变化率与导数同步练习(有答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变化率与导数同步练习(有答案)
人教新课标版(A)选修1-1 3.1 变化率与导数同步练习题
【基础演练】题型一:变化率问题与导数概念一般地,我们称为平均变化率,如果时,存在,称此极限值为函数在处的导数,记作,请根据以上知识解决以下1~5题。 1. 一质点运动的方程为,则在一段时间内相应的平均速度为 A. B. C. D. 2. 将半径为R的球加热,若球的半径增加△R,则球的体积增加△y约等于 A. B. C.
D. 3. 已知函数的图象上一点(1,2)及邻近一点,则等于 A. 2 B. 2x C. 2+△x D. 2+△ 4. 自变量变到时,函数值的增量与相应自变量的增量之比是函数 A. 在区间上的平均变化率 B. 在处的
变化率 C. 在处的变化量 D. 在区间上的导数 5.若函数在处的导数为A,求。
题型二:导数的物理意义在物体的运动规律中,如果,那么物体的瞬时速度;如果,那么物体的加速度,请根据以上知识解决以下6~7题。 6. 若一物体运动方程如下:求物体在或时的速度。 7. 质点M按规律做直线运动,则质点的加速度a=___________。
题型三:导数的几何意义导数的几何意义:函数在处的导数,即曲线在点P()处切线的斜率为,相应的切线方程是,请根据以上知识解决以下8~9题。 8. 下面说法正确的是 A. 若不存在,则曲线在点(,)处没有切线 B. 若曲线在点()处有切线,则必存在 C. 若不存在,则曲线在点()处的切线斜率不存在 D. 若曲线在点()处没有切线,则可能存在 9. 已知曲线C:。(1)求曲线C上横坐标为1的点处的切线方程(2)第(1)小题中的切线与曲线C是否还有其他的公共点?
【互运探究】[学科内综合] 10. 设,在处可导是在(a,b)内可导的 A. 充分非必要条件 B. 必要而非充分条件 C. 充要条件D. 既非充分又非必要条件 11. 如图3-1-1表示物体运动的路程随
时间变化的函数的图象,试根据图象,描述、比较曲线在、、附近的变化情况,并求出时的切线的方程。
[学科间综合] 12. 两工厂经过治理,污水的排放量(W)与时间(t)的关系如图所示,试指出哪一个厂治污效果较好?
[新题型] 13. 柏油路是用沥青和大小石子等材料混合后铺成的,铺路工人铺路时要对沥青加热使之由固体变成粘稠液体状,如果开始加热后第 x小时的沥青温度(单位:℃)为(1)求开始加热后15分钟和30 分钟时沥青温度的瞬时变化率;(2)求开始加热后第4小时和第6小时沥青温度的瞬时变化率。
【经典名题】 14.过点(-1,0)作抛物线的切线,则其中一条切线为 A. B. C. D. 15.若曲线的一条切线l与直线垂直,则的方程为 A. B. C. D.
参考答案: 1. D 提示:∵ ,∴ 。 2. B 提示:∵ ,∴ ,∵ R 是一个很小的量,∴ 和(△R)非常小,∴ 。 3. C 4. A 5. 解:∵ ,∴ (令替换),∴ (当时,)。 6. 解:当时,,,∴ 。当时,,,∴ 。∴物体在和时的瞬时速度分别是6和0。 7. 4 提示:。∴ 。 8. C 9. 解:(1)将代入曲线C的方程,得,∴切点的坐标为(1,1)。∵ ,∴ ,∴过点(1,1)的切线的方程为,即。(2)由,得整理得,解得或。从而获得切线与曲线的公共点为(1,1)和(-2,-8)。说明切线与曲线C的公共点除去切点外,还有一个公共点(-2,-8)提示:本例回答了一个问题:直线与曲线相切是否一定只有一个公共点。 10. B 11. 解:用曲线在、、处的切线刻画曲线在、、附近的变化情况。(1)当时,曲线在处的切线平行于x轴,所以在附近曲线比较平坦,几乎没有升降。(2)当时,曲线在处的切线的斜率,所以在附近曲线下降,即函数在附近单调递减。(3)当时,曲线在处的切线的斜率,所以在附近曲线下降,即函数在附近也单调递减。由图象可以看出,直线的倾斜程度小于直线的倾斜程度,说明曲线在附近比在附近下降得缓慢。(4)当时,。在是的切线的斜率。所以切线的方程为。即。提示:导数的几何意义是曲线的切线斜率,反过来,在曲线上取定一点作曲线的切线时,能根据切线判定斜率的符号即导数的符号,进而根据符号确定在该点附近曲线的升降情况(或函数的增减情况),同时可以根据几点处的切线倾斜程度的大小,判断曲线升降的快慢程度。 12. 解:在处,虽然,但,所以说,在单位时间里,企业甲比企业乙的平均治污率
大,因此企业甲比企业乙略好一些。 13. 解:(1)∵时,, 15
分钟=0.25小时, 30分钟=0.5小时,∴沥青温度在15分钟和30
分钟时的瞬时变化率就是函数在处和处的导数和,∵ ,∴ ,∵同理可得。(2)当时,,当时,,∴ ,同理当时,,∴ 。提示:函数在某一点处的瞬时变化率就是在处的导数,物体在某一时刻处的瞬时的速度就是相应运动方程在处的导数。 14.
C 15. A