ∠的外角平分线CF 于点F ,交ACB ∠内角平分线CE 于E .(1)试说明EO OF;(2)当点O运动到何处时,四边形AECF是矩形,并证明你的结论;(3)在(2)的条件下猜想ABCV满足什么条件能使四边形AECF是正方形,并证明你的结论.。

初中数学培优教程(八年级)第二版

初中数学培优教程(八年级)第二版

二次根式的概念与性质 *.!
+$
二次根式的运算 *"!
+)
第章勾股定理 + !
)$
第章四边形 ) !
.#-
初中数学培优教程
八年级
第二版
目!!录
第章三角形 . !
.
与三角形有关的线段 ..!
.
与三角形有关的角 ."!
2
多边形 .-!
三角形所有边长确定三角形的个数!
$"证明线段的不等关系
!飞镖模型
如图 在 内有一点 连接 则 ! $%&'
( &('( %&#%'#&(#('!
图 图 !!!!!!!!!!!!!! "
证明!
如图"延长&(
交%'
于点 则 两个不等式相加得 ) %&#%)#&(#()()#)'#('
整式的乘除 $.!
/2
乘法公式 $"!
$.
因式分解 $-!
$*
第章分式 2 !
2$
&'
$%&($%('
+$%&( &+$%(' &
!"+$%&' !
!!
如图 在 中 为边 上一点且 则 " " $%&' ( &'
&(&,!&' +$%&( &,!'!+$%(' &,!+$%&' !

八年级(上)数学培优专题_如何做几何证明题(含答案)

八年级(上)数学培优专题_如何做几何证明题(含答案)

如何做几何证明题1、证明线段相等或角相等例1. 已知:如图1所示,∆ABC 中,∠=︒===C AC BC AD DB AE CF 90,,,。

求证:DE =DFCFBA ED图1证明:连结CDAC BC A BACB AD DBCD BD AD DCB B A AE CF A DCB AD CD=∴∠=∠∠=︒=∴==∠=∠=∠=∠=∠=90,,,,∴≅∴=∆∆ADE CDF DE DF说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。

例2. 已知:如图2所示,AB =CD ,AD =BC ,AE =CF 。

求证:∠E =∠ FDBCF EA图2证明:连结AC 在∆ABC 和∆CDA 中,AB CD BC AD AC CA ABC CDA SSS B DAB CD AE CF BE DF===∴≅∴∠=∠==∴=,,,∆∆()在∆BCE 和∆DAF 中,BE DF B D BC DA BCE DAF SAS E F=∠=∠=⎧⎨⎪⎩⎪∴≅∴∠=∠∆∆()说明:利用三角形全等证明线段求角相等。

常须添辅助线,制造全等三角形,这时应注意:(1)制造的全等三角形应分别包括求证中一量;(2)添辅助线能够直接得到的两个全等三角形2、证明直线平行或垂直在两条直线的位置关系中,平行与垂直是两种特殊的位置。

证两直线平行,可用同位角、内错角或同旁内角的关系来证。

证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。

例3. 如图,∠ABC=∠ADC ,BF 和DE 分别平分∠ABC 和∠ADC ,∠1=∠2,证明:DE ∥FB证明:∵∠ADC=∠ABC ,且∠2=∠ADE ,∠CBF=∠ABF ,故∠2=∠ABF ,又∠2=∠1,因此∠1=∠ABF ,∴DE ∥BF. 例4. 已知:如图4所示,AB =AC ,∠,,A AE BF BD DC =︒==90。

(完整word版)八年级上数学培优及答案

(完整word版)八年级上数学培优及答案

八年级数学———培优精品教案◆◆◆ 认真解答,一定要细心哟!一、填空题 1、设ABC 的三边长分别为a ,b ,c ,其中a ,b 满足0)2(42=+-+-+b a b a ,则第三边的长c 的取值范围是 .2、函数34+-=x y 的图象上存在点P ,点P 到x 轴的距离等于4,则点P 的坐标是________。

3、在△ABC 中,∠B 和∠C 的平分线相交于O,若∠BOC=α,则∠A=_________。

4、直角三角形两锐角的平分线交角的度数是 。

5、已知直线()42-+--=a x x a y 不经过第四象限,则a 的取值范围是 .6、等腰三角形一腰上的高与另一腰的夹角为30°,则顶角度数为__ _________。

7、如图,折线ABCDE 描述了一辆汽车在某一直线上行驶过程中,汽车离出发地的距离s(km )和行驶时间t(h)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120km;②汽车在行驶途中停留了0.5h ;③汽车在整个行驶过程中的平均速度为803km ;④汽车自出发后3h-4.5h 之间行驶的速度在逐渐减少。

其中正确的说法有_______________。

8、放假了,小明和小丽去蔬菜加工厂社会实践,•两人同时工作了一段时间后,休息时小明对小丽说:“我已加工了28千克,你呢?”小丽思考了一会儿说:“我来考考,左图、右图分别表示你和我的工作量与工作时间关系,你能算出我加工了多少千克吗?”小明思考后回答:“你难不倒我,你现在加工了___D_____千克.” 二、选择题1、等腰三角形腰上的高与底边的夹角为Cm °则顶角度数为( )A.m B.2mC.(90—m) D 。

(90-2m)2、药品研究所开发一种抗菌素新药,经过多年的动物实验之后,首次用于临床人体试验,测得 成人服药后血液中药物浓度y (微克/毫升)与服药后时间x (时)之间的函数关系如图所示,则Oy (微克/毫升) x (时)314 8 4 当1≤x ≤6时,y 的取值范围是( ) A .错误!≤y ≤错误! B .错误!≤y ≤8 C .错误!≤y ≤8 D .8≤y ≤16八年级数学—--培优精品教案◆◆◆认真解答,一定要细心哟!3、水池有2个进水口,1个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示.某天0点到 6点,该水池的蓄水量与时间的关系如图丙所示.下列论断:①0点到1点,打开两个进水口,关闭出水口;②1点到3点,同时关闭两个进水口和—个出水口;③3点到4点,关闭两个进水口,打开出水口;④5点到6点.同时打开两个进水口和一个出水口.其中,可能正确的论断是( )A .①③B 。

八年级数学勾股定理培优

八年级数学勾股定理培优

225400 A225400B256112C144400D勾股定理【知识要点】1、勾股定理是:直角三角形两直角边的平方和等于斜边的平方,即:222c b a =+2、勾股定理逆定理:如果三角形的三边长a 、b 、c 满足222a b c +=那么这个三角形是直角三角形。

【典型习题】例1、如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A. 2cmB. 3cmC. 4cmD. 5cm例2、求下列各图字母中所代表的正方形的面积。

=A S =B S =C S =D S例3、如图,一次“台风”过后,一根旗杆被台风从离地面8.2米处吹断,倒下的旗杆的顶端落在离旗杆底部6.9米处,那么这根旗杆被吹断裂前至少有多高?米米例4、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm ,则正方形A ,B ,C ,D 的面积之和为___________cm 2。

例5、在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是________m 。

例6、为丰富少年儿童的业余文化生活,某社区要在如图所示的AB 所在的直线上建一图书阅览室,该社区有两所学校,所在的位置分别在点C 和点D 处。

CA ⊥AB 于A ,DB ⊥AB 于B ,已知AB=25km ,CA=15km,DB=10km,试问:阅览室E 建在距A 点多远时,才能使它到C 、D 两所学校的距离相等?例 7、如图所示,MN 表示一条铁路,A 、B 是两个城市,它们到铁路的所在直线MN 的垂直距离分别AA1=20km,BB1=40km ,A1B1=80km.现要在铁路A1,B1=80km 。

现要在铁路A1,B1之间设一个中转站P ,使两个城市到中转站的距离之和最短。

人教版数学八年级下册期末综合培优复习题(8份)及答案

人教版数学八年级下册期末综合培优复习题(8份)及答案

期末综合培优复习题(一)一.选择题1.等于()A.B.C.3 D.32.若三角形的三边长为下列各组数:①5,12,13;②11,12,15;③9,40,41;④15,20,25,则其中直角三角形有()个.A.l B.2 C.3 D.43.如果直线y=kx+b经过一、二、四象限,则有()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0 4.如图,在正方形ABCD的外侧作等边三角形ADE,那么∠BED为()A.60°B.45°C.30°D.15°5.抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是()A.20,20 B.30,20 C.30,30 D.20,306.在直角坐标系中有A,B两点,要在y轴上找一点C,使得它到A,B的距离之和最小,现有如下四种方案,其中正确的是()A.B.C.D.二.填空题7.函数y=中,自变量x的取值范围是.8.计算(2﹣)2的结果等于.9.数据1,2,3,4,5的方差为.10.已知实数a在数轴上的位置如图所示,则化简|a﹣1|﹣的结果是.11.如图,在由12个边长都为1且有一个锐角为60°的小菱形组成的网格中,点P是其中的一个顶点,以点P为直角顶点作格点直角三角形(即顶点均在格点上的三角形),请你写出所有可能的直角三角形斜边的长.12.如图,锐角△ABC中,∠A=45°,AB=8,BC=10,则BC边上的高为.13.如图,已知一次函数y1=﹣x+b的图象与y轴交于点A(0,4),y2=kx﹣2的图象与x 轴交于点B(1,0).那么使y1>y2成立的自变量x的取值范围是.14.如图,在矩形ABCD中,AD=3AB=3,点P是AD的中点,点E在BC上,CE=2BE,点M、N在线段BD上.若△PMN是等腰三角形且底角与∠DEC相等,则MN =.三.解答题15.计算(+2)2+(+2)(﹣2);16.如图,Rt△ACB中,∠ACB=90°,∠A=30°,∠ABC的角平分线BE交AC于点E.点D为AB上一点,且AD=AC,CD,BE交于点M.(1)求∠DMB的度数;(2)若CH⊥BE于点H,证明:AB=4MH.17.个体户王某经营一家饭馆,下面是饭馆所有工作人员在某个月份的工资:王某7200元,厨师甲4000元,厨师乙3700元,染工2500元,招待甲2700元,招待乙2600元,会计3200元.(1)计算工作人员的平均工资;(2)计算出的平均工资能否反映帮工人员这个月的收入的一般水平?(3)去掉王某的工资后,再计算平均工资,它能代表一般员工的收入吗?18.已知y﹣2与x+3成正比例,且当x=﹣4时,y=0,求当x=﹣1时,y的值.19.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中说明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),求∠BDG的度数.四.解答题20.已知a、b、c满足|a﹣8|++(c﹣3)2=0(1)求a、b、c的值;(2)以a、b、c为边能否组成三角形?如果能求出三角形的周长;如果不能,请说明理由.21.中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽测了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:请你根据图中的信息,解答下列问题:(1)写出扇形图中a=%,并补全条形图;(2)在这次抽测中,测试成绩的众数和中位数分别是个、个.(3)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?22.某市A,B两个蔬菜基地得知四川C,D两个灾民安置点分别急需蔬菜240t和260t的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,现将这些蔬菜全部调运C,D两个灾区安置点从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值:C D总计/tA200B x300总计/t240 260 500 (2)设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调动方案.五.解答题23.如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为,线段CF、BD的数量关系为;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.参考答案一.选择1.B.2.C.3.C.4.B.5.C.6.C.二.填空题7.x≤2且x≠﹣2.8.22﹣4.9.2.10.1﹣2a.11.2,4,,2.12..13.x<2.14.6或.三.解答题15.解:(+2)2+(+2)(﹣2)=5+4+4+5﹣4=10+4.16.(1)解:∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BE是∠ABC的角平分线,∴∠ABE=∠CBE=30°,∵∠A=30°,AC=AD,∴∠ACD=∠ADC=75°,∴∠DMB=∠ADC﹣∠ABE=45°;(2)证明:∵∠ACB=90°,∠A=30°,∴AB=2BC,∵CH⊥BE,∠CBE=30°,∴BC=2CH,∴AB=4CH,在Rt△CHM中,∠CMH=45°,∴CH=MH,∴AB=4MH.17.解:(1)工作人员的平均工资为==3700(元);(2)计算出的平均工资高于大多数帮工人员的工资,故不能否反映帮工人员这个月的收入的一般水平;(3)去掉王某的工资后,平均工资为=3650(元),比较接近一般员工的收,故能代表一般员工的收入.18.解:由题意,设y﹣2=k(x+3)(k≠0),得:0﹣2=k(﹣4+3).解得:k=2.所以当x=﹣1时,y=2(﹣1+3)+2=6.即当x=﹣1时,y的值为6.19.(1)证明:如图1,∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠F,∴∠CEF=∠F.∴CE=CF.(2)解:如图2,连接GC、BG,∵四边形ABCD为平行四边形,∠ABC=90°,∴四边形ABCD为矩形,∵AF平分∠BAD,∴∠DAF=∠BAF=45°,∵∠DCB=90°,DF∥AB,∴∠DFA=45°,∠ECF=90°∴△ECF为等腰直角三角形,∵G为EF中点,∴EG=CG=FG,CG⊥EF,∵△ABE为等腰直角三角形,AB=DC,∴BE=DC,∵∠CEF=∠GCF=45°,∴∠BEG=∠DCG=135°在△BEG与△DCG中,∵,∴△BEG≌△DCG,∴BG=DG,∵CG⊥EF,∴∠DGC+∠DGA=90°,又∵∠DGC=∠BGA,∴∠BGE+∠DGE=90°,∴△DGB为等腰直角三角形,∴∠BDG=45°.四.解答题20.解:(1)由题意得,a﹣8=0,b﹣5=0,c﹣3=0,解得,a=8,b=5,c=3;(2)∵5+3>8,∴以a、b、c为边能组成三角形,三角形的周长=13+3.21.解:(1)扇形统计图中a=1﹣30%﹣15%﹣10%﹣20%=25%,设引体向上6个的学生有x人,由题意得=,解得x=50.条形统计图补充如下:(2)由条形图可知,引体向上5个的学生有60人,人数最多,所以众数是5;共200名同学,排序后第100名与第101名同学的成绩都是5个,故中位数为(5+5)÷2=5(3)×1800=810(名).答:估计该区体育中考选报引体向上的男生能获得满分的同学有810名.故答案为:25;5,5.22.解:(1)填表如下:C D总计/tA(240﹣x)(x﹣40)200B x(300﹣x)300总计/t240 260 500依题意得:20(240﹣x)+25(x﹣40)=15x+18(300﹣x)解得:x=200两个蔬菜基地调运蔬菜的运费相等时x的值为200.(2)w与x之间的函数关系为:w=20(240﹣x)+25(x﹣40)+15x+18(300﹣x)=2x+9200由题意得:∴40≤x≤240∵在w=2x+9200中,2>0∴w随x的增大而增大∴当x=40时,总运费最小此时调运方案为:(3)由题意得w=(2﹣m)x+9200∴0<m<2,(2)中调运方案总费用最小;m=2时,在40≤x≤240的前提下调运方案的总费用不变;2<m<15时,x=240总费用最小,其调运方案如下:五.解答题23.证明:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,又∵AB=AC,∴△DAB≌△FAC,∴CF=BD,∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD.②当点D在BC的延长线上时①的结论仍成立.由正方形ADEF得AD=AF,∠DAF=90度.∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠FAC,又∵AB=AC,∴△DAB≌△FAC,∴CF=BD,∠ACF=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90度.即CF⊥BD.(2)当∠ACB=45°时,CF⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,∵∠DAG=∠FAC(同角的余角相等),AD=AF,∴△GAD≌△CAF,∴∠ACF=∠AGC=45°,∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.期末综合培优复习题(二)一.选择题1.计算:的值是()A.0 B.4a﹣2 C.2﹣4a D.2﹣4a或4a﹣2 2.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BE∥DF的是()A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD 3.下列各组数中,能构成直角三角形的是()A.4,5,6 B.1,1,C.6,8,11 D.5,12,23 4.下列二次根式中属于最简二次根式的是()A.B.C.D.5.如果直线y=kx+b经过一、二、四象限,则有()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0 6.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,则Rt△ABC的中线CD的长为()A.5 B.6 C.8 D.107.甲乙两名同学本学期参加了相同的5次数学考试,老师想判断这两位同学的数学成绩谁更稳定,老师需比较这两人5次数学成绩的()A.平均数B.中位数C.众数D.方差8.一组数据7,2,5,4,2的方差为a,若再增加一个数据4,这6个数据的方差为b,则a与b的大小关系是()A.a>b B.a=bC.a<b D.以上都有可能9.如图,菱形ABCD中,∠A=60°,边AB=8,E为边DA的中点,P为边CD上的一点,连接PE、PB,当PE=EB时,线段PE的长为()A.4 B.8 C.4D.410.如图,矩形ABCD中,AD=10,点P为BC上任意一点,分别连接AP、DP,E、F、G、H分别为AB、AP、DP、DC的中点,则EF+GH的值为()A.10 B.5 C.2.5 D.无法确定11.对每个x,y是y1=2x,y2=x+2,y3=三个值中的最大值,则当x变化时,函数y的最小值为()A.4 B.6 C.8 D.12.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C 的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP 的面积y(cm2)关于x(cm)的函数关系的图象是()A.B.C.D.二.填空题13.计算结果为.14.已知一次函数y=kx+1的图象经过点P(﹣1,0),则k=.15.若a、b为实数,且b=+4,则a+b=.16.已知一组数据a,b,c的平均数为5,方差为3,那么数据a+2,b+2,c+2的平均数和方差分别是、.17.如图,直线y=kx+b经过A(﹣1,﹣2)和B(﹣3,0)两点,则不等式组2x<kx+b<0的解是.18.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=5,以AB为边向外作正方形ABEF,则此正方形中心O与点C的连线长为.三.解答题19.计算题:(1)(4﹣6+3)÷2;(2)(﹣1)2+(2+)(2﹣).20.如图,在△ABC中,CD⊥AB于点D,AC=20,CD=12,BD=9.(1)求BC的长;(2)求△ABC的面积.21.有这样一个问题,探究函数y=的图象与性质.小范根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小范的探究过程,请补充完成:(1)化简函数解析式,当x≥1时,y=,当x<1时,y=;(2)根据(1)中的结果,请在所给坐标系中画出函数y=的图象;(3)结合函数图象,写出该函数的一条性质:;(4)结合画出的函数图象,解决问题:若关于x的方程ax+1=只有一个实数解,直接写出实数a的取值范围:.22.世界卫生组织预计:到2025年,全世界将会有一半人面临用水危机.为了倡导“节约用水,从我做起”,某县政府决定对县直属机关300户家庭一年的月平均用水量进行调查,调查小组抽查了部分家庭月平均用水量(单位:吨),绘制条形图和扇形图如图所示.(1)请将条形统计图补充完整;(2)这些家庭月平均用水量数据的平均数是,众数是,中位数是;(3)根据样本数据,估计该县直属机关300户家庭的月平均用水量不超过12吨的约有多少户.23.一次函数CD:y=﹣kx+b与一次函数AB:y=2kx+2b,都经过点B(﹣1,4)(1)求两条直线的解析式;(2)求四边形ABDO的面积.24.如图,菱形ABCD的对角线AC,BD相交于点O,分别延长OA,OC到点E,F,使AE =CF,依次连接B,F,D,E各点.(1)求证:△BAE≌△BCF;(2)若∠ABC=40°,则当∠EBA=°时,四边形BFDE是正方形.25.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线OBCDA表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:(1)当轿车刚到乙地时,此时货车距离乙地千米;(2)当轿车与货车相遇时,求此时x的值;(3)在两车行驶过程中,当轿车与货车相距20千米时,求x的值.26.证明:(1)如图1,△ABC中,AB=AC,延长BC至D,使CD=BC,点E在边AC上,以CE、CD为邻边作▱CDFE,过点C作CG∥AB交EF于点G.连接BG、DE.①∠ACB与∠GCD有怎样的数量关系?请说明理由.②求证:△BCG≌△DCE.(2)如图2,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.①试说明AC=EF;②求证:四边形ADFE是平行四边形.参考答案一.选择题1.D.2.B.3.B.4.D.5.C.6.A.7.D.8.A.9.D.10.B.11.D.12.B.二.填空题13.x.14.115.5或3.16.7、3.17.﹣3<x<﹣1.18.4.三.解答题19.解:(1)原式=4÷2﹣6÷2+3÷2=2﹣1+3=4;(2)原式=﹣+1+4﹣3=﹣.20.解:(1)∵CD⊥AB,∴∠CDB=∠CDA=90°,在Rt△BDC中,CD2+BD2=BC2,即122+92=BC2,解得BC=15;(2)在Rt△ADC中,AD2+CD2=AC2,∴AD2+122=202,解得AD=16,∴AB=AD+BD=16+9=25.∴S=AB•CD=×25×12=150.△ABC21.解:(1)当x≥1时,y==x,当x<1时,y==1;故答案为:x;1;(2)根据(1)中的结果,在所给坐标系中画出函数y=的图象如下:。

2022-2023学年人教版数学八年级上册培优专题(一)截长补短

2022-2023学年人教版数学八年级上册培优专题(一)截长补短

人教版数学八上培优专题(一)截长补短1.已知直线AB交x轴于点A(a,0),交y轴于点B(0,b),且a、b满足|a+b|+(b﹣4)2=0.(1)求∠ABO的度数;(2)如图1,若点C在第一象限,且BE⊥AC于点E,延长BE至点D,使得BD=AC,连接OC、OD、CD,试判断△COD的形状,并说明理由;(3)如图2,若点C在OB上,点F在AB的延长线上,且AC=CF,△ACP是以AC为直角边的等腰直角三角形,CQ⊥AF于点Q,求的值.2.在等边△ABC的两边AB、AC所在直线上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及△AMN的周长Q与等边△ABC的周长L的关系.(1)如图1,当点M、N在边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是;此时=;(2)如图2,点M、N在边AB、AC上,且当DM≠DN时,猜想(I)问的两个结论还成立吗?若成立请直接写出你的结论;若不成立请说明理由.(3)如图3,当M、N分别在边AB、CA的延长线上时,探索BM、NC、MN之间的数量关系如何?并给出证明.3.如图1,在△ABC中,∠BAC=75°,∠ACB=35°,∠ABC的平分线BD交边AC于点D.(1)求证:△BCD为等腰三角形;(2)若∠BAC的平分线AE交边BC于点E,如图2,求证:BD+AD=AB+BE;(3)若∠BAC外角的平分线AE交CB延长线于点E,请你探究(2)中的结论是否仍然成立?直接写出正确的结论.4.如图,CN是等边△ABC的外角∠ACM内部的一条射线,点A关于CN的对称点为D,连接AD,BD,CD,其中AD,BD分别交射线CN于点E,P.(1)依题意补全图形;(2)若∠ACN=α,求∠BDC的大小(用含α的式子表示);(3)用等式表示线段PB,PC与PE之间的数量关系,并证明.5.如图,已知△ABC中,AB=AC,DE⊥AB,DF⊥AC,BG⊥AC.求证:DE+DF=BG.6.综合与探究如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,CE的延长线交BD于点F.(1)求证:△ACE≌△ABD.(2)若∠BAC=∠DAE=50°,请直接写出∠BFC的度数.(3)过点A作AH⊥BD于点H,求证:EF+DH=HF.7.如图,在△ABC中,∠ABC=3∠C,AD平分∠BAC,BE⊥AD于E,(1)若∠BAC=60°,求∠ADB的度数;(2)求证:BE=(AC﹣AB).8.如图,在△ABC中,∠ABC、∠ACB的平分线交于点D,延长BD交AC于E,G、F分别在BD、BC上,连接DF、GF,其中∠A=2∠BDF,GD=DE.(1)当∠A=80°时,求∠EDC的度数;(2)求证:CF=FG+CE.9.在Rt△ABC中,∠ABC=90°,点D是CB延长线上一点,点E是线段AB上一点,连接DE.AC=DE,BC=BE.(1)求证:AB=BD;(2)BF平分∠ABC交AC于点F,点G是线段FB延长线上一点,连接DG,点H是线段DG上一点,连接AH交BD于点K,连接KG.当KB平分∠AKG时,求证:AK=DG+KG.10.在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于E.(1)如图1,连接CE,求证:△BCE是等边三角形;(2)如图2,点M为CE上一点,连接BM,作等边△BMN,连接EN,求证:EN∥BC;(3)如图3,点P为线段AD上一点,连接BP,作∠BPQ=60°,PQ交DE延长线于Q,探究线段PD,DQ与AD之间的数量关系,并证明.11.如图:已知A(a,0)、B(0,b),且a、b满足(a﹣2)2+|2b﹣4|=0.(1)如图1,求△AOB的面积;(2)如图2,点C在线段AB上(不与A、B重合)移动,AB⊥BD,且∠COD=45°,猜想线段AC、BD、CD之间的数量关系并证明你的结论;(3)如图3,若P为x轴上异于原点O和点A的一个动点,连接PB,将线段PB绕点P顺时针旋转90°至PE,直线AE交y轴Q,点Q,当P点在x轴上移动时,线段BE和线段BQ中,请判断哪条线段长为定值,并求出该定值.12.如图,若点P在△AOC的外角∠MAC的角平分线的反向延长线上,若∠OPC=∠OAC,过点P作PN ⊥AO于N,现给出两个结论:①的值不变;②的值不变.其中有且只有一个结论正确,请找出来并求其值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a[10000(a 1) (a 1)] (a 1)(10000a a ) a (a 1) 10001 a (a 1) 10001 a (a 1) (10001 10001) 0
说明:此题是一个有规律的大数字的运算,若直接计算,运算量必然很大。其中 2000、2001 重复出现,又有 2001 2000 1 的特点,可通过 设未知数,将复杂数字间的运算转化为代数式,再利用多项式的因式分解化简求值,从而简化计算。
1、用提公因式法把多项式进行因式分解
【知识精读】 如果多项式的各项有公因式,根据乘法分配律的逆运算,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。 提公因式法是因式分解的最基本也是最常用的方法。它的理论依据就是乘法分配律。多项式的公因式的确定方法是: (1)当多项式有相同字母时,取相同字母的最低次幂。 (2)系数和各项系数的最大公约数,公因式可以是数、单项式,也可以是多项式。 下面我们通过例题进一步学习用提公因式法因式分解 【分类解析】 1. 把下列各式因式分解 (1) a x
2 2

A. (a b)(a 2)(b 2) C. (a b)(a b) 2
2 2 2
B. (a b)(a b 2) D. (a 2b)(b 2a )
2 2 2 2 2
分析: a 2a b 2b a 2a 1 b 2b 1 (a 1) (b 1) 。 再利用平方差公式进行分解,最后得到 (a b)(a b 2) ,故选择 B。 说明:解这类题目时,一般先观察现有项的特征,通过添加项凑成符合公式的形式。同时要注意分解一定要彻底。
2
1995
,且当 x 0 时,求原式的值。
2、运用公式法进行因式分解
【知识精读】 把乘法公式反过来,就可以得到因式分解的公式。 主要有:平方差公式
a 2 b 2 (a b)(a b)
3
完全平方公式 立方和、立方差公式 补充:欧拉公式:
a 2 2ab b 2 (a b) 2 a 3 b 3 (a b) (a 2 ab b 2 )
5(2 x ) x ( x 2) ( x 2)(5 x )
2
x 2 ,5 x 都是大于 1 的自然数
( x 2)(5 x ) 是合数
说明:在大于 1 的正数中,除了 1 和这个数本身,还能被其它正整数整除的数叫合数。只能被 1 和本身整除的数叫质数。
3 2 2
(b a ) 2 n ; (a b) 2 n 1 (b a ) 2 n 1 ,
a(a b) 3 2a 2 (a b) 2 2ab(a b) a(a b)[(a b) 2 2a(a b) 2b] a(a b)(3a 2 4ab b 2 2b)
2. 利用提公因式法简化计算过程
987 987 987 987 268 456 521 1368 1368 1368 1368 987 分析:算式中每一项都含有 ,可以把它看成公因式提取出来,再算出结果。 1368 987 (123 268 456 521) 解:原式 1368 987 1368 987 1368
2 2
之和为 0,从而得解。 解: a b c ab bc ac 0
2 2 2
2a 2 2b 2 2c 2 2ab 2bc 2ac 0
(a 2 2ab b 2 ) (b 2 2bc c 2 ) (c 2 2ac a 2 ) 0 (a b) 2 (b c) 2 (c a ) 2 0
2 2
b 2 ,c 5
说明:这是对原命题进行演绎推理后,转化为解多项式 14 x 28 x 70 ,从而简便求得 x bx c 。
2 2
例 3. 设 x 为整数,试判断 10 5x x ( x 2) 是质数还是合数,请说明理由。 解: 10 5x x ( x 2)
【实战模拟】 1. 分解因式: (1) 4m n 12m n 2mn
2 3 3 2
(2) a x
2
n2
abx n 1 acx n adx n 1 (n 为正整数)
3 2 2 2
(3) a (a b) 2a (b a ) 2ab(b a ) 2. 计算: ( 2) A. 2
2 m 2
abx m1 acx m ax m 3
3 2 2
(2) a (a b) 2a (b a ) 2ab(b a ) 分析: (1)若多项式的第一项系数是负数,一般要提出“-”号,使括号内的第一项系数是正数,在提出“-”号后,多项式的各项都要变号。 解: a x
把 a 1 代入(2) ,得 b
3. 在几何题中的应用。 例:已知 a、b、c 是 ABC 的三条边,且满足 a b c ab bc ac 0 ,试判断 ABC 的形状。
2 2 2
分析:因为题中有 a 、b 、 ab ,考虑到要用完全平方公式,首先要把 ab 转成 2ab 。所以两边同乘以 2,然后拆开搭配得完全平方公式
例 2. 已知: x bx c (b、c 为整数)是 x 6 x 25 及 3x 4 x 28 x 5 的公因式,求 b、c 的值。
2 4 2 4 2
分 析 : 常 规 解 法 是 分 别 将 两 个 多 项 式 分 解 因 式 , 求 得 公 因 式 后 可 求 b 、 c , 但 比 较 麻 烦 。 注 意 到 x bx c 是 3( x 6 x 25) 及
3x ( x 2) ( x 2) ( x 2)(3x 1)
说明:因式分解时,应先观察有没有公因式,若没有,看是否能通过变形转换得到。 例 2.分解因式: 4q (1 p) 2( p 1)
3 2
解: 4q (1 p) 2( p 1)
3
2
4q (1 p) 3 2(1 p) 2 2(1 p) 2 [2q (1 p) 1] 2(1 p) 2 (2q 2 pq 1)
4. 在代数证明题中的应用 例:证明:对于任意自然数 n, 3
n2
2 n 2 3n 2 n 一定是 10 的倍数。
分析:首先利用因式分解把代数式恒等变形,接着只需证明每一项都是 10 的倍数即可。
3n 2 2 n 2 3n 2 n 3n 2 3n 2 n 2 2 n
例:计算 123
3. 在多项式恒等变形中的应用 例:不解方程组
2 x y 3 ,求代数式 (2 x y )(2 x 3 y ) 3x (2 x y ) 的值。 5x 3 y 2
分析:不要求解方程组,我们可以把 2 x y 和 5x 3 y 看成整体,它们的值分别是 3 和 2 ,观察代数式,发现每一项都含有 2 x y ,利用提 公因式法把代数式恒等变形,化为含有 2 x y 和 5x 3 y 的式子,即可求出结果。 解: (2 x y )(2 x 3 y ) 3x (2 x y ) (2 x y )(2 x 3 y 3x ) (2 x y )(5x 3 y ) 把 2 x y 和 5x 3 y 分别为 3 和 2 带入上式,求得代数式的值是 6 。
a 3 b 3 c 3 3abc (a b c)(a 2 b 2 c 2 ab bc ca )
1 (a b c)[(a b) 2 (b c) 2 (c a ) 2 ] 2
3 3 3
特别地: (1)当 a b c 0 时,有 a b c 3abc (2)当 c 0 时,欧拉公式变为两数立方和公式。 运用公式法分解因式的关键是要弄清各个公式的形式和特点,熟练地掌握公式。但有时需要经过适当的组合、变形后,方可使用公式。 用公式法因式分解在求代数式的值,解方程、几何综合题中也有广泛的应用。因此,正确掌握公式法因式分解,熟练灵活地运用它,对今后的 学习很有帮助。 下面我们就来学习用公式法进行因式分解 【分类解析】 1. 把 a 2a b 2b 分解因式的结果是(
2 m 2
abx m1 acx m ax m 3 ax m (ax 2 bx c x 3 )
2n
(2)有时将因式经过符号变换或将字母重新排列后可化为公因式,如:当 n 为自然数时, (a b) 是在因式分解过程中常用的因式变换。 解: a (a b) 2a (b a ) 2ab(b a )
3 2 2
则 2 x x m 2 x (2a 1) x (a 2b) x b
3 2 3 2
பைடு நூலகம்
2a 1 1 由此可得 a 2b 0 m b
由(1)得 a 1
(1) ( 2) (3)
1 2 1 1 把 b 代入(3) ,得 m 2 2
100
11
( 2) 10 的结果是(
B. 2
10
) C. 2 D. 1
3. 已知 x、y 都是正整数,且 x ( x y ) y ( y x ) 12 ,求 x、y。
4. 证明: 81 27 9 能被 45 整除。
7 9 13
5. 化简: 1 x x (1 x ) x (1 x ) „x (1 x )
3n (32 1) 2 n (2 2 1) 10 3n 5 2 n
对任意自然数 n, 10 3n 和 5 2 n 都是 10 的倍数。
1
3n 2 2 n 2 3n 2 n 一定是 10 的倍数
相关文档
最新文档