江苏省各地市2013年高考数学 最新联考试题分类汇编(3) 函数与导数

合集下载

2013年普通高等学校招生全国统一考试江苏卷数学试题(2013年江苏省高考数学)

2013年普通高等学校招生全国统一考试江苏卷数学试题(2013年江苏省高考数学)

2013年普通高等学校招生全国统一考试江苏卷数学试题 数学Ⅰ试题参考公式:样本数据x 1,x 2,…,x n 的方差s 2=1n ∑i =1n (x i ﹣x )2,其中x =1n ∑i =1nx i .棱锥的体积公式:V =13Sh ,其中S 是锥体的底面积,h 为高.棱柱的体积公式:V =Sh ,其中S 是柱体的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上..........1.函数y =3sin (2x +π4)的最小正周期为__________. 答案:π解析:函数y =3sin (2x +π4)的最小正周期T =2π2=π.2.设z =(2﹣i)2(i 为虚数单位),则复数z 的模为__________.答案:5解析:|z|=|(2﹣i)2|=|4﹣4i +i 2|=|3﹣4i |=√32+(﹣4)2=5.3.双曲线x 216−y 29=1的两条渐近线的方程为__________.答案:y =±3x解析:由题意可知所求双曲线的渐近线方程为y =±34x.4.集合{﹣1,0,1}共有__________个子集. 答案:8解析:由于集合{﹣1,0,1}有3个元素,故其子集个数为23=8. 5.下图是一个算法的流程图,则输出的n 的值是__________.答案:3解析:第一次循环后:a ←8,n ←2;第二次循环后:a ←26,n ←3; 由于26>20,跳出循环, 输出n =3.6.抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:则成绩较为稳定(方差较小)的那位运动员成绩的方差为__________. 答案:2解析:由题中数据可得x 甲=90,x 乙=90.于是s 甲2=15[(87﹣90)2+(91﹣90)2+(90﹣90)2+(89﹣90)2+(93﹣90)2]=4,s 乙2=15[(89﹣90)2+(90﹣90)2+(91﹣90)2+(88﹣90)2+(92﹣90)2]=2,由s 甲2>s 乙2,可知乙运动员成绩稳定.故应填2.7.现有某类病毒记作X m Y n ,其中正整数m ,n (m ≤7,n ≤9)可以任意选取,则m ,n 都取到奇数的概率为__________. 答案:2063解析:由题意知m 的可能取值为1,2,3,…,7;n 的可能取值为1,2,3,…,9.由于是任取m ,n :若m =1时,n 可取1,2,3,…,9,共9种情况;同理m 取2,3,…,7时,n 也各有9种情况,故m ,n 的取值情况共有7×9=63种.若m ,n 都取奇数,则m 的取值为1,3,5,7,n 的取值为1,3,5,7,9,因此满足条件的情形有4×5=20种.故所求概率为2063.8.如图,在三棱柱A 1B 1C 1﹣ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点,设三棱锥F ﹣ADE 的体积为V 1,三棱柱A 1B 1C 1﹣ABC 的体积为V 2,则V 1∶V 2=__________.答案:1∶24解析:由题意可知点F 到面ABC 的距离与点A 1到面ABC 的距离之比为1∶2,S ∶ADE ∶S ∶ABC =1∶4.因此V 1∶V 2=13AF ·S △AED2AF ·S △ABC=1∶24. 9.抛物线y =x 2在x =1处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界).若点P (x ,y )是区域D 内的任意一点,则x +2y 的取值范围是__________. 答案:[﹣2,12]解析:由题意可知抛物线y =x 2在x =1处的切线方程为y =2x ﹣1.该切线与两坐标轴围成的区域如图中阴影部分所示:当直线x +2y =0平移到过点A (12,0)时,x +2y 取得最大值12. 当直线x +2y =0平移到过点B (0,﹣1)时,x +2y 取得最小值﹣2. 因此所求的x +2y 的取值范围为[﹣2,12].10.设D ,E 分别是∶ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE ⃗⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗⃗ (λ1,λ2为实数),则λ1+λ2的值为__________. 答案:12解析:由题意作图如图.∶在∶ABC 中,DE ⃗⃗⃗⃗⃗ =DB ⃗⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +23(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=﹣16AB⃗⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗⃗ ,∶λ1=﹣16,λ2=23. 故λ1+λ2=12.11.已知f (x )是定义在R 上的奇函数,当x>0时,f (x )=x 2﹣4x ,则不等式f (x )>x 的解集用区间表示为__________.答案:(﹣5,0)∶(5,+∞)解析:∶函数f(x)为奇函数,且x>0时,f(x)=x 2﹣4x ,则f(x)={x 2﹣4x ,x >0,0,x =0,﹣x 2﹣4x ,x <0,∴∶原不等式等价于{x >0,x 2﹣4x >x ,或{x <0,﹣x 2﹣4x >x .由此可解得x>5或﹣5<x<0. 故应填(﹣5,0)∶(5,+∞). 12.在平面直角坐标系xOy 中,椭圆C的标准方程为x 2a 2+y 2b2=1(a>0,b>0),右焦点为F ,右准线为l ,短轴的一个端点为B .设原点到直线BF 的距离为d 1,F 到l 的距离为d 2.若d 2=√6d 1,则椭圆C 的离心率为__________. 答案:√33解析:设椭圆C 的半焦距为c ,由题意可设直线BF 的方程为xc +yb =1,即bx +cy ﹣bc =0.于是可知d 1=√b +c 2bc a ,d 2=a 2c ﹣c =a 2﹣c 2c =b 2c . ∶d 2=√6d 1,∶b 2c =√6bca ,即ab =√6c 2.∶a2(a2﹣c2)=6c4.∶6e4+e2﹣1=0.∶e2=13.∶e=√33.13.在平面直角坐标系xOy中,设定点A(a,a),P是函数y=1x(x>0)图象上一动点.若点P,A之间的最短距离为2√2,则满足条件的实数a的所有值为__________.答案:﹣1,√10解析:设P点的坐标为(x,1x ),则|PA|2=(x﹣a)2+(1x﹣a)2=(x2+1x2)﹣2a(x+1x)+2a2.令t=x+1x≥2,则|PA|2=t2﹣2at+2a2﹣2=(t﹣a)2+a2﹣2(t≥2).结合题意可知(1)当a≤2,t=2时,|PA|2取得最小值.此时(2﹣a)2+a2﹣2=8,解得a=﹣1,a=3(舍去).(2)当a>2,t=a时,|PA|2取得最小值.此时a2﹣2=8,解得a=√10,a=﹣√10(舍去).故满足条件的实数a的所有值为√10,﹣1.14.在正项等比数列{a n}中,a5=12,a6+a7=3.则满足a1+a2+…+a n>a1a2…a n的最大正整数n的值为__________.答案:12解析:设正项等比数列{a n}的公比为q,则由a5=12,a6+a7=a5(q+q2)=3可得q=2,于是a n=2n﹣6,则a1+a2+…+a n=132(1﹣2n)1﹣2=2n﹣5﹣132.∶a5=12,q=2,∶a6=1,a1a11=a2a10=…=a62=1.∶a1a2…a11=1.当n取12时,a1+a2+…+a12=27﹣132>a1a2…a11a12=a12=26成立;当n取13时,a1+a2+…+a13=28﹣132∴<a1a2…a11a12a13=a12a13=26·27=213.当n>13时,随着n增大a1+a2+…+a n将恒小于a1a2…a n.因此所求n的最大值为12.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)已知a=(cosα,sinα),b=(cosβ,sinβ),0<β<α<π.(1)若|a﹣b|=√2,求证:a∶b;(2)设c=(0,1),若a﹣b=c,求α,β的值.(1)证明:由题意得|a﹣b|2=2,即(a﹣b)2=a2﹣2a·b+b2=2.又因为a2=b2=|a|2=|b|2=1,所以2﹣2a·b=2,即a·b=0.故a∶B.(2)解:因为a+b=(cosα+cosβ,sinα+sinβ)=(0,1),所以{cosα+cosβ=0,sinα+sinβ=1,由此得cos α=cos (π﹣β).由0<β<π,得0<π﹣β<π,又0<α<π,故α=π﹣β.代入sin α+sin β=1,得sin α=sin β=12,而α>β,所以α=5π6,β=π6.16.(本小题满分14分)如图,在三棱锥S ﹣ABC 中,平面SAB∶平面SBC ,AB∶BC ,AS =AB .过A 作AF∶SB ,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.求证:(1)平面EFG∶平面ABC; (2)BC∶SA .证明:(1)因为AS =AB ,AF∶SB ,垂足为F ,所以F 是SB 的中点.又因为E 是SA 的中点,所以EF∶AB .因为EF∶平面ABC ,AB∶平面ABC , 所以EF∶平面ABC .同理EG∶平面ABC .又EF∩EG =E , 所以平面EFG∶平面ABC .(2)因为平面SAB∶平面SBC ,且交线为SB ,又AF∶平面SAB ,AF∶SB ,所以AF∶平面SBC .因为BC∶平面SBC ,所以AF∶BC .又因为AB∶BC ,AF∩AB =A ,AF ,AB∶平面SAB ,所以BC∶平面SAB . 因为SA∶平面SAB ,所以BC∶SA . 17.(本小题满分14分)如图,在平面直角坐标系xOy 中,点A(0,3),直线l :y =2x ﹣4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x ﹣1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围.解:(1)由题设,圆心C 是直线y =2x ﹣4和y =x ﹣1的交点,解得点C(3,2),于是切线的斜率必存在.设过A(0,3)的圆C 的切线方程为y =kx +3,由题意,√k +1=1,解得k =0或﹣34,故所求切线方程为y =3或3x +4y ﹣12=0.(2)因为圆心在直线y =2x ﹣4上,所以圆C 的方程为(x ﹣a)2+[y ﹣2(a ﹣2)]2=1. 设点M(x ,y),因为MA =2MO ,所以√x 2+(y ﹣3)2=2√x 2+y 2,化简得x 2+y 2+2y ﹣3=0,即x 2+(y +1)2=4,所以点M 在以D(0,﹣1)为圆心,2为半径的圆上.由题意,点M(x ,y)在圆C 上,所以圆C 与圆D 有公共点,则|2﹣1|≤CD≤2+1,即1≤√a 2+(2a ﹣3)2≤3. 由5a 2﹣12a +8≥0,得a ∶R ;由5a 2﹣12a≤0,得0≤a≤125.所以点C 的横坐标a 的取值范围为[0,125]. 18.(本小题满分16分)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50m/min ,在甲出发2min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130m/min ,山路AC 长为1260m ,经测量,cos A =1213,cos C =35.(1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内? 解:(1)在∶ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45.从而sin B =sin [π﹣(A +C)]=sin (A +C)=sin A cos C +cos A sin C =513×35+1213×45=6365. 由正弦定理AB sinC =ACsinB,得AB =AC sinB×sin C =12606365×45=1040(m ).所以索道AB 的长为1040m .(2)假设乙出发t min 后,甲、乙两游客距离为d ,此时,甲行走了(100+50t)m ,乙距离A 处130t m , 所以由余弦定理得d 2=(100+50t)2+(130t)2﹣2×130t×(100+50t)×1213=200(37t 2﹣70t +50), 因0≤t≤1040130,即0≤t≤8,故当t =3537(min )时,甲、乙两游客距离最短. (3)由正弦定理BCsinA =ACsinB ,得BC =ACsinB ×sin A =12606365×513=500(m ).乙从B 出发时,甲已走了50×(2+8+1)=550(m ),还需走710m 才能到达C . 设乙步行的速度为v m/min ,由题意得﹣3≤500v −71050≤3,解得125043≤v≤62514,所以为使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度应控制在[125043,62514](单位:m/min )范围内. 19.(本小题满分16分)设{a n }是首项为a ,公差为d 的等差数列(d ≠0),S n 是其前n 项和.记b n =nS nn 2+c,n ∶N *,其中c 为实数.(1)若c =0,且b 1,b 2,b 4成等比数列,证明:S nk =n 2S k (k ,n ∶N *); (2)若{b n }是等差数列,证明:c =0. 证明:由题设,S n =na +n (n ﹣1)2D . (1)由c =0,得b n =Snn =a +n ﹣12D .又因为b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即(a +d 2)2=a (a +32d),化简得d 2﹣2ad =0.因为d≠0,所以d =2A .因此,对于所有的m ∶N *,有S m =m 2A .从而对于所有的k ,n ∶N *,有S nk =(nk )2a =n 2k 2a =n 2S k . (2)设数列{b n }的公差是d 1,则b n =b 1+(n ﹣1)d 1,即nS n n 2+c =b 1+(n ﹣1)d 1,n ∶N *,代入S n 的表达式,整理得,对于所有的n ∶N *,有(d 1﹣12d)n 3+(b 1﹣d 1﹣a +12d)n 2+cd 1n =c (d 1﹣b 1).令A =d 1﹣12d ,B =b 1﹣d 1﹣a +12d ,D =c (d 1﹣b 1),则对于所有的n ∶N *,有An 3+Bn 2+cd 1n =D .(*) 在(*)式中分别取n =1,2,3,4,得A +B +cd 1=8A +4B +2cd 1=27A +9B +3cd 1=64A +16B +4cd 1, 从而有{7A +3B +cd 1=0,19A +5B +cd 1=0,21A +5B +cd 1=0,①②③由②,③得A =0,cd 1=﹣5B ,代入方程①,得B =0,从而cd 1=0. 即d 1﹣12d =0,b 1﹣d 1﹣a +12d =0,cd 1=0.若d 1=0,则由d 1﹣12d =0,得d =0,与题设矛盾,所以d 1≠0.又因为cd 1=0,所以c =0.20.(本小题满分16分)设函数f(x)=ln x ﹣ax ,g (x )=e x ﹣ax ,其中a 为实数.(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a 的取值范围; (2)若g(x)在(﹣1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论. 解:(1)令f'(x)=1x﹣a =1﹣axx <0,考虑到f(x)的定义域为(0,+∞),故a>0,进而解得x>a ﹣1,即f(x)在(a ﹣1,+∞)上是单调减函数.同理,f(x)在(0,a ﹣1)上是单调增函数.由于f(x)在(1,+∞)上是单调减函数,故(1,+∞)∶(a ﹣1,+∞),从而a ﹣1≤1,即a≥1.令g'(x)=e x ﹣a =0,得x =ln A .当x<ln a 时,g'(x )<0;当x>ln a 时,g'(x)>0.又g(x)在(1,+∞)上有最小值,所以ln a>1,即a>e .综上,有a∶(e ,+∞).(2)当a≤0时,g(x)必为单调增函数;当a>0时,令g'(x)=e x ﹣a>0,解得a<e x ,即x>ln A .因为g(x)在(﹣1,+∞)上是单调增函数,类似(1)有ln a≤﹣1,即0<a≤e ﹣1.结合上述两种情况,有a≤e ﹣1.①当a =0时,由f(1)=0以及f'(x)=1x >0,得f(x)存在唯一的零点;②当a<0时,由于f(e a )=a ﹣a e a =a(1﹣e a )<0,f(1)=﹣a>0,且函数f(x)在[e a ,1]上的图象不间断,所以f(x)在(e a ,1)上存在零点.另外,当x>0时,f'(x)=1x ﹣a>0,故f(x)在(0,+∞)上是单调增函数,所以f(x)只有一个零点. ③当0<a≤e ﹣1时,令f'(x)=1x ﹣a =0,解得x =a ﹣1.当0<x<a﹣1时,f'(x)>0,当x>a﹣1时,f'(x)<0,所以,x =a﹣1是f(x)的最大值点,且最大值为f(a ﹣1)=﹣ln a ﹣1.当﹣ln a ﹣1=0,即a =e ﹣1时,f(x)有一个零点x =e .当﹣ln a ﹣1>0,即0<a<e ﹣1时,f(x)有两个零点.实际上,对于0<a<e ﹣1,由于f(e ﹣1)=﹣1﹣a e ﹣1<0,f(a ﹣1)>0,且函数f(x)在[e ﹣1,a ﹣1]上的图象不间断,所以f(x)在(e ﹣1,a ﹣1)上存在零点.另外,当x∶(0,a﹣1)时,f'(x)=1x﹣a>0,故f(x)在(0,a﹣1)上是单调增函数,所以f(x)在(0,a﹣1)上只有一个零点.下面考虑f(x)在(a﹣1,+∞)上的情况.先证f(e a﹣1)=a(a﹣2﹣e a﹣1)<0.为此,我们要证明:当x>e时,e x>x2.设h(x)=e x﹣x2,则h'(x)=e x﹣2x,再设l(x)=h'(x)=e x﹣2x,则l'(x)=e x﹣2.当x>1时,l'(x)=e x﹣2>e﹣2>0,所以l(x)=h'(x)在(1,+∞)上是单调增函数.故当x>2时,h'(x)=e x﹣2x>h'(2)=e2﹣4>0,从而h(x)在(2,+∞)上是单调增函数,进而当x>e时,h(x)=e x﹣x2>h(e)=e e﹣e2>0.即当x>e时,e x>x2.当0<a<e﹣1,即a﹣1>e时,f(e a﹣1)=a﹣1﹣a e a﹣1=a(a﹣2﹣e a﹣1)<0,又f(a﹣1)>0,且函数f(x)在[a﹣1,e a﹣1]上的图象不间断,所以f(x)在(a﹣1,e a﹣1)上存在零点.又当x>a﹣1时,f'(x)=1x﹣a<0,故f(x)在(a﹣1,+∞)上是单调减函数,所以f(x)在(a﹣1,+∞)上只有一个零点.综合①,②,③,当a≤0或a=e﹣1时,f(x)的零点个数为1,当0<a<e﹣1时,f(x)的零点个数为2.数学Ⅱ(附加题)【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.21.A.[选修4﹣1:几何证明选讲](本小题满分10分)如图,AB和BC分别与圆O相切于点D,C,AC经过圆心O,且BC=2OC.求证:AC=2AD.证明:连结OD.因为AB和BC分别与圆O相切于点D,C,所以∶ADO=∶ACB=90°.又因为∶A=∶A,所以Rt∶ADO∶Rt∶ACB.所以BCOD =ACAD.又BC=2OC=2OD,故AC=2AD.B.[选修4﹣2:矩阵与变换](本小题满分10分)已知矩阵A=[﹣1002],B=[1206],求矩阵A﹣1B.解:设矩阵A的逆矩阵为[a bc d],则[﹣1002][a bc d]=[1001],即[﹣a﹣b2c2d]=[1001],故a =﹣1,b =0,c =0,d =1,从而A 的逆矩阵为A ﹣1=[﹣1 0 012],所以A ﹣1B =[﹣1 0 0 12][1 20 6]=[﹣1﹣20 3]. C .[选修4﹣4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,直线l 的参数方程为{x =t +1,y =2t (t 为参数),曲线C 的参数方程为{x =2tan 2θ,y =2tanθ(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标. 解:因为直线l 的参数方程为{x =t +1,y =2t(t 为参数),由x =t +1得t =x ﹣1,代入y =2t ,得到直线l 的普通方程为2x ﹣y ﹣2=0.同理得到曲线C 的普通方程为y 2=2x.联立方程组{y =2(x ﹣1),y 2=2x ,解得公共点的坐标为(2,2),(12,﹣1).D .[选修4﹣5:不等式选讲](本小题满分10分)已知a≥b>0,求证:2a 3﹣b 3≥2ab 2﹣a 2B . 证明:2a 3﹣b 3﹣(2ab 2﹣a 2b)=2a(a 2﹣b 2)+b(a 2﹣b 2)=(a 2﹣b 2)(2a +b)=(a ﹣b)(a +b)(2a +b).因为a≥b>0,所以a ﹣b≥0,a +b>0,2a +b>0, 从而(a ﹣b)(a +b)(2a +b)≥0,即2a 3﹣b 3≥2ab 2﹣a 2B .【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区......域内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在直三棱柱A 1B 1C 1﹣ABC 中,AB∶AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值;(2)求平面ADC 1与平面ABA 1所成二面角的正弦值.解:(1)以A 为坐标原点,建立如图所示的空间直角坐标系A ﹣xyz ,则A(0,0,0),B(2,0,0),C(0,2,0),D(1,1,0),A 1(0,0,4),C 1(0,2,4),所以A 1B ⃗⃗⃗⃗⃗⃗⃗ =(2,0,﹣4),C 1D ⃗⃗⃗⃗⃗⃗⃗ =(1,﹣1,﹣4).因为cos <A 1B ⃗⃗⃗⃗⃗⃗⃗ ,C 1D ⃗⃗⃗⃗⃗⃗⃗ >=A 1B ⃗⃗⃗⃗⃗⃗⃗⃗ ·C 1D⃗⃗⃗⃗⃗⃗⃗⃗|A 1B ⃗⃗⃗⃗⃗⃗⃗⃗ ||C 1D ⃗⃗⃗⃗⃗⃗⃗⃗ |=√20×√183√1010,所以异面直线A 1B 与C 1D 所成角的余弦值为3√1010. (2)设平面ADC 1的法向量为n 1=(x ,y ,z ),因为AD ⃗⃗⃗⃗⃗ =(1,1,0),AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,4),所以n 1·AD ⃗⃗⃗⃗⃗ =0,n 1·AC 1⃗⃗⃗⃗⃗⃗⃗ =0,即x +y =0且y +2z =0,取z =1,得x =2,y =﹣2,所以,n 1=(2,﹣2,1)是平面ADC 1的一个法向量.取平面AA 1B 的一个法向量为n 2=(0,1,0),设平面ADC 1与平面ABA 1所成二面角的大小为θ.由|cos θ|=|n 1·n 2|n 1||n 2||√9×√123,得sin θ=√53.因此,平面ADC 1与平面ABA 1所成二面角的正弦值为√5.23.(本小题满分10分)设数列{a n }:1,﹣2,﹣2,3,3,3,﹣4,﹣4,﹣4,﹣4,…,(﹣1)k ﹣1k ,…,(﹣1)k ﹣1k ⏞k 个,…,即当(k ﹣1)k 2<n ≤k (k +1)2(k ∶N *)时,a n=(﹣1)k ﹣1k.记S n =a 1+a 2+…+a n (n ∶N *).对于l ∶N *,定义集合P l ={n|S n是a n 的整数倍,n ∶N *,且1≤n ≤l }.(1)求集合P 11中元素的个数; (2)求集合P 2000中元素的个数.解:(1)由数列{a n }的定义得a 1=1,a 2=﹣2,a 3=﹣2,a 4=3,a 5=3,a 6=3,a 7=﹣4,a 8=﹣4,a 9=﹣4,a 10=﹣4,a 11=5,所以S 1=1,S 2=﹣1,S 3=﹣3,S 4=0,S 5=3,S 6=6,S 7=2,S 8=﹣2,S 9=﹣6,S 10=﹣10,S 11=﹣5,从而S 1=a 1,S 4=0×a 4,S 5=a 5,S 6=2a 6,S 11=﹣a 11,所以集合P 11中元素的个数为5.(2)先证:S i (2i +1)=﹣i (2i +1)(i ∶N *).事实上,①当i =1时,S i(2i +1)=S 3=﹣3,﹣i(2i +1)=﹣3,故原等式成立;②假设i =m 时成立,即S m(2m +1)=﹣m(2m +1),则i =m +1时,S (m +1)(2m +3)=S m(2m +1)+(2m +1)2﹣(2m +2)2=﹣m(2m +1)﹣4m ﹣3=﹣(2m 2+5m +3)=﹣(m +1)(2m +3).综合①②可得S i(2i +1)=﹣i(2i +1).于是S (i +1)(2i +1)=S i(2i +1)+(2i +1)2=﹣i(2i +1)+(2i +1)2=(2i +1)(i +1).由上可知S i(2i +1)是2i +1的倍数,而a i(2i +1)+j =2i +1(j =1,2,…,2i +1),所以S i(2i +1)+j =S i(2i +1)+j(2i +1)是a i(2i +1)+j (j =1,2,…,2i +1)的倍数.又S (i +1)(2i +1)=(i +1)(2i +1)不是2i +2的倍数,而a (i +1)(2i +1)+j =﹣(2i +2)(j =1,2,…,2i +2),所以S (i +1)(2i +1)+j =S (i +1)(2i +1)﹣j(2i +2)=(2i +1)(i +1)﹣j(2i +2)不是a (i +1)(2i +1)+j (j =1,2,…,2i +2)的倍数,故当l =i(2i +1)时,集合P l 中元素的个数为1+3+…+(2i ﹣1)=i 2,于是,当l =i(2i +1)+j(1≤j≤2i +1)时,集合P l 中元素的个数为i 2+j.又2000=31×(2×31+1)+47,故集合P 2000中元素的个数为312+47=1008.。

2013年江苏省高考数学试卷加详细解析

2013年江苏省高考数学试卷加详细解析

2013年江苏省高考数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相印位置上.1.(5分)(2013•江苏)函数y=3sin(2x+)的最小正周期为_________.2.(5分)(2013•江苏)设z=(2﹣i)2(i为虚数单位),则复数z的模为_________.3.(5分)(2013•江苏)双曲线的两条渐近线方程为_________.4.(5分)(2013•江苏)集合{﹣1,0,1}共有_________个子集.5.(5分)(2013•江苏)如图是一个算法的流程图,则输出的n的值是_________.,结果如下:则成绩较为稳定(方差较小)的那位运动员成绩的方差为_________.7.(5分)(2013•江苏)现在某类病毒记作X m Y n,其中正整数m,n(m≤7,n≤9)可以任意选取,则m,n都取到奇数的概率为_________.8.(5分)(2013•江苏)如图,在三棱柱A1B1C1﹣ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F ﹣ADE的体积为V1,三棱柱A1B1C1﹣ABC的体积为V2,则V1:V2=_________.9.(5分)(2013•江苏)抛物线y=x2在x=1处的切线与两坐标轴围成三角形区域为D(包含三角形内部和边界).若点P(x,y)是区域D内的任意一点,则x+2y的取值范围是_________.10.(5分)(2013•江苏)设D,E分别是△ABC的边AB,BC上的点,AD=AB,BE=,若=λ1+λ2(λ1,λ2为实数),则λ1+λ2的值为_________.11.(5分)(2013•江苏)已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2﹣4x,则不等式f(x)>x 的解集用区间表示为_________.12.(5分)(2013•江苏)在平面直角坐标系xOy中,椭圆C的标准方程为(a>b>0),右焦点为F,右准线为l,短轴的一个端点为B,设原点到直线BF的距离为d 1,F到l的距离为d2,若d2=,则椭圆C的离心率为_________.13.(5分)(2013•江苏)在平面直角坐标系xOy中,设定点A(a,a),P是函数y=(x>0)图象上一动点,若点P,A之间的最短距离为2,则满足条件的实数a的所有值为_________.14.(5分)(2013•江苏)在正项等比数列{a n}中,,a6+a7=3,则满足a1+a2+…+a n>a1a2…a n的最大正整数n 的值为_________.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)(2013•江苏)已知=(cosα,sinα),=(cosβ,sinβ),0<β<α<π.(1)若|﹣|=,求证:⊥;(2)设=(0,1),若+=,求α,β的值.16.(14分)(2013•江苏)如图,在三棱锥S﹣ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.17.(14分)(2013•江苏)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x﹣1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.18.(16分)(2013•江苏)如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC 匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cosA=,cosC=(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?19.(16分)(2013•江苏)设{a n}是首项为a,公差为d的等差数列(d≠0),S n是其前n项和.记,n∈N*,其中c为实数.(1)若c=0,且b1,b2,b4成等比数列,证明:(k,n∈N*);(2)若{b n}是等差数列,证明:c=0.20.(16分)(2013•江苏)设函数f(x)=lnx﹣ax,g(x)=e x﹣ax,其中a为实数.(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围;(2)若g(x)在(﹣1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.数学Ⅱ(附加题)21.[选做题]本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.....................若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4 - 1:几何证明选讲](本小题满分10分)如图,AB 和BC 分别与圆O相切于点D 、C ,AC 经过圆心O ,且BC=2OC 。

江苏省13大市高三数学上学期期末试题分类汇编 导数及

江苏省13大市高三数学上学期期末试题分类汇编 导数及

江苏省13大市2013届高三上学期期末数学试题分类汇编导数及其应用1、(南通市2013届高三期末)曲线2(1)1()e (0)e 2x f f x f x x '=-+在点(1,f (1))处的切线方程为 ▲ . 答案:1e 2y x =-. 2、(苏州市2013届高三期末)过坐标原点作函数ln y x =图像的切线,则切线斜率为 . 答案:1e3、(泰州市2013届高三期末)曲线y=2lnx 在点(e,2)处的切线与y 轴交点的坐标为 (0,0)4、(扬州市2013届高三期末)已知函数xmx x f -=ln )((R m ∈)在区间],1[e 上取得最小值4,则=m ▲ . e 3-5、(常州市2013届高三期末)第八届中国花博会将于2013年9月在常州举办,展览园指挥中心所用地块的形状是大小一定的矩形ABCD ,BC a =,CD b =.a ,b 为常数且满足b a <.组委会决定从该矩形地块中划出一个直角三角形地块AEF 建游客休息区(点E ,F 分别在线段AB ,AD 上),且该直角三角形AEF 的周长为(2l b >),如图.设AE x =,△AEF 的面积为S .(1)求S 关于x 的函数关系式;(2)试确定点E 的位置,使得直角三角形地 块AEF 的面积S 最大,并求出S 的最大值.解:(1)设AF y =,则x y l ++=,整理,得222()l lxy l x -=-.………3分 2(2)4(12)l l x S lx x xy --==,](0,x b ∈. …………………………………4分(2)()()]22'22242,(0,44l x lx l l S x x x b x l x l ⎛⎫⎛⎫-+=⋅=-⋅∈ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭∴当b ≤时,'0S >,S 在](0,b 递增,故当x b =时,()()max 24bl b l S b l -=-;当b >时,在x ⎛⎫∈ ⎪ ⎪⎝⎭上,'0S >,S 递增,在,x b ⎫∈⎪⎪⎭上,'0S <,S 递减,故当x =时,2max S =.6、(连云港市2013届高三期末)(连云港市2013届高三期末)某单位决定对本单位职工实行年医疗费用报销制度,拟制定年医疗总费用在2万元至10万元(包括2万元和10万元)的报销方案,该方案要求同时具备下列三个条件:①报销的医疗费用y (万元)随医疗总费用x (万元)增加而增加;②报销的医疗费用不得低于医疗总费用的50%;③报销的医疗费用不得超过8万元.(1)请你分析该单位能否采用函数模型y =0.05(x 2+4x +8)作为报销方案;(2)若该单位决定采用函数模型y =x -2ln x +a (a 为常数)作为报销方案,请你确定整数a 的值.(参考数据:ln2≈0.69,ln10≈2.3)【解】(1)函数y =0.05(x 2+4x +8)在[2,10]上是增函数,满足条件①, ……………2分 当x =10时,y 有最大值7.4万元,小于8万元,满足条件③. ………………………4分但当x =3时,y =2920<32,即y ≥x2不恒成立,不满足条件②,故该函数模型不符合该单位报销方案. ………………………6分(2)对于函数模型y =x -2ln x +a ,设f (x )= x -2ln x +a ,则f ´(x )=1-2x =x -2x≥0.所以f (x )在[2,10]上是增函数,满足条件①,由条件②,得x -2ln x +a ≥x 2,即a ≥2ln x -x2在x ∈[2,10]上恒成立,令g (x )=2ln x -x 2,则g ´(x )=2x -12=4-x2x,由g ´(x )>0得x <4,∴g (x )在(0,4)上增函数,在(4,10)上是减函数.∴a ≥g (4)=2ln4-2=4ln2-2. ………………10分 由条件③,得f (10)=10-2ln10+a ≤8,解得a ≤2ln10-2. ……………………12分 另一方面,由x -2ln x +a ≤x ,得a ≤2ln x 在x ∈[2,10]上恒成立, ∴a ≤2ln2,综上所述,a 的取值范围为[4ln2-2,2ln2],所以满足条件的整数a 的值为1. ……………14分7、(南京市、盐城市2013届高三期末)对于定义在区间D 上的函数()f x , 若任给0x D ∈, 均有0()f x D ∈, 则称函数()f x 在区间D 上封闭.试判断()1f x x =-在区间[2,1]-上是否封闭, 并说明理由; 若函数3()1x ag x x +=+在区间[3,10]上封闭, 求实数a 的取值范围; 若函数3()3h x x x =-在区间[,](,)a b a b Z ∈上封闭, 求,a b 的值.解: (1)()1f x x =-在区间[2,1]-上单调递增,所以()f x 的值域为[-3,0]………2分 而[-1,0][2,1]⊄-,所以()f x 在区间[2,1]-上不是封闭的……………… 4分(2)因为33()311x a a g x x x +-==+++, ①当3a =时,函数()g x 的值域为{}3[3,10]⊆,适合题意……………5分 ②当3a >时,函数()g x 在区间[3,10]上单调递减,故它的值域为309[,]114a a++, 由309[,]114a a++[3,10]⊆,得303119104aa +⎧≥⎪⎪⎨+⎪≤⎪⎩,解得331a ≤≤,故331a <≤……………………7分③当3a <时,在区间[3,10]上有33()3311x a a g x x x +-==+<++,显然不合题意 …………………8分综上所述, 实数a 的取值范围是331a ≤≤……………………………9分 (3)因为3()3h x x x =-,所以2()333(1)(1)h x x x x '=-=+-, 所以()h x 在(,1)-∞-上单调递减,在(1,1)-上递增,在(1,)+∞上递增.①当1a b <≤-时,()h x 在区间[,]a b 上递增,所以()()h a ah b b ≥⎧⎨≤⎩,此时无解………10分②当111a b ≤--<≤且时,因max ()(1)2h x h b =-=>,矛盾,不合题意…………11分③当11a b ≤->且时,因为(1)2,(1)2h h -==-都在函数的值域内,故22a b ≤-⎧⎨≥⎩,又33()3()3a h a a a b h b b b ⎧≤=-⎨≥=-⎩,解得202202a a b b -≤≤≥⎧⎨≤≤≤⎩或或,从而22a b =-⎧⎨=⎩ ………12分 ④当11a b -≤<≤时,()h x 在区间[,]a b 上递减,()()h b ah a b ≥⎧⎨≤⎩(*),而,a b Z ∈,经检验,均不合(*)式……………………………13分⑤当111a b -<≤≥且时,因min ()(1)2h x h a ==-<,矛盾,不合题意…………14分⑥当1b a >≥时,()h x 在区间[,]a b 上递增,所以()()h a ah b b ≥⎧⎨≤⎩,此时无解 ……………15分综上所述,所求整数,a b 的值为2,2a b =-=…………………16分8、(南通市2013届高三期末)某公司为一家制冷设备厂设计生产一种长方形薄板,其周长为4米,这种薄板须沿其对角线折叠后使用.如图所示,()ABCD AB AD >为长方形薄板,沿AC 折叠后,AB '交DC 于点P .当△ADP的面积最大时最节能,凹多边形ACB PD '的面积最大时制冷效果最好. (1)设AB =x 米,用x 表示图中DP 的长度,并写出x 的取值范围; (2)若要求最节能,应怎样设计薄板的长和宽? (3)若要求制冷效果最好,应怎样设计薄板的长和宽?解:(1)由题意,AB x =,2BC x =-.因2x x >-,故12x <<. …………2分设DP y =,则PC x y =-.因△ADP ≌△CB P ',故PA PC x y ==-.由 222PA AD DP =+,得 2221()(2)2(1)x y x y y x -=-+⇒=-,12x <<.……5分(2)记△ADP 的面积为1S ,则11(1)(2)S x x=-- ………………………………………………………………6分23()2x x=-+≤-当且仅当x =(1,2)时,S 1取得最大值.……………………………………8分2米时,节能效果最好. ……………………9分 (3)记△ADP 的面积为2S ,则221114(2)(1)(2)3()22S x x x x x x=-+--=-+,12x <<.…………………………10分于是,3222142(2)02x S x x x x-+'=--==⇒=.……………………………11分 关于x 的函数2S在上递增,在上递减.所以当x =时,2S 取得最大值. …………………………13分宽为2制冷效果最好. ………………………14分9、(徐州、淮安、宿迁市2013届高三期末)已知函数).1,0(ln )(2≠>-+=a a a x x a x f x (1) 求函数)(x f 在点))0(,0(f 处的切线方程;(2) 求函数)(x f 单调区间;(3) 若存在]1,1[,21-∈x x ,使得e e x f x f (1)()(21-≥-是自然对数的底数),求实数a的取值范围.ABCD(第17题)B 'P⑴因为函数2()ln (0,1)x f x a x x a a a =->≠+,所以()ln 2ln x f x a a x a '=-+,(0)0f '=,…………………………………………2分 又因为(0)1f =,所以函数()f x 在点(0,(0))f 处的切线方程为1y =. …………4分 ⑵由⑴,()ln 2ln 2(1)ln x x f x a a x a x a a '=-=-++.因为当0,1a a >≠时,总有()f x '在R 上是增函数, ………………………………8分 又(0)0f '=,所以不等式()0f x '>的解集为(0,)∞+,故函数()f x 的单调增区间为(0,)∞+.………………………………………………10分 ⑶因为存在12,[1,1]x x ∈-,使得12()()e 1f x f x --≥成立, 而当[1,1]x ∈-时,12max min ()()()()f x f x f x f x --≤,所以只要max min ()()e 1f x f x --≥即可.……………………………………………12分 又因为x ,()f x ',()f x 的变化情况如下表所示:所以()f x 在[1,0]-上是减函数,在[0,1]上是增函数,所以当[1,1]x ∈-时,()f x 的最小值()()min 01f x f ==,()f x 的最大值()max f x 为()1f -和()1f 中的最大值.因为11(1)(1)(1ln )(1ln )2ln f f a a a a a aa--=--=--+++, 令1()2ln (0)g a a a a a =-->,因为22121()1(1)0g a a a a '=-=->+,所以1()2ln g a a a a=--在()0,a ∈+∞上是增函数.而(1)0g =,故当1a >时,()0g a >,即(1)(1)f f >-;当01a <<时,()0g a <,即(1)(1)f f <-.………………………………………14分 所以,当1a >时,(1)(0)e 1f f --≥,即ln e 1a a --≥,函数ln y a a =-在(1,)a ∈+∞上是增函数,解得e a ≥;当01a <<时,(1)(0)e 1f f ---≥,即1ln e 1a a+-≥,函数1ln y a a =+在(0,1)a ∈上是减函数,解得10ea <≤. 综上可知,所求a 的取值范围为1(0,][e,)ea ∈∞+U .………………………………16分10、(泰州市2013届高三期末)已知函数f(x)=(x-a)2()x b -,a,b 为常数, (1)若a b ≠,求证:函数f(x)存在极大值和极小值(2)设(1)中 f(x) 取得极大值、极小值时自变量的分别为12,x x ,令点A 11(,()x f x ),B 22(,()x f x ),如果直线AB 的斜率为12-,求函数f(x)和/()f x 的公共递减区间的长度 (3)若/()()f x mf x ≥对于一切x R ∈ 恒成立,求实数m,a,b 满足的条件解:(1)[])2(3)()(/b a x b x x f +--= …………………………………………………1分b a ≠Θ32b a b +≠∴0)(,=∴x f 有两不等 b 和32ba + ∴f (x )存在极大值和极小值 ……………………………….……………………………4分(2)①若a =b ,f (x )不存在减区间②若a >b 时由(1)知x 1=b ,x 2=32ba + ∴A (b ,0)B ⎪⎪⎭⎫⎝⎛--+9)(2,322b a b a 21329)(22-=-+-∴b b a b a ∴)(3)(22b a b a -=- 23=-∴b a○3当a <b 时 x 1=32ba +,x 2=b 。

2013年江苏省 高考数学试卷 (真题与答案解析)-推荐下载

2013年江苏省 高考数学试卷 (真题与答案解析)-推荐下载

3.(2013 江苏,3)双曲线 x2 y2 =1 的两条渐近线的方程为__________. 16 9
4.(2013 江苏,4)集合{-1,0,1}共有__________个子集.
5.(2013 江苏,5)下图是一个算法的流程图,则输出的 n 的值是__________.
6.(2013 江苏,6)抽样统计甲、乙两位射击运动员的 5 次训练成绩(单位:环),
9.(2013 江苏,9)抛物线 y=x2 在 x=1 处的切线与两坐标轴围成三角形区域为 D(包含三角形内部和 边界).若点 P(x,y)是区域 D 内的任意一点,则 x+2y 的取值范围是__________.
1
2
10.(2013 江苏,10)设 D,E 分别是△ABC 的边 AB,BC 上的点, AD= AB , BE= BC .若
12.(2013
江苏,12)在平面直角坐标系
xOy
中,椭圆
C
的标准方程为
x2 a2

y2 b2
=1 (a>0,b>0),右
焦点为 F,右准线为 l,短轴的一个端点为 B.设原点到直线 BF 的距离为 d1,F 到 l 的距离为 d2.若
d2 6d1 ,则椭圆 C 的离心率为__________.
3
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2013年江苏省高考数学试卷答案与解析

2013年江苏省高考数学试卷答案与解析

2013年江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相印位置上.1.(5分)(2013•江苏)函数y=3sin(2x+)的最小正周期为π.2x+T=||=||=2.(5分)(2013•江苏)设z=(2﹣i)2(i为虚数单位),则复数z的模为5.=53.(5分)(2013•江苏)双曲线的两条渐近线方程为.的而双曲线的渐近线方程为±x∴双曲线的渐近线方程为故答案为:4.(5分)(2013•江苏)集合{﹣1,0,1}共有8个子集.5.(5分)(2013•江苏)如图是一个算法的流程图,则输出的n的值是3.6.(5分)(2013•江苏)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结则成绩较为稳定(方差较小)的那位运动员成绩的方差为2.7.(5分)(2013•江苏)现在某类病毒记作X m Y n,其中正整数m,n(m≤7,n≤9)可以任意选取,则m,n都取到奇数的概率为.都取到奇数的概率为故答案为8.(5分)(2013•江苏)如图,在三棱柱A1B1C1﹣ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F﹣ADE的体积为V1,三棱柱A1B1C1﹣ABC的体积为V2,则V1:V2= 1:24.9.(5分)(2013•江苏)抛物线y=x2在x=1处的切线与两坐标轴围成三角形区域为D(包含三角形内部和边界).若点P(x,y)是区域D内的任意一点,则x+2y的取值范围是[﹣2,].所以当直线)时,故答案为10.(5分)(2013•江苏)设D,E分别是△ABC的边AB,BC上的点,AD=AB,BE=BC,若=λ1+λ2(λ1,λ2为实数),则λ1+λ2的值为.=,=12,===1+2,,,所以故答案为:11.(5分)(2013•江苏)已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2﹣4x,则不等式f(x)>x 的解集用区间表示为(﹣5,0)∪(5,﹢∞).12.(5分)(2013•江苏)在平面直角坐标系xOy中,椭圆C的标准方程为(a>b>0),右焦点为F,右准线为l,短轴的一个端点为B,设原点到直线BF的距离为d1,F到l的距离为d 2,若d2=,则椭圆C的离心率为.=的关系,可求得x==,则,整理得a,得()﹣,解得=.故答案为:13.(5分)(2013•江苏)在平面直角坐标系xOy中,设定点A(a,a),P是函数y=(x>0)图象上一动点,若点P,A之间的最短距离为2,则满足条件的实数a的所有值为﹣1或.,利用两点间的距离公式可得=,∴,解得.14.(5分)(2013•江苏)在正项等比数列{a n}中,,a6+a7=3,则满足a1+a2+…+a n>a1a2…a n的最大正整数n的值为12.由题意可得,解之可得:===,=>,,即,即最大为二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)(2013•江苏)已知=(cosα,sinα),=(cosβ,sinβ),0<β<α<π.(1)若|﹣|=,求证:⊥;(2)设=(0,1),若+=,求α,β的值.)由给出的向量的坐标,求出的坐标,由模等于由向量坐标的加法运算求出+,+列式整理得到)由==.即)由得:,得:.所以16.(14分)(2013•江苏)如图,在三棱锥S﹣ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.17.(14分)(2013•江苏)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x ﹣4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x﹣1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.)联立得:,=1﹣x+3=2,≤.18.(16分)(2013•江苏)如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cosA=,cosC=(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?cosA=cosC=,所以sinA=,,=sinAcosC+cosAsinC=由正弦定理=×=200),即t=min)由正弦定理BC=≤解得[19.(16分)(2013•江苏)设{a n}是首项为a,公差为d的等差数列(d≠0),S n是其前n项和.记b n=,n∈N*,其中c为实数.(1)若c=0,且b1,b2,b4成等比数列,证明:S nk=n2S k(k,n∈N*);(2)若{b n}是等差数列,证明:c=0.代入中整理得到的形式,说明,成等比数列时,则,得:,,即,而20.(16分)(2013•江苏)设函数f(x)=lnx﹣ax,g(x)=e x﹣ax,其中a为实数.(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围;(2)若g(x)在(﹣1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.)上是单调减函数,转化为﹣﹣,.结合上述两种情况,有=﹣≤﹣.当时,时,x=(时,<<(<([)在(<=)上时单调增函数,所)上只有一个零点.)在(((<,即)([,)在(,>﹣)在(,,时,时,评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分10分)21.(10分)(2013•江苏)如图,AB和BC分别与圆O相切于点D、C,AC经过圆心O,且BC=2OC.求证:AC=2AD.,可得B.[选修4-2:矩阵与变换](本小题满分10分)22.(10分)(2013•江苏)已知矩阵A=,B=,求矩阵A﹣1B.1=,即,C.[选修4-4:坐标系与参数方程](本小题满分0分)23.(2013•江苏)在平面直角坐标系xOy中,直线l的参数方程为(为参数),曲线C的参数方程为(t为参数).试求直线l和曲线C的普通方程,并求出它们的公共点的坐标.的参数方程为,解得,,D.[选修4-5:不等式选讲](本小题满分0分)24.(2013•江苏)已知a≥b>0,求证:2a3﹣b3≥2ab2﹣a2b.第25题、第26题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25.(10分)(2013•江苏)如图,在直三棱柱A1B1C1﹣ABC中,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点.(1)求异面直线A1B与C1D所成角的余弦值;(2)求平面ADC1与ABA1所成二面角的正弦值.}}=>=所成角的余弦值为的法向量为的法向量为|=|,=.所成二面角的正弦值为26.(10分)(2013•江苏)设数列{a n}:1,﹣2,﹣2,3,3,3,﹣4,﹣4,﹣4,﹣4,…,,…,即当<n≤(k∈N*)时,.记S n=a1+a2+…+a n(n∈N∗).对于l∈N∗,定义集合P l=﹛n|S n为a n的整数倍,n∈N∗,且1≤n≤l}(1)求P11中元素个数;(2)求集合P2000中元素个数.21。

2013高考数学各省题目分类整理:函数导数综合

2013高考数学各省题目分类整理:函数导数综合

2013高考:函数导数综合【2013高考文科题组】1、(2013北京,文18)已知函数2()sin cos f x x x x x =++(I )若曲线()y f x =在点(,())a f a 处于直线y b =相切,求a 与b 的值; (II )若曲线()y f x =于直线y b =有两个不同的交点,求b 的取值范围。

2、(2013全国大纲,文21)已知函数32()331f x x ax x =+++(I )当a =()f x 的单调性;(II )若[2,)x ∈+∞时,()0f x ≥,求a 的取值范围。

3、(2013全国课标I ,文20)已知函数2()()4xf x e ax b x x =+--,曲线()y f x =在点(0,(0))f 处的切线方程为44y x =+ (I )求a ,b 的值;(II )讨论()f x 的单调性,并求()f x 的极大值。

4、(2013全国课标II ,文21)已知函数2()xf x x e -= (I )求()f x 的极小值和极大值;(II )当曲线()y f x =的切线l 的斜率为负数时,求l 在x 轴截距的取值范围。

5、(2013山东,文21)已知函数2()ln f x ax bx x =+-(,a b R ∈) (I )设0a ≥,求()f x 的单调区间;(II )设0a >,且对任意0x >,()(1)f x f ≥,试比较ln a 与2b -的大小6、(2013江苏,20)设函数()ln f x x ax =-,()xg x e ax =-,其中a 为实数(I )若()f x 在(1,)+∞上是单调减函数,且()g x 在(1,)+∞上有最小值,求a 的取值范围 (II )若()g x 在(1,)-+∞上是单调增函数,试求()f x 的零点个数。

7、(2013安徽,文20)设函数22()(1)f x ax a x =-+,其中0a >,区间{|()0}I x f x => (I )求I 的长度(注:区间(,)αβ的长度定义为βα-);(II )给定常数(0,1)k ∈,当11k a k -≤≤+时,求I 长度的最小值。

江苏省2013届高考数学复习专题3 导数

江苏省2013届高考数学复习专题3  导数

江苏省2013届高考数学复习专题3 导数(Ⅰ)导数作为研究函数的重要工具,同时也是学习高等数学的基础,一直受到命题者的青睐.2008年考了2小题,并在17题中进行了考查(运用导数求三角函数的最值);2009年考了2小题,都是考查三次函数的导数,显然重复;2010年第8题和压轴题都考查了导数;2011年12题和19题;2012年14题和18题.可以看出江苏高考每年都会出现两题考查导数的几何意义或者导数的四则运算以及利用导数研究极值、单调性等.预测在2013年的高考题中: (1)导数的几何意义;(2)利用导数研究函数的单调性或者极值、最值.1.(2009·江苏高考)在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +3上,且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为________.解析:y ′=3x 2-10=2⇒x =±2,又点P 在第二象限内,故x =-2.点P 的坐标为(-2,15). 答案:(-2,15)2.(2010·江苏高考)函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴交点的横坐标为a k +1,k 为正整数,a 1=16,则a 1+a 3+a 5=________.解析:在点(a k ,a 2k )处的切线方程为y -a 2k =2a k (x -a k ),当y =0时,解得x =a k 2,所以a k +1=a k2.则a 1+a 3+a 5=16+4+1=21.答案:213.若函数f (x )=e x -2x -a 在R 上有两个零点,则实数a 的取值范围是________.解析:当直线y =2x +a 和y =e x 相切时,仅有一个公共点,这时切点是(ln 2,2),直线方程是y =2x +2-2ln 2,将直线y =2x +2-2ln 2向上平移,这时两曲线必有两个不同的交点.答案:(2-2ln 2,+∞)4.(2010·江苏高考)将边长为1 m 的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记S =(梯形的周长)2梯形的面积,则S 的最小值是________.解析:设剪成的小正三角形的边长为x ,则S =(3-x )212(x +1)·32(1-x )=43·(3-x )21-x 2(0<x <1). 法一:利用导数求函数最小值. S (x )=43·(3-x )21-x2,S ′(x )=43·(2x -6)·(1-x 2)-(3-x )2·(-2x )(1-x 2)2=43·-2(3x -1)(x -3)(1-x 2)2.令S ′(x )=0,又0<x <1,所以x =13.当x ∈⎝⎛⎦⎤0,13时,S ′(x )<0,函数单调递减;当x ∈⎣⎡⎭⎫13,1时,S ′(x )>0,函数单调递增; 故当x =13时,S 取最小值为32 33.法二:利用函数的方法求最小值. 令3-x =t ,t ∈(2,3),1t ∈⎝⎛⎭⎫13,12,则 S =43·t 2-t 2+6t -8=4 3·1-8t 2+6t-1. 故当1t =38,x =13时,S 取最小值为32 33.答案:32 335.(2011·江苏高考)在平面直角坐标系xOy 中,已知点P 是函数f (x )=e x (x >0)的图象上的动点,该图象在P 处的切线l 交y 轴于点M ,过点P 作l 的垂线交y 轴于点N ,设线段MN 的中点的纵坐标为t ,则t 的最大值是________.解析:设P (x 0,e x 0),则l :y -e x 0=e x 0 (x -x 0), 所以M (0,(1-x 0)e x 0).过点P 作l 的垂线其方程为 y -e x 0=-e -x 0 (x -x 0),N (0,e x 0+x 0e -x 0),所以t =12[(1-x 0)e x 0+e x 0+x 0e -x 0]=e x 0+12x 0(e -x 0-e x 0).t ′=12(e x 0+e -x 0)(1-x 0),所以t 在(0,1)上单调增,在(1,+∞)上单调减,所以当x 0=1时,t 取最大值t max =12⎝⎛⎭⎫e +1e . 答案:12⎝⎛⎭⎫e +1e[典例1](2012·扬州调研)已知函数f (x )=e x +ax ,g (x )=e x ln x (e 是自然对数的底数). (1)若曲线y =f (x )在x =1处的切线也是抛物线y 2=4(x -1)的切线,求a 的值; (2)若对于任意x ∈R ,f (x )>0恒成立,试确定实数a 的取值范围;(3)当a =-1时,是否存在x 0∈(0,+∞),使曲线C :y =g (x )-f (x )在点x =x 0处的切线斜率与f (x )在R 上的最小值相等?若存在,求符合条件的x 0的个数;若不存在,请说明理由.[解] (1)f ′(x )=e x +a ,f ′(1)=e +a ,所以在x =1处的切线为y -(e +a )=(e +a )(x -1), 即y =(e +a )x .与y 2=4(x -1)联立,消去y 得 (e +a )2x 2-4x +4=0,由Δ=0知,a =1-e 或a =-1-e. (2)f ′(x )=e x +a ,①当a >0时,f ′(x )>0,f (x )在R 上单调递增,且当x →-∞时,e x →0,ax →-∞, 所以f (x )→-∞,故f (x )>0不恒成立, 所以a >0不合题意;②当a =0时,f (x )=e x >0对x ∈R 恒成立, 所以a =0符合题意;③当a <0时,令f ′(x )=e x +a =0,得x =ln(-a ),当x ∈(-∞,ln(-a ))时,f ′(x )<0;当x ∈(ln(-a ),+∞)时,f ′(x )>0,故f (x )在(-∞,ln(-a ))上单调递减,在(ln(-a ),+∞)上单调递增,所以f (x )min =f (ln(-a ))=-a +a ln(-a )>0,所以a >-e.又a <0,所以a ∈(-e,0).综上a 的取值范围为(-e,0].(3)当a =-1时,由(2)知f (x )min =f (ln(-a ))=-a +a ln(-a )=1.设h (x )=g (x )-f (x )=e x ln x -e x +x , 则h ′(x )=e x ln x +e x ·1x -e x +1=e x ⎝⎛⎭⎫ln x +1x -1+1, 假设存在实数x 0∈(0,+∞),使曲线C ∶y =g (x )-f (x )在点x =x 0处的切线斜率与f (x )在R 上的最小值相等,x 0即为方程的解,令h ′(x )=1得,e x ⎝⎛⎭⎫ln x +1x -1=0, 因为e x >0,所以ln x +1x-1=0.令φ(x )=ln x +1x -1,则φ′(x )=1x -1x 2=x -1x2,当0<x <1时,φ′(x )<0;当x >1时,φ′(x )>0.所以φ(x )=ln x +1x -1在(0,1)上单调递减,在(1,+∞)上单调递增.所以φ(x )>φ(1)=0,故方程e x ⎝⎛⎭⎫ln x +1x -1=0有惟一解为1. 所以存在符合条件的x 0,且仅有一个x 0=1.第一问考查导数的几何意义;第二问还可采用分离参数构造函数求最值的方法,不过也要进行讨论;第三问先求f (x )的最小值,然后再研究函数h (x )=g (x )-f (x )=e x ln x -e x +x 在x =x 0处的切线斜率,最后利用函数与方程思想,把方程实根的问题转化为函数的零点问题.[演练1]已知抛物线C 1:y =x 2+2x 和C 2:y =-x 2+a .如果直线l 同时是C 1和C 2的切线,称l 是C 1和C 2的公切线,公切线上两个切点之间的线段,称为公切线段.(1)a 取什么值时,C 1和C 2有且仅有一条公切线?写出此公切线的方程; (2)若C 1和C 2有两条公切线,证明相应的两条公切线段互相平分.解:(1)函数y =x 2+2x 的导数y ′=2x +2曲线C 1在点P (x 1,x 21+2x 1)的切线方程是 y -(x 21+2x 1)=(2x 1+2)(x -x 1), 即y =(2x 1+2)x -x 21.①函数y =-x 2+a 的导数y ′=-2x , 曲线C 2在点Q (x 2,-x 22+a )的切线方程是 y -(-x 22+a )=-2x 2(x -x 2), 即y =-2x 2x +x 22+a .②如果直线l 是过P 和Q 的公切线, 则①式和②式都是l 的方程.所以⎩⎪⎨⎪⎧x 1+1=-x 2,-x 21=x 22+a .消去x 2得方程2x 21+2x 1+1+a =0.当判别式Δ=4-4×2(1+a )=0,即a =-12时,解得x 1=-12,x 2=-12,此时点P 与Q 重合.即当a =-12时C 1和C 2有且仅有一条公切线,由①得公切线方程为y =x -14.(2)证明:由(1)可知,当a <-12时C 1和C 2有两条公切线.设一条公切线上切点为P (x 1,y 1),Q (x 2,y 2), 其中P 在C 1上,Q 在C 2上,则有x 1+x 2=-1,y 1+y 2=x 21+2x 1+(-x 22+a )=x 21+2x 1-(x 1+1)2+a =-1+a ,线段PQ 的中点为⎝⎛⎭⎫-12,-1+a 2.同理,另一条公切线段P ′Q ′的中点也是⎝⎛⎫-12,-1+a 2.所以公切线段PQ 和P ′Q ′互相平分. [典例2](2012·苏锡常镇一调)若斜率为k 的两条平行直线l ,m 经过曲线C 的端点或与曲线C 相切,且曲线C 上的所有点都在l ,m 之间(也可在直线l ,m 上),则把l ,m 间的距离称为曲线C 在“k 方向上的宽度”,记为d (k ).(1)若曲线C :y =2x 2-1(-1≤x ≤2),求d (-1);(2)已知k >2,若曲线C :y =x 3-x (-1≤x ≤2),求关于k 的函数关系式d (k ). 解:(1)y =2x 2-1(-1≤x ≤2)的端点为A (-1,1),B (2,7), ∵y ′=4x ,由y ′=-1得到切点为⎝⎛⎭⎫-14,-78, ∴当k =-1时,与曲线C 相切的直线只有一条.结合题意可得,两条平行直线中一条与曲线C :y =2x 2-1(-1≤x ≤2)相切,另一条直线过曲线的端点B (2,7).∴平行的两条直线分别为:x +y -9=0和x +y +98=0.由两条平行线间的距离公式可得,d (-1)=81216.(2)曲线C :y =x 3-x (-1≤x ≤2)的端点A (-1,0),B (2,6),∴y ′=3x 2-1∈[-1,11]. 下面分两种情况:①当k ≥11时,两条直线都不是曲线的切线,且分别经过点A (-1,0),B (2,6),此时两条直线方程分别为l :y =k (x +1),m :y -6=k (x -2),所以d (k )=3k -61+k 2; ②当2<k <11时,设切点N (a ,a 3-a )得到k =3a 2-1>2且-1≤a ≤2得到1<a ≤2,且a =1+k3从而推出l ,m 当中有一条与曲线C 相切,有一条经过一点,且是经过A (-1,0)的直线,和以B (2,6)为切点的直线,方程分别为l :y =k (x +1),m :y =(3a 2-1)(x -a )+a 3-a =kx -2 39(1+k )32,所以d (k )=9k +2 3(1+k )329 1+k 2.综上得d (k )=⎩⎨⎧3k-61+k 2,k ≥11,9k +2 3(1+k )329 1+k 2,2<k <11.本题是一个即时定义问题,背景新颖,在解决第二问时要注意将k 看成一个常数,对k 进行讨论,探究出两条直线与曲线C 的关系是都相切还是都是经过点还是一个相切一个经过点,并且了解经过哪个点.这些都可以利用导数这个工具解决.[演练2]设函数f (x )=ax +1x +b (a ,b ∈Z ),曲线y =f (x )在点(2,f (2))处的切线方程为y =3.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值.解:(1)f ′(x )=a -1(x +b )2,于是⎩⎨⎧2a +12+b=3,a -1(2+b )2=0.解得⎩⎪⎨⎪⎧a =1,b =-1,或⎩⎨⎧a =94,b =-83.因为a ,b ∈Z ,故f (x )=x +1x -1.(2)证明:在曲线上任取一点⎝⎛⎭⎫x 0,x 0+1x 0-1,由f ′(x 0)=1-1(x 0-1)2知,过此点的切线方程为y -x 20-x 0+1x 0-1=⎣⎡⎦⎤1-1(x 0-1)2(x -x 0).令x =1,得y =x 0+1x 0-1,切线与直线x =1的交点为⎝ ⎛⎭⎪⎫1,x 0+1x 0-1;令y =x ,得y =2x 0-1,切线与直线y =x 的交点为(2x 0-1,2x 0-1). 直线x =1与直线y =x 的交点为(1,1).从而所围三角形的面积为12⎪⎪⎪⎪⎪⎪x 0+1x 0-1-1|2x 0-1-1|=12⎪⎪⎪⎪⎪2x 0-1|2x 0-2|=2.所以所围三角形的面积为定值2. [典例3](2012·泰州中学期中)已知函数f (x )=ax 3+bx 2-3x (a ,b ∈R )在点(1,f (1))处的切线方程为y +2=0.(1)求函数f (x )的解析式;(2)若对于区间[-2,2]上任意两个自变量的值x 1,x 2都有|f (x 1)-f (x 2)|≤c ,求实数c 的最小值;(3)若过点M (2,m )(m ≠2)可作曲线y =f (x )的三条切线,求实数m 的取值范围. 解:(1)f ′(x )=3ax 2+2bx -3.根据题意,得⎩⎪⎨⎪⎧ f (1)=-2,f ′(1)=0,即⎩⎪⎨⎪⎧a +b -3=-2,3a +2b -3=0,解得⎩⎪⎨⎪⎧a =1,b =0.所以f (x )=x 3-3x .(2)令f ′(x )=0,即3x 2-3=0,得x =±1.因为f (-1)=2,f (1)=-2,所以当x ∈[-2,2]时,f (x )max =2,f (x )min =-2.则对于区间[-2,2]上任意两个自变量的值x 1,x 2,都有|f (x 1)-f (x 2)|≤|f (x )max -f (x )min |=4,所以c ≥4,即c 的最小值为4.(3)因为点M (2,m )(m ≠2)不在曲线y =f (x )上,所以可设切点为(x 0,y 0).因为f ′(x 0)=3x 20-3,所以切线的斜率为3x 20-3.则3x 20-3=x 30-3x 0-m x 0-2,即2x 30-6x 20+6+m =0.因为过点M (2,m )(m ≠2)可作曲线y =f (x )的三条切线,所以方程2x 30-6x 20+6+m =0有三个不同的实数解.所以函数g (x )=2x 3-6x 2+6+m 有三个不同的零点. 则g ′(x )=6x 2-12x .令g ′(x )=0,则x =0或x =2.则⎩⎪⎨⎪⎧ g (0)>0,g (2)<0,即⎩⎪⎨⎪⎧6+m >0,-2+m <0,解得-6<m <2. 所以m 的取值范围为(-6,2).本题考查导数的几何意义、不等式恒成立、极值、最值等问题,一、二两问中规中矩,掌握好计算方法即可,第三问主要能够将“若过点M (2,m )(m ≠2)可作曲线y =f (x )的三条切线”转化成“关于切点横坐标x 0的方程2x 30-6x 20+6+m =0有三个不同的实数解”,问题就迎刃而解了.[演练3](2012·南京一模)已知函数f (x )=x -1-ln x . (1)求函数f (x )的最小值;(2)求证:当n ∈N *时,e1+12+13+…+1n>n +1;(3)对于函数h (x )和g (x )定义域上的任意实数x ,若存在常数k ,b ,使得不等式h (x )≥kx +b 和g (x )≤kx +b 都成立,则称直线y =kx +b 是函数h (x )与g (x )的“分界线”.设函数h (x )=12x 2,g (x )=e[x -1-f (x )],试问函数h (x )与g (x )是否存在“分界线”?若存在,求出常数k ,b 的值;若不存在,说明理由.解:(1)∵f (x )=x -1-ln x (x >0), ∴f ′(x )=1-1x =x -1x.当x ∈(0,1)时,f ′(x )<0,f (x )递减; 当x ∈(1,+∞)时,f ′(x )>0,f (x )递增. ∴f (x )的最小值为f (1)=0.(2)证明:由(1)知当x >0时,恒有f (x )≥0, 即x -1≥ln x .故e x -1≥x ,从而有e x ≥x +1,当且仅当x =0时取等号.分别令x =1,12,13,…,1n 可得e 1>1+1=2,e 12>12+1=32,e 13>13+1=43,…,e 1n >1n +1=n +1n,相乘可得e1+12+13+…+1n >2×32×43×…×n +1n =n +1,即e1+12+13+…+1n >n +1.(3)令F (x )=h (x )-g (x )=12x 2-eln x (x >0),则F ′(x )=x -e x =(x +e )(x -e )x ,当x ∈(0,e)时,F ′(x )<0,F (x )递减; 当x ∈(e ,+∞)时,F ′(x )>0,F (x )递增. 所以当x =e 时,F (x )取得最小值0.则h (x )与g (x )的图象在x =e 处有公共点⎝⎛⎭⎫e ,e2. 设函数h (x )与g (x )存在“分界线”,方程为y -e 2=k (x -e),应有h (x )≥kx +e2-k e 在x ∈R 时恒成立,即x 2-2kx -e +2k e ≥0在x ∈R 时恒成立,必须Δ=4k 2-4(2k e -e)=4(k -e)2≤0,得k = e. 下证g (x )≤e x -e2在x >0时恒成立,记G (x )=eln x -e x +e2,则G ′(x )=ex -e =e -e x x ,当x ∈(0,e)时,G ′(x )>0,G (x )递增;当x ∈(e ,+∞)时G ′(x )<0,G (x )递减.所以当x =e 时,G (x )取得最大值0, 即g (x )≤e x -e2在x >0时恒成立.综上可知,函数h (x )与g (x )存在“分界线”,其中k =e ,b =-e2.[专题技法归纳] (1)利用公式求导时,一定要注意公式的适用范围和符号.(2)可以利用导数求曲线的切线方程,由于函数y =f (x )在x =x 0处的导数表示曲线在点P (x 0,f (x 0))处切线的斜率,因此,曲线y =f (x )在点P (x 0,f (x 0))处的切线方程可如下求得:①求出函数y =f (x )在点x =x 0处的导数,即曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率. ②在已知切点坐标和切线斜率的条件下,求得切线方程为y =y 0+f ′(x 0)(x -x 0).1.(2012·南通调研)设P 是函数y =x (x +1)图象上异于原点的动点,且该图象在点P 处的切线的倾斜角为θ,则θ的取值范围是________.解析:依题意得,y =x 32+x 12,y ′=32x 12+12x -12(x >0),当x >0时,y ′=32x 12+12x -12≥232x 12×12x -12= 3,即该图象在点P 处的切线的斜率不小于3,即tan θ≥ 3.又θ∈[0,π),因此π3≤θ<π2,即θ的取值范围是⎣⎡⎭⎫π3,π2. 答案:⎣⎡⎭⎫π3,π22.若方程ln x -2x -a =0有两个不等的实数根,则实数a 的取值范围是________. 解析:作出y =ln x 和y =2x +a 的图象,分析方程ln x -2x -a =0,有两个不等的实数根问题,即是研究y =ln x 和y =2x +a 的图象交点问题,如图可知,y =2x +a 与y =ln x 相切时,a =-1-ln 2,只要a <-1-ln 2,图象都有两个不等的交点,即a ∈(-∞,-1-ln 2). 答案:(-∞,-1-ln 2)3.若函数f (x )=3x +ln x 在区间(m ,m +2)上单调递减,则实数m 的范围是________.解析:由f (x )=3x +ln x ,得f ′(x )=-3x 2+1x =x -3x 2,由f ′(x )<0得0<x <3,所以f (x )的减区间是(0,3].由(m ,m +2)⊆(0,3]得0≤m ≤1.答案:[0,1]4.f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,则a =________,b =________. 解析:f ′(x )=3x 2+2ax +b ,由已知,得⎩⎪⎨⎪⎧ f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧2a +b =-3,a 2+a +b =9,解得⎩⎪⎨⎪⎧ a =-3,b =3或⎩⎪⎨⎪⎧a =4,b =-11.经检验,当a =-3,b =3时,x =1不是极值点;当a =4,b =-11时,符合题意.答案:4 -115.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与y 轴的交点的纵坐标为y n ,令b n =2y n ,则b 1·b 2·…·b 2 010的值为________.解析:先求出函数在(1,1)处的切线方程y -1=(n +1)·(x -1),令x =0,求出y n =-n ,下面利用指数式的运算法则以及等差数列求和即可.答案:⎝⎛⎭⎫12 2 011×1 005 6.已知函数y =f (x )在定义域⎝⎛⎭⎫-32,3上可导,其图象如图,记y=f (x )的导函数y =f ′(x ),则不等式xf ′(x )≤0的解集是________.解析:利用函数f (x )的图象信息得出f ′(x )≤0的解集是⎣⎡⎦⎤-12,1,f ′(x )≥0的解集是⎝⎛⎦⎤-32,-12∪[1,3),从而由xf ′(x )≤0,得⎩⎪⎨⎪⎧ x ≥0,f ′(x )≤0或⎩⎪⎨⎪⎧x ≤0,f ′(x )≥0,从而0≤x ≤1或-32<x ≤-12. 答案:[0,1]∪⎝⎛⎦⎤-32,-12 7.曲边梯形由曲线y =e x ,y =0,x =1,x =5所围成,过曲线y =e x ,x ∈[1,5]上一点P 作切线,使得此切线从曲边梯形上切出一个面积最大的普通梯形,这时点P 的坐标是________.解析:如图设P (x 0,y 0),得切线AB 方程y -e x 0=e x 0(x -x 0),从而A (1,e x 0 (2-x 0)),B (5,e x 0(6-x 0)),所以梯形的面积S =2e x 0(8-2x 0)=4e x 0(4-x 0),对S 求导得S ′=4e x 0(3-x 0),易知S (x 0)在(1,3)上递增,(3,5)上递减,所以S (x 0)取最大时,P 点坐标为(3,e 3).答案:(3,e 3)8.已知函数f (x )=-12x 2+4x -3ln x 在[t ,t +1]上不是单调函数,则t 的取值范围是________.解析:由题意知f ′(x )=-x +4-3x =-x 2+4x -3x =-(x -1)(x -3)x,由f ′(x )=0得函数f (x )的两个极值点为1,3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不是单调函数,由t <1<t +1或者t <3<t +1,得0<t <1或者2<t <3.答案:(0,1)∪(2,3)9.给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′.若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎫0,π2上不是凸函数的是________.(把你认为正确的序号都填上)①f (x )=sin x +cos x ;②f (x )=ln x -2x ; ③f (x )=-x 3+2x -1; ④f (x )=x e x .解析:对于①,f ″(x )=-(sin x +cos x ),x ∈⎝⎛⎭⎫0,π2时,f ″(x )<0恒成立; 对于②,f ″(x )=-1x 2,在x ∈⎝⎛⎭⎫0,π2时, f ″(x )<0恒成立;对于③,f ″(x )=-6x ,在x ∈⎝⎛⎭⎫0,π2时, f ″(x )<0恒成立;对于④,f ″(x )=(2+x )·e x 在x ∈⎝⎛⎭⎫0,π2时, f ″(x )>0恒成立,所以f (x )=x e x 不是凸函数.答案:④10.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 99的值为________.解析:函数在(1,1)处切线方程为y -1=(n +1)(x -1),令y =0得到x n =n n +1,所以a 1+a 2+…+a 99=lg1100=-2. 答案:-211.已知函数f (x )=a +sin x 2+cos x-bx (a ,b ∈R ). (1)若f (x )在R 上存在最大值与最小值,且其最大值与最小值的和为2 680,试求a 和b 的值;(2)若f (x )为奇函数,①是否存在实数b ,使得f (x )在⎝⎛⎭⎫0,2π3为增函数,⎝⎛⎭⎫2π3,π为减函数?若存在,求出b 的值;若不存在,请说明理由;②如果当x ≥0时,都有f (x )≤0恒成立,试求b 的取值范围.解:(1)∵f (x )在x ∈R 上存在最大值和最小值,∴b =0(否则f (x )值域为R ).∴y =f (x )=a +sin x 2+cos x⇒sin x -y cos x =2y -a⇒|sin(x -φ)|=|2y -a |1+y 2≤1⇒3y 2-4ay +a 2-1≤0,又Δ=4a 2+12>0,由题意有y min +y max =43a =2 680, ∴a =2 010.(2)若f (x )为奇函数,∵x ∈R ,∴f (0)=0⇒a =0, ∴f (x )=sin x 2+cos x -bx ,f ′(x )=2cos x +1(2+cos x )2-b , ①若∃b ∈R ,使f (x )在⎝⎛⎭⎫0,23π上递增,在⎝⎛⎭⎫23π,π上递减,则f ′⎝⎛⎭⎫23π=0, ∴b =0.这时f ′(x )=1+2cos x (2+cos x )2, 当x ∈⎝⎛⎭⎫0,23π时,f ′(x )>0,f (x )递增, 当x ∈⎝⎛⎭⎫23π,π时f ′(x )<0,f (x )递减.②f ′(x )=-b cos 2 x +2(1-2b )cos x +1-4b (2+cos x )2, Δ=4[(1-2b )2+b (1-4b )]=4(1-3b ),若Δ≤0,则b ≥13,则f ′(x )≤0,对∀x ≥0恒成立,这时f (x )在[0,+∞)上递减,∴f (x )≤f (0)=0.若b <0,则当x ≥0时,-bx ∈[0,+∞),sin x 2+cos x ∈⎣⎡⎦⎤-33,33, f (x )=sin x 2+cos x-bx 不可能恒小于等于0. 若b =0,则f (x )=sin x 2+cos x ∈⎣⎡⎦⎤-33,33不合题意. 若0<b <13,则f ′(0)=1-3b 3>0, f ′(π)=-b -1<0,∴∃x 0∈(0,π),使f ′(x 0)=0,x ∈(0,x 0)时,f ′(x )>0,这时f (x )递增,f (x )>f (0)=0,不合题意.综上b 的取值范围为⎣⎡⎭⎫13,+∞. 12.(2012·无锡一中)已知函数f (x )=x 3+ax 2-a 2x +2,a ∈R .(1)若a <0时,试求函数y =f (x )的单调递减区间;(2)若a =0,且曲线y =f (x )在点A ,B (A ,B 不重合)处切线的交点位于直线x =2上,证明:A ,B 两点的横坐标之和小于4;(3)如果对于一切 x 1,x 2,x 3∈[0,1],总存在以f (x 1),f (x 2),f (x 3)为三边长的三角形,试求正实数a 的取值范围.解:(1)函数f (x )的导函数f ′(x )=3x 2+2ax -a 2=3(x +a )⎝⎛⎭⎫x -a 3.因为a <0,由f ′(x )<0,解得a 3<x <-a .所以函数y =f (x )的单调递减区间为⎝⎛⎭⎫a 3,-a .(2)当a =0时,f (x )=x 3+2.设在点A (x 1,x 31+2),B (x 2,x 32+2)处的切线交于直线x =2上一点P (2,t ). 因为y ′=3x 2,所以曲线y =f (x )在点A 处的切线斜率为k =3x 21, 所以在点A 处的切线方程为y -(x 31+2)=3x 21(x -x 1).因为切线过点P ,所以t -(x 31+2)=3x 21(2-x 1),即2x 31-6x 21+(t -2)=0. 同理可得2x 32-6x 22+(t -2)=0.两式相减得2(x 31-x 32)-6(x 21-x 22)=0,即(x 1-x 2)(x 21+x 1x 2+x 22)-3(x 1-x 2)(x 1+x 2)=0. 因为x 1-x 2≠0,所以x 21+x 1x 2+x 22-3(x 1+x 2)=0.即(x 1+x 2)2-x 1x 2-3(x 1+x 2)=0.因为x 1x 2≤⎝⎛⎭⎫x 1+x 222,且x 1≠x 2,所以x 1x 2<⎝⎛⎭⎫x 1+x 222.从而上式可以化为(x 1+x 2)2-⎝⎛⎭⎫x 1+x 222-3(x 1+x 2)<0,即(x 1+x 2)(x 1+x 2-4)<0.解得0<x 1+x 2<4,即A ,B 两点的横坐标之和小于4.(3)由题设知,f (0)<f (1)+f (1),即2<2(-a 2+a +3),解得-1<a <2.又因为a >0,所以0<a <2.因为f ′(x )=3(x +a )⎝⎛⎫x -a 3,所以当x ∈⎝⎛⎭⎫0,a 3时,f ′(x )<0,f (x )单调递减,当x ∈⎝⎛⎭⎫a 3,1,f ′(x )>0,f (x )单调递增.所以当x =a 3时,f (x )有最小值f ⎝⎛⎭⎫a 3=-527a 3+2.从而条件转化为⎩⎪⎨⎪⎧ f ⎝⎛⎭⎫a 3=-527a 3+2>0,①f (0)<2⎝⎛⎭⎫-527a 3+2,②f (1)<2⎝⎛⎭⎫-527a 3+2.③由①得a <33235;由②得a <335 .再根据0<a <2得0<a <335.不等式③化为1027a 3-a 2+a -1<0. 令g (a )=1027a 3-a 2+a -1,则g ′(a )=109a 2-2a +1>0,所以g (a )为增函数.又g (2)=-127<0,所以当a ∈⎝ ⎛⎭⎪⎫0,335时,g (a )<0恒成立,即③成立.所以a 的取值范围为⎝ ⎛⎭⎪⎪⎫0,335.。

2013年全国普通高等学校招生统一考试数学(江苏卷带解析)答案解析

2013年全国普通高等学校招生统一考试数学(江苏卷带解析)答案解析

2013年全国普通高等学校招生统一考试(江苏卷)数学答案解析1、【答案】【解析】∵函数的周期为,∴函数的最小正周期.2、【答案】5【解析】∵,∴.3、【答案】【解析】依题意,,,∴双曲线的两条渐近线的方程为.4、【答案】8【解析】因为集合中有3个元素,其子集有个.5、【答案】3【解析】输入,,执行,后;输入,,执行,后;输出.6、【答案】2【解析】由表中数据知,乙运动员成绩稳定,平均成绩,方差.7、【答案】【解析】∵,,且、,基本事件的总数是种,、都取到奇数的事件有种,由古典概型公式,、都取到奇数的概率为. 【考点定位】考查奇数、偶数的定义,古典概型.注意古典概型与几何概型的区别.容易题.8、【答案】【解析】依题意,,三棱锥的高为三棱柱的高的. ∴.【考点定位】三棱柱与三棱锥的体积,三角形中位线定理,相似三角形的面积比等于相似比的平方.空间想象能力.中等题.9、【答案】【解析】∵,∴,,而当时,即切点为,切线方程为,即,切线与两坐标轴围成的三角形区域为如图,令,由图知,当斜率为的直线经过,取得最大值,即;当斜率为的直线经过,取得最大值,即. 故的取值范围是.【考点定位】.导数的集合意义,不等式表示的平面区域,线性规划求目标函数的取值范围. 中等题.10、【答案】【解析】依题意,,∴,∴,,故.【考点定位】平面向量的加法、减法法则.分析、计算能力.中等题.11、【答案】【解析】∵当时,,令,,∴,又是定义在上的奇函数,∴,∴,即时,. 要,则或或,解得或,∴不等式的解集用区间为.【考点定位】分段函数,函数的奇偶性,一元二次不等式的解法. 考查计算能力.中等题.12、【答案】【解析】依题意,作于,则,又,解得,而椭圆准线的方程为,,设直线与轴交于,则点到直线的距离,∵,∴,整理的,两边平方,,∴,又,解得.【考点定位】椭圆的性质、点到直线的距离公式,考查分析转化能力、计算能力.中等题.13、【答案】【解析】依题意,定点在直线上,直线与曲线的交点,,由两点间的距离公式得这两点间的距离为,∴满足条件.设,则设,∵,∴,,即,解得,而,∴.故满足条件的实数的所有值为,【考点定位】考查函数与的图象性质,两点间的距离公式,考查不等式的性质、二次函数的最值. 较难题.14、【答案】12【解析】∵正项等比数列中,,.∴,,∴,解得或(舍去),∴,∴,∴,.∴当,即,取,不成立;取,成立;…取,成立;取,成立;取,不成立;故满足的最大正整数的值为12.【考点定位】等比数列的性质,考查分析转化能力、计算能力.较难题.15、【答案】(1)见解析(2),.【解析】由题意,,即,又因为,∴,即,∴.(2),∴,由此得,由,得,又,故,代入得,而,∴,.【考点定位】本小题主要考查平面向量的加法、减法、数量积、三角函数的基本关系、有道公式等基础只晒,考查运算求解能力和推理论证能力.16、【答案】见解析【解析】[证明](1)∵,,垂足为,∴是的中点,又因为是的中点,∴∥,∵平面,平面,∴∥平面;同理∥平面. 又,∴平面∥平面.(2)∵平面平面,且交线为,又平面,,∴平面,∵平面,∴,又因为,,、平面,∴平面,∵平面,∴.【考点定位】本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.17、【答案】(1)或(2)【解析】(1)由题意,圆心是直线和的交点,解得点,于是切线的斜率必存在,设过的圆的切线方程为,由题意,,解得或,故所求切线方程为或.(2)∵圆心在直线上,∴圆的方程为,设,∵,∴,化简整理得,∴点在以为圆心,2为半径的圆上,由题意,在圆上,∴圆与圆有公共点,则,即,由得,由,得,所以点的横坐标的取值范围是.【考点定位】本小题主要考查直线与圆的方程,考查直线与直线、直线与圆、圆与圆的位置关系,等基础知识,考查运用数形结合、待定系数法等数学思想方法分析解决问题的能力.18、【答案】(1)m (2)(3)(单位:m/min)【解析】(1)在中,∵,,∴,,从而.由正弦定理,得,所以索道的长为1040(m).(2)假设乙出发分钟后,甲、乙两游客距离为,此时,甲行走了m,乙距离处m,由余弦定理得,∵,即,故当(min)时,甲、乙两游客距离最短.(3)由正弦定理,,得(m),乙从出发时,甲走了(m),还需要走(m)才能到达,设乙步行的速度为m/min,由题意,,解得,∴为使两游客在处互相等待的时间不超过3分钟,乙步行的速度应控制在(单位:m/min)范围内.【考点定位】本小题主要考查正弦定理、余弦定理、二次函数的最值以及三角函数的基本关系、两角和的正弦等基础知识,考查数学阅读能力和分析解决实际问题的能力.19、【答案】见解析【解析】[证明](1)由题设,,由,得,又,,成等比数列,∴,即,化简得,∵,∴.因此对于所有的,从而对于所有的,.(2)设数列的公差为,则,即,,代入的表达式,整理得,对于所有的有,令,,,则对于所有的有,在上式中取,∴,从而有,由②③得,代入①得,从而,即,,,若,则由得,与题设矛盾,∴,又,∴. 【考点定位】本小题主要考查等差、等比数列的定义、通项、求和等基础知识,考查分析转化以及推理论证能力.20、【答案】(1)(2)当或时,的零点个数为1;当时,的零点个数为2.【解析】(1)∵,考虑到函数的定义域为,故,进而解得,即在上是单调减函数. 同理,在上是单调增函数.由于在是单调减函数,故,从而,即. 令,得,当时,;当时,,又在上有最小值,所以,即,综上所述,.(2)当时,必是单调增函数;当时,令,解得,即,∵在上是单调函数,类似(1)有,即,综合上述两种情况,有.①当时,由以及,得存在唯一的零点;②当时,由于,,且函数在上的图象不间断,∴在是单调增函数,∴在上存在零点. 另外,当时,,则在上是单调增函数,只有一个零点.③当时,令,解得.当时,;当时,. ∴是的最大值点,且最大值为.1)当,即时,有一个零点.2)当,即时,有两个零点. 实际上,对于,由于,,且函数在上的图象不间断,∴在上存在零点.另外,当时,,故在上是单调增函数,∴在上有一个零点.下面需要考虑在上的情况,先证,为此,我们要证明:当时,,设,则,再设,则.当时,,∴在上是单调增函数,故当时,,从而在上是单调增函数,进而当时,,即当时,.当,即时,,又,且函数在的图象不间断,∴在上存在零点.又当时,,故在是单调减函数,所以,在上只有一个零点.综上所述,当或时,的零点个数为1;当时,的零点个数为2.【考点定位】本小题主要考查导数的运算及用导数研究函数的性质,考查函数、方程及不等式的相互转化,考查综合运用数学思想方法分析与解决问题及推理论证能力.21、【答案】见解析【解析】[证明]连结,∵和分别与圆相切于、,∴,又,∴,∴,而,∴.【考点定位】本小题主要考查圆的切线性质、相似三角形判定与性质,考查推理论证能力.22、【答案】【解析】设矩阵的逆矩阵为,则,即,∴,,,,从而,的逆矩阵为,∴.【考点定位】本小题主要考查逆矩阵、矩阵的乘法,考查运算求解能力.23、【答案】.【解析】因为直线的参数方程为,(为参数),由,得代入得到直线的普通方程为.同理得曲线的普通方程为.联立方程组,解得公共点的坐标为,.【考点定位】本小题主要考查参数方程与普通方程的互化以及直线与抛物线的位置关系等基础知识,考查转化问题的能力.24、【答案】见解析【解析】[证明]∵,∴,,,从而,即.【考点定位】本小题主要考查利用比较法证明不等式,考查推理论证能力.25、【答案】(1)(2)【解析】(1)以为坐标原点,建立如图所示的空间直角坐标系,则,,,,,,∴,,∵,∴异面直线与所成角的余弦值为.(2)设平面的法向量为,因为,,∴,即,取,得,,∴,取平面的一个法向量为,设平面与平面所成的二面角的大小为,由,得,故平面与平面所成二面角的正弦值.【考点定位】本小题主要考查异面直线、二面角、空间向量等基础知识以及基本运算,考查运用空间向量解决问题的能力.26、【答案】(1)2 (2)1008【解析】(1)由数列的定义,得,,,,,,,,,,,∴,,,,,,,,,,∴,,,,,∴集合中元素的个数为5.(2)先证:,事实上,①当时,,,原等式成立;②当时成立,即,则时,,综合①②可得,于是,,由上式可知是的倍数,而,∴是的倍数,又不是的倍数,而,∴不是的倍数,故当时,集合中元素的个数为,于是,当时,集合中元素的个数为,又,故集合中元素的个数为.【考点定位】本小题主要考查集合、数列的概念和运算、计数原理等基础知识,考查探究能力及运用数学归纳法的推理论证能力.。

2013年全国普通高等学校招生统一考试数学(江苏卷带解析)试题

2013年全国普通高等学校招生统一考试数学(江苏卷带解析)试题

2013年全国普通高等学校招生统一考试(江苏卷)数学试题1、【题文】函数的最小正周期为2、【题文】设为虚数单位),则复数的模为3、【题文】双曲线的两条渐近线的方程为4、【题文】集合共有个子集.5、【题文】下图是一个算法的流程图,则输出的的值是6、【题文】抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:则成绩较稳定(方差较小)的那位运动员成绩的方差为7、【题文】现有某病毒记作其中正整数、()可以任意选取,则、都取到奇数的概率为8、【题文】如图,在三棱柱中,,,分别为,,的中点,设三棱锥体积为,三棱柱的体积为,则9、【题文】抛物线在处的切线与两坐标轴围成的三角形区域为(包含三角形内部和边界).若点是区域内任意一点,则的取值范围是10、【题文】设、分别是的边,上的点,,. 若(为实数),则的值是11、【题文】已知是定义在上的奇函数. 当时,,则不等式的解集用区间表示为12、【题文】在平面直角坐标系中,椭圆的标准方程为,右焦点为,右准线为,短轴的一个端点. 设原点到直线的距离为,点到的距离为. 若,则椭圆的离心率为13、【题文】在平面直角坐标系中,设定点,是函数图象上一动点. 若点,之间的最短距离为,则满足条件的实数的所有值为14、【题文】在正项等比数列中,,. 则满足的最大正整数的值为15、【题文】已知,.(1)若,求证:;(2)设,若,求,的值.16、【题文】如图,在三棱锥中,平面平面,,. 过点作,垂足为,点,分别为棱,的中点.求证:(1)平面平面;(2).17、【题文】如图,在平面直角坐标系中,点,直线,设圆的半径为1,圆心在上.(1)若圆心也在直线上,过点作圆的切线,求切线方程;(2)若圆上存在点,使,求圆心的横坐标的取值范围.18、【题文】如图,旅客从某旅游区的景点处下山至处有两种路径.一种是从沿直线步行到,另一种从沿索道乘缆车到,然后从沿直线步行到.现有甲、乙两位游客从处下山,甲沿匀速步行,速度为 m/min,在甲出发2 min后,乙从乘缆车到,在处停留1 min后,再从匀速步行到. 假设缆车匀速直线运动的速度为130 m/min,山路长1260 m ,经测量,,.(1)求索道的长;(2)问乙出发后多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?19、【题文】设是首项为,公差为的等差数列(),是前项和. 记,,其中为实数.(1)若,且,,成等比数列,证明:;(2)若是等差数列,证明.20、【题文】设函数,,其中为实数.(1)若在上是单调减函数,且在上有最小值,求的取值范围;(2)若在上是单调增函数,试求的零点个数,并证明你的结论.21、【题文】、分别与圆相切于、,经过圆心,且,求证:.22、【题文】已知矩阵,,求矩阵.23、【题文】在平面直角坐标系中,直线的参数方程为,(为参数),曲线的参数方程为,(为参数),试求直线和曲线的普通方程,并求它们的公共点的坐标.24、【题文】已知,求证:.25、【题文】如图,在直三棱柱中,,,,点是的中点.(1)求异面直线与所成角的余弦值;(2)求平面与平面所成二面角的正弦值.26、【题文】设数列:,即当时,记.记. 对于,定义集合是的整数倍,,且.(1)求集合中元素的个数;(2)求集合中元素的个数.。

2013年高考数学真题江苏卷(百分百精确校对+逐字排版)

2013年高考数学真题江苏卷(百分百精确校对+逐字排版)

2013年普通高等学校统一考试试题(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分。

请把答案填写在答题卡相印位置上。

1.函数3sin (2)4y x π=+的最小正周期为 .【答案】π【解析】T =|2πω |=|2π2|=π.2.设2(2)z i =-(i 为虚数单位),则复数z 的模为 . 【答案】5【解析】z =3-4i ,i 2=-1,| z |==5.3.双曲线221169xy-=的两条渐近线的方程为 .【答案】x y 43±=【解析】令:091622=-yx,得x x y 431692±=±=.4.集合{1,0,1}-共有 个子集. 【答案】8 【解析】23=8.5.右图是一个算法的流程图,则输出的n 的值是 . 【答案】3【解析】n =1,a =2,a =4,n =2;a =10,n =3;a =28,n =4.6.抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:则成绩较为稳定(方差较小)的那位运动员成绩的方差为 . 【答案】2【解析】易得乙较为稳定,乙的平均值为:9059288919089=++++=x .方差为:25)9092()9088()9091()9090()9089(222222=-+-+-+-+-=S.7.现在某类病毒记作m n X Y ,其中正整数,(7,9)m n m n ≤≤可以任意选取,则,m n 都取到奇数的概率为 . 【答案】6320(第5题)【解析】m 取到奇数的有1,3,5,7共4种情况;n 取到奇数的有1,3,5,7,9共5种情况,则n m ,都取到奇数的概率为63209754=⨯⨯.8.如图,在三棱柱111A B C A B C -中,,,D E F 分别是1,,A B A C A A 的中点,设三棱锥F AD E -的体积为1V ,三棱柱111A B C A B C -的体积为2V ,则12:V V = .【答案】1:24【解析】三棱锥F AD E -与三棱锥ABC A -1的相似比为1:2,故体积之比为1:8.又因三棱锥ABC A -1与三棱柱ABC C B A -111的体积之比为1:3.所以,三棱锥ADE F -与三棱柱ABC C B A -111的体积之比为1:24.9.抛物线2y x =在1x =处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界).若点(,)P x y 是区域D 内的任意一点,则2x y +的取值范围是 . 【答案】[—2,12]【解析】抛物线2x y =在1=x 处的切线易得为y =2x —1,令z =y x 2+,y =—12 x +z 2 .画出可行域如下,易得过点(0,—1)时,z min =—2,过点(12 ,0)时,z max =12.10.设,D E 分别是A B C ∆的边,A B B C 上的点,12A D AB =,23B E BC =.若12D E A B A C λλ=+(12,λλ为实数),则12λλ+的值为 . 【答案】12【解析】)(32213221AC BA AB BC AB BE DB DE ++=+=+=ABD 1B1A1CCF EAC AB AC AB 213261λλ+=+-=所以,611-=λ,322=λ,=+21λλ12.11.已知()f x 是定义在R 上的奇函数.当0x >时,2()4f x x x =-,则不等式()f x x > 的解集用区间表示为 . 【答案】(﹣5,0) ∪(5,﹢∞)【解析】做出x x x f 4)(2-= (0>x )的图像,如下图所示。

2013年高考理科数学江苏卷-答案

2013年高考理科数学江苏卷-答案

因为SA SAB ⊂平面,所以BC SA ⊥.(步骤8)又22BC OC OD ==,故2AC AD =.(步骤2)323.【答案】(1)由数列{}n a 的定义得:11a =,22a =-,32a =-,43a =,53a =,63a =,74a =-,84a =-,94a =-,104a =-,115a =,∴11S =,21S =-,33S =-,40S =,53S =,66S =,72S =,82S =-,96S =-,1010S =-,115S =-(步骤1)∴111S a =g ,440S a =g ,551S a =g ,662S a =g ,11111S a =-g ,(步骤2)∴集合11P 中元素的个数为5.(步骤3)(2)证明:用数学归纳法先证(21)(21)i i S i i +=-+,事实上,①当1i =时,(21)31(2+1)3i i S S +==-⨯=-故原式成立;②假设当i m =时,等式成立,即(2+1)(2+1)m m S m m =-g 故原式成立.(步骤4)则:+1i m =,时,22(+1)[2(+1)+1](+1)(2+3(2+1)(2+1)(2+2)m m m m m m S S S m m ==+-)222(2+1)(2+1)(2+2)(2+5+3)(+1)(2+3)m m m m m m m m =-+-=-=-,(步骤5)综合①②得:(2+1)(2+1)i i S i i =-于是22(+1)[2+1](2+1+(2+1)(2+1)+(2+1)(2+1)(+1)i i i i S S i i i i i i ==-=),(步骤6)由上可知:(2+1)i i S 是(2+1)i 的倍数,而(+1)(2+1)2+1(122+1)i i j a i j i +==L ,,,,所以(2+1)+(2+1)(2+1)i i j i i S S j i =+,(步骤7)是(+1)(2+1)+i i j a (122+1)j i =L ,,,的倍数,又(+1)(2+1)(+1)(2+1)i i S i i =不是2+2i 的倍数,而(+1)(2+1)+(2+2)i i j a i =-(122+2)j i =L ,,,,所以(+1)(2+1)+(2+1)(+1)(2+2)i i j S i i j i =-,(+1)(2+1)+(+1)(2+1)(2+2)i i j i i S S j i =-不是(+1)(2+1)(122+2)i i j a j i +=L ,,,的倍数,(步骤8)故当(2+1)l i i =时,集合l P 中元素的个数为21+3++21i i -=L (),(步骤9) 于是当(2+1)+12+1l i i j j i =≤≤()时,集合l P 中元素的个数为2+i j ,又200031231+1+47=⨯⨯(),故集合2000P 中元素的个数为231+471008=.(步骤10)【提示】给出数列的规律,由此求出数列相应的项及各项之和,采用列举法写出所满足的元素;由特殊形式推广到一般形式,采用计数原理和数学归纳法来证明得之.【考点】集合,数列的概念和运算,计数原理,数学归纳法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省各地市2013年高考数学 最新联考试题分类汇编(3) 函数与导数一、填空题:11.(江苏省苏锡常镇四市2013年3月高三教学情况调研—)在平面直角坐标系xOy 中,(1,0)A ,函数x y e =的图像与y 轴的交点为B ,P 为函数x y e =图像上的任意一点,则OP AB 的最小值 ▲ .【答案】1 13.(江苏省苏锡常镇四市2013年3月高三教学情况调研—)已知函数123()1234x x x x f x x x x x +++=+++++++,则55(2)(2)22f f -++--= ▲ . 【答案】84. (江苏省南通市2013届高三第二次调研)设f (x )是定义在R 上的奇函数,当x < 0时,f (x )=x + e x (e 为自然对数的底数),则()ln6f 的值为 ▲ .【答案】1ln 66-10. (江苏省南通市2013届高三第二次调研)函数()(1)sin π1(13)f x x x x =---<<的所有零点之和为 ▲ . 【答案】 413. (江苏省南通市2013届高三第二次调研)设实数x 1,x 2,x 3,x 4,x 5均不小于1,且x 1·x 2·x 3·x 4·x 5=729,则max{x 1x 2,x 2x 3,x 3x 4,x 4x 5}的最小值是▲ . 【答案】912. (江苏省无锡市2013年2月高三质量检测)当0< x ≤31时,不等式8x<log a x 恒成立,则实数a 的取值范围是 ▲ . 【答案】(33,1) 13. (江苏省无锡市2013年2月高三质量检测)已知函数f (x )=x 2+ax,若x < 0时恒有f (x )≥3,则实数a 的取值范围是 ▲ . 【答案】(-∞,-2]1、(南通市2013届高三期末)曲线2(1)1()e (0)e 2x f f x f x x '=-+在点(1,f (1))处的切线方程为 ▲ . 答案:1e 2y x =-. 2、(苏州市2013届高三期末)过坐标原点作函数ln y x =图像的切线,则切线斜率为 . 答案:1e3、(泰州市2013届高三期末)曲线y=2lnx 在点(e,2)处的切线与y 轴交点的坐标为 (0,0)5、(徐州、淮安、宿迁市2013届高三期末)已知函数⎪⎩⎪⎨⎧∈-∈=]3,1(,2329]1,0[,3)(x x x x f x ,当]1,0[∈t 时,]1,0[))((∈t f f ,则实数t 的取值范围是 ▲ .37[log ,1]36、(苏州市2013届高三期末)某厂去年的产值为1,若计划在今后五年内每年的产值比上年增长10%,则从今年起到第五年这五年内,这个厂的总产值约为 .(保留一位小数,取51.1 1.6≈)6.6 7、(泰州市2013届高三期末)设函数f(x)是定义在R 上的奇函数,且f(a)>f(b), 则f(-a) f(-b)(填“>”或:“<”) <8、(无锡市2013届高三期末)13.定义一个对应法则f :P (rn ,n )→p '(m ,2|n|).现有直角坐标平面内的点A (-2,6)与点B (6,-2),点M 是线段AB 上的动点,按定义的对应法则f :M →M'.当点M 在线段AB 上从点A 开始运动到点B 时,点M 的对应点M'经过的路线的长度为 。

12、(泰州市2013届高三期末)已知f(x)= 222mx m ++,0,,m m R x R ≠∈∈.若121x x +=,则12()()f x f x 的取值范围是 ⎥⎦⎤⎢⎣⎡+-22,221 13、(扬州市2013届高三期末)如图所示:矩形n n n n A B C D 的一边n n A B 在x 轴上,另两个顶点n C 、n D 在函数1()(0)f x x x x=+>的图像上,若点n B 的坐标为()*,0(2,)n n n N ≥∈),矩形n n n n A B C D 的周长记为n a ,则=+⋅⋅⋅++1032a a a ▲ . 答案:216二、解答题:⒚(江苏省盐城市2013年3月高三第二次模拟)(本小题满分16分)设函数b ax x x f n n ++-=3)((*N n ∈,R b a ∈,)。

⑴若1==b a ,求)(3x f 在[]2,0上的最大值和最小值;⑵若对任意]1,1[,21-∈x x ,都有1)()(2313≤-x f x f ,求a 的取值范围; ⑶若)(4x f 在]1,1[-上的最大值为21,求b a ,的值。

17.(江苏省南通市2013届高三第二次调研)(本小题满分14分)为稳定房价,某地政府决定建造一批保障房供给社会.计划用1 600万元购得一块土地,在该土地上建造10幢楼房的住宅小区,每幢楼的楼层数相同,且每层建筑面积均为1 000平方米,每平方米的建筑费用与楼层有关,第x 层楼房每平方米的建筑费用为(kx +800)元(其中k 为常数) .经测算,若每幢楼为5层,则该小区每平方米的平均综合费用为1 270元. (每平方米平均综合费用=购地费用+所有建筑费用所有建筑面积).(1)求k 的值;(2)问要使该小区楼房每平方米的平均综合费用最低,应将这10幢楼房建成多少层?此时每平方米的平均综合费用为多少元?18. (江苏省南通市2013届高三第二次调研)(本小题满分16分)已知函数f (x )=(m -3)x 3+ 9x .(1)若函数f (x )在区间(-∞,+∞)上是单调函数,求m 的取值范围; (2)若函数f (x )在区间[1,2]上的最大值为4,求m 的值.【解】(1)因为f '(0)=9 > 0,所以f (x )在区间()-∞+∞,上只能是单调增函数……3分由f '(x )=3(m -3)x 2+ 9≥0在区间(-∞,+∞)上恒成立,所以m ≥3.故m 的取值范围是[3,+∞) . ……………………………………………6分 (2)当m ≥3时,f (x )在[1,2]上是增函数,所以[f (x )] max =f (2)=8(m -3)+18=4,解得m =54<3,不合题意,舍去. …………………………8分当m <3时,f '(x )=3(m -3) x 2+ 9=0,得33x m=-.所以 f (x )的单调区间为:(33m -∞-,单调减,(3333m m---,单调增,)33m+∞-,单调减.…………………10分23.(江苏省南通市2013届高三第二次调研)必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤.设b >0,函数2111()(1)ln 2f x ax x bx ab b b =+-+,记()()F x f x '=(()f x '是函数()f x 的导函数),且当x = 1时,()F x 取得极小值2. (1)求函数()F x 的单调增区间;(2)证明[]()*()()22nn n F x F x n --∈N ≥.【解】(1)由题()11111()()2(1)002F x f x ax a ax x b ab b bx b x '==⋅+⋅-+=+>>,,.于是()211()F'x a b x =-,若0a <,则()0F'x <,与()F x 有极小值矛盾,所以0a >.令()0F'x =,并考虑到0x >,知仅当1x a=时,()F x 取得极小值.所以111(1)2a a b=⎪+=⎩,,解得1a b ==.………………………………………………4分故1()(0)F x x x x=+>,由()0F x '>,得1x >,所以()F x 的单调增区间为(1)+∞,.18.(江苏省扬州市2013年3月高三第二次调研)(本小题满分16分)如图,实线部分的月牙形公园是由圆P 上的一段优弧和圆Q 上的一段劣弧围成,圆P 和圆Q 的半径都是2km ,点P 在圆Q 上,现要在公园内建一块顶点都在圆P 上的多边形活动场地.(1)如图甲,要建的活动场地为△RST ,求场地的最大面积; (2)如图乙,要建的活动场地为等腰梯形ABCD ,求场地的最大面积.(第17题甲) DC BQPNMR S MN PQT(第17题乙)AD 必须切圆Q 于P ,再设∠BPA=θ,则有()11π22sin 222sin(π2)4(sin sin cos )0222ABCD S =⨯⨯⨯⨯+⨯⨯⨯-=+<<四边形θθθθθθ.令θθθcos sin sin +=y ,则)sin (sin cos cos cos θθθθθ-++='y 1cos cos 22-+=θθ.若0='y ,1πcos 23θθ==,,又()π03θ∈,时,0>'y ,()ππ32θ∈,时,0<'y , 函数θθθcos sin sin +=y 在π3θ=处取到极大值也是最大值,故π3θ=时,场地面积取得最大值为33km 2).19.(江苏省扬州市2013年3月高三第二次调研)(本小题满分16分)设定义在区间[x 1, x 2]上的函数y=f(x)的图象为C ,M 是C 上的任意一点,O 为坐标原点,设向量OA =()()11x f x ,,()()22OB x f x =,,OM =(x ,y),当实数λ满足x=λ x 1+(1-λ) x 2时,记向量ON =λOA +(1-λ)OB .定义“函数y=f(x)在区间[x 1,x 2]上可在标准k 下线性近似”是指“MN ≤k 恒成立”,其中k 是一个确定的正数.(1)设函数 f(x)=x 2在区间[0,1]上可在标准k 下线性近似,求k 的取值范围;(2)求证:函数()ln g x x =在区间1e e ()m m m +⎡⎤∈⎣⎦R ,上可在标准k=18下线性近似.(参考数据:e=2.718,ln(e -1)=0.541)令11()ln (e )ee m m mh x x m x +=----,其中()1e e m m x m +⎡⎤∈∈⎣⎦R ,,于是111()e e m mh x x +'=--, 列表如下:x e m(e m ,e m+1-e m)e m+1-e m(e m+1-e m ,e m+1)e m+1()h'x + 0 - ()h x0 增1(e e )m m h +-减0 则MN =()h x ,且在1e e m m x +=-处取得最大值,又()1e 2(e e )ln e 1e 1m m h +--=--≈-0.12318<,从而命题成立.17.(江苏省无锡市2013年2月高三质量检测)(本题满分15分)某超市在开业30天内日接待顾客人数(万人)与时间t (天)的函数关系近似满足f (t )=1+4t,顾客人均消费额(元)与时间t (天)的函数关系近似满足g (t )=84-|t -20|.(Ⅰ)求该超市日销售额y (万元)与时间t (天)的函数关系式; (Ⅱ)求该超市日销售额的最小值.17.解:(Ⅰ)由题日销售额 y =f (t )•g (t )=(1+4t)(84-|t -20|)=⎩⎪⎨⎪⎧(1+4t )(t +64),1≤t ≤20(1+4t )(60-t ),20<t ≤30,t ∈N *-----------5分(Ⅱ)①当1≤t ≤20且t ∈N *时,y =t +256t+68≥2t •256t+68=100,当且仅当t =256t即t =16时取等号;-----------9分②当20<t ≤30且t ∈N *时,y = 240t-t +56在区间(20,30]上递减,∴t =30时,y min =34. ----------13分∵100>34,∴综上,第30天该超市日销售额最小,最小值为34万元.----------15分 20.(江苏省无锡市2013年2月高三质量检测)(本题满分16分)设函数f (x )=-a 2x 2+(a +1)x -lnx (a ∈R ). (Ⅰ)当a =0时,求函数f (x )的极值;(Ⅱ)当a >0时,讨论函数f (x )的单调性; (Ⅲ)若对任意a ∈(2,3)及任意x 1,x 2∈[1,2],恒有a 2-12m +ln 2>|f (x 1)- f (x 2)|成立,求实数m 的取值范围.(Ⅲ)由(Ⅱ) a ∈(2,3)时, f (x )在区间[1,2]上递减,由条件a 2-12m +ln2>|f (x 1)- f (x 2)|max =f (1)- f (2)=a 2-1+ln2对任意a ∈(2,3)成立,∴a 2-12m >a 2 -1对任意a ∈(2,3)成立.⇒ m >a -2a 2-1对任意a ∈(2,3)成立. 由g (a )=a -2a 2-1,∵g ′(a )=-(a -2)2+3(a 2-1)2>0对a ∈(2,3)恒成立,g (a )在a ∈(2,3)上递增,∴ g (a )<g (3)=18,∴ m ≥18 . ----------16分5、(常州市2013届高三期末)第八届中国花博会将于2013年9月在常州举办,展览园指挥中心所用地块的形状是大小一定的矩形ABCD ,BC a =,CD b =.a ,b 为常数且满足b a <.组委会决定从该矩形地块中划出一个直角三角形地块AEF 建游客休息区(点E ,F 分别在线段AB ,AD 上),且该直角三角形AEF 的周长为(2l b >),如图.设AE x =,△AEF 的面积为S .(1)求S 关于x 的函数关系式;(2)试确定点E 的位置,使得直角三角形地块AEF 的面积S 最大,并求出S 的最大值.6、(连云港市2013届高三期末)(连云港市2013届高三期末)某单位决定对本单位职工实行年医疗费用报销制度,拟制定年医疗总费用在2万元至10万元(包括2万元和10万元)的报销方案,该方案要求同时具备下列三个条件:①报销的医疗费用y (万元)随医疗总费用x (万元)增加而增加;②报销的医疗费用不得低于医疗总费用的50%;③报销的医疗费用不得超过8万元.(1)请你分析该单位能否采用函数模型y =0.05(x 2+4x +8)作为报销方案;(2)若该单位决定采用函数模型y =x -2ln x +a (a 为常数)作为报销方案,请你确定整数a 的值.(参考数据:ln2≈0.69,ln10≈2.3)【解】(1)函数y =0.05(x 2+4x +8)在[2,10]上是增函数,满足条件①, ……………2分当x =10时,y 有最大值7.4万元,小于8万元,满足条件③. ………………………4分但当x =3时,y =2920<32,即y ≥x 2不恒成立,不满足条件②, 故该函数模型不符合该单位报销方案. ………………………6分(2)对于函数模型y =x -2ln x +a ,设f (x )= x -2ln x +a ,则f ´(x )=1-2x =x -2x ≥0. 所以f (x )在[2,10]上是增函数,满足条件①,由条件②,得x -2ln x +a ≥x 2,即a ≥2ln x -x2在x ∈[2,10]上恒成立, 令g (x )=2ln x -x 2,则g ´(x )=2x -12=4-x 2x,由g ´(x )>0得x <4, ∴g (x )在(0,4)上增函数,在(4,10)上是减函数.∴a ≥g (4)=2ln4-2=4ln2-2. ………………10分 由条件③,得f (10)=10-2ln10+a ≤8,解得a ≤2ln10-2. ……………………12分 另一方面,由x -2ln x +a ≤x ,得a ≤2ln x 在x ∈[2,10]上恒成立,∴a ≤2ln2,综上所述,a 的取值范围为[4ln2-2,2ln2],所以满足条件的整数a 的值为1. ……………14分②当3a >时,函数()g x 在区间[3,10]上单调递减,故它的值域为309[,]114a a ++, 由309[,]114a a ++[3,10]⊆,得303119104a a +⎧≥⎪⎪⎨+⎪≤⎪⎩,解得331a ≤≤,故331a <≤……………………7分③当3a <时,在区间[3,10]上有33()3311x a a g x x x +-==+<++,显然不合题意 …………………8分综上所述, 实数a 的取值范围是331a ≤≤……………………………9分⑤当111a b -<≤≥且时,因min ()(1)2h x h a ==-<,矛盾,不合题意…………14分 ⑥当1b a >≥时,()h x 在区间[,]a b 上递增,所以()()h a a h b b≥⎧⎨≤⎩,此时无解 ……………15分 综上所述,所求整数,a b 的值为2,2a b =-=…………………16分8、(南通市2013届高三期末)某公司为一家制冷设备厂设计生产一种长方形薄板,其周长为4米,这种薄板须沿其对角线折叠后使用.如图所示,()ABCD AB AD >为长方形薄板,沿AC 折叠后,AB '交DC 于点P .当△ADP 的面积最大时最节能,凹多边形ACB PD '的面积最大时制冷效果最好.(1)设AB =x 米,用x 表示图中DP 的长度,并写出x 的取值范围;(2)若要求最节能,应怎样设计薄板的长和宽?(3)若要求制冷效果最好,应怎样设计薄板的长和宽? A BC D (第17题) B ' P9、(徐州、淮安、宿迁市2013届高三期末)已知函数).1,0(ln )(2≠>-+=a a a x x a x f x(1) 求函数)(x f 在点))0(,0(f 处的切线方程;(2) 求函数)(x f 单调区间;(3) 若存在]1,1[,21-∈x x ,使得e e x f x f (1)()(21-≥-是自然对数的底数),求实数a的取值范围.⑴因为函数2()ln (0,1)x f x a x x a a a =->≠+,所以()ln 2ln x f x a a x a '=-+,(0)0f '=,…………………………………………2分 又因为(0)1f =,所以函数()f x 在点(0,(0))f 处的切线方程为1y =. …………4分 ⑵由⑴,()ln 2ln 2(1)ln x x f x a a x a x a a '=-=-++.因为当0,1a a >≠时,总有()f x '在R 上是增函数, ………………………………8分 又(0)0f '=,所以不等式()0f x '>的解集为(0,)∞+,故函数()f x 的单调增区间为(0,)∞+.………………………………………………10分 所以,当1a >时,(1)(0)e 1f f --≥,即ln e 1a a --≥,函数ln y a a =-在(1,)a ∈+∞上是增函数,解得e a ≥;当01a <<时,(1)(0)e 1f f ---≥,即1ln e 1a a +-≥,函数1ln y a a =+在(0,1)a ∈上是减函数,解得10ea <≤. 综上可知,所求a 的取值范围为1(0,][e,)ea ∈∞+.………………………………16分10、(泰州市2013届高三期末)已知函数f(x)=(x-a)2()x b -,a,b 为常数,(1)若a b ≠,求证:函数f(x)存在极大值和极小值(2)设(1)中 f(x) 取得极大值、极小值时自变量的分别为12,x x ,令点A 11(,()x f x ),B 22(,()x f x ),如果直线AB 的斜率为12-,求函数f(x)和/()f x 的公共递减区间的长度(3)若/()()f x mf x ≥对于一切x R ∈ 恒成立,求实数m,a,b 满足的条件 ○3当a <b 时 x 1=32b a +,x 2=b 。

相关文档
最新文档