2020年八年级数学(上)第二次月考试卷
八年级(上)第二次月考数学试卷(含答案)
八年级(上)第二次月考数学试卷(含答案) 一、选择题 1.如图,以数轴的单位长度为边作一个正方形,以原点为圆心,正方形的对角线长为半径画弧,交数轴于点A ,则点A 表示的数为( )A .12+B .21-C .2D .322.如图,在锐角三角形ABC 中2AB =,45BAC ∠=︒,BAC ∠的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM MN +的最小值是( )A .1B .2C .2D .63.下列图案属于轴对称图形的是( )A .B .C .D .4.如图,正方形OACB 的边长是2,反比例函数k y x=图像经过点C ,则k 的值是( )A .2B .2-C .4D .4-5.下列四个图标中,是轴对称图形的是( )A .B .C .D .6.下列四个图形中轴对称图形的个数是( )A .1B .2C .3D .47.下列四个图案中,不是轴对称图案的是( )A .B .C .D .8.已知正比例函数y =kx 的图象经过点(﹣2,1),则k 的值( )A .﹣2B .﹣12C .2D .129.计算2263y y x x÷的结果是( ) A .3318y xB .2y xC .2xyD .2xy 10.已知一次函数y =kx +b 的图象经过第一、二、三象限,则b 的值可以是( ) A .﹣2 B .﹣1 C .0 D .2二、填空题11.如图,在平面直角坐标系中,长方形OABC 的顶点O 在坐标原点,顶点A 、C 分别在x 、y 轴的正半轴上:OA =3,OC =4,D 为OC 边的中点,E 是OA 边上的一个动点,当△BDE 的周长最小时,E 点坐标为_____.12.已知点P (a ,b )在一次函数y=x +1的图象上,则b ﹣a=_____.13.已知点(,)P m n 在一次函数31y x =-的图像上,则2296m mn n -+=___________.14.如图,在正方形ABCD 的外侧,作等边三角形CDE ,连接,AE BE ,试确定AEB ∠的度数.15.如果点P (m+1,m+3)在y 轴上,则m=_____.16.在311,2π,122-,0,0.454454445…,319中,无理数有______个. 17.计算222m m m+--的结果是___________ 18.如图,点P 为∠AOB 内任一点,E ,F 分别为点P 关于OA ,OB 的对称点.若∠AOB =30°,则∠E +∠F =_____°.19.一次函数32y x =-+的图象一定不经过第______象限.20.若函数y=kx +3的图象经过点(3,6),则k=_____.三、解答题21.如图1,在平面直角坐标系xOy 中,点A 的坐标是(0,2),点C 是x 轴上的一个动点.当点C 在x 轴上移动时,始终保持ACP ∆是等腰直角三角形(90ACP ︒∠=,点A 、C 、P 按逆时针方向排列);当点C 移动到点O 时,得到等腰直角三角形AOB (此时点P 与点B 重合).(初步探究)(1)写出点B 的坐标________;(2)点C 在x 轴上移动过程中,作PD x ⊥轴,垂足为点D ,都有AOC CDP ∆∆≌,请在图2中画出当等腰直角AOP ∆的顶点P 在第四象限时的图形,并求证:AOC CDP ∆∆≌.(深入探究)(3)当点C 在x 轴上移动时,点P 也随之运动.探究点P 在怎样的图形上运动,请直接写出结论,并求出这个图形所对应的函数表达式;(4)直接写出2AP 的最小值为________.22.已知:如图,点E 在ABC ∆的边AC 上,且AEB ABC ∠=∠.(1)求证:ABE C ∠=∠;(2)若BAE ∠的平分线AF 交BE 于点F ,FD BC 交AC 于点D ,设8AB =,10AC =,求DC 的长.23.如图,在△ABC 中,AC=BC ,∠ACB =90°,点D 在BC 上,BD =3,DC =1,点P 是AB 上的动点,当△PCD 的周长最小时,在图中画出点P 的位置,并求点P 的坐标.24.已知 2x k x+=,k 为正实数. (1)当k =3时,求x 224x +的值; (2)当k 10时,求x ﹣2x的值; (3)小安设计一个填空题并给出答案,但被老师打了两个“×”小安没看懂老师为什么指出两个错误?如果你看懂了,请向小安解释一下.25.先化简,再求值:22214244x x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭,其中x =2﹣23. 四、压轴题26.在平面直角坐标系中,点A 、B 在坐标轴上,其中A(0,a)、B(b ,0)满足:222110a b a b --++-=.(1)直接写出A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为C(-3,m),如图(1)所示.若S ΔABC =16,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图(2)所示,P 为线段AB 上一动点(不与A 、B 重合),连接OP ,PE 平分∠OPB ,交x 轴于点M ,且满足∠BCE=2∠ECD . 求证:∠BCD=3(∠CEP-∠OPE).27.如图1所示,直线:5L y mx m =+与x 轴负半轴,y 轴正半轴分别交于A 、B 两点.(1)当OA OB =时,求点A 坐标及直线L 的解析式.(2)在(1)的条件下,如图2所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM OQ ⊥于M ,BN OQ ⊥于N ,若17AM =,求BN 的长. (3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角OBF ∆和等腰直角ABE ∆,连接EF 交y 轴于P 点,如图3.问:当点B 在y 轴正半轴上运动时,试猜想PB 的长是否为定值?若是,请求出其值;若不是,说明理由.28.已知三角形ABC 中,∠ACB =90°,点D (0,-4),M (4,-4).(1)如图1,若点C 与点O 重合,A (-2,2)、B (4,4),求△ABC 的面积;(2)如图2,AC 经过坐标原点O ,点C 在第三象限且点C 在直线DM 与x 轴之间,AB 分别与x 轴,直线DM 交于点G ,F ,BC 交DM 于点E ,若∠AOG =55°,求∠CEF 的度数;(3)如图3,AC 经过坐标原点O ,点C 在第三象限且点C 在直线DM 与x 轴之间,N 为AC 上一点,AB 分别与x 轴,直线DM 交于点G ,F ,BC 交DM 于点E ,∠NEC+∠CEF =180°,求证∠NEF =2∠AOG .29.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF ∠的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.30.如图1,在等边△ABC 中,E 、D 两点分别在边AB 、BC 上,BE =CD ,AD 、CE 相交于点F .(1)求∠AFE 的度数;(2)过点A 作AH ⊥CE 于H ,求证:2FH +FD =CE ;(3)如图2,延长CE 至点P ,连接BP ,∠BPC =30°,且CF =29CP ,求PF AF的值. (提示:可以过点A 作∠KAF =60°,AK 交PC 于点K ,连接KB )【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】先根据勾股定理求出正方形对角线的长,然后根据实数与数轴的关系解答即可.【详解】2211+2,∴点A 2.故选C.【点睛】本题考查了勾股定理,以及实数与数轴,主要是数轴上无理数的作法,需熟练掌握.2.B解析:B【解析】【分析】通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】解:如图,在AC上截取AE=AN,连接BE,∵∠BAC的平分线交BC 于点D ,∴∠EAM=∠NAM ,在△AME与△AMN中,===AE ANEAM NAMAM AM∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE,当BE是点B到直线AC的距离时,BE⊥AC,此时BM+MN有最小值,∵2AB ,∠BAC=45°,此时△ABE为等腰直角三角形,∴2,即BE2,∴BM+MN2.故选:B.【点睛】本题考察了最值问题,能够通过构造全等三角形,把BM+MN进行转化,是解题的关键.3.D解析:D【解析】分析:根据轴对称图形的定义,寻找四个选项中图形的对称轴,发现只有D有一条对称轴,由此即可得出结论.详解:A、不能找出对称轴,故A不是轴对称图形;B、不能找出对称轴,故B不是轴对称图形;C、不能找出对称轴,故C不是轴对称图形;D、能找出一条对称轴,故D是轴对称图形.故选D.点睛:本题考查了轴对称图形,解题的关键是分别寻找四个选项中图形的对称轴.本题属于基础题,难度不大,解决该题型题目时,通过寻找给定图象有无对称轴来确定该图形是否是轴对称图形是关键.4.C解析:C【解析】【分析】根据正方形的性质,即可求出点C 的坐标,然后代入反比例函数解析式里即可.【详解】解:∵正方形OACB 的边长是2,∴点C 的坐标为(2,2)将点C 的坐标代入k y x=中,得 22k = 解得:4k =故选C .【点睛】此题考查的是求反比例函数的比例系数,掌握用待定系数法求反比例函数的比例系数是解决此题的关键.5.B解析:B【解析】【分析】直接根据轴对称图形的概念分别解答得出答案.【详解】A 、不是轴对称图形,不合题意;B 、是轴对称图形,符合题意;C 、不是轴对称图形,不符合题意;D 、不是轴对称图形,不合题意.故选:B .【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.C解析:C【解析】【分析】根据轴对称图形的概念求解.【详解】解:根据轴对称图形的定义可知:第1,2,3个图形为轴对称图形,第4个图形不是轴对称图形,轴对称图共3个,故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.7.B解析:B【解析】【分析】根据轴对称的概念对各选项分析判断利用排除法求解.【详解】解:A.此图案是轴对称图形,不符合题意;B.此图案不是轴对称图形,符合题意;C.此图案是轴对称图形,不符合题意;D.此图案是轴对称图形,不符合题意;故选:B.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.B解析:B【解析】【分析】将点(﹣2,1)代入y=kx即可求出k的值.【详解】解:∵正比例函数y=kx的图象经过点(﹣2,1),∴1=﹣2k,解得k=﹣12,故选:B.【点睛】本题考查了正比例函数,熟练掌握求正比例函数解析式的方法是解题的关键. 9.D解析:D【解析】【分析】利用分式的除法法则,将分式的除法转化为乘法再约分即可.【详解】解:原式22362y x xyx y==.故选:D.【点睛】本题主要考查了分式的除法,熟练掌握分式的除法运算是解题的关键.10.D解析:D【解析】【分析】根据一次函数的图象经过第一、二、三象限判断出b的符号,再找出符合条件的b的可能值即可.【详解】∵一次函数的图象经过第一、二、三象限,∴b>0,∴四个选项中只有2符合条件.故选:D.【点睛】本题考查了一次函数图象与系数的关系:对于一次函数y=kx+b:当k>0,b>0⇔y=kx+b 的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.二、填空题11.(1,0)【解析】【分析】本题是典型的“将军饮马”问题,只需作D关于x轴的对称点D′,连接D′B 交x轴于点E,如图,则此时△BDE的周长最小,易得点B和D′坐标,故可利用待定系数法求出直线BD解析:(1,0)【解析】【分析】本题是典型的“将军饮马”问题,只需作D关于x轴的对称点D′,连接D′B交x轴于点E,如图,则此时△BDE的周长最小,易得点B和D′坐标,故可利用待定系数法求出直线BD'的解析式,然后求直线BD'与x轴的交点即得答案.【详解】解:如图,作D关于x轴的对称点D′,连接D′B交x轴于点E,连接DE,则DE= D′E,此时△BDE的周长最小,∵D为CO的中点,∴CD=OD=2,∵D和D′关于x轴对称,∴D′(0,﹣2),由题意知:点B(3,4),∴设直线BD'的解析式为y=kx+b,把B(3,4),D′(0,﹣2)代入解析式,得:342k bb+=⎧⎨=-⎩,解得,22kb=⎧⎨=-⎩,∴直线BD'的解析式为y=2x﹣2,当y=0时,x=1,故E点坐标为(1,0).故答案为:(1,0).【点睛】本题考查的是利用待定系数法求直线的解析式和两线段之和最小问题,属于常考题型,熟练掌握求解的方法是解题关键.12.1【解析】∵点P(a,b)在一次函数y=x+1的图象上,∴b=a+1,∴b-a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P (a,b)代入一次函数解析:1【解析】∵点P(a,b)在一次函数y=x+1的图象上,∴b=a+1,∴b-a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P(a,b)代入一次函数的解析式.13.1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入===.故答案为:1.【解析:1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入2296m mn n -+=223196())31(m m m m -+--=2229186196m m m m m -++-+=1.故答案为:1.【点睛】此题主要考查了一次函数图象上点的坐标性质,正确代入点的坐标求出是解题关键.14.【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE ,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】解:∵在正方形中,,,在解析:30AEB ∠=【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE ,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】解:∵在正方形ABCD 中,AD DC =,90ADC ∠=,在等边三角形CDE 中,CD DE =,60CDE DEC ∠=∠=,∴150ADE ADC CDE ∠=∠+∠= ,AD DE =,在等腰三角形ADE 中1801801501522ADE DEA ︒-∠︒-︒∠===︒, 同理得:15BEC ∠=,则60151530AEB DEC DEA BEC ∠=∠-∠-∠=--=.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形内角和定理;熟练掌握正方形和等边三角形的性质是解决问题的关键.15.﹣1.【解析】∵点P (m+1,m+3)在y 轴上,∴m +1=0,∴m=-1.故答案为:-1.解析:﹣1.【解析】∵点P (m+1,m+3)在y 轴上,∴m+1=0,∴m=-1.故答案为:-1.16.3【解析】【分析】根据无理数的定义进行判断.【详解】解:根据无理数的定义可知,,0.454454445…,为无理数,共3个.故答案为:3.【点睛】本题考查了无理数.解题的关键是掌握无解析:3【解析】【分析】根据无理数的定义进行判断.【详解】解:根据无理数的定义可知,2π,0.4544544453个. 故答案为:3.【点睛】 本题考查了无理数.解题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.17.-1.【解析】【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】=故答案为-1.【点睛】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分解析:-1.【解析】【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】222m m m +--=222 1.2222m m m m m m m ---==-=----- 故答案为-1.【点睛】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分母. 18.150【解析】【分析】连接OP ,根据轴对称的性质得到,再利用四边形的内角和是计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点故答案为:1解析:150【解析】【分析】连接OP ,根据轴对称的性质得到60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠再利用四边形的内角和是360︒计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点,,EOA POA POB FOB ∴∠=∠∠=∠30EOA FOB POA POB ∴∠+∠=∠+∠=︒60EOF ∴∠=︒,,E EPO F FPO ∴∠=∠∠=∠360E EPO F FPO EOF ∴∠+∠+∠+∠+∠=︒2()300E F ∴∠+∠=︒150E F ∴∠+∠=︒故答案为:150.【点睛】本题考查了轴对称的性质,四边形的内角和性质,证得60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠解本题的关键.19.三【解析】【分析】根据一次函数的解析式中的k 、b 的符号,确定函数图象的位置,即可确定其不经过的象限;【详解】解:在一次函数y=-3x+2中,∵b=2>0,∴函数图象经过y 轴的正半轴,解析:三【解析】【分析】根据一次函数的解析式中的k 、b 的符号,确定函数图象的位置,即可确定其不经过的象限;【详解】解:在一次函数y=-3x+2中,∵b=2>0,∴函数图象经过y 轴的正半轴,k=-3<0,∴y 随x 的增大而减小,∴函数的图象经过第一、二、四象限,∴不经过第三象限.故答案为:三.【点睛】本题考查了一次函数的性质. 解题时可根据解析式中的k 、b 的值的正负作出草图,从而很容易判断函数经过(或不经过)那一象限.20.1【解析】∵函数y=kx+3的图象经过点(3,6),∴,解得:k=1.故答案为:1.解析:1【解析】∵函数y=kx+3的图象经过点(3,6),∴336k +=,解得:k=1.故答案为:1.三、解答题21.(1)()2,0B ;(2)证明见解析;(3)点P 在直线上运动;2y x =-;(4)8.【解析】【分析】(1)根据等腰三角形的性质即可求解;(2)根据题意作图,再根据等腰直角三角形的性质判定AOC CDP ∆∆≌;(3)根据题意去特殊点,再利用待定系数法即可求解;(4)当P在B点时,AP最小,故可求解.【详解】(1)∵点A的坐标是(0,2),△AOB为等腰直角三角形,∴AO=BO∴()2,0B(2)如图,∵ACP∆是等腰直角三角形,且90ACP∠=︒∴AC PC=∵PD BC⊥∴90PDC∠=︒∴90AOC PDC∠=∠=︒,90DPC PCD∠+∠=︒∵90ACP∠=︒∴90ACB PCD∠+∠=︒∴DPC ACB∠=∠在AOC∆和CDP∆中,,,.AOC PDCDPC ACBAC PC∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AOC CDP AAS∆∆≌(3)点P在直线上运动;∵两点确定一条直线∴可以取两个特殊点当P在y轴上时,2OP OC OA===,∴()0,2P-当P在x轴上时,2OP OA==,∴()2,0P设所求函数关系式为y kx b=+;将()2,0和()0,2-代入,得20,2.k bb+=⎧⎨=-⎩220bk b=-⎧⎨+=⎩解得1,2.kb=⎧⎨=-⎩21bk=-⎧⎨=⎩所以所求的函数表达式为2y x=-;(4)如图,作AP⊥直线2y x=-,即P与B点重合,∴AP2=22+22=8.【点睛】此题主要考查一次函数的几何综合,解题的关键是熟知一次函数的性质。
八年级(上)第二次月考数学试卷(含答案)
八年级(上)第二次月考数学试卷(含答案) 一、选择题 1.对函数31y x =-,下列说法正确的是( )A .它的图象过点(3,1)-B .y 值随着x 值增大而减小C .它的图象经过第二象限D .它的图象与y 轴交于负半轴 2.下列无理数中,在﹣1与2之间的是( )A .﹣3B .﹣2C .2D .5 3.如图,在平面直角坐标系中,点,A C 在x 轴上,点C 的坐标为(1,0),2AC -=.将Rt ABC ∆先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(1,2)-B .(4,2)-C .(3,2)D .(2,2)4.已知直线y 1=kx+1(k <0)与直线y 2=mx (m >0)的交点坐标为(12,12m ),则不等式组mx ﹣2<kx+1<mx 的解集为( )A .x>12B .12<x<32C .x<32D .0<x<325.已知二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩,则在同一平面直角坐标系中,两函数y =x +5与y =﹣12x ﹣1的图像的交点坐标为( ) A .(﹣4,1) B .(1,﹣4) C .(4,﹣1) D .(﹣1,4)6.一辆货车从甲地匀速驶往乙地用了2.7h ,到达后用了0.5h 卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地速度的1.5倍,货车离甲地的距离y (km )关于时间x (h )的函数图象如图所示,则a 等于( )A .4.7B .5.0C .5.4D .5.8 7.点(2,-3)关于原点对称的点的坐标是( ) A .(-2,3) B .(2,3) C .(-3,-2) D .(2,-3)8.下列说法中正确的是( )A .带根号的数都是无理数B .不带根号的数一定是有理数C .无限小数都是无理数D .无理数一定是无限不循环小数 9.我们知道,平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为( )A .1B .2C .4D .无数 10.关于等腰三角形,以下说法正确的是( )A .有一个角为40°的等腰三角形一定是锐角三角形B .等腰三角形两边上的中线一定相等C .两个等腰三角形中,若一腰以及该腰上的高对应相等,则这两个等腰三角形全等D .等腰三角形两底角的平分线的交点到三边距离相等二、填空题11.17.85精确到十分位是_____.12.如图,在正方形ABCD 的外侧,作等边三角形CDE ,连接,AE BE ,试确定AEB ∠的度数.13.如图①的长方形ABCD 中, E 在AD 上,沿BE 将A 点往右折成如图②所示,再作AF ⊥CD 于点F ,如图③所示,若AB =2,BC =3,∠BEA =60°,则图③中AF 的长度为_______.14.4的平方根是 .15.若等腰三角形的一个角为70゜,则其顶角的度数为_____ .16.在一次函数(1)5y k x =-+中,y 随x 的增大而增大,则k 的取值范围__________.17.等腰三角形的两边长分别为5cm 和2cm ,则它的周长为_____.18.若等腰三角形的两边长是2和5,则此等腰三角形的周长是__.19.如图,在平面直角坐标系中,点A 、B 的坐标分别为()1,4、()3,4,若直线y kx =与线段AB 有公共点,则k 的取值范围为__________.20.如图,在△ABC 中,AB = AC ,∠BAC = 120º,AD ⊥BC ,则∠BAD = _____°.三、解答题21.甲、乙两车同时从A 地出发前往B 地,其中甲车选择有高架的路线,全程共50km ,乙车选择没有高架的路线,全程共44km .甲车行驶的平均速度比乙车行驶的平均速度每小时快20千米,乙车到达B 地花费的时间是甲车的1.2倍.问甲、乙两车行驶的平均速度分别是多少?22.小明骑自行车从甲地到乙地,图中的折线表示小明行驶的路程()km s 与所用时间()h t 之间的函数关系.试根据函数图像解答下列问题:(1)小明在途中停留了____h ,小明在停留之前的速度为____km/h ;(2)求线段BC 的函数表达式;(3)小明出发1小时后,小华也从甲地沿相同路径匀速向乙地骑行,6t =h 时,两人同时到达乙地,求t 为何值时,两人在途中相遇.23.如图,反比例函数k y x=与一次函数y=x+b 的图象,都经过点A (1,2)(1)试确定反比例函数和一次函数的解析式;(2)求一次函数图象与两坐标轴的交点坐标.24.已知一次函数y=kx+b的图象经过点A(—1,—5),且与正比例函数的图象相交于点B(2,a).(1)求a的值;(2)求一次函数y=kx+b的表达式;(3)在同一坐标系中,画出这两个函数的图象,并求这两条直线与y轴围成的三角形的面积.25.在平面直角坐标系中,直线l1:y=﹣2x+6与坐标轴交于A,B两点,直线l2:y=kx+2(k>0)与坐标轴交于点C,D,直线l1,l2与相交于点E.(1)当k=2时,求两条直线与x轴围成的△BDE的面积;(2)点P(a,b)在直线l2:y=kx+2(k>0)上,且点P在第二象限.当四边形OBEC的面积为233时.①求k的值;②若m=a+b,求m的取值范围.四、压轴题26.如图,在平面直角坐标系中,一次函数y x的图象为直线1.(1)观察与探究已知点A 与A ',点B 与B '分别关于直线l 对称,其位置和坐标如图所示.请在图中标出()2,3C -关于线l 的对称点C '的位置,并写出C '的坐标______.(2)归纳与发现观察以上三组对称点的坐标,你会发现:平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为______.(3)运用与拓展已知两点()2,3E -、()1,4F --,试在直线l 上作出点Q ,使点Q 到E 、F 点的距离之和最小,并求出相应的最小值.27.(1)探索发现:如图1,已知Rt △ABC 中,∠ACB =90°,AC =BC ,直线l 过点C ,过点A 作AD ⊥l ,过点B 作BE ⊥l ,垂足分别为D 、E .求证:AD =CE ,CD =BE .(2)迁移应用:如图2,将一块等腰直角的三角板MON 放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O 重合,另两个顶点均落在第一象限内,已知点M 的坐标为(1,3),求点N 的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线y =﹣3x+3与y 轴交于点P ,与x 轴交于点Q ,将直线PQ 绕P 点沿逆时针方向旋转45°后,所得的直线交x 轴于点R .求点R 的坐标.28.如图,已知等腰△ABC 中,AB =AC ,∠A <90°,CD 是△ABC 的高,BE 是△ABC 的角平分线,CD 与 BE 交于点 P .当∠A 的大小变化时,△EPC 的形状也随之改变.(1)当∠A =44°时,求∠BPD 的度数;(2)设∠A =x °,∠EPC =y °,求变量 y 与 x 的关系式;(3)当△EPC 是等腰三角形时,请直接写出∠A 的度数.29.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若1,(2),(2)b a b b a -≥⎧=<⎩'⎨当时当时,则称点Q 为点P 的限变点.例如:点(2,3)的限变点的坐标是(2,2),点(2,5)--的限变点的坐标是(2,5)-,点(1,3)的限变点的坐标是(1,3).(1)①点3,1)-的限变点的坐标是________;②如图1,在点(2,1)A -、(2,1)B 中有一个点是直线2y =上某一个点的限变点,这个点是________;(填“A ”或“B ”)(2)如图2,已知点(2,2)C --,点(2,2)D -,若点P 在射线OC 和OD 上,其限变点Q 的纵坐标b '的取值范围是b m '≥或b n '≤,其中m n >.令s m n =-,直接写出s 的值. (3)如图3,若点P 在线段EF 上,点(2,5)E --,点(,3)F k k -,其限变点Q 的纵坐标b '的取值范围是25b '-≤≤,直接写出k 的取值范围.30.如图,在平面直角坐标系中,直线AB 经过点A 332)和B 3,0),且与y 轴交于点D ,直线OC 与AB 交于点C ,且点C 3.(1)求直线AB 的解析式;(2)连接OA ,试判断△AOD 的形状;(3)动点P 从点C 出发沿线段CO 以每秒1个单位长度的速度向终点O 运动,运动时间为t秒,同时动点Q 从点O 出发沿y 轴的正半轴以相同的速度运动,当点Q 到达点D 时,P ,Q 同时停止运动.设PQ 与OA 交于点M ,当t 为何值时,△OPM 为等腰三角形?求出所有满足条件的t 值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据一次函数的性质,对每一项进行判断筛选即可.【详解】A 将x=3代入31y x =-得:3×3-1=8,A 选项错;B .一次函数k >0,y 值随着x 值增大而增大,B 选项错;C .一次函数k >0,y 值随着x 值增大而增大,当x=0时,y=-1,故此函数的图像经过一、三、四象限,C 选项错;D .当x=0时,y=-1,一次函数的图象与y 轴交于负半轴,D 项正确.故选D. 【点睛】本题考查了一次函数的性质,解决本题的关键是正确理解题意,熟练掌握一次函数的性质. 2.C解析:C【解析】 试题分析:A 31,故错误;B 2<﹣1,故错误;C .﹣12<2,故正确;52,故错误;故选C .【考点】估算无理数的大小.3.D解析:D【解析】【分析】先求出A点绕点C顺时针旋转90°后所得到的的坐标A',再求出A'向右平移3个单位长度后得到的坐标A'',A''即为变换后点A的对应点坐标.【详解】将Rt ABC∆先绕点C顺时针旋转90°,得到点坐标为A'(-1,2),再向右平移3个单位长度,则A'点的纵坐标不变,横坐标加上3个单位长度,故变换后点A的对应点坐标是A''(2,2).【点睛】本题考察点的坐标的变换及平移.4.B解析:B【解析】【分析】由mx﹣2<(m﹣2)x+1,即可得到x<32;由(m﹣2)x+1<mx,即可得到x>12,进而得出不等式组mx﹣2<kx+1<mx的解集为12<x<32.【详解】把(12,12m)代入y1=kx+1,可得1 2m=12k+1,解得k=m﹣2,∴y1=(m﹣2)x+1,令y3=mx﹣2,则当y3<y1时,mx﹣2<(m﹣2)x+1,解得x<32;当kx+1<mx时,(m﹣2)x+1<mx,解得x>12,∴不等式组mx﹣2<kx+1<mx的解集为12<x<32,故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.5.A解析:A【解析】【分析】根据一次函数与二元一次方程组的关系进行解答即可.【详解】解:∵二元一次方程组522x yx y-=-⎧⎨+=-⎩的解为41xy=-⎧⎨=⎩∴在同一平面直角坐标系中,两函数y=x+5与y=﹣12x﹣1的图像的交点坐标为:(-4,1)故选:A.【点睛】本题考查的是一次函数与二元一次方程组的关系,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.6.B解析:B【解析】【分析】先根据路程、速度和时间的关系题意可得甲地到乙地的速度和从乙地到甲地的时间,再由货车返回的速度是它从甲地驶往乙地的速度的1.5倍,列出方程组求得从乙地到甲地的时间t,进而求得a的值.【详解】解:设甲乙两地的路程为s,从甲地到乙地的速度为v,从乙地到甲地的时间为t,则2.71.5v svt s=⎧⎨=⎩解得,t=1.8∴a=3.2+1.8=5(小时),故选B.【点睛】本题考查了一次函数的图像的应用、方程组的应用,根据一次函数图像以及路程、速度和时间的关系列出方程组是解答本题的关键.7.A解析:A【解析】【分析】根据关于原点对称点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】解:在平面直角坐标系中,关于原点对称的两点横坐标和纵坐标均满足互为相反数,∴点(2,-3)关于原点对称的点的坐标是(-2,3).故选A.【点睛】本题考查了关于原点对称点的坐标,熟练掌握坐标特征是解题的关键.8.D解析:D【解析】【分析】根据无理数的定义判断各选项即可.【详解】A中,例如42=,是有理数,错误;B中,例如π,是无理数,错误;C中,无限循环小数是有理数,错误;D正确,无限不循环的小数是无理数故选:D【点睛】本题考查无理数的定义,注意含有π和根号开不尽的数通常为无理数.9.B解析:B【解析】【分析】直接利用轴对称图形的性质画出对称轴即可.【详解】解:如图所示:平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为2条.故选:B.【点睛】此题主要考查了轴对称图形的性质,正确掌握轴对称图形的性质是解题关键.10.D解析:D【解析】【分析】根据全等三角形的判定定理,等腰三角形的性质,三角形的内角和判断即可.【详解】解:A:如果40︒的角是底角,则顶角等于100︒,故三角形是钝角三角形,此选项错误;B、当两条中线为两腰上的中线时,可知两条中线相等,当两条中线一条为腰上的中线,一条为底边上的中线时,则这两条中线不一定相等,∴等腰三角形的两条中线不一定相等,此选项错误;C、如图,△ABC和△ABD中,AB=AC=AD,CD∥AB,DG是△ABD 的AB边高,CH是是△ABC 的AB边高,则DG=CH,但△ABC和△ABD不全等;故此选项错误;D、三角形的三个内角的角平分线交于一点,该点叫做三角形的内心.内心到三边的距离相等.故此选项正确;故选:D.【点睛】本题考查了全等三角形的判定,等腰三角形的性质,三角形的内角和,熟练掌握各知识点是解题的关键.二、填空题11.9.【解析】【分析】把百分位上的数字5进行四舍五入即可.【详解】17.85精确到十分位是17.9故答案为:17.9.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效解析:9.【解析】【分析】把百分位上的数字5进行四舍五入即可.【详解】17.85精确到十分位是17.9故答案为:17.9.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.12.【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE ,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】解:∵在正方形中,,,在解析:30AEB ∠=【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE ,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】解:∵在正方形ABCD 中,AD DC =,90ADC ∠=,在等边三角形CDE 中,CD DE =,60CDE DEC ∠=∠=,∴150ADE ADC CDE ∠=∠+∠= ,AD DE =,在等腰三角形ADE 中1801801501522ADE DEA ︒-∠︒-︒∠===︒, 同理得:15BEC ∠=,则60151530AEB DEC DEA BEC ∠=∠-∠-∠=--=.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形内角和定理;熟练掌握正方形和等边三角形的性质是解决问题的关键.13.3-【解析】【分析】作AH⊥BC 于H .证明四边形AFCH 是矩形,得出AF=CH ,在Rt△ABH 中,求得∠ABH=30°,则根据勾股定理可求出BH=,可求出HC 的长度即为AF 的长度.【详解】解析:3-3【解析】【分析】作AH ⊥BC 于H .证明四边形AFCH 是矩形,得出AF=CH ,在Rt △ABH 中,求得∠ABH=30°,则根据勾股定理可求出BH=3,可求出HC 的长度即为AF 的长度.【详解】解:如下图,作AH ⊥BC 于H .则∠AHC=90°,∵四边形形ABCD 为长方形,∴∠B=∠C=∠EAB=90°,∵AF ⊥CD ,∴∠AFC=90°,∴四边形AFCH 是矩形,,AF CH =∵∠BEA =60°, ∴∠EAB=30°,∴根据折叠的性质可知∠AEH=90°-2∠EAB=30°,∵在Rt△ABH 中, AB=2,∴112AH AB ==, 根据勾股定理2222213BH AB AH -=-=∵BC=3, ∴33AF HC BC BH ==-=-故填:33【点睛】本题考查矩形的性质和判定,折叠变化,勾股定理,含30°角的直角三角形.能作辅助线构造直角三角形是解决此题的关键.14.±2.【解析】试题分析:∵,∴4的平方根是±2.故答案为±2.考点:平方根.解析:±2.【解析】试题分析:∵2(2)4±=,∴4的平方根是±2.故答案为±2.考点:平方根.15.70°或40°【解析】【分析】分顶角是70°和底角是70°两种情况求解即可.【详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为:解析:70°或40°【解析】【分析】分顶角是70°和底角是70°两种情况求解即可.【详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为: 70°或40°.【点睛】本题考查了等腰三角形的性质及三角形内角和定理,属于基础题,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键. 16.【解析】【分析】根据一次函数的性质,即可求出k 的取值范围.【详解】解:∵一次函数中,随的增大而增大,∴,∴;故答案为:.【点睛】本题考查了一次函数的性质,解题的关键是熟练掌握一次解析:1k >【解析】【分析】根据一次函数的性质,即可求出k 的取值范围.【详解】解:∵一次函数(1)5y k x =-+中,y 随x 的增大而增大,k->,∴10k>;∴1k>.故答案为:1【点睛】本题考查了一次函数的性质,解题的关键是熟练掌握一次函数的性质进行解题.17.12cm.【解析】【分析】题目给出等腰三角形有两条边长为5cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①5cm为腰,2解析:12cm.【解析】【分析】题目给出等腰三角形有两条边长为5cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①5cm为腰,2cm为底,此时周长为12cm;②5cm为底,2cm为腰,则两边和小于第三边无法构成三角形,故舍去.所以其周长是12cm.故答案为12cm.【点睛】此题主要考查等腰三角形的周长,解题的关键熟知等腰三角形的性质及三角形的构成条件. 18.【解析】【分析】根据等腰三角形的性质分腰长为2和腰长为5两种情况讨论,选择能构成三角形的求值即可.【详解】解:①腰长为2,底边长为5,2+2=4<5,不能构成三角形,故舍去;②腰长为5,解析:【解析】【分析】根据等腰三角形的性质分腰长为2和腰长为5两种情况讨论,选择能构成三角形的求值即可.【详解】解:①腰长为2,底边长为5,2+2=4<5,不能构成三角形,故舍去;②腰长为5,底边长为2,则周长=5+5+2=12.故其周长为12.故答案为:12.【点睛】本题考查了等腰三角形,已知两边长求周长,结合等腰三角形的性质,灵活的进行分类讨论是解题的关键.19.【解析】【分析】由直线与线段AB 有公共点,可得出点B 在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.【详解】解:∵点A 、B 解析:443k ≤≤ 【解析】【分析】由直线y kx =与线段AB 有公共点,可得出点B 在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.【详解】解:∵点A 、B 的坐标分别为()1,4、()3,4,∴令y=4时, 解得:4x k= , ∵直线y=kx 与线段AB 有公共点,∴1≤4k≤3, 解得:443k ≤≤. 故答案为:443k ≤≤. 【点睛】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于k 的一元一次不等式是解题的关键.20.60°【解析】【分析】根据等腰三角形三线合一的性质得:AD 平分∠BAC,由此根据角平分线的定义得出结论.【详解】如图,∵AB=AC,AD⊥BC,∴AD 平分∠BAC,∴∠BAD=∠BA解析:60°【解析】【分析】根据等腰三角形三线合一的性质得:AD 平分∠BAC ,由此根据角平分线的定义得出结论.【详解】如图,∵AB=AC ,AD ⊥BC ,∴AD 平分∠BAC ,∴∠BAD=12∠BAC , ∵∠BAC=120°, ∴∠BAD=12×120°=60°, 故答案为:60°.【点睛】 本题考查的知识点是等腰三角形的性质,解题关键是熟记等腰三角形三线合一的性质.三、解答题21.甲车行驶的平均速度为75/km h ,乙车行驶的平均速度为55/km h .【解析】【分析】设乙车行驶的平均速度为x km/h ,则甲车行驶的平均速度为(x +20)km/h .根据“乙车到达B 地花费的时间是甲车的1.2倍”列方程求解即可.【详解】设乙车行驶的平均速度为x km/h ,则甲车行驶的平均速度为(x +20)km/h .根据题意,得:50441.220x x⨯=+ 解得:x =55.经检验,x =55是所列方程的解.当x =55时,x +20=75.答:甲车行驶的平均速度为75km/h ,乙车行驶的平均速度为55km/h .【点睛】本题考查了分式方程的应用.找出相等关系是解答本题的关键.22.(1)2,10;(2)s=15t-40(45)t ≤≤;(3)t=3h 或t=6h.【解析】【分析】(1)由图象中的信息可知:小明从第2小时到第4小时行驶的路程没有发生变化,所以途中停留了2h ;小明2小时内行驶的路程是20 km ,据此可以求出他的速度;(2)由图象可知:B(4,20),C(5,35),设线段BC 的函数表达式为s=kt+b,代入后得到方程组,解方程组即可;(3)先求出从甲地到乙地的总路程,现求小华的速度,然后分三种情况讨论两人在途中相遇问题.当02t <≤时, 10t=10(t-1);当24t <<时, 20=10(t-1);当46t ≤≤时, 15t-40=10(t-1);逐一求解即可.【详解】解:(1)由图象可知:小明从第2小时到第4小时行驶的路程没有发生变化,所以途中停留了2h ;由图象可知:小明2小时内行驶的路程是20 km ,所以他的速度是20210÷=(km/ h );故答案是:2;10.(2)设线段BC 的函数表达式为s=kt+b,由图象可知:B(4,20),C(5,35),∴420535k b k b +=⎧⎨+=⎩, ∴1540k b =⎧⎨=-⎩, ∴线段BC 的函数表达式为s=15t-40(45)t ≤≤;(3)在s=15t-40中,当t=6时,s=15×6-40=50,∴从甲地到乙地全程为50 km ,∴小华的速度=50(61)10÷-=(km/ h ),下面分三种情况讨论两人在途中相遇问题:当02t <≤时,两人在途中相遇,则10t=10(t-1),方程无解,不合题意,舍去;当24t <<时,两人在途中相遇,则20=10(t-1),解得t=3;当46t ≤≤时,两人在途中相遇,则15t-40=10(t-1),解得t=6;∴综上所述,当t=3h 或t=6h 时,两人在途中相遇.【点睛】本题考查了一次函数的应用,能够正确理解函数图象横纵坐标表示的意义,解题关键是理解一些关键点的含义,并结合实际问题数量关系进行求解.23.(1)反比例函数的解析式为2yx=,一次函数的解析式为y=x+1.(2)(-1,0)与(1,0).【解析】【分析】(1)将点A(1,2)分别代入kyx=与y=x+b中,运用待定系数法即可确定出反比例解析式和一次函数解析式.(2)对于一次函数解析式,令x=0,求出对应y的值,得到一次函数与y轴交点的纵坐标,确定出一次函数与y轴的交点坐标;令y=0,求出对应x的值,得到一次函数与x轴交点的横坐标,确定出一次函数与x轴的交点坐标.【详解】解:(1)∵反比例函数kyx=与一次函数y=x+b的图象,都经过点A(1,2),∴将x=1,y=2代入反比例解析式得:k=1×2=2,将x=1,y=2代入一次函数解析式得:b=2-1=1,∴反比例函数的解析式为2yx=,一次函数的解析式为y=x+1.(2)对于一次函数y=x+1,令y=0,可得x=-1;令x=0,可得y=1.∴一次函数图象与两坐标轴的交点坐标为(-1,0)与(1,0).24.(1)a=1 (2)y=2x-3 (3)3【解析】【分析】(1)将点(2,a)代入正比例函数解析式求出a的值;(2)将(-1,-5)和(2,1)代入一次函数解析式求出k和b的值,从而得出函数解析式;(3)根据描点法画出函数图象.【详解】解:(1)∵正比例函数y=12x的图象过点(2,a)∴ a=1(2)∵一次函数y=kx+b的图象经过两点(-1,-5)(2,1)∴5 21k bk b-+=-⎧⎨+=⎩解得23 kb=⎧⎨=-⎩∴y=2x-3(3)函数图像如图【点睛】本题考查待定系数法求函数解析式;描点法画函数图象25.(1)△BDE 的面积=8;(2)①k =4;②﹣12<m <2. 【解析】【分析】(1)由直线l 1的解析式可得点A 、点B 的坐标,当k =2时,由直线l 2的解析式可得点C 、点D 坐标,联立直线l 1与直线l 2的解析式可得点E 坐标,根据三角形面积公式求解即可;(2)①连接OE .设E (n ,﹣2n +6),由S 四边形OBEC =S △EOC +S △EOB 可求得n 的值,求出点E 坐标,把点E 代入y =kx +2中求出k 值即可;②由直线y =4x +2的表达式可确定点D 坐标,根据点P (a ,b )在直线y =4x +2上,且点P 在第二象限可得42b a =+及a 的取值范围,由m =a +b 可确定m 的取值范围.【详解】解:(1)∵直线l 1:y =﹣2x +6与坐标轴交于A ,B 两点,∴当y =0时,得x =3,当x =0时,y =6;∴A (0,6)B (3,0);当k =2时,直线l 2:y =2x +2(k ≠0),∴C (0,2),D (﹣1,0) 解2622y x y x =-+⎧⎨=+⎩得14x y =⎧⎨=⎩, ∴E (1,4),4BD ∴=,点E 到x 轴的距离为4,∴△BDE 的面积=12×4×4=8. (2)①连接OE .设E (n ,﹣2n +6),∵S 四边形OBEC =S △EOC +S △EOB ,∴12×2×n +12×3×(﹣2n +6)=233, 解得n =23, ∴E (23,143), 把点E 代入y =kx +2中,143=23k +2, 解得k =4.②∵直线y =4x +2交x 轴于D , ∴D (﹣12,0), ∵P (a ,b )在第二象限,即在线段CD 上, ∴﹣12<a <0, ∵点P (a ,b )在直线y =kx +2上 ∴b =4a +2, ∴m =a +b =5a +2,15222a -<+< ∴﹣12<m <2.【点睛】本题考查了一次函数与几何图形的综合,涉及了一次函数与坐标轴的交点、解析式,两条直线的交点及围成的三角形的面积,灵活的将函数图像与解析式相结合是解题的关键.四、压轴题26.(1) (3,-2);(2) (n ,m );(3)图见解析, 点Q 到E 、F 点的距离之和最小值为10【解析】 【分析】(1)根据题意和图形可以写出C '的坐标;(2)根据图形可以直接写出点P 关于直线l 的对称点的坐标;(3)作点E 关于直线l 的对称点E ',连接E 'F ,根据最短路径问题解答. 【详解】(1)如图,C '的坐标为(3,-2), 故答案为(3,-2);(2)平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为(n ,m ), 故答案为(n ,m );(3)点E 关于直线l 的对称点为E '(-3,2),连接E 'F 角直线l 于一点即为点Q ,此时点Q 到E 、F 点的距离之和最小,即为线段E 'F ,∵E 'F ()[]221(3)2(4)210=---+--=⎡⎤⎣⎦, ∴点Q 到E 、F 点的距离之和最小值为210.【点睛】此题考查轴对称的知识,画关于直线的对称点,最短路径问题,勾股定理关键是找到点的对称点,由此解决问题.27.(1)见解析(2)(4,2)(3)(6,0)【解析】【分析】(1)先判断出∠ACB=∠ADC,再判断出∠CAD=∠BCE,进而判断出△ACD≌△CBE,即可得出结论;(2)先判断出MF=NG,OF=MG,进而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出结论;(3)先求出OP=3,由y=0得x=1,进而得出Q(1,0),OQ=1,再判断出PQ=SQ,即可判断出OH=4,SH=0Q=1,进而求出直线PR的解析式,即可得出结论.【详解】证明:∵∠ACB=90°,AD⊥l∴∠ACB=∠ADC∵∠ACE=∠ADC+∠CAD,∠ACE=∠ACB+∠BCE∴∠CAD=∠BCE,∵∠ADC=∠CEB=90°,AC=BC∴△ACD≌△CBE,∴AD=CE,CD=BE,(2)解:如图2,过点M作MF⊥y轴,垂足为F,过点N作NG⊥MF,交FM的延长线于G,由已知得OM=ON,且∠OMN=90°∴由(1)得MF=NG,OF=MG,∵M(1,3)∴MF=1,OF=3∴MG=3,NG=1∴FG=MF+MG=1+3=4,∴OF﹣NG=3﹣1=2,∴点N的坐标为(4,2),(3)如图3,过点Q 作QS ⊥PQ ,交PR 于S ,过点S 作SH ⊥x 轴于H , 对于直线y =﹣3x+3,由x =0得y =3 ∴P (0,3), ∴OP =3 由y =0得x =1, ∴Q (1,0),OQ =1, ∵∠QPR =45° ∴∠PSQ =45°=∠QPS ∴PQ =SQ∴由(1)得SH =OQ ,QH =OP∴OH =OQ+QH =OQ+OP =3+1=4,SH =OQ =1 ∴S (4,1),设直线PR 为y =kx+b ,则341b k b =⎧⎨+=⎩ ,解得1k 2b 3⎧=-⎪⎨⎪=⎩∴直线PR 为y =﹣12x+3 由y =0得,x =6 ∴R (6,0). 【点睛】本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键. 28.(1)56°;(2)y=454x +;(3)36°或1807°. 【解析】 【分析】(1)根据等边对等角求出等腰△ABC 的底角度数,再根据角平分线的定义得到∠ABE 的度数,再根据高的定义得到∠BDC=90°,从而可得∠BPD ;(2)按照(1)中计算过程,即可得到∠A 与∠EPC 的关系,即可得到结果; (3)分①若EP=EC ,②若PC=PE ,③若CP=CE ,三种情况,利用∠ABC+∠BCD=90°,以及y=454x+解出x 即可. 【详解】解:(1)∵AB=AC ,∠A=44°,∴∠ABC=∠ACB=(180-44)÷2=68°, ∵CD ⊥AB , ∴∠BDC=90°, ∵BE 平分∠ABC , ∴∠ABE=∠CBE=34°, ∴∠BPD =90-34=56°; (2)∵∠A =x °,∴∠ABC=(180°-x°)÷2=(902x-)°, 由(1)可得:∠ABP=12∠ABC=(454x -)°,∠BDC=90°,∴∠EPC =y °=∠BPD=90°-(454x -)°=(454x+)°, 即y 与 x 的关系式为y=454x +; (3)①若EP=EC , 则∠ECP=∠EPC=y ,而∠ABC=∠ACB=902x-,∠ABC+∠BCD=90°, 则有:902x -+(902x --y )=90°,又y=454x+,∴902x -+902x --(454x+)=90°, 解得:x=36°; ②若PC=PE ,则∠PCE=∠PEC=(180-y )÷2=902y-,由①得:∠ABC+∠BCD=90°,∴902x -+[902x --(902y-)]=90,又y=454x +,解得:x=1807°; ③若CP=CE ,则∠EPC=∠PEC=y ,∠PCE=180-2y , 由①得:∠ABC+∠BCD=90°,∴902x -+902x --(180-2y )=90,又y=454x +, 解得:x=0,不符合,综上:当△EPC 是等腰三角形时,∠A 的度数为36°或1807°. 【点睛】本题考查了等腰三角形的性质,二元一次方程组的应用,高与角平分线的定义,有一定难度,关键是找到角之间的等量关系. 29.(1)①);②B ;(2)3s =;(3)59k ≤≤.【解析】 【分析】(1)利用限变点的定义直接解答即可;(2)先利用逆推原理求出限变点(2,1)A -、(2,1)B 对应的原来点坐标,然后把原来点坐标代入到2y =,满足解析式的就是答案;(3)先OC OD ,的关系式,再求出点P 的限变点Q 满足的关系式,然后根据图象求出m n ,的值,从而求出s 即可;(4)先求出线段EF 的关系式,再求出点P 的限变点Q 所满足的关系式,根据图像求解即可. 【详解】 解:(1)①∵2a =,∴11b b ==-=',∴坐标为:),故答案为:);②∵对于限变点来说,横坐标保持不变,∴限变点(2,1)A -对应的原来点的坐标为:()2,1-或()21--,, 限变点(2,1)B 对应的原来点的坐标为:()2,2, ∵()2,2满足2y =, ∴这个点是B , 故答案为:B ;(2)∵点C 的坐标为(2,2)--, ∴OC 的关系式为:()0y x x =≤, ∵点D 的坐标为(2,2)-,∴OD 的关系式为:()0y x x =-≥,∴点P 满足的关系式为:()()00x x y x x ≤⎧⎪=⎨->⎪⎩,∴点P 的限变点Q 的纵坐标满足的关系式为:。
八年级上数学第二次月考试卷
八年级数学第二次月考试卷一、选择题(每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案1、-2的绝对值是A.2B.-2C.±2D.22、9的平方根是A.3B.-3C.±3D.93、点(3,4)在第几象限A.第一象限B.第二象限C.第三象限D.第四象限5、点Q(-1,2)关于x轴对称点的坐标是A.(1,2)B.(-1,-2)C.(1,-2)D.(2,-1)6、将点(2,3)向左移动4个单位长度得到点的坐标是A.(-2,3)B. (2,7)C.(6,3)D.(2,-1)7、下列各式中,正确的是A.1<15<2 B.2<15<3 C.3<15<4 D.4<15<5 8、如图所示,在图形A到图形B的变换过程中,下列描述正确的是() A.向下平移1个单位,向右平移4个单位B.向下平移2个单位,向右平移4个单位C.向下平移1个单位,向右平移8个单位D.向下平移2个单位,向右平移8个单位9、如图,正方形ABCD中,∠DAF=20°,AF交BD于E,交CD于F, 则∠BEC=?A.75° B.70°C.65° D.80°10、下列说法准确的有几个①正数都有平方根,②整数和分数统称为有理数,③无限小数就是无理数,④含有根号的数是无理数,⑤有理数和无理数统称为实数A.2个B.3个C.4个D.5个二、填空题(每空3分,共30分)11、在实数722, -3,-3.14,0,π 中,无理数有 个.12、 16的平方根为 ,(3)2= . 13、64的算术平方根是_ ;3125-= _________; 14、与数轴上的点一一对应的是________数.15、Rt △ABC 中,∠C=90O,如果AC=5,BC=12,则AB= ;如果AC=3,AB=4,则BC= .16、地球七大洲的总面积约是149 480 0002km ,如果对这个数据保留3个有效 数字可表示为 .17、点P (a-3,a+2)在第二象限,那么a 的取值范围是________________. 三、解答题。
河南省新乡市红旗区新乡学院附属中学2020-2021学年八年级上学期第二次月考数学试题及参考答案
C. D.
6.如图,在△ABC中,AB=5,AC=3,AD是BC边上的中线,AD的取值范围是()
A.1<AD<6B.1<AD<4C.2<AD<8D.2<AD<4
7.若把分式 的x和y都扩大3倍,那么分式 的值()
A.扩大3倍B.扩大9倍C.扩大4倍D.不变
8.已知 - =3,则 的值是( )
∴∠ACB=180°-∠A-∠CBA=180°-40°-60°=80°,
∵P点在AB边上且不与A、B重合,
∴0°<∠ACP<80°,
∴0°<2∠BOC-220°<80°,
∴110°<∠BOC<150°,
∴m=110,n=150.
∴n-m=40.
故选:B.
【点睛】
本题考查了角平分线的性质,三角形内角和定理,一元一次不等式组的解法,熟练掌握三角形内角和定理是解题的关键.
22.甲、乙两商场自行定价销售某一商品.
(1)甲商场将该商品提价15%后的售价为1.15元,则该商品在甲商场的原价为元;
(2)乙商场将该商品提价20%后,用6元钱购买该商品的件数比没提价前少买1件,求该商品在乙商场的原价是多少?
(3)在(1)、(2)的结论下,甲、乙两商场把该商品均按原价进行了两次价格调整.
14.一个长方形的两邻边分别是 , ,若 ,则这个长方形的面积是_________
15.观察下列各式:1×3=3,而22-1=3;3×5=15,而42-1=15;5×7=35,而62-1=35;…;11×13=143,而122-1=143.将你发现的规律用含有一个字母的式子表示为_____
三、解答题
(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;
山东省青岛市八年级上学期数学第二次月考试卷
山东省青岛市八年级上学期数学第二次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2020七下·福州期末) 点所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限【考点】2. (2分) (2020八上·酒泉期末) 下列各数中是无理数的是()A . 5.34B . πC . 6.25D .【考点】3. (2分) (2020八上·相山期末) 下列各组条件中,能一定判定△ABC≌△DEF的是()A . AB=DE,BC=EF,∠A=∠DB . ∠A=∠D,∠C=∠F,AC=EFC . AB=DE,BC=EF,△ABC周长等于△DEF周长D . ∠A=∠D,∠B=∠E,∠C=∠F【考点】4. (2分) (2017九下·武冈期中) 如图,在Rt△ABC中,∠ACB=90°,D、E分别为AC、AB的中点,连DE、CE.则下列结论中不一定正确的是()A . ED∥BCC . ∠ACE=∠BCED . AE=CE【考点】5. (2分) (2020八下·深圳期中) 四个三角形的边长分别是①2,3,4;②3,4,5;③5,6,7;④5,12,13.其中直角三角形是()A . ①②B . ①③C . ②④D . ③④【考点】6. (2分) (2016八上·重庆期中) 如图,在△ABC中,∠ABC=∠C,AB=8,AB的垂直平分线DE交AB于点D,交AC于点E,△BEC的周长为13,则BC=()A . 5B . 6C . 7D . 8【考点】7. (2分)两只小鼹鼠在地下从同一处开始打洞,一只朝北面挖,每分钟挖8cm,另一只朝东面挖,每分钟挖6cm,10分钟之后两只小鼹鼠相距()A . 100cmB . 50cmC . 140cm【考点】8. (2分)在平面直角坐标系xOy中,已知A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的点有()A . 2个B . 3个C . 4个D . 5个【考点】二、填空题 (共8题;共8分)9. (1分) (2017七上·杭州月考) 已知(a +1)2=25 ,且a < 0 ,|a+3|+|b+2|=14,则a+b= ________【考点】10. (1分) (2019八上·响水期末) 在平面直角坐标系中,点A(-5,4)在第________象限.【考点】11. (1分) (2019七上·三台期中) 近似数5.0×102精确到________位.【考点】12. (1分) (2020八下·长沙期中) 将直线向上平移3个单位长度,则所得直线的解析式是________.【考点】13. (1分) (2020七下·黄石期中) 点A(-3,0)在________轴上,点B(-2,-3)在第________象限【考点】14. (1分)已知|m﹣ |+ +(p﹣)2=0则以m、n、p为三边长的三角形是________三角形.【考点】15. (1分) (2017八上·陕西期末) 如图,已知四边形中,平分,,与互补,,,则 ________.【考点】16. (1分) (2019八上·哈尔滨期中) 若等腰三角形的两条边长分别为和,则等腰三角形的周长为________.【考点】三、解答题 (共8题;共77分)17. (15分) (2020七下·赤壁期中) 求下列各式中x的值:(1) 4x2-9=0;(2) 8(x-1)3=-【考点】18. (5分) (2020八上·龙岗月考) 求满足下列各式的未知数x:(1)(2)【考点】19. (5分) (2020八上·官渡月考) 如图,在中,厘米,厘米,点D为AB 的中点,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动,当一个点停止运动时,另一个点也随之停止运动,当点Q的运动速度为多少时,能够在某一时刻使与全等.【考点】20. (15分) (2018八上·宁波期中) 已知,如图,四边形,.(1)尺规作图,在线段上找一点,使得,连接,(不写作法,保留作图痕迹);(2)在(1)在图形中,若,且,,求的长.【考点】21. (10分) (2020八上·浙江月考) 已知:在平面直角坐标系中,如图所示.(1)在y轴上找一点P,使得的面积为面积的一半,求点P的坐标.(2)将进行平移,使得点A平移到点O,作出平移后的,并求出平移的距离.【考点】22. (2分) (2020八上·江苏月考) 求证:到线段两端距离相等的点在线段的垂直平分线上.【考点】23. (10分) (2020八上·嵩县期末) 如图,△ABC中,AB=BC,∠ABC=45°,BE⊥AC于点E,AD⊥BC于点D,BE与AD相交于F.(1)求证:BF=AC;(2)若BF=3,求CE的长度.【考点】24. (15分)(2017·东城模拟) 在平面直角坐标系xOy中,抛物线y=﹣x2+2mx﹣m2﹣m+1(1)当抛物线的顶点在x轴上时,求该抛物线的解析式;(2)不论m取何值时,抛物线的顶点始终在一条直线上,求该直线的解析式;(3)若有两点A(﹣1,0),B(1,0),且该抛物线与线段AB始终有交点,请直接写出m的取值范围.【考点】参考答案一、单选题 (共8题;共16分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:二、填空题 (共8题;共8分)答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共8题;共77分)答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:。
八年级(上)第二次月考数学试卷(带答案)
八年级(上)第二次月考数学试卷一、选择题1.(3分)的平方根是()A.9B.±9C.3D.±32.(3分)以下列各组数据中是勾股数的是()A.1,1,B.12,16,20C.1,D.1,2,3.(3分)下列各式中,正确的是()A.=±4B.±=4C.=﹣3D.=﹣4 4.(3分)已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.5.(3分)点P1(x1,y1),点P2(x2,y2)是一次函数y=﹣4x+3图象上的两个点,且x1<x2,则y1与y2的大小关系是()A.y1>y2B.y1>y2>0C.y1<y2D.y1=y26.(3分)下列说法中:(1)无理数就是开方开不尽的数;(2)无理数是无限小数;(3)无理数包括正无理数、零、负无理数;(4)无理数可以用数轴上的点来表示.共有()个是正确的.A.1B.2C.3D.47.(3分)无论m为何实数,直线y=x+2m与y=﹣x+4的交点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)直角三角形的一条直角边是另一条直角边的,斜边长为10,则它的面积为()A.10B.15C.20D.309.(3分)方程组的解互为相反数,则a的值是()A.6B.7C.8D.910.(3分)在平面直角坐标系中,点P(n,1﹣n)一定不在第()象限.A.一B.二C.三D.四二、填空题11.(3分)若x=()3,则=.12.(3分)已知y﹣2与x成正比例,当x=3时,y=1,则y与x的函数表达式是.13.(3分)函数y=2x向右平移2个单位,得到的表达式为.14.(3分)如图,AB⊥BC,且AB=,BC=2,CD=5,AD=4,则∠ACD=度,图形ABCD的面积为.三、解答题15.(1)用代入法求解(2)用加减消元法求解(3).16.如图,在平面直角坐标系中,已知A(﹣1,5),B(﹣1,0),C(﹣4,3).①在图中作出△ABC关于y轴的对称图形△A1B1C1;②写出点A1和C1的坐标.17.如图:有一个圆柱,底面圆的直径AB=,高BC=12cm,P为BC的中点,求蚂蚁从A点爬到P点的最短距离.18.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:利润=售价﹣进价)甲乙进价(元/件)1535售价(元/件)2045若商店计划销售完这批商品后能使利润达到1100元,问甲、乙两种商品应分别购进多少件?19.已知函数y=(2m+1)x+m﹣3(1)若函数图象经过原点,求m的值;(2)若函数的图象平行直线y=3x﹣3,求m的值;(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.20.已知一次函数y=﹣2x+4(1)画出函数的图象.(2)求图象与x轴、y轴的交点A、B的坐标.(3)求A、B两点间的距离.(4)利用图象写出当x为何值时,y≥0.21.一位农民带上若干千克自产的土豆进城出售.为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)求出降价前每千克的土豆价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?22.有甲、乙两个两位数,若把甲数放在乙数的左边,组成的四位数是乙数的201倍;若把乙数放在甲数的左边,组成的四位数比上面的四位数小1188,求甲、乙这两个数.23.如图,l A,l B分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1)走了一段路后,自行车因故障,进行修理,所用的时间是小时.(2)B出发后小时与A相遇(3)修理后的自行车速度是多少?A步行速度是多少?(4)若B的自行车不发生故障,保持出发时的速度前进,几小时与A相遇?相遇点离B的出发点几千米?(5)求出A行走的路程S与时间t的函数关系式.24.如图,直线y=2x+b经过点A(1,0),与y轴交于点B,直线y=ax+经过点C(4,0),且与直线AB交于点D.(1)求B、D两点的坐标;(2)求△ADC 的面积;(3)在直线BD 上是否存在一点P ,使S △ACP =2S △ACD ?若存在,请求出符合条件的点P 坐标;若不存在,请说明理由.参考答案与试题解析一、选择题1.【解答】解:∵=9,∴的平方根是±3,故选:D.2.【解答】解:A、∵不是正整数,∴此选项不符合题意;B、∵122+162=202,∴此选项符合题意;C、∵不是正整数,∴此选项不符合题意;D、∵不是正整数,∴此选项不符合题意.故选:B.3.【解答】解:A、原式=4,所以A选项错误;B、原式=±4,所以B选项错误;C、原式=﹣3=,所以C选项正确;D、原式=|﹣4|=4,所以D选项错误.故选:C.4.【解答】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选:B.5.【解答】解:根据题意,k=﹣4<0,y随x的增大而减小,因为x1<x2,所以y1>y2.故选:A.6.【解答】解:(1)无理数就是开方开不尽的数,故(1)错误;(2)无理数是无限不循环小数,故(2)错误;(3)无理数包括正无理数、负无理数,故(3)错误;(4)无理数可以用数轴上的点来表示,故(4)正确;7.【解答】解:由于直线y=﹣x+4的图象不经过第三象限.因此无论m取何值,直线y=x+2m与y=﹣x+4的交点不可能在第三象限.故选:C.8.【解答】解:直角三角形的一条直角边是另一条直角边的,设一边是a,另一直角边是3a,根据勾股定理得到方程a2+(3a)2=100,解得:a=,则另一直角边是3,则面积是:××3=15.故选:B.9.【解答】解:由方程组的解互为相反数,得到x+y=0,即y=﹣x,代入方程组得:,把①代入②得:4x﹣18=﹣5x,解得:x=2,把x=2代入①得:a=8,故选:C.10.【解答】解:n>0时,1﹣n可以是负数也可以是正数,∴点P可以在第一象限也可以在第四象限,n<0时,1﹣n>0,∴点P在第二象限,不在第三象限.故选:C.二、填空题11.【解答】解:x=()3=﹣5,则==2.故答案是2.12.【解答】解:∵y﹣2与x成正比例,∴设y﹣2=kx,∵当x=3时,y=1,∴k=﹣∴y ﹣2=﹣x ,∴y 与x 的函数关系式是:y=﹣x +2.故答案为y=﹣x +2.13.【解答】解:由“左加右减”的原则可知:直线y=2x 向右平移2个单位, 得到直线的解析式为:y=2(x ﹣2),即y=2x ﹣4.故答案为:y=2x ﹣4.14.【解答】解:在RT △ABC 中,∵AB=,BC=2,∴AC==.又∵CD=5,AD=4, ∴在△ACD 中,AC 2+CD 2=AD 2,即∠ACD=90°.∴S 四边形ABCD =S △ABC +S △ACD ==+.三、解答题15.【解答】解:(1), 由②得x=3﹣4y ③,将③代入①得2(13﹣4y )+3y=16,解得:y=2,将y=2代入②得:x=5, ∴原方程的解为;(2)用加减消元法求解:,①×2得:10x ﹣12y=﹣6 ③②×3得:21x ﹣12y=27④④﹣③得:21x ﹣12y ﹣10x +12y=33,解得:x=3,将x=3代入①得:y=3,∴原方程组的解为;(3),②﹣①得:x﹣2y=﹣1 ④①×3得,3x+3y+3z=12 ⑤⑤+③得6x+y=7 ⑥⑥×2,得:12x+2y=14 ⑦⑦+④得13x=13,解得:x=1,将x=1代入④得y=1,将x=1、y=1代入①得z=2,∴原方程组的解为.16.【解答】解:(1)所作图形如图所示:;(2)点A1的坐标为(1,5),点C1的坐标为(4,3).17.【解答】解:已知如图:∵圆柱底面直径AB=cm、母线BC=12cm,P为BC的中点,∴圆柱底面圆的半径是cm,BP=6cm,∴AB=×2×=8cm,在Rt△ABP中,AP==10cm,∴蚂蚁从A点爬到P点的最短距离为10cm.18.【解答】解:设甲种商品应购进x件,乙种商品应购进y件,依题意得:,解得:,答:甲种商品应购进100件,乙种商品应购进60件.19.【解答】解:(1)∵函数y=(2m+1)x+m﹣3的图象经过原点,∴当x=0时y=0,即m﹣3=0,解得m=3;(2)∵函数y=(2m+1)x+m﹣3的图象与直线y=3x﹣3平行,∴2m+1=3,解得m=1;(3)∵这个函数是一次函数,且y随着x的增大而减小,∴2m+1<0,解得m<﹣.20.【解答】解:(1)列表如下:x…01…y…42…描点、连线画出函数图象,如图所示.(2)当x=0时,y=﹣2x+4=4,∴点B的坐标为(0,4);当y=﹣2x+4=0时,x=2,∴点A的坐标为(2,0).(3)∵A(2,0),B(0,4),∴OA=2,OB=4.在Rt△AOB中,∠AOB=90°,OA=2,OB=4,∴AB==2.∴A、B两点间的距离为2.(4)观察函数图象可知:当x<2时,一次函数y=﹣2x+4的图象在x轴上方;当x=2时,y=﹣2x+4=0.∴当x≤2时,y≥0.21.【解答】解:(1)由图象可知,当x=0时,y=5.答:农民自带的零钱是5元.(2)设降价前每千克土豆价格为k元,则农民手中钱y与所售土豆千克数x之间的函数关系式为:y=kx+5,∵当x=30时,y=20,∴20=30k+5,解得k=0.5.答:降价前每千克土豆价格为0.5元.(3)设降价后农民手中钱y与所售土豆千克数x之间的函数关系式为y=0.4x+b.∵当x=30时,y=20,∴b=8,当x=a时,y=26,即0.4a+8=26,解得:a=45.答:农民一共带了45千克土豆.22.【解答】解:设甲数为x,乙数为y,根据题意得:,解得:.答:甲是24,乙是12.23.【解答】解:(1)由图象可得,走了一段路后,自行车因故障,进行修理,所用的时间是:1.5﹣0.5=1(小时),故答案为:1;(2)由图象可得,B出发3小时与A相遇,故答案为:3;(3)由图象可得,修理后的自相车的速度为:(22.5﹣7.5)÷(3﹣1.5)=10千米/时,A步行的速度为:(22.5﹣10)÷3=千米/时;(4)由图象可得,B出发时的速度为:7.5÷0.5=15千米/时,设若B的自行车不发生故障,保持出发时的速度前进,x小时与A相遇,15x=10+,解得,x=,∴15x=15×,即若B的自行车不发生故障,保持出发时的速度前进,小时与A相遇,相遇点离B的出发点千米;(5)设A行走的路程S与时间t的函数关系式为:S=kt+b,,得,即A行走的路程S与时间t的函数关系式是S=.24.【解答】解:(1)将点A(1,0)代入y=2x+b中得b=﹣2,即为y=2x﹣2,∵DB相交于y轴,∴令x=0,∴y=﹣2,∴B(0,﹣2),将C(4,0)代入y=ax+中得:a=﹣,即为y=,∵D相交于两线之间∴,∴x=,将x=代入y=2x﹣2中得:y=1,∴D(1.5,1),(2),(3)假设存在P,则S△ACP =2S△ACD=3,∴,∴y P=2将y P=2代入y=2x﹣2中∴x=2,∴P(2,2),∴,∴,将y=﹣2代入y=2x﹣2中得x=0,∴P2(0,﹣2)即D的坐标轴为(2,2)和(0,﹣2).。
2020-2021学年陕西省西安市高新一中八年级(上)第二次月考数学试卷(10月份) 解析版
2020-2021学年陕西省西安市高新一中八年级(上)第二次月考数学试卷(10月份)一、选择题(每小题3分,共30分)1.函数①y=πx;②y=2x﹣1;③y=,④y=x2﹣1中,y是x的一次函数的有()A.1个B.2个C.3个D.4个2.若点A(﹣2,m)在函数y=﹣0.5x+1的图象上,则m的值是()A.0B.1C.﹣2D.23.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(2,﹣3),(﹣4,6)B.(﹣2,3),(4,6)C.(﹣2,﹣3),(4,﹣6)D.(2,3),(﹣4,6)4.函数y=中的自变量x的取值范围是()A.x>1B.x≠2C.x>1且x≠2D.x≥1且x≠2 5.已知关于x的一次函数y=(2﹣m)x+2+m的图象上两点A(x1,y1),B(x2,y2),若x1<x2时,y1>y2,则m的取值范围是()A.m>2B.m>﹣2C.m<2D.m<﹣26.无论m、n为何实数,直线y=﹣3x+1与y=mx+n的交点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限7.一长为5m,宽为2m的长方形木板,现要在长边上截去长为xm的一部分(如图),与剩余木板的面积y(m2)与x(m)的关系式为(0≤x<5)()A.y=2x B.y=5x C.y=10﹣2x D.y=10﹣x8.若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()A.B.C.D.9.如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2,0),点(0,3).有下列结论:①图象经过点(1,﹣3);②关于x的方程kx+b=0的解为x=2;③关于x的方程kx+b=3的解为x=0;④当x>2时,y<0.其中正确的是()A.①②③B.①③④C.②③④D.①②④10.正方形A1B1C1O,A2B2C2C1,A3B2C3C2,…按如图所示的方式放置,点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,已知点B1(1,1),B2(3,2),则B n的坐标是()A.(2n﹣1,2n﹣1)B.(2n﹣1,2n﹣1)C.(2n﹣1,2n﹣1)D.(2n﹣1,2n﹣1)二.填空题(每小题3分,共21分)11.若y=(m﹣2)x+5是一次函数函数,则其解析式为.12.将直线y=﹣2x+1向下平移2个单位长度,所得直线与x轴的交点坐标为.13.在平面直角坐标系内,一次函数y=k1x+b1与y=k2x+b2的图象如图所示,则关于x,y的方程组的解是.14.若点A(m+2,﹣3)与点B(﹣4,n+5)在二四象限角平分线上,则m+n=.15.直线l与直线y=x+1关于y轴对称,则直线l的解析式为.16.直线y=kx﹣4与两坐标轴所围成三角形的面积是4,则k=.17.已知一次函数y=kx+3﹣2k,当k变化时,原点到一次函数y=kx+(3﹣2k)的图象的最大距离为.三.解答题:18.(9分)已知,直线L经过点A(4,0),B(0,2).(1)画出直线L的图象,并求出直线L的解析式;(2)求S△AOB;(3)在x轴上是否存在一点P,使S△P AB=3?若存在,求出点P的坐标,若不存在,请说明理由.19.(8分)汕头外卖市场竞争激烈,美团、饿了么等公司订单大量增加,某公司负责招聘外卖送餐员,具体方案如下:每月不超出750单,每单收入4元;超出750单的部分每单收入m元.(1)若某“外卖小哥”某月送了500单,收入元;(2)若“外卖小哥”每月收入为y(元),每月送单量为x单,y与x之间的关系如图所示,求y与x之间的函数关系式.20.(9分)如图,直线y=﹣x+3与坐标轴分别交于点A,B,与直线y=x交于点C,线段OA上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连结CQ.(1)点C的坐标为;(2)若CQ将△AOC分成1:2两部分时,t的值为;(3)若S△ACQ:S四边形CQOB=1:2时,求直线CQ对应的函数关系式.21.(10分)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图所示.(1)小张骑自行车的速度;小李出发后分钟到达甲地;(2)小张出发后分与小李相遇.(3)求小张停留后再出发时y与x之间的函数表达式,并写出自变量x的取值范围.22.(13分)如图:在平面直角坐标系中,直线y=kx+b交x轴于点A(﹣3,0),交y轴于点B(0,1),过点C(﹣1,0)作垂直于x轴的直线交AB于点D,点E(﹣1,m)在直线CD上且在直线AB的上方.(1)求k、b的值;(2)用含m的代数式表示S四边形AOBE,并求出当S四边形AOBE=5时,点E的坐标;(3)当m=2时,以AE为边在第二象限作等腰直角三角形△P AE.直接写出点P的坐标.2020-2021学年陕西省西安市高新一中八年级(上)第二次月考数学试卷(10月份)参考答案与试题解析一、选择题(每小题3分,共30分)1.函数①y=πx;②y=2x﹣1;③y=,④y=x2﹣1中,y是x的一次函数的有()A.1个B.2个C.3个D.4个【分析】利用一次函数定义进行解答即可.【解答】解:①y=πx;②y=2x﹣1是一次函数;③y=是反比例函数,不是一次函数;④y=x2﹣1是二次函数,不是一次函数,因此一次函数共2个,故选:B.2.若点A(﹣2,m)在函数y=﹣0.5x+1的图象上,则m的值是()A.0B.1C.﹣2D.2【分析】将x=﹣2代入一次函数解析式中求出y值,此题得解.【解答】解:∵点A(﹣2,m)在函数y=﹣0.5x+1的图象上,∴m=﹣0.5×(﹣2)+1=2.故选:D.3.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(2,﹣3),(﹣4,6)B.(﹣2,3),(4,6)C.(﹣2,﹣3),(4,﹣6)D.(2,3),(﹣4,6)【分析】由于正比例函数图象上点的纵坐标和横坐标的比相同,找到比值相同的一组数即可.【解答】解:A、∵=,∴两点在同一个正比例函数图象上;B、∵≠,∴两点不在同一个正比例函数图象上;C、∵≠,∴两点不在同一个正比例函数图象上;D、∵≠,两点不在同一个正比例函数图象上;故选:A.4.函数y=中的自变量x的取值范围是()A.x>1B.x≠2C.x>1且x≠2D.x≥1且x≠2【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x﹣1≥0且x﹣2≠0,解得:x≥1且x≠2.故选:D.5.已知关于x的一次函数y=(2﹣m)x+2+m的图象上两点A(x1,y1),B(x2,y2),若x1<x2时,y1>y2,则m的取值范围是()A.m>2B.m>﹣2C.m<2D.m<﹣2【分析】由当x1<x2时,y1>y2,可得出y随x的增大而减小,再利用一次函数的性质可得出2﹣m<0,解之即可得出m的取值范围.【解答】解:∵当x1<x2时,y1>y2,∴y随x的增大而减小,∴2﹣m<0,∴m>2.故选:A.6.无论m、n为何实数,直线y=﹣3x+1与y=mx+n的交点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的函数式来判断直线所在的象限.【解答】解:由直线y=﹣3x+1的解析式可以看出,此直线必过一二四象限,不经过第三象限.因此两直线若相交,交点无论如何也不可能在第三象限.故选:C.7.一长为5m,宽为2m的长方形木板,现要在长边上截去长为xm的一部分(如图),与剩余木板的面积y(m2)与x(m)的关系式为(0≤x<5)()A.y=2x B.y=5x C.y=10﹣2x D.y=10﹣x【分析】根据剩余木板的面积=原长方形的面积﹣截去的面积.【解答】解:依题意有:y=2×5﹣2x=10﹣2x.故选:C.8.若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()A.B.C.D.【分析】先判断出a是负数,c是正数,然后根据一次函数图象与系数的关系确定图象经过的象限以及与y轴的交点的位置即可得解.【解答】解:∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定),a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,纵观各选项,只有A选项符合.故选:A.9.如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2,0),点(0,3).有下列结论:①图象经过点(1,﹣3);②关于x的方程kx+b=0的解为x=2;③关于x的方程kx+b=3的解为x=0;④当x>2时,y<0.其中正确的是()A.①②③B.①③④C.②③④D.①②④【分析】根据一次函数的性质,一次函数与一元一次方程的关系对各小题分析判断即可得解.【解答】解:把点(2,0),点(0,3)代入y=kx+b得,,解得:,∴一次函数的解析式为y=﹣x+3,当x=1时,y=,∴图象不经过点(1,﹣3);故①不符合题意;由图象得:关于x的方程kx+b=0的解为x=2,故②符合题意;关于x的方程kx+b=3的解为x=0,故③符合题意;当x>2时,y<0,故④符合题意;故选:C.10.正方形A1B1C1O,A2B2C2C1,A3B2C3C2,…按如图所示的方式放置,点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,已知点B1(1,1),B2(3,2),则B n的坐标是()A.(2n﹣1,2n﹣1)B.(2n﹣1,2n﹣1)C.(2n﹣1,2n﹣1)D.(2n﹣1,2n﹣1)【分析】根据题意分别求得B1,B2,B3…的坐标,根据横纵坐标可以得到一定的规律,据此即可求解.【解答】解:∵点B1的坐标为(1,1),点B2的坐标为(3,2),∴点B3的坐标为(7,4),∴Bn的横坐标是:2n﹣1,纵坐标是:2n﹣1.则B n的坐标是(2n﹣1,2n﹣1).故选:D.二.填空题(每小题3分,共21分)11.若y=(m﹣2)x+5是一次函数函数,则其解析式为y=﹣4x+5.【分析】根据一次函数的定义解答即可.【解答】解:∵y=(m﹣2)x+5是一次函数函数,∴m﹣2≠0,且m2﹣3=1,解得:m=﹣2,∴y=﹣4x+5,故答案为y=﹣4x+5.12.将直线y=﹣2x+1向下平移2个单位长度,所得直线与x轴的交点坐标为(﹣,0).【分析】根据函数的平移规则“上加下减”,即可得出直线平移后的直线解析式,再让y =0,得到关于x的方程,解方程即可求得.【解答】解:根据平移的规则可知:直线y=﹣2x+1向下平移2个单位长度后所得直线的解析式为:y=﹣2x+1﹣2=﹣2x﹣1,令y=0,则﹣2x﹣1=0,解得x=﹣,∴所得直线与x轴的交点坐标为(﹣,0),故答案为:(﹣,0).13.在平面直角坐标系内,一次函数y=k1x+b1与y=k2x+b2的图象如图所示,则关于x,y的方程组的解是.【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【解答】解:∵一次函数y=k1x+b1与y=k2x+b2的图象的交点坐标为(2,1),∴关于x,y的方程组的解是.故答案为.14.若点A(m+2,﹣3)与点B(﹣4,n+5)在二四象限角平分线上,则m+n=0.【分析】由点A(m+2,﹣3)与点B(﹣4,n+5)在二四象限的角平分线上可得m+2与﹣3互为相反数,﹣4与n+5互为相反,从而可求得m,n的值,从而求得m+n的值.【解答】解:∵A(m+2,﹣3)在二四象限角平分线上,∴m+2=3,解得m=1,∵点B(﹣4,n+5)在二四象限角平分线上,∴n+5=4,解得n=﹣1,∴m+n=1﹣1=0.故答案为:0.15.直线l与直线y=x+1关于y轴对称,则直线l的解析式为y=﹣x+1.【分析】利用关于y轴对称的点的坐标为横坐标互为相反数,纵坐标不变解答即可.【解答】解:与直线y=x+1关于y轴对称的点的坐标为横坐标互为相反数,纵坐标不变,则y=(﹣x)+1,即y=﹣x+1.所以直线l的解析式为:y=﹣+1.故答案为y=﹣x+1.16.直线y=kx﹣4与两坐标轴所围成三角形的面积是4,则k=±2.【分析】先根据坐标轴上点的坐标特征求出直线y=kx﹣4与坐标轴的交点坐标,然后根据三角形面积公式得到•4•||=4,再解绝对值方程即可得到k的值.【解答】解:当x=0时,y=kx﹣4=﹣4,则直线与y轴的交点坐标为(0,﹣4),当y=0时,kx﹣4=0,解得x=,则直线与x轴的交点坐标为(,0),所以•4•||=4,解得k=±2.故答案为±2.17.已知一次函数y=kx+3﹣2k,当k变化时,原点到一次函数y=kx+(3﹣2k)的图象的最大距离为.【分析】根据一次函数图象过定点A(2,3),即可得到OA=为最大距离.【解答】解:一次函数y=(x﹣2)k+3中,令x=2,则y=3,∴一次函数图象过定点A(2,3),∴OA=为最大距离.故答案为:.三.解答题:18.(9分)已知,直线L经过点A(4,0),B(0,2).(1)画出直线L的图象,并求出直线L的解析式;(2)求S△AOB;(3)在x轴上是否存在一点P,使S△P AB=3?若存在,求出点P的坐标,若不存在,请说明理由.【分析】(1)利用待定系数法求一次函数解析式;(2)根据三角形面积公式得到即可;(3)设P(x,0),则P A=|x﹣4|,根据题意得到|x﹣4|×2=3,解得x的值,即可求得P的坐标.【解答】解:(1)画出函数图象如图:设直线l的解析式为y=kx+b,把A(4,0)、点B(0,2)分别代入得,解得,∴一次函数解析式为y=﹣x+2;(2)∵点A(4,0),B(0,2).∴OA=4,OB=2,∴S△AOB==4;(3)在x轴上存在一点P,使S△P AB=3,理由如下:设P(x,0),∵A(4,0)、B(0,2),∴P A=|x﹣4|,∵S△P AB=3,∴P A•OB=3,即|x﹣4|×2=3,∴x﹣4=±3,∴x=7或1,∴P的坐标为(7,0)或(1,0).19.(8分)汕头外卖市场竞争激烈,美团、饿了么等公司订单大量增加,某公司负责招聘外卖送餐员,具体方案如下:每月不超出750单,每单收入4元;超出750单的部分每单收入m元.(1)若某“外卖小哥”某月送了500单,收入2000元;(2)若“外卖小哥”每月收入为y(元),每月送单量为x单,y与x之间的关系如图所示,求y与x之间的函数关系式.【分析】(1)根据每月不超出750单,每单收入4元,可以计算出某“外卖小哥”某月送了500单,收入多少元;(2)根据函数图象中的数据,可以计算出y与x之间的函数关系式.【解答】解:(1)由题意可得,某“外卖小哥”某月送了500单,收入500×4=2000(元),故答案为:2000;(2)当0≤x≤750时,y=4x,当x>750时,设y=kx+b,,解得,,即当x>750时,y=5x﹣750,由上可得,y与x的函数关系式为y=.20.(9分)如图,直线y=﹣x+3与坐标轴分别交于点A,B,与直线y=x交于点C,线段OA上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连结CQ.(1)点C的坐标为(2,2);(2)若CQ将△AOC分成1:2两部分时,t的值为2或4;(3)若S△ACQ:S四边形CQOB=1:2时,求直线CQ对应的函数关系式.【分析】(1)由题意得:,解得,即可求解;(2)CQ将△AOC分成1:2两部分时,则OQ=OA或OA,即OQ=2或4,即可求解;(3)若S△ACQ:S四边形CQOB=1:2时,则若S△ACQ:S△OAB=1:3,即(×AQ×y C):(×OA•OB)=1:3,进而求解.【解答】解:(1)由题意得:,解得,故点C的坐标为(2,2),故答案为(2,2);(2)对于y=﹣x+3,令y=﹣x+3=0,解得x=6,令x=0,则y=3,故点A(6,0),点B(0,3),则OA=6,OB=3,∵CQ将△AOC分成1:2两部分时,则OQ=OA或OA,即OQ=2或4,即t=2或4,故答案为2或4;(3)若S△ACQ:S四边形CQOB=1:2时,则若S△ACQ:S△OAB=1:3,即(×AQ×y C):(×OA•OB)=1:3,则(×AQ×2):(×6×3)=1:3,解得:AQ=3,故点Q(3,0),设直线CQ的表达式为y=kx+b,则,解得,故直线CQ的表达式为y=﹣2x+6.21.(10分)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图所示.(1)小张骑自行车的速度300米/分;小李出发后3分钟到达甲地;(2)小张出发后分与小李相遇.(3)求小张停留后再出发时y与x之间的函数表达式,并写出自变量x的取值范围.【分析】(1)由图象看出小张的路程和时间,根据速度公式可得小张骑自行车的速度;根据“时间=路程÷速度”即可得出小李出发后到达甲地所需时间;(2)设小张出发后x分与小李相遇,根据题意列方程解答即可;(3)首先求出点B的坐标,利用待定系数法可得函数解析式.【解答】解:(1)由题意得,小张骑自行车的速度为:(2400﹣1200)÷4=300(米/分);小李出发后到达甲地所需时间为:2400÷800=3(分钟).故答案为:300米/分;3.(2)设小张出发后x分与小李相遇,根据题意得:300(x﹣2)+800(x﹣60)=2400,解得,即小张出发后分与小李相遇.故答案为:.(3)由小张的速度可知:B(10,0),设直线AB的解析式为:y=kx+b,把A(6,1200)和B(10,0)代入得:,解得:,∴小张停留后再出发时y与x之间的函数表达式;y=﹣300x+3000(6≤x≤10).22.(13分)如图:在平面直角坐标系中,直线y=kx+b交x轴于点A(﹣3,0),交y轴于点B(0,1),过点C(﹣1,0)作垂直于x轴的直线交AB于点D,点E(﹣1,m)在直线CD上且在直线AB的上方.(1)求k、b的值;(2)用含m的代数式表示S四边形AOBE,并求出当S四边形AOBE=5时,点E的坐标;(3)当m=2时,以AE为边在第二象限作等腰直角三角形△P AE.直接写出点P的坐标.【分析】(1)利用待定系数法解决问题即可;(2)根据S四边形AOBE=S△ABE+S△AOB进而即可;(3)分AE是等腰直角三角形的斜边或直角边两种情形分别求解即可.【解答】解:(1)∵直线y=kx+b交x轴于点A(﹣3,0),交y轴于点B(0,1),∴,解得;(2)由(1)可知,直线AB的解析式为y=x+1,∵EC⊥OA,E(﹣1,m),∴D(﹣1,),∴DE=m﹣,∴S四边形AOBE=S△ABE+S△AOB=•(m﹣)•3+×3×1=m+,当S四边形AOBE=5时,即m+=5,解得m=3,故点E(﹣1,3);(3)当m=2时,EC=AC=2.∵∠ACE=90°,AC=EC,∴△AEC是等腰直角三角形,当AE是等腰直角三角形的斜边时,P(﹣3,2),当AE是等腰直角三角形的直角边时,P1(﹣5,2)或P2(﹣3,4).综上所述,满足条件的点P的坐标为(﹣3,2)或(﹣5,2)或(﹣3,4).。
2019-2020学年江苏省连云港市新海实验中学八年级(上)第二次月考数学试卷解析版
2019-2020学年江苏省连云港市新海实验中学八年级(上)第二次月考数学试卷一、选择题(每题3分,共24分)1.(3分)下列各式中,正确的是()A.=±4B.±=4C.=﹣3D.=﹣42.(3分)下列函数关系式:①y=﹣x;②y=2x+11;③y=x2+x+1;④.其中一次函数的个数是()A.1个B.2个C.3个D.4个3.(3分)今年10月环太湖中长跑中参赛选手达到21780人,这个数精确到千位表示约为()A.2.2×104B.22000C.2.1×104D.224.(3分)估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间5.(3分)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A.(﹣3,﹣2)B.(2,2)C.(﹣2,2)D.(2,﹣2)6.(3分)如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是()A.﹣B.2﹣C.D.7.(3分)甲乙两位同学用围棋子做游戏.如图所示,现轮到黑棋下子,黑棋下一子后白棋再下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形.则下列下子方法不正确的是(),[说明:棋子的位置用数对表示,如A点在(6,3)].A.黑(3,7);白(5,3)B.黑(4,7);白(6,2)C.黑(2,7);白(5,3)D.黑(3,7);白(2,6)8.(3分)在直角坐标系中,O为坐标原点,已知点A(1,2),在坐标轴上确定点P,使得△AOP为等腰三角形,则符合条件的点P的个数共有()A.5个B.6个C.7个D.8个二、填空题(每题3分,共30分)9.(3分)在实数:﹣4.21,,1.010010001…,,π,中,无理数有个.10.(3分)函数y=的自变量x的取值范围是.11.(3分)如图,A,B两点的坐标分别为(﹣3,5),(3,5),点C在同一坐标系下的坐标为.12.(3分)点p(a+1,2a﹣3)在第三象限,则a的取值范围.13.(3分)已知点A(3﹣m,2m+6)到两坐标轴的距离相等,则m=.14.(3分)已知函数y=(m﹣2)﹣5是一次函数,则m=.15.(3分)如图,在平面直角坐标系中,点A,B的坐标分别是A(3,0),B(0,4),把线段AB绕点A旋转后得到线段AB′,使点B的对应点B′落在x轴的正半轴上,则点B′的坐标是.16.(3分)设m,n是有理数,且满足等式m2+3n+n=21﹣5,则m+n=.17.(3分)在一款名为超级玛丽的游戏中,玛丽到达一个高为10米的高台A,利用旗杆顶部的索,划过90°到达与高台A水平距离为17米,高为3米的矮台B,玛丽在荡绳索过程中离地面的最低点的高度MN =.18.(3分)在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移2个单位称为1次变换.如图,已知等边三角形ABC的顶点B、C的坐标分别是(﹣1,﹣1)、(﹣3,﹣1),把△ABC经过连续9次这样的变换得到△A′B′C′,则点A的对应点A′的坐标是.三、解答题(共96分)19.(8分)计算:(1)+﹣()2(2)+(﹣2019)0﹣||20.(8分)解方程:(1)x2﹣4=21(2)8(x﹣1)3=2721.(10分)已知2b+1的平方根为±3,3a+2b﹣1的算术平方根为4,求a+6b的立方根.22.(10分)如图所示,在平面直角坐标系中△ABC三个顶点的坐标分别是点A(﹣2,3)、点B(﹣1,1)、点C(0,2).(1)作△ABC关于C成中心对称的△A1B1C1;(2)将△A1B1C1向右平移3个单位,作出平移后的△A2B2C2;(3)在x轴上求作一点P,使P A1+PC1的值最小,并写出点P的坐标.(不写解答过程,直接写出结果)23.(10分)已知y=y1+y2,y1与x2成正比例,y2与x﹣2成正比例,当x=1时,y=5;当x=﹣1时,y=11,求y与x之间的函数表达式,并求当x=2时y的值.24.(12分)已知点A(﹣2,0),B(3,0).(1)在y轴上找一点C,使之满足△ABC的面积为12,求点C的坐标.(2)在y轴上找一点D,使BD=AB,求点D的坐标.25.(12分)有一块直角三角形的绿地,量得两直角边长分别为9cm,12cm现在要将绿地扩充成等腰三角形,且扩充部分是以12cm为一直角边的直角三角形,请在图中画出图形,并求出扩充后等腰三角形绿地的周长.26.(12分)数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题.下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用.(1)探究的几何意义:如图①,在直角坐标系中,设点M的坐标为(x,y),过M作MP⊥x轴于P,作MQ⊥y轴于Q,则P点坐标为(x,0),Q点坐标为(0,y),即OP=|x|,OQ=|y|,在△OPM中,PM=OQ=|y|,则MO===,因此,的几何意义可以理解为点M(x,y)与点O(0,0)之间的距离OM.①的几何意义可以理解为点N1(填写坐标)与点O(0,0)之间的距离N1O;②点N2(5,﹣1)与点O(0,0)之间的距离ON2为.(2)探究的几何意义:如图②,在直角坐标系中,设点A′的坐标为(x﹣1,y﹣5),由探究(1)可知,A′O=,将线段A′O先向右平移1个单位,再向上平移5个单位,得到线段AB,此时点A的坐标为(x,y),点B的坐标为(1,5),因为AB=A′O,所以AB=,因此的几何意义可以理解为点A(x,y)与点B(1,5)之间的距离.(3)探究的几何意义:请仿照探究二(2)的方法,在图③中画出图形,那么的几何意义可以理解为点C(填写坐标)与点D(x,y)之间的距离.(4)拓展应用:①+的几何意义可以理解为:点A(x,y)与点E(1,﹣4)的距离与点A(x,y)与点F(填写坐标)的距离之和.②+的最小值为(直接写出结果)27.(14分)如图,在平面直角坐标系中,长方形OABC的顶点A,B的坐标分别为A(6,0),B(6,4),D 是BC的中点,动点P从O点出发,以每秒1个单位长度的速度,沿着O→A→B→D运动,设点P运动的时间为t秒(0<t<13).(1)①点D的坐标是(,);②当点P在AB上运动时,点P的坐标是(,)(用t表示);(2)写出△POD的面积S与t之间的函数关系式,并求出△POD的面积等于9时点P的坐标;(3)当点P在OA上运动时,连接BP,将线段BP绕点P逆时针旋转,点B恰好落到OC的中点M处,则此时点P运动的时间t=秒.(直接写出答案)2019-2020学年江苏省连云港市新海实验中学八年级(上)第二次月考数学试卷参考答案与试题解析一、选择题(每题3分,共24分)1.【解答】解:A、原式=4,所以A选项错误;B、原式=±4,所以B选项错误;C、原式=﹣3,所以C选项正确;D、原式=|﹣4|=4,所以D选项错误.故选:C.2.【解答】解:①y=﹣x是一次函数;②y=2x+11是一次函数;③y=x2+x+1是二次函数;④是反比例函数.故选:B.3.【解答】解:21780人,这个数精确到千位表示约为2.2×104.故选:A.4.【解答】解:∵2<<3,∴3<+1<4,∴+1在3和4之间.故选:C.5.【解答】解:点A(﹣1,﹣2)向右平移3个单位长度得到的B的坐标为(﹣1+3,﹣2),即(2,﹣2),则点B关于x轴的对称点B′的坐标是(2,2),故选:B.6.【解答】解:由勾股定理得:正方形的对角线为,设点A表示的数为x,则2﹣x=,解得x=2﹣.故选B.7.【解答】解:A、若放入黑(3,7);白(5,3),则此时黑棋是轴对称图形,白棋也是轴对称图形,故本选项不符合题意;B、若放入黑(4,7);白(6,2),则此时黑棋是轴对称图形,白棋也是轴对称图形,故本选项不符合题意;C、若放入黑(2,7);白(5,3),则此时黑棋不是轴对称图形,白棋是轴对称图形,故本选项正确;D、若放入黑(3,7);白(2,6),则此时黑棋是轴对称图形,白棋也是轴对称图形,故本选项不符合题意;故选:C.8.【解答】解:①以A为圆心,以OA为半径作圆,此时交坐标轴于两个点(O除外);②以O为圆心,以OA为半径作圆,此时交坐标轴于四个点;③作线段AO的垂直平分线,此时交坐标轴于两个点;共2+4+2=8.故选:D.二、填空题(每题3分,共30分)9.【解答】解:在实数:﹣4.21,,1.010010001…,,π,中,无理数有:1.010010001…,,π,一共3个.故答案为:3.10.【解答】解:根据题意得,x﹣2≥0,解得x≥2.故答案为:x≥2.11.【解答】解:∵A,B两点的坐标分别为(﹣3,5),(3,5),∴点C的横坐标为﹣3+2=﹣1,纵坐标为5+2=7,∴点C的坐标为(﹣1,7).故答案为:(﹣1,7).12.【解答】解:∵点p(a+1,2a﹣3)在第三象限,∴a+1<0且2a﹣3<0,解得:a<﹣1,故答案为:a<﹣1.13.【解答】解:∵点A(3﹣m,2m+6)到两坐标轴的距离相等,∴|3﹣m|=|2m+6|,∴3﹣m=2m+6或3﹣m=﹣(2m+6),解得m=﹣1或m=﹣9.故答案为:﹣1或﹣9.14.【解答】解:由题意得,m2﹣3=1且m﹣2≠0,解得m=±2且m≠2,所以m=﹣2.故答案为:﹣2.15.【解答】解:∵A(3,0),B(0,4),∴OA=3,OB=4,∵∠AOB=90°,∴AB==5,∵AB=AB′=5,∴OB′=8,∴B′(8,0),故答案为(8,0).16.【解答】解:∵m、n是有理数,且满足等式m2+3n+n=21﹣5,∴,解得当m=6,n=﹣5时,m+n=6﹣5=1当m=﹣6,n=﹣5时,m+n=﹣6﹣5=﹣11故答案为:1或﹣11.17.【解答】解:作AE⊥OM,BF⊥OM,∵∠AOE+∠BOF=∠BOF+∠OBF=90°∴∠AOE=∠OBF在△AOE和△OBF中,,∴△AOE≌△OBF(AAS),∴OE=BF,AE=OF即OE+OF=AE+BF=CD=17(m)∵EF=EM﹣FM=AC﹣BD=10﹣3=7(m),∴2EO+EF=17,则2×EO=10,所以OE=5m,OF=12m,所以OM=OF+FM=15m又因为由勾股定理得ON=OA=13,所以MN=15﹣13=2(m).答:玛丽在荡绳索过程中离地面的最低点的高度MN为2米.故答案为:2m.18.【解答】解:∵△ABC是等边三角形,点B、C的坐标分别是(﹣1,﹣1)、(﹣3,﹣1),∴点A的坐标为(﹣2,﹣1﹣),根据题意得:第1次变换后的点A的对应点的坐标为(﹣2+2,1+),即(0,1+),第2次变换后的点A的对应点的坐标为(0+2,﹣1﹣),即(2,﹣1﹣),第3次变换后的点A的对应点的坐标为(2+2,1+),即(4,1+),第n次变换后的点A的对应点的为:当n为奇数时为(2n﹣2,1+),当n为偶数时为(2n﹣2,﹣1﹣),∴把△ABC经过连续9次这样的变换得到△A′B′C′,则点A的对应点A′的坐标是:(16,1+).故答案为:(16,1+).三、解答题(共96分)19.【解答】解:(1)+﹣()2=2+3﹣5=0;(2)+(﹣2019)0﹣||=+1﹣1=.20.【解答】解:(1)移项,合并同类项得:x2=25,开方得:x=±5;(2)8(x﹣1)3=27,(x﹣1)3=,开方得:x﹣1=,解得:x=.21.【解答】解:∵(±3)2=9,∴2b+1=9.∴b=4.∵42=16,∴3a+2b﹣1=16.∴3a+7=16.解得a=3.∴a+6b=3+4×6=3+24=27.∵33=27,∴27的立方根是3,即a+6b的立方根是3.22.【解答】解:(1)如图,△A1B1C1为所求;(2)如图,△A2B2C2为所求;(3)点C′和C1关于x轴对称,连结C′A1交x轴于P,则PC′=PC1,则PC1+P A1=PC′+P A1=C′A1,此时P A1+PC1的值最小,设直线C′A1的解析式为y=kx+b,把C′(0,﹣2),A1(2,1)代入得,解得,所以直线C′A1的解析式为y=x﹣2,当y=0时,x﹣2=0,解得x=,所以点P的坐标为(,0).23.【解答】解:设y1=kx2,y2=a(x﹣2),则y=kx2+a(x﹣2),把x=1,y=5和x=﹣1,y=11代入得:,k=2,a=﹣3,∴y与x之间的函数表达式是y=2x2﹣3(x﹣2),把x=2代入得:y=2×22﹣3×(2﹣2)=8.24.【解答】解:(1)设点C的坐标为(0,t),∵点A(﹣2,0),B(3,0),∴AB=3﹣(﹣2)=5,∵△ABC的面积为12,∴×12×|t|=12,解得t=,2或t=﹣2,∴点C的坐标为(0,2)或(0,﹣2);(2)设D点坐标为(0,m),∵BD=AB,∴32+m2=52,解得m=4或m=﹣4,∴点D的坐标为(0,4)或(﹣4,0).25.【解答】解:如图即为所求作的图形.在Rt△ABC中,BC=9,AC=12根据勾股定理,得AB==15根据题意,得BD=AB=15,则DC=6,∴AD==6∴AB+BC+AD=30+6.答:扩充后等腰三角形绿地的周长为6.26.【解答】解:(1)①的几何意义可以理解为点N1(﹣2,3)或(3,﹣2)与点O(0,0)之间的距离N1O,故答案为:(﹣2,3)或(3,﹣2);②点N2(5,﹣1)与点O(0,0)之间的距离ON2为:=,故答案为:;(3)设点D′的坐标为(x+2,y﹣3),如图③所示:由探究(2)可知,D′O=,将线段D′O先向左平移2个单位,再向上平移3个单位,得到线段CD,此时,D的坐标为(x,y),点C的坐标为(﹣2,3),∵CD=D'O,∴CD=,∴的几何意义为点C(﹣2,3)到点D(x,y)之间的距离;故答案为:(﹣2,3);(4)①由(2)可知:+的几何意义可以理解为:点A(x,y)与点E(1,﹣4)的距离与点A(x,y)与点F(﹣2,﹣3)的距离之和,故答案为:(﹣2,﹣3);②当A(x,y)位于直线EF外时,此时点A、E、F三点组成△AEF,∴由三角形三边关系可知:EF<AF+AE,当点A位置线段EF之间时,此时EF=AF+AE,∴+的最小值为EF的距离,∴EF==,故答案为:.27.【解答】解:(1)①∵四边形OABC是矩形,A(6,0),B(6,4),∴C(0,4),∵D是BC的中点,∴D(3,4).②当P在AB上运动时,P(6,t﹣6),故答案为3,4,6,t﹣6;(2)①当0<t≤6时,P(t,0),S=×t×4=2t.②当6<t≤10时,S=S矩形OCBA﹣S△OP A﹣S△PBD﹣S△CDO=24﹣×6×(t﹣6)﹣×3×(10﹣t)﹣6=﹣t+21.③当10<t<13时,P(16﹣t,4),PD=13﹣t,∴S=×(13﹣t)×4=﹣2t+26,综上所述,S=.若S=9,由①得到2t=9,t=4.5,∴P1(4.5,0),若S=9,由②得到,﹣t+21=9,即t=8,∴P2(6,2).若S=9,由③得到,﹣2t+26=9,t=(不合题意舍弃),综上所述,当P(4.5,0)或(6,2)时,△POD的面积为9.(3)如图4中,∵OM=CM=2,PM=PB,OP=t,∴22+t2=42+(6﹣t)2,解得t=4.∴将线段BP绕点P逆时针旋转,点B恰好落到OC的中点M处,则此时点P运动的时间t=4s,故答案为4.。
2019-2020年八年级上学期第二次月考数学试卷(V)
2019-2020年八年级上学期第二次月考数学试卷(V)命题教师:李文波考号:_____________ 姓名:_____________得分:一.选择题(每题3分,共30分)1、下列图案中,不是轴对称图形的是()A B C D2、已知M(a,3)和N(4,b)关于y轴对称,则的值为()A.1 B、-1 C. D.3.如果一个三角形的两边长分别为2和4,则第三边长可能是( )A.2 B.4 C.6 D.84.具备下列条件的三角形ABC中,不为直角三角形的是( )A.∠A+∠B=∠C B.∠A=∠B=∠C C.∠A=90°﹣∠B D.∠A﹣∠B=90°5.如图1,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有( )A.1对B.2对C.3对D.4对6.如图2,一副分别含有30°和45°角的两个直角三角板,拼成如图,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )A.15°B.25°C.30°D.10°7.如图3,已知点A、D、C、F在同一直线上,且AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加的一个条件是( )A.∠A=∠EDF B.∠B=∠E C.∠BCA=∠F D.BC∥EF8.下列计算中正确的是().A.a2+b3=2a5B.a4÷a=a4C.a2·a4=a8D.(-a2)3=-a9.下列各式是完全平方式的是().A.x2-x+B.1+x2C.x+xy+1 D.x2+2x-110.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为().图1 图2图3A .-3B .3C .0D .1二.填空题(每题3分,共18分)11.计算: .12.若代数式2a 2+3a+1的值是6,则代数式6a 2+9a+5的值为 .13.如果一个等腰三角形有两边长分别为4和8,那么这个等腰三角形的周长为__________.14.如图7,AB=AC ,要使△ABE≌△ACD,应添加的条件是__________(添加一个条件即可).15.下列条件:①一锐角和一边对应相等,②两边对应相等,③两锐角对应相等,其中能得到两个直角三角形全等的条件有__________(只填序号).16.如图9,已知∠B=46°,△ABC 的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC=__________.三.应用题(共52分)17.分解因式:(每小题4分,共16分)(1)(ab 2)2·(-a 3b )3÷(-5ab ); (2))12(4)392(32--+-a a a a a(1)m 2-6m +9 (3)9a 2(x -y )-4b 2(y -x );18.先化简,再求值.(5分)2(x -3)(x +2)-(3+a )(3-a ),其中,a =-2,x =1.19.若,求的值.(5分)图7图8 图920、如图,写出△ABC的各顶点坐标,并画出△ABC关于Y轴对称的△A1B1C1,写出△ABC关于X轴对称的△A2B2C2的各点坐标。
八年级上第一学期第二次月考数学试卷
八年级上第一学期第二次月考数学试卷一、选择题1.若a 满足3a a =,则a 的值为( )A .1B .0C .0或1D .0或1或1-2.下列实数中,无理数是( ) A .227B .3πC .4-D .3273.如图,矩形ABCD 中,AB =6,BC =12,如果将该矩形沿对角线BD 折叠,那么图中阴影部分△BED 的面积是 ( )A .18B .22.5C .36D .45 4.64的立方根是( )A .4B .±4C .8D .±85.在同一平面直角坐标系中,函数y x =-与34y x =-的图像交于点P ,则点P 的坐标为( ) A .(1,1)- B .(1,1)-C .(2,2)-D .(2,2)-6.下列四组数,可作为直角三角形三边长的是A .456cm cm cm 、、B .123cm cm cm 、、C .234cm cm cm 、、D .123cm cm cm 、、7.在-227,-π,0,3.14, 0.1010010001,-313中,无理数的个数有 ( ) A .1个 B .2个 C .3个 D .4个8.给出下列实数:227、2539 1.442π、0.16、0.1010010001-⋯(每相邻两个1之间依次多一个0),其中无理数有( )A .2个B .3个C .4个D .5个 9.点(2,-3)关于原点对称的点的坐标是( ) A .(-2,3) B .(2,3) C .(-3,-2) D .(2,-3) 10.点M (3,-4)关于y 轴的对称点的坐标是( )A .(3,4)B .(-3,4)C .(-3,-4)D .(-4,3)二、填空题11.在平面直角坐标系xOy 中,点P 在第四象限内,且点P 到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标是_____.12.如图,D 在BC 边上,△ABC ≌△ADE ,∠EAC =40°,则∠B 的度数为_____.13.已知一次函数()12y k x =-+,若y 随x 的增大而减小,则k 的取值范围是___. 14.已知,点(,1)A a 和点(3,)B b 关于原点O 对称,则+a b 的值为__________. 15.一次函数1y kx b =+与2y x a =+的图象如图,则()0kx b x a +-+>的解集是__.16.如图,在平面直角坐标系中,点B 在x 轴的正半轴上,AO =AB ,∠OAB =90°,OB =12,点C 、D 均在边OB 上,且∠CAD =45°,若△ACO 的面积等于△ABO 面积的13,则点D 的坐标为 _______ 。
2019-2020学年河南省郑州市高新区枫杨外国语学校八年级(上)第二次月考数学试卷(附答案详解)
2019-2020学年河南省郑州市高新区枫杨外国语学校八年级(上)第二次月考数学试卷一、选择题(本大题共11小题,共33.0分)1. 要使式子√3−x 有意义,则下列数值中x 不能取的是( )A. 1B. 2C. 3D. 42. 下列四组数中,不是勾股数的一组数是( )A. 5,12,13B. 6,8,10C. 7,24,25D. 8,12,153. 已知{x =1y =2是二元一次方程组{3x +2y =m nx −y =1的解,则m −n 的值是( ) A. 1 B. 2 C. 3 D. 44. 下列说法:①带根号的数都是无理数;②无理数都可用数轴上的点表示;③√16的平方根是±4:④a 2的算术平方根是a ;⑤负数也有立方根,其中正确的个数有( )A. 1个B. 2个C. 3个D. 4个5. 已知P 1(−3,y 1)、P 2(2,y 2)是一次函数y =−2x +b 图象上的两个点,则y 1与y 2的大小关系为( )A. y 1<y 2B. y 1≥y 2C. y 1>y 2D. 不能确定y 1与y 2的大小6. 如图,已知一次函数y =ax +b 和y =kx 的图象相交于点P ,则根据图象可得二元一次方程组{y =ax +b kx −y =0的解是( )A. {x =−4y =−2B. {x =−2y =−4C. {x =2y =4D. {x =2y =−47. 已知数据x 1,x 2,…,x n 的平均数是2,方差是3,则4x 1−2,4x 2−2,…,4x n −2的平均数和方差分别为( ) A. 2,3 B. 6,12 C. 6,48 D. 2,128. 已知一次函数y =ax −x −a +1(a 为常数),则其函数图象一定过象限( )A. 一、二B. 二、三C. 三、四D. 一、四9.已知正数m的平方根是3x−2和5x+6,则m的值是()A. −12B. 72C. 494D. −7210.在平面直角坐标系中,过点(−2,3)的直线l经过一、二、三象限,若点(0,a),(−1,b),(c,−1)都在直线l上,则下列判断正确的是()A. a<bB. a<3C. b<3D. c<−211.如图,在平面直角坐标系中,线段AB的端点坐标为A(−2,4),B(4,2),直线y=kx−2与线段AB有交点,则k的值不可能是()A. −5B. −2C. 3D. 5二、填空题(本大题共4小题,共20.0分)12.如果√x−3+√y+2=0,那么xy的值为______.13.如果|a|+a=0,则√(a−1)2+√a2=______ .14.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为______dm.15.如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2√3+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为______.三、解答题(本大题共8小题,共64.0分)16.(1)(√24−√216)⋅√32(2)(√3−1)2−√12+√27√317. 计算(1){3x −2y =132x +y =4(2){x +1=5(y +2)x −32−y −126=−218. 山青养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,统计了它们的质量(单位:kg),并绘制出如下的统计图1和图2.请根据以上信息解答下列问题:(1)图1中m 的值为______;(2)统计的这组数据的众数是______;中位数是______;(3)求出这组数据的平均数,并估计这2500只鸡的总质量约为多少kg ?19.如图,在四边形ABCD中,已知AB=AD=2,BC=3,CD=1,∠A=90°.(1)求BD2的值.(2)求∠ADC.20.在一条笔直的公路旁依次有A、B、C三个村庄,甲、乙两人同时分别从A、B两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C村,最终到达C村.设甲、乙两人到C村的距离y1,y2(km)与行驶时间x(ℎ)之间的函数关系如图,请回答下列问题:(1)A、C两村间的距离为______ km,a=______ ℎ;(2)分别求出y1,y2行驶时间x(ℎ)之间的函数关系式?(3)求出图中点P的坐标,并解释该点坐标所表示的实际意义;(4)乙在行驶过程中,请直接写出当x=______ 时距甲10km.x+4,交x轴于点A,交y轴于点B.21.已知直线AB的函数表达式为y=43(1)求点A、B两点的坐标;(2)若点C为关于点A关于y轴对称的点,在直线AB上是否存在一点P,使得S△BCP=2S△ABC?如果存在,请求出此时点P的坐标;如果不存在,请说明理由.22.某公司需要粉刷一些相同的房间,经调查3名师傅一天粉刷8个房间,还剩40m2刷不完;5名徒弟一天可以粉刷9个房间;每名师傅比徒弟一天多刷30m2的墙面.(1)求每个房间需要粉刷的面积.(2)若来该公司应聘的有3名师傅和10名徒弟,每名师傅和每名徒弟每天的工资分别是240元和200元,该公司要求这36个房间要在2天内粉刷完成,问人工费最低是多少?23.如图①,已知直线y=−2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.答案和解析1.【答案】D【解析】解:由题意得,3−x ≥0,解得x ≤3.故选:D .根据被开方数大于等于0列式计算即可得解.本题考查的知识点为:算术平方根.2.【答案】D【解析】【分析】本题主要考查勾股数的定义,掌握勾股数的定义是解题的关键,即两个数的平方和等于第三个数的平方,则这三个数为勾股数.利用勾股数的定义进行验证即可.【解答】解:A.52+122=169=132,即a 2+b 2=c 2,所以A 中三个数是勾股数;B .62+82=100=102,即a 2+b 2=c 2,所以B 中三个数是勾股数;C .72+242=625=252,即a 2+b 2=c 2,所以C 中三个数是勾股数;D .82+122=208≠152,即不满足a 2+b 2=c 2,所以D 中三个数不是勾股数. 故选D .3.【答案】D【解析】解:把{x =1y =2代入方程组得:{3+4=m n −2=1, 解得:{m =7n =3, 则m −n =7−3=4,故选:D .把x 与y 的值代入方程组计算求出m 与n 的值,代入原式计算即可得到结果.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.4.【答案】B【解析】解:①带根号的数不一定是无理数,有的是有理数,故说法错误;②无理数都可用数轴上的点表示,故说法正确;③√16=4,4的平方根是±2,故说法错误:④a2的算术平方根是|a|,故说法错误;⑤负数也有立方根,故说法正确.正确的是:②无理数都可用数轴上的点表示;⑤负数也有立方根.故选:B.①根据无理数的定义即可判定;②根据无理数与数轴的关系即可判定;③根据算术平方根、平方根的定义计算即可判定;④根据平方根的定义和性质即可判定;⑤根据立方根的定义即可判定.本题主要考查了实数中无理数的概念,平方根,立方根的概念.有一定的综合性.5.【答案】C【解析】【分析】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.利用一次函数图象上点的坐标特征求出y1、y2的值,比较后即可得出结论.【解答】解:∵P1(−3,y1)、P2(2,y2)是一次函数y=−2x+b的图象上的两个点,∴y1=6+b,y2=−4+b.∵6+b>−4+b,∴y1>y2.故选C.6.【答案】A【解析】【分析】此题考查了一次函数与二元一次方程(组),解答此题的关键是熟知二元一次方程组的解与一次函数y =ax +b 和y =kx 的图象交点P 之间的联系,考查了学生对题意的理解能力.根据一次函数y =ax +b 和y =kx 的图象可知,点P 就是一次函数y =ax +b 和y =kx 的交点,即二元一次方程组{y =ax +b kx −y =0的解. 【解答】解:根据题意可知,二元一次方程组{y =ax +b kx −y =0的解的x ,y 的值就是一次函数y =ax +b 和y =kx 的图象的交点P 的横,纵坐标的值,由一次函数y =ax +b 和y =kx 的图象,得二元一次方程组{y =ax +b kx −y =0的解是{x =−4y =−2. 故选A .7.【答案】C【解析】解:∵x −=1n (x 1+x 2+x 3+⋯+x n )=2,4x −2−=1n (4x 1−2+4x 2−2+4x 3−2+⋯+4x n −2)=4×2−2=6, S 2=1n [(x 1−2)2+(x 2−2)2+(x 3−2)2+⋯+(x n −2)2]=3,S 4x−22=1n [(4x 1−2−6)2+(4x 2−2−6)2+(4x 3−2−6)2+⋯+(4x n −2−6)2]=3×16=48.故选:C .根据平均数和方差公式直接计算即可求得.本题考查了方差和平均数,灵活利用两个公式,进行准确计算是解答的关键.8.【答案】D【解析】解:一次函数y =ax −x −a +1=(a −1)x −(a −1),当a −1>0时,−(a −1)<0,图象经过一、三、四象限;当a−1<0时,−(a−1)>0,图象经过一、二、四象限;所以其函数图象一定过一、四象限,故选D.分两种情况讨论即可.本题考查的是一次函数的图象与系数的关系,一次函数的性质是解答此题的关键.9.【答案】C【解析】解:∵正数m的平方根是3x−2和5x+6,∴3x−2+5x+6=0,解得x=−12,则m=(3x−2)2=(−72)2=494,故选:C.先根据平方根的性质求出x的值,再由平方根的概念可得答案.本题主要考查平方根,解题的关键是掌握平方根的概念和性质.10.【答案】D【解析】解:设一次函数的解析式为y=kx+t(k≠0),∵直线l过点(−2,3).点(0,a),(−1,b),(c,−1),∴斜率k=a−30+2=b−3−1+2=−1−3c+2,即k=a−32=b−3=−4c+2,∵直线l经过一、二、三象限,∴k>0,∴a>3,b>3,c<−2.故选D.设一次函数的解析式为y=kx+b(k≠0),根据直线l过点(−2,3).点(0,a),(−1,b),(c,−1)得出斜率k的表达式,再根据经过一、二、三象限判断出k的符号,由此即可得出结论.本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.11.【答案】B【解析】解:把A(−2,4)代入y=kx−2得,4=−2k−2,解得k=−3,∴当直线y=kx−2与线段AB有交点,且过第二、四象限时,k满足的条件为k≤−3;把B(4,2)代入y=kx−2得,4k−2=2,解得k=1,∴当直线y=kx−2与线段AB有交点,且过第一、三象限时,k满足的条件为k≥1.即k≤−3或k≥1.所以直线y=kx−2与线段AB有交点,则k的值不可能是−2.故选:B.当直线y=kx−2与线段AB的交点为A点时,把A(−2,4)代入y=kx−2,求出k=−3,根据一次函数的有关性质得到当k≤−3时直线y=kx−2与线段AB有交点;当直线y= kx−2与线段AB的交点为B点时,把B(4,2)代入y=kx−2,求出k=1,根据一次函数的有关性质得到当k≥1时直线y=kx−2与线段AB有交点,从而能得到正确选项.本题考查了一次函数y=kx+b(k≠0)的性质:当k>0时,图象必过第一、三象限,k 越大直线越靠近y轴;当k<0时,图象必过第二、四象限,k越小直线越靠近y轴.12.【答案】−6【解析】解:由题意得,x−3=0,y+2=0,解得,x=3,y=−2,则xy=−6,故答案为:−6.根据非负数的性质求出x、y,计算即可.本题考查的是非负数的性质,掌握非负数之和等于0时,各项都等于0是解题的关键.13.【答案】1−2a【解析】解:∵|a|+a=0,∴a=−a,∴a为非正数,∴√(a−1)2+√a2=1−a−a=1−2a,故答案为:1−2a.先确定a的取值,再开方求解即可.本题主要考查了二次根式的性质与化简,解题的关键是确定a的取值.14.【答案】25【解析】解:三级台阶平面展开图为长方形,长为20dm,宽为(2+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=202+[(2+3)×3]2=252,解得x=25.故答案为25.先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.本题考查了平面展开−最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.15.【答案】2√3+4或√63【解析】解:分两种情况:①如图,当∠CDM=90°时,△CDM是直角三角形,∵在Rt△ABC中,∠B=90°,∠A=60°,AC=2√3+4,AC=√3+2,∴∠C=30°,AB=12由折叠可得,∠MDN=∠A=60°,∴∠BDN=30°,∴BN=12DN=12AN,∴BN=13AB=√3+23,∴AN=2BN=2√3+43,∵∠DNB=60°,∴∠ANM=∠DNM=60°,∴∠AMN=60°,∴AN=MN=2√3+43;②如图,当∠CMD=90°时,△CDM是直角三角形,由题可得,∠CDM=60°,∠A=∠MDN=60°,∴∠BDN=60°,∠BND=30°,∴BD=12DN=12AN,BN=√3BD,又∵AB=√3+2,∴AN=2,BN=√3,过N作NH⊥AM于H,则∠ANH=30°,∴AH=12AN=1,HN=√3,由折叠可得,∠AMN=∠DMN=45°,∴△MNH是等腰直角三角形,∴HM=HN=√3,∴MN=√6,故答案为:2√3+43或√6.依据△DCM为直角三角形,需要分两种情况进行讨论:当∠CDM=90°时,△CDM是直角三角形;当∠CMD =90°时,△CDM 是直角三角形,分别依据含30°角的直角三角形的性质以及等腰直角三角形的性质,即可得到折痕MN 的长.本题考查了翻折变换−折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.16.【答案】解:(1)原式=√24×32−√216×32=6−18=−12;(2)原式=3−2√3+1√3+3√3√3=4−2√3−5=−1−2√3.【解析】(1)利用二次根式的乘法法则运算;(2)先把二次根式化为最简二次根式,然后利用完全平方公式和二次根式的除法法则运算.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.【答案】解:(1){3x −2y =13 ①2x +y =4 ②, ①+②×2得:7x =21,解得:x =3,把x =3代入②得:y =−2,则方程组的解为{x =3y =−2; (2)方程组整理得:{x −5y =9 ①3x −y =−15 ②, ②−①×3得:14y =−42,解得:y =−3,把y =−3代入①得:x =−6,则方程组的解为{x =−6y =−3.【解析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.18.【答案】28 1.8kg 1.5kg【解析】解:(1)图①中m 的值为100−(32+8+10+22)=28,故答案为:28;(2)∵1.8kg 出现的次数最多,∴众数为1.8kg ,把这些数从小到大排列,则中位数为1.5+1.52=1.5(kg);故答案为:1.8kg ,1.5kg ;(3)这组数据的平均数是:15+11+14+16+4×(5×1+11×1.2+14×1.5+16×1.8+4×2) =150×(5+13.2+21+28.8+8) =1.52(kg)2500只鸡的总质量约为:1.52×2500=3800(kg),所以这组数据的平均数是1.52kg ,2500只鸡的总质量约为3800kg .(1)根据各种质量的百分比之和为1可得m 的值;(2)根据众数、中位数、加权平均数的定义计算即可;(3)根据平均数的计算公式求出这组数据的平均数,再乘以总只数即可得出鸡的总质量. 此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.19.【答案】解:(1)在Rt△BAD中,∵AB=AD=2,∴∠ADB=45°,BD2=AD2+AB2=8,(2)在△BCD中,DB2+CD2=8+12=9=CB2,∴△BCD是直角三角形,∴∠BDC=90°,∴∠ADC=∠ADB+∠BDC=45°+90°=135°.【解析】首先在Rt△BAD中,利用勾股定理求出BD的长,求出∠ADB=45°,再根据勾股定理逆定理在△BCD中,证明△BCD是直角三角形,即可求出答案.此题主要考查了勾股定理以及逆定理的运用,解决问题的关键是求出∠ADB=45°,再求出∠BDC=90°.20.【答案】120;2;23,4 3 ,83【解析】解:(1)由图象可知:甲运动0.5小时共行驶30km,∴甲运动的速度为每小时60km,∵A、C两村间的距离为120km,∴甲从A村到C村共用时间a=2ℎ,故该题答案为120,2.(2)由题意知:乙从B村到C村行驶了90km,共用时间3ℎ,∴行驶速度为每小时30km,∴y1=−60t+120,y2=−30t+90.(3)当y1=y2时,−60t+120=−30t+90,解得:t=1,∴甲乙二人行驶1小时后两人相遇,此时距离C村60km,故P点坐标为P(1,60).(4)乙在行驶过程中,当x=23,43,83(ℎ)时距甲10km.(1)根据图象得到甲的运动速度即可解决问题;(2)首先求出乙的运动速度,结合图象即可解决问题;(3)由题意及图象可知,在点P处甲乙二人相遇,问题即可解决;(4)根据题意结合图形即可解决问题.该命题主要考查了一次函数的图象及其应用问题;解题的关键是准确找出图象中隐含的数量信息,灵活利用函数图象来分析、判断、推理或解答.21.【答案】解:(1)令x=0则y=4,∴B(0,4),令y=0,则x=−3,∴A(−3,0);(2)存在,如图,当点P在第三象限时,S△BCP=2S△ABC,则S△ACP=S△ABC,∴点P到x轴的距离等于点B到x轴的距离,∴点P的纵坐标为−4,把y=−4代入到y=43x+4,得:−4=43x+4,解得:x=−6,∴P(−6,−4);当点P在第一象限时,S△BCP=2S△ACP=3S△ABC,∴点P的纵坐标为12,把y=12代入到y=43x+4,得:12=43x+4,解得:x=6,∴P′(6,12),综上,点P的坐标为:(−6,−4)或(6,12).【解析】(1)令x=0则y=4,则B(0,4),令y=0,则x=−3,则A(−3,0),(2)分两种情况,当点P在第一象限和第三象限时,当点P在第三象限时,S△BCP=2S△ABC,则S△ACP=S△ABC,当点P在第一象限时,S△BCP=2S△ACP=3S△ABC.本题考查了坐标轴上点的坐标的特点,坐标系中面积的计算方法,运用分类讨论的思想是解题的关键.22.【答案】解:(1)设每个房间需要粉刷的面积为xm2,依题意得:8x−403−9x5=30,解得:x=50.答:每个房间需要粉刷的面积为50m2.(2)每名师傅一天粉刷的面积为(8×50−40)÷3=120(m2),每名徒弟一天粉刷的面积为120−30=90(m2).设需雇佣m名师傅,人工费用为w元,则需雇佣36×50−2×120m2×90=(10−43m)名徒弟,依题意得:w=2×240m+2×200(10−43m)=−1603m+4000.∵k=−1603<0,∴w随m的增大而减小,又∵0≤m≤3,且m为整数,∴当m=3时,w取得最小值,最小值=−1603×3+4000=3840.答:人工费最低是3840元.【解析】(1)设每个房间需要粉刷的面积为xm2,根据每名师傅比徒弟一天多刷30m2的墙面,即可得出关于x的一元一次方程,解之即可得出每个房间需要粉刷的面积为50m2;(2)根据“3名师傅一天粉刷8个房间,还剩40m2刷不完;每名师傅比徒弟一天多刷30m2的墙面”,可分别求出每名师傅和每名徒弟一天的粉刷面积,设需雇佣m名师傅,人工费用为w元,则需雇佣(10−43m)名徒弟,利用人工费用=每天师傅每天的工资×雇佣人数×工作时间+每天徒弟每天的工资×雇佣人数×工作时间,即可得出w关于m的函数关系式,再利用一次函数的性质即可解决最值问题.本题考查了一元一次方程的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,找出w 关于m 的函数关系式.23.【答案】解:(1)A(2,0);C(0,4)(2)由折叠知:CD =AD.设AD =x ,则CD =x ,BD =4−x ,根据题意得:(4−x)2+22=x 2解得:x =52 此时,AD =52,D(2,52) 设直线CD 为y =kx +4,把D(2,52)代入得52=2k +4解得:k =−34∴直线CD 解析式为y =−34x +4(3)①当点P 与点O 重合时,△APC≌△CBA ,此时P(0,0)②当点P 在第一象限时,如图,由△APC≌△CBA 得∠ACP =∠CAB ,则点P 在直线CD 上.过P 作PQ ⊥AD 于点Q ,在Rt △ADP 中,AD =52,PD =BD =4−52=32,AP =BC =2由AD ×PQ =DP ×AP 得:52PQ =3∴PQ =65∴x P =2+65=165,把x =165代入y =−34x +4得y =85此时P(165,85)(也可通过Rt △APQ 勾股定理求AQ 长得到点P 的纵坐标)③当点P 在第二象限时,如图同理可求得:CQ =85∴OQ =4−85=125此时P(−65,125)综合得,满足条件的点P有三个,分别为:P1(0,0);P2(165,85);P3(−65,125).【解析】(1)已知直线y=−2x+4与x轴、y轴分别交于点A、C,即可求得A和C的坐标;(2)根据题意可知△ACD是等腰三角形,算出AD长即可求得D点坐标,最后即可求出CD 的解析式;(3)将点P在不同象限进行分类,根据全等三角形的判定方法找出所有全等三角形,找出符合题意的点P的坐标.本题主要考查对于一次函数图象的应用以及等腰三角形和全等三角形的判定的掌握.。
2019-2020学年江苏省常州市武进区湖塘实验中学八年级(上)第二次月考数学试卷 解析版
2019-2020学年江苏省常州市武进区湖塘实验中学八年级(上)第二次月考数学试卷一、选择题(每题3分,共24分)1.(3分)下列函数:(1)﹣y=x;(2)y=2x+1;(3)y=;(4)y=;(5)s=12t;(6)y=30﹣4x中,是一次函数的有()A.2个B.3个C.4个D.5个2.(3分)如图,若在象棋盘上建立平面直角坐标系xOy,使“帅”的坐标为(﹣1,﹣2)“马”的坐标为(2,﹣2),则“兵”的坐标为()A.(﹣3,1)B.(﹣2,1)C.(﹣3,0)D.(﹣2,3)3.(3分)如果点P(a,2)在第二象限,那么点Q(﹣3,a)在()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)如果|3﹣a|+(b+5)2=0,那么点A(a,b)关于原点对称的点A′的坐标为()A.(3,5)B.(3,﹣5)C.(﹣3,5)D.(5,﹣3)5.(3分)已知函数y=kx+b的图象如图所示,则函数y=﹣bx+k的图象大致是()A.B.C.D.6.(3分)实践证明1分钟跳绳测验的最佳状态是前20秒速度匀速增加,后10秒冲刺,中间速度保持不变,则跳绳速度v(个/秒)与时间t(秒)之间的函数图象大致为()A.B.C.D.7.(3分)已知一次函数y=kx+b的图象如图,则下列说法:①k<0,b>0;②x=m是方程kx+b=0的解;③若点A(x1,y1),B(x2,y2)是这个函数的图象上的两点,且x1<x2;则y1﹣y2>0;④当﹣1≤x≤2时,1≤y≤4,则b=2.其中正确的个数为()A.1B.2C.3D.48.(3分)如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标为()A.(,)B.(3,3)C.(,)D.(,)二、填空(每题2分,共20分)9.(2分)点A(1,2)与点B关于y轴对称,则点B的坐标是.10.(2分)点P(a+2,a﹣3)在x轴上,则P的坐标是.11.(2分)将一次函数y=2x+3的图象平移后过点(1,4),则平移后得到的图象函数关系式为.12.(2分)已知一次函数y=kx+b的图象过点(1,﹣2),且y随x增大而减小,请你写出一个符合条件的一次函数关系式.13.(2分)已知y是x的一次函数,下表中给出了x与y的部分对应值,则m的值是.x﹣126y5﹣1m14.(2分)点(m,n)在直线y=3x﹣2上,则代数式2n﹣6m+1的值是.15.(2分)如图,折线ABC是某市在2012年乘出租车所付车费y(元)与行车里程x(km)之间的函数关系图象,观察图象回答,乘客在乘车里程超过3千米时,每多行驶1km,要再付费元.16.(2分)如图,直线y=﹣x+8与x轴、y轴分别交于A、B两点,点M是OB上一点,若直线AB沿AM折叠,点B恰好落在x轴上的点C处,则直线AM的解析式是.17.(2分)如图,在平面直角坐标系中,长方形OACB的顶点O在坐标原点,顶点A,B 分别在x轴,y轴的正半轴上,OA=2,OB=4,D为边OB的中点,E是边OA上的一个动点,当△CDE的周长最小时,点E的坐标为.18.(2分)平面直角坐标系xOy中,点P的坐标为(m+1,m﹣1),一次函数y=﹣x+4的图象与x轴、y轴分别相交于点A、B,若点P在△AOB的内部,则m的取值范围是.三、解答题(共56分)19.(6分)如图,已知函数y=x+2的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,4)且与x轴及y=x+2的图象分别交于点C、D,点D的坐标为(,n).(1)则n=,k=,b=.(2)若函数y=kx+b的函数值大于函数y=x+2的函数值,则x的取值范围是.(3)求四边形AOCD的面积.20.(6分)如图,一次函数y=﹣x+b的图象与正比例函数y=x的图象相交于点A(2,a),与x轴相交于点B.(1)求a、b的值;(2)在y轴上存在点C,使得△AOC的面积等于△AOB的面积,求点C的坐标.21.(6分)在如图的方格中,每个小正方形的边长都为1,△ABC的顶点均在格点上,在建立平面直角坐标系后,点B的坐标为(﹣1,2).(1)把△ABC向下平移8个单位后得到对应的△A1B1C1,画出△A1B1C1;(2)画出与△A1B1C1关于y轴对称的△A2B2C2;(3)若点P(a,b)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,写出P2的坐标为.22.(11分)甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t=小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.23.(9分)请你用学习“一次函数”时积累的经验和方法研究函数y=|x|的图象和性质,并解决问题.(1)完成下列步骤,画出函数y=|x|的图象;①列表、填空;x…﹣3﹣2﹣10123…y…31123…②描点;③连线.(2)观察图象,当x时,y随x的增大而增大;(3)根据图象,不等式|x|<x+的解集为.24.(8分)如图,一次函数y1=x+m与x轴,y轴分别交于点A,B,函数y1=x+m与y2=﹣2x的图象交于第四象限的点C,且点C的横坐标为1.(1)求m的值;(2)观察图象,当x满足时,y1<y2<0;(3)在x轴上有一点P(n,0),过点P作x轴的垂线,分别交函数y1=x+m和y2=﹣2x的图象于点D,E.若DE=3OB,求n的值.25.(10分)(1)问题解决:①如图1,在平面直角坐标系xOy中,一次函数y=x+1与x轴交于点A,与y轴交于点B,以AB为腰在第二象限作等腰直角△ABC,∠BAC=90°,点A、B的坐标分别为A、B.②求①中点C的坐标.小明同学为了解决这个问题,提出了以下想法:过点C向x轴作垂线交x轴于点D.请你借助小明的思路,求出点C的坐标;(2)类比探究数学老师表扬了小明同学的方法,然后提出了一个新的问题,如图2,在平面直角坐标系xOy中,点A坐标(0,﹣6),点B坐标(8,0),过点B作x轴垂线l,点P是l上一动点,点D是在一次函数y=﹣2x+2图象上一动点,若△APD是以点D为直角顶点的等腰直角三角形,请直接写出点D与点P的坐标.2019-2020学年江苏省常州市武进区湖塘实验中学八年级(上)第二次月考数学试卷参考答案与试题解析一、选择题(每题3分,共24分)1.(3分)下列函数:(1)﹣y=x;(2)y=2x+1;(3)y=;(4)y=;(5)s=12t;(6)y=30﹣4x中,是一次函数的有()A.2个B.3个C.4个D.5个【分析】一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.【解答】解:由题可得,是一次函数的有:(1)﹣y=x;(2)y=2x+1;(4)y=;(5)s=12t;(6)y=30﹣4x,共5个,故选:D.2.(3分)如图,若在象棋盘上建立平面直角坐标系xOy,使“帅”的坐标为(﹣1,﹣2)“马”的坐标为(2,﹣2),则“兵”的坐标为()A.(﹣3,1)B.(﹣2,1)C.(﹣3,0)D.(﹣2,3)【分析】直接利用“帅”位于点(﹣1,﹣2),可得原点的位置,进而得出“兵”的坐标.【解答】解:如图所示:可得“炮”是原点,则“兵”位于点:(﹣3,1).故选:A.3.(3分)如果点P(a,2)在第二象限,那么点Q(﹣3,a)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据第二象限的横坐标小于零,可得a的取值范围,根据第三象限内的点横坐标小于零,纵坐标小于零,可得答案.【解答】解:由点P(a,2)在第二象限,得a<0.由﹣3<0,a<0,得点Q(﹣3,a)在三象限,故选:C.4.(3分)如果|3﹣a|+(b+5)2=0,那么点A(a,b)关于原点对称的点A′的坐标为()A.(3,5)B.(3,﹣5)C.(﹣3,5)D.(5,﹣3)【分析】直接利用关于原点对称点的性质得出答案.【解答】解:∵|3﹣a|+(b+5)2=0,∴3﹣a=0,b+5=0,解得:a=3,b=﹣5,∴点A(a,b)关于原点对称的点A′的坐标为:(﹣3,5).故选:C.5.(3分)已知函数y=kx+b的图象如图所示,则函数y=﹣bx+k的图象大致是()A.B.C.D.【分析】根据一次函数与系数的关系,由函数y=kx+b的图象位置可得k>0,b<0,然后根据系数的正负判断函数y=﹣bx+k的图象位置.【解答】解:∵函数y=kx+b的图象经过第一、三、四象限,∴k>0,b<0,∴﹣b>0∴函数y=﹣bx+k的图象经过第一、二、三象限.故选:A.6.(3分)实践证明1分钟跳绳测验的最佳状态是前20秒速度匀速增加,后10秒冲刺,中间速度保持不变,则跳绳速度v(个/秒)与时间t(秒)之间的函数图象大致为()A.B.C.D.【分析】根据前20秒匀加速进行,20秒至50秒保持跳绳速度不变,后10秒继续匀加速进行,得出速度y随时间x的增加的变化情况,即可求出答案.【解答】解:随着时间的变化,前20秒匀加速进行,所以此时跳绳速度y随时间x的增加而增加,再根据20秒至50秒保持跳绳速度不变,所以此时跳绳速度y随时间x的增加而不变,再根据后10秒继续匀加速进行,所以此时跳绳速度y随时间x的增加而增加,故选:C.7.(3分)已知一次函数y=kx+b的图象如图,则下列说法:①k<0,b>0;②x=m是方程kx+b=0的解;③若点A(x1,y1),B(x2,y2)是这个函数的图象上的两点,且x1<x2;则y1﹣y2>0;④当﹣1≤x≤2时,1≤y≤4,则b=2.其中正确的个数为()A.1B.2C.3D.4【分析】图象过第一,二,四象限,可得k<0,b>0,可判定①;根据增减性,可判断③④,由图象与x轴的交点可判定②.【解答】解:∵图象过第一,二,四象限,∴k<0,b>0;∴y随x增大而减小,∵x1<x2,∴y1>y2,∴y1﹣y2>0;当﹣1≤x≤2时,1≤y≤4,∴当x=﹣1时,y=4;x=2时,y=1,代入y=kx+b得,解得b=3;一次函数y=kx+b中,令y=0,则x=﹣,∴x=﹣是方程kx+b=0的解,故①③正确;②④错误,故选:B.8.(3分)如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标为()A.(,)B.(3,3)C.(,)D.(,)【分析】过P作MN⊥y轴,交y轴于M,交AB于N,过D作DH⊥y轴,交y轴于H,∠CMP=∠DNP=∠CPD=90°,求出∠MCP=∠DPN,证△MCP≌△NPD,推出DN =PM,PN=CM,设AD=a,求出DN=2a﹣1,得出2a﹣1=1,求出a=1,得出D的坐标,在Rt△DNP中,由勾股定理求出PC=PD=,在Rt△MCP中,由勾股定理求出CM=2,得出C的坐标,设直线CD的解析式是y=kx+3,把D(3,2)代入求出直线CD的解析式,解由两函数解析式组成的方程组,求出方程组的解即可.【解答】解:过P作MN⊥y轴,交y轴于M,交AB于N,过D作DH⊥y轴,交y轴于H,∠CMP=∠DNP=∠CPD=90°,∴∠MCP+∠CPM=90°,∠MPC+∠DPN=90°,∴∠MCP=∠DPN,∵P(1,1),∴OM=BN=1,PM=1,在△MCP和△NPD中,∴△MCP≌△NPD(AAS),∴DN=PM,PN=CM,∵BD=2AD,∴设AD=a,BD=2a,∵P(1,1),∴BN=2a﹣1,则2a﹣1=1,a=1,即BD=2.∵直线y=x,∴AB=OB=3,在Rt△DNP中,由勾股定理得:PC=PD==,在Rt△MCP中,由勾股定理得:CM==2,则C的坐标是(0,3),设直线CD的解析式是y=kx+3,把D(3,2)代入得:k=﹣,即直线CD的解析式是y=﹣x+3,即方程组得:,即Q的坐标是(,).故选:D.二、填空(每题2分,共20分)9.(2分)点A(1,2)与点B关于y轴对称,则点B的坐标是(﹣1,2).【分析】根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.【解答】解:点A与点B关于y轴对称,点A的坐标为(1,2),则点B的坐标是(﹣1,2).故答案为:(﹣1,2).10.(2分)点P(a+2,a﹣3)在x轴上,则P的坐标是(5,0).【分析】根据x轴上点的纵坐标为0,得出a﹣3=0,得出a的值,即可求出点P的坐标.【解答】解:∵点P(a+2,a﹣3)在x轴上,∴a﹣3=0,即a=3,∴a+2=5,∴P点的坐标为(5,0).故答案为:(5,0).11.(2分)将一次函数y=2x+3的图象平移后过点(1,4),则平移后得到的图象函数关系式为y=2x+2.【分析】直接利用一次函数平移规律,即k不变,进而利用一次函数图象上的性质得出答案.【解答】解:设一次函数y=2x+3的图象平移后解析式为y=2x+3+b,将(1,4)代入可得:4=2×1+3+b,解得:b=﹣1.则平移后得到的图象函数关系式为:y=2x+2.故答案为:y=2x+2.12.(2分)已知一次函数y=kx+b的图象过点(1,﹣2),且y随x增大而减小,请你写出一个符合条件的一次函数关系式y=﹣x﹣1(答案不唯一).【分析】由一次函数的图象经过点(1,﹣2)可找出b=﹣2﹣k,由y随x增大而减小,利用一次函数的性质可得出k<0,取k=﹣1即可得出结论.【解答】解:∵一次函数y=kx+b的图象过点(1,﹣2),∴﹣2=k+b,∴b=﹣2﹣k.又∵y随x增大而减小,∴k<0,当k=﹣1时,b=﹣2﹣k=﹣1,此时一次函数关系式为y=﹣x﹣1.故答案为:y=﹣x﹣1(答案不唯一).13.(2分)已知y是x的一次函数,下表中给出了x与y的部分对应值,则m的值是﹣9.x﹣126y5﹣1m【分析】设一次函数的解析式为y=kx+b(k≠0),再把x=﹣1,y=5;x=2时,y=﹣1代入即可得出k、b的值,故可得出一次函数的解析式,再把x=6代入即可求出m的值.【解答】解:一次函数的解析式为y=kx+b(k≠0),∵x=﹣1时y=5;x=2时y=﹣1,∴,解得,∴一次函数的解析式为y=﹣2x+3,∴当x=6时,y=﹣2×6+3=﹣9,即m=﹣9.故答案是:﹣9.14.(2分)点(m,n)在直线y=3x﹣2上,则代数式2n﹣6m+1的值是﹣3.【分析】直接把点(m,n)代入函数y=3x﹣2,得到n=3m﹣2,再代入解析式即可得出结论.【解答】解:∵点(m,n)在函数y=3x﹣2的图象上,∴n=3m﹣2,∴2n﹣6m+1=2(3m﹣2)﹣6m+1=﹣3,故答案为:﹣3.15.(2分)如图,折线ABC是某市在2012年乘出租车所付车费y(元)与行车里程x(km)之间的函数关系图象,观察图象回答,乘客在乘车里程超过3千米时,每多行驶1km,要再付费 1.4元.【分析】由图象可知,出租车行驶距离超过3km时,车费开始增加,而且行驶距离增加5km,车费增加7元,由此可解每多行驶1km要再付的费用.【解答】解:由图象可知,出租车行驶距离超过3km时,车费开始增加,而且行驶距离增加5km,车费增加7元,所以,每多行驶1km要再付费7÷5=1.4(元).答:每多行驶1km,要再付费1.4元.16.(2分)如图,直线y=﹣x+8与x轴、y轴分别交于A、B两点,点M是OB上一点,若直线AB沿AM折叠,点B恰好落在x轴上的点C处,则直线AM的解析式是y=﹣+3.【分析】首先求出直线与坐标轴交点坐标,进而得出BO,AO的长,再利用勾股定理求出AB的长;根据翻折变换的性质得出MB=MC,AB=AC=10,然后根据勾股定理直接求出MO的长,即可得出M的坐标,再根据待定系数法求得直线AM的解析式即可.【解答】解:∵直线y=﹣x+8与x轴、y轴分别交于A、B两点,∴y=0时,x=6,则A点坐标为:(6,0),x=0时,y=8,则B点坐标为:(0,8);∴BO=8,AO=6,∴AB==10,∵直线AB沿AM折叠,点B恰好落在x轴上的点C处,∴AB=AC=10,MB=MC,∴OC=AC﹣OA=10﹣6=4.设MO=x,则MB=MC=8﹣x,在Rt△OMC中,OM2+OC2=CM2,∴x2+42=(8﹣x)2,解得:x=3,故M点坐标为:(0,3),设直线AM的解析式为y=kx+3,把A(6,0)代入得0=6k+3,解得k=﹣,∴直线AM的解析式是y=﹣+3.故答案为y=﹣+3.17.(2分)如图,在平面直角坐标系中,长方形OACB的顶点O在坐标原点,顶点A,B 分别在x轴,y轴的正半轴上,OA=2,OB=4,D为边OB的中点,E是边OA上的一个动点,当△CDE的周长最小时,点E的坐标为.【分析】由于C、D是定点,则CD是定值,如果△CDE的周长最小,即DE+CE有最小值.为此,作点D关于x轴的对称点D′,当点E在线段CD′上时,△CDE的周长最小.【解答】解:∵OB=4,D为边OB的中点,∴OD=2,∴D(0,2),如图,作点D关于x轴的对称点D′,连接CD′与x轴交于点E,连接DE.若在边OA上任取点E′与点E不重合,连接CE′、DE′、D′E′由DE′+CE′=D′E′+CE′>CD′=D′E+CE=DE+CE,可知△CDE的周长最小.∵在矩形OACB中,OA=2,OB=4,D为OB的中点,∴BC=2,D′O=DO=2,D′B=6,∵OE∥BC,∴Rt△D′OE∽Rt△D′BC,∴,∴OE=,∴点E的坐标为(,0),故答案为:(,0).18.(2分)平面直角坐标系xOy中,点P的坐标为(m+1,m﹣1),一次函数y=﹣x+4的图象与x轴、y轴分别相交于点A、B,若点P在△AOB的内部,则m的取值范围是1<m<3.【分析】由点P的坐标结合点P在△AOB的内部,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围.【解答】解:依题意,得:,解得:1<m<3.故答案为:1<m<3.三、解答题(共56分)19.(6分)如图,已知函数y=x+2的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,4)且与x轴及y=x+2的图象分别交于点C、D,点D的坐标为(,n).(1)则n=,k=﹣2,b=4.(2)若函数y=kx+b的函数值大于函数y=x+2的函数值,则x的取值范围是x<.(3)求四边形AOCD的面积.【分析】(1)根据点D在函数y=x+2的图象上,即可求出n的值;再利用待定系数法求出k,b的值;(2)根据图象,直接判断即可;(3)用三角形OBC的面积减去三角形ABD的面积即可.【解答】解:(1)∵点D(,n)在直线y=x+2上,∴n=+2=,∵一次函数经过点B(0,4)、点D(,),∴,解得:,故答案为:,﹣2,4;(2)由图象可知,函数y=kx+b大于函数y=x+2时,图象在直线x=的左侧,∴x<,故答案为:x<,(3)直线y=﹣2x+4与x轴交于点C,∴令y=0,得:﹣2x+4=0,解得x=2,∴点C的坐标为(2,0),∵函数y=x+2的图象与y轴交于点A,∴令x=0,得:y=2,∴点A的坐标为(0,2),S△BOC=×2×4=4,S△BAD=×(4﹣2)×=,∴S四边形AOCD=S△BOC﹣S△BAD=4﹣=.20.(6分)如图,一次函数y=﹣x+b的图象与正比例函数y=x的图象相交于点A(2,a),与x轴相交于点B.(1)求a、b的值;(2)在y轴上存在点C,使得△AOC的面积等于△AOB的面积,求点C的坐标.【分析】(1)把点A(2,a)的坐标代入y=x,得到点A的坐标,把点A(2,1)的坐标代入y=﹣x+b,即可得到结论;(2)把y=0代入y=﹣x+b,得到点B的坐标为(4,0),根据三角形的面积公式列方程即可得到结论.【解答】解:(1)把点A(2,a)的坐标代入y=x,解得=1,把点A(2,1)的坐标代入y=﹣x+b,解得b=2,(2)把y=0代入y=﹣x+b,解得x=4,∴点B的坐标为(4,0),∴OB=4,∵S△AOC=S△AOB,∴×2•OC=×4×1,∴OC=2,∴点C的坐标为(0,2)或(0,﹣2).21.(6分)在如图的方格中,每个小正方形的边长都为1,△ABC的顶点均在格点上,在建立平面直角坐标系后,点B的坐标为(﹣1,2).(1)把△ABC向下平移8个单位后得到对应的△A1B1C1,画出△A1B1C1;(2)画出与△A1B1C1关于y轴对称的△A2B2C2;(3)若点P(a,b)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,写出P2的坐标为(﹣a,b).【分析】(1)利用点平移的坐标变换规律写出A1、B1、C1的坐标,然后描点即可;(2)利用关于y轴对称的点的坐标特征写出A2、B2、C2的坐标,然后描点即可;(3)利用关于y轴对称的点的坐标特征求解.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)点P(a,b)关于y轴对称的点P2的坐标为(﹣a,b).故答案为(﹣a,b).22.(11分)甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是60千米/时,t=3小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.【分析】(1)根据速度=路程÷时间可求出乙车的速度,利用时间=路程÷速度可求出乙车到达A地的时间,结合图形以及甲车的速度不变,即可得出关于t的一元一次方程,解之即可得出结论;(2)分0≤x≤3、3≤x≤4、4≤x≤7三段,根据函数图象上点的坐标,利用待定系数法即可求出函数关系式;(3)找出乙车距它出发地的路程y与甲车出发的时间x的函数关系式,由两地间的距离﹣甲、乙行驶的路程和=±120,即可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:(1)乙车的速度为60÷1=60(千米/时),乙车到达A地的时间为480÷60=8(小时),根据题意得:2t+1=8﹣1,解得:t=3.故答案为:60;3.(2)设甲车距它出发地的路程y与它出发的时间x的函数关系式为y=kx+b(k≠0),当0≤x≤3时,将(0,0)、(3,360)代入y=kx+b,得:,解得:,∴y=120x;当3≤x≤4时,y=360;当4≤x≤7时,将(4,360)、(7,0)代入y=kx+b,得:,解得:,∴y=﹣120x+840.综上所述:甲车距它出发地的路程y与它出发的时间x的函数关系式为y=.(3)乙车距它出发地的路程y与甲车出发的时间x的函数关系式为y=60(x+1)=60x+60.当0≤x≤3时,有|480﹣(120x+60x+60)|=120,解得:x1=,x2=3;当3≤x≤4时,有|480﹣(360+60x+60)|=120,解得:x3=﹣1(舍去),x4=3;当4≤x≤7时,有|480﹣(﹣120x+840+60x+60)|=120,解得:x5=5,x6=9(舍去).∴x+1=、4或6.∴乙车出发小时、4小时、6小时后两车相距120千米.23.(9分)请你用学习“一次函数”时积累的经验和方法研究函数y=|x|的图象和性质,并解决问题.(1)完成下列步骤,画出函数y=|x|的图象;①列表、填空;x…﹣3﹣2﹣10123…y…31123…②描点;③连线.(2)观察图象,当x>0时,y随x的增大而增大;(3)根据图象,不等式|x|<x+的解集为﹣1<x<3.【分析】(1)根据函数值填表即可;(2)根据图象得出函数性质即可;(3)根据图象得出不等式的解集即可.【解答】解:(1)①填表正确x…﹣3﹣2﹣10123…y…3210123…②③画函数图象如图所示:(2)由图象可得:x>0时,y随x的增大而增大;(3)由图象可得:不等式|x|<x+的解集为﹣1<x<3;故答案为:>0;﹣1<x<324.(8分)如图,一次函数y1=x+m与x轴,y轴分别交于点A,B,函数y1=x+m与y2=﹣2x的图象交于第四象限的点C,且点C的横坐标为1.(1)求m的值;(2)观察图象,当x满足0<x<1时,y1<y2<0;(3)在x轴上有一点P(n,0),过点P作x轴的垂线,分别交函数y1=x+m和y2=﹣2x的图象于点D,E.若DE=3OB,求n的值.【分析】(1)将x=1代入y2=﹣2x,可得C(1,﹣2),再将C点代入y1=x+m,可求m =﹣3;(2)结合函数图象,在0<y1<y2时,有0<x<1;(3)P(n,0),则D(n,n﹣3),D(n,﹣2n),根据题意则有∴|n﹣3+2n|=3×3,解得即可.【解答】解:(1)将x=1代入y2=﹣2x得,y=﹣2,∴C(1,﹣2),再将C(1,﹣2)代入y1=x+m,∴m=﹣3;(2)0<x<1;(3)在函数y1=x﹣3上,令x=0,求得y=﹣3,∴B(0,﹣3),∴OB=3,∵在x轴上有一点P(n,0),过点P作x轴的垂线,分别交函数y1=x+m和y2=﹣2x 的图象于点D,E.∴D(n,n﹣3),D(n,﹣2n),∵DE=3OB,∴|n﹣3+2n|=3×3,∴n=4或n=﹣2.25.(10分)(1)问题解决:①如图1,在平面直角坐标系xOy中,一次函数y=x+1与x轴交于点A,与y轴交于点B,以AB为腰在第二象限作等腰直角△ABC,∠BAC=90°,点A、B的坐标分别为A(﹣4,0)、B(0,1).②求①中点C的坐标.小明同学为了解决这个问题,提出了以下想法:过点C向x轴作垂线交x轴于点D.请你借助小明的思路,求出点C的坐标;(2)类比探究数学老师表扬了小明同学的方法,然后提出了一个新的问题,如图2,在平面直角坐标系xOy中,点A坐标(0,﹣6),点B坐标(8,0),过点B作x轴垂线l,点P是l上一动点,点D是在一次函数y=﹣2x+2图象上一动点,若△APD是以点D为直角顶点的等腰直角三角形,请直接写出点D与点P的坐标.【分析】(1)利用坐标轴上点的特点建立方程求解,即可得出结论;(2)先构造出△AEC≌△BOA,求出AE,CE,即可得出结论;(3)同(2)的方法构造出△AFD≌△DGP(AAS),分两种情况,建立方程求解即可得出结论.【解答】解:(1)针对于一次函数y=x+1,令x=0,∴y=1,∴B(0,1),令y=0,∴x+1=0,∴x=﹣4,∴A(﹣4,0),故答案为(﹣4,0),(0,1);(2)如图1,由(1)知,A(﹣4,0),B(0,1),∴OA=4,OB=1,过点C作CE⊥x轴于E,∴∠AEC=∠BOA=90°,∴∠CAE+∠ACE=90°,∵∠BAC=90°,∴∠CAE+∠BAO=90°,∴∠CAE=∠ABO,∵△ABC是等腰直角三角形,∴AC=AB,在△AEC和△BOA中,,∴△AEC≌△BOA(AAS),∴CE=OA=4,AE=OB=1,∴OE=OA+AE=5,∴C(﹣5,4);(3)如图2,∵过点D作DF⊥y轴于F,延长FD交BP于G,∴DF+DG=OB=8,∵点D在直线y=﹣2x+2上,∴设点D(m,﹣2m+2),∴F(0,﹣2m+2),∵BP⊥x轴,B(8,0),∴G(8,﹣2m+2),同(2)的方法得,△AFD≌△DGP(AAS),∴AF=DG,DF=PG,如图2,DF=m,∵DF+DG=DF+AF=8,∴m+|2m﹣8|=8,∴m=或m=0,∴D(0,2)或(,﹣),当m=0时,G(8,2),DF=0,∴PG=0,∴P(8,2),当m=时,G(8,﹣),DF=,∴BG=,∴P(8,﹣),即:D(0,2),P(8,2)或D(,﹣),P(8,﹣).。
八年级(上)第二次月考数学试卷(含答案)
八年级(上)第二次月考数学试卷(含答案)一、选择题1.如图,点P 在长方形OABC 的边OA 上,连接BP ,过点P 作BP 的垂线,交射线OC 于点Q ,在点P 从点A 出发沿AO 方向运动到点O 的过程中,设AP=x ,OQ=y ,则下列说法正确的是( )A .y 随x 的增大而增大B .y 随x 的增大而减小C .随x 的增大,y 先增大后减小D .随x 的增大,y 先减小后增大 2.以下关于多边形内角和与外角和的表述,错误的是( )A .四边形的内角和与外角和相等B .如果一个四边形的一组对角互补,那么另一组对角也互补C .六边形的内角和是外角和是2倍D .如果一个多边形的每个内角是120 ,那么它是十边形.3.下列四组数,可作为直角三角形三边长的是A .456cm cm cm 、、B .123cm cm cm 、、C .234cm cm cm 、、D .123cm cm cm 、、 4.下列说法正确的是( )A .(﹣3)2的平方根是3B .16=±4C .1的平方根是1D .4的算术平方根是2 5.在下列黑体大写英文字母中,不是轴对称图形的是( ) A . B . C . D .6.已知:如图,在△AOB 中,∠AOB =90°,AO =3cm ,BO =4cm ,将△AOB 绕顶点O ,按顺时针方向旋转到△A 1OB 1处,此时线段OB 1与AB 的交点D 恰好为AB 的中点,则线段B 1D 的长度为( )A .12cmB .1cmC .2cmD .32cm 7.下列电视台的台标中,是轴对称图形的是( )A .B .C .D .8.为了解我区八年级学生的身高情况,教育局抽查了1000名学生的身高进行了统计分析所抽查的1000名学生的身高是这个问题的( )A .总体B .个体C .样本D .样本容量 9.如图,在ABC 中,,904C AC ︒∠==cm ,3BC =cm ,点D 、E 分别在AC 、BC上,现将DCE 沿DE 翻折,使点C 落在点'C 处,连接AC ',则AC '长度的最小值 ( )A .不存在B .等于 1cmC .等于 2 cmD .等于 2.5 cm 10.若253x +在实数范围内有意义,则x 的取值范围是( ) A .x >﹣52B .x >﹣52且x ≠0C .x ≥﹣52D .x ≥﹣52且x ≠0 二、填空题11.如图,在正方形ABCD 的外侧,作等边三角形CDE ,连接,AE BE ,试确定AEB∠的度数.12.公元前3世纪,我国数学家赵爽曾用“弦图”证明了勾股定理.如图,“弦图”是由四个全等的直角三角形(两直角边长分别为a 、b 且a <b )拼成的边长为c 的大正方形,如果每个直角三角形的面积都是313b -a =____.13.如图,在Rt ABC △中,90B ∠=︒,30A ∠=︒,DE 垂直平分斜边AC ,交AB 于D ,E 是垂足,连接CD ,若1BD =,则AC 的长是__________.14.已知一次函数1y kx =+的图像经过点(1,0)P -,则k =________.15.若直线y x m =+与直线24y x =-+的交点在y 轴上,则m =_______.16.函数y 1=x+1与y 2=ax+b 的图象如图所示,那么,使y 1、y 2的值都大于0的x 的取值范围是______.17.已知一次函数y =mx -3的图像与x 轴的交点坐标为(x 0,0),且2≤x 0≤3,则m 的取值范围是________.18.如图,在平面直角坐标系xOy 中,点A 的坐标为(1,3),点B 的坐标为(2,-1),点C 在同一坐标平面中,且△ABC 是以AB 为底的等腰三角形,若点C 的坐标是(x ,y ),则x 、y 之间的关系为y =______(用含有x 的代数式表示).19.在△ABC 中,AB =AC =5,BC =6,若点P 在边AB 上移动,则CP 的最小值是_____.20.一次函数y =2x -4的图像与x 轴的交点坐标为_______.三、解答题21.目前“微信”、“支付宝”、“共享单车”和“网购”给我们带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行了调查,随机调查了m 人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m =___________,n =_____________;(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生种,大约有多少人最认可“微信”这一新生事物?22.如图,在四边形ABCD 中,90ABC ∠=︒,过点B 作BE CD ⊥,垂足为点E ,过点A 作AF BE ⊥,垂足为点F ,且BE AF =.(1)求证:ABF BCE ∆≅∆;(2)连接BD ,且BD 平分ABE ∠交AF 于点G .求证:BCD ∆是等腰三角形.23.如图,四边形ABCD 中,AB =20,BC =15,CD =7,AD =24,∠B =90°.(1)判断∠D 是否是直角,并说明理由.(2)求四边形ABCD 的面积.24.如图,一次函数1y x b =+的图像与x 轴y 轴分别交于点A 、点B ,函数1y x b =+,与243y x =-的图像交于第二象限的点C ,且点C 横坐标为3-. (1)求b 的值;(2)当120y y <<时,直接写出x 的取值范围;(3)在直线243y x =-上有一动点P ,过点P 作x 轴的平行线交直线1y x b =+于点Q ,当145PQ OC =时,求点P 的坐标.25.如图,有一个长方形花园,对角线AC 是一条小路,现要在AD 边上找一个位置建报亭H ,使报亭H 到小路两端点A 、C 的距离相等.(1)用尺规作图的方法,在图中找出报亭H 的位置(不写作法,但需保留作图痕迹,交代作图结果)(2)如果AD =80m ,CD =40m ,求报亭H 到小路端点A 的距离.四、压轴题26.在平面直角坐标系xOy 中,若P ,Q 为某个矩形不相邻的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P ,Q 的“相关矩形”.图1为点P ,Q 的“相关矩形”的示意图.已知点A 的坐标为(1,2).(1)如图2,点B 的坐标为(b ,0).①若b =﹣2,则点A ,B 的“相关矩形”的面积是 ;②若点A ,B 的“相关矩形”的面积是8,则b 的值为 .(2)如图3,点C在直线y=﹣1上,若点A,C的“相关矩形”是正方形,求直线AC的表达式;(3)如图4,等边△DEF的边DE在x轴上,顶点F在y轴的正半轴上,点D的坐标为(1,0).点M的坐标为(m,2),若在△DEF的边上存在一点N,使得点M,N的“相关矩形”为正方形,请直接写出m的取值范围.27.已知三角形ABC中,∠ACB=90°,点D(0,-4),M(4,-4).(1)如图1,若点C与点O重合,A(-2,2)、B(4,4),求△ABC的面积;(2)如图2,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,若∠AOG=55°,求∠CEF的度数;(3)如图3,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,N为AC上一点,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,∠NEC+∠CEF=180°,求证∠NEF=2∠AOG.28.问题情景:数学课上,老师布置了这样一道题目,如图1,△ABC是等边三角形,点D 是BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线于点E.试探究AD与DE 的数量关系.操作发现:(1)小明同学过点D作DF∥AC交AB于F,通过构造全等三角形经过推理论证就可以解决问题,请您按照小明同学的方法确定AD与DE的数量关系,并进行证明.类比探究:(2)如图2,当点D是线段BC上任意一点(除B、C外),其他条件不变,试猜想AD与DE之间的数量关系,并证明你的结论.拓展应用:(3)当点D在线段BC的延长线上,且满足CD=BC,在图3中补全图形,直接判断△ADE的形状(不要求证明).29.如图,A,B是直线y=x+4与坐标轴的交点,直线y=-2x+b过点B,与x轴交于点C.(1)求A,B,C三点的坐标;(2)点D是折线A—B—C上一动点.①当点D是AB的中点时,在x轴上找一点E,使ED+EB的和最小,用直尺和圆规画出点E 的位置(保留作图痕迹,不要求写作法和证明),并求E点的坐标.②是否存在点D ,使△ACD 为直角三角形,若存在,直接写出D 点的坐标;若不存在,请说明理由30.在《经典几何图形的研究与变式》一课中,庞老师出示了一个问题:“如图1,等腰直角三角形的三个顶点分别落在三条等距的平行线1l ,2l ,3l 上,90BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长度”.在研究这道题的解法和变式的过程中,同学们提出了很多想法:(1)小明说:我只需要过B 、C 向1l 作垂线,就能利用全等三角形的知识求出AB 的长. (2)小林说:“我们可以改变ABC 的形状.如图2,AB AC =,120BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长.”(3)小谢说:“我们除了改变ABC 的形状,还能改变平行线之间的距离.如图3,等边三角形ABC 三个顶点分别落在三条平行线1l ,2l ,3l 上,且1l 与2l 之间的距离为1,2l 与3l 之间的距离为2,求AB 的长、”请你根据3位同学的提示,分别求出三种情况下AB 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】连接BQ ,由矩形的性质,设BC=AO=a ,AB=OC=b ,利用勾股定理得到222PQ PB BQ +=,然后得到y 与x 的关系式,判断关系式,即可得到答案.解,如图,连接BQ ,由题意可知,△OPQ ,△QPB ,△ABP 是直角三角形,在矩形ABCO 中,设BC=AO=a ,AB=OC=b ,则OP=a x -,CQ b y =-,由勾股定理,得:222()PQ y a x =+-,222PB x b =+,222()BQ a b y =+-,∵222PQ PB BQ +=,∴222222()()y a x x b a b y +-++=+-,整理得:2by x ax =-+, ∴221()24a a y x b b=--+, ∵10b-<, ∴当2a x =时,y 有最大值24a b; ∴随x 的增大,y 先增大后减小;故选择:C.【点睛】本题考查了矩形的性质,勾股定理,解题的关键是利用勾股定理找到y 与x 的关系式,从而得到答案.2.D解析:D【解析】【分析】根据多边形的内角和和外角和定理,逐一判断排除即可得解.【详解】A.四边形的内角和为360°,外角和也为360°,A 选项正确;B.根据四边形的内角和为360°可知,一组对角互补,则另一组对角也互补,B 选项正确;C.六边形的内角和为62180720()-⨯︒=︒,外角和为360°,C 选项正确;D.假设是n 边形,(2)180120n n-⨯︒=︒解得610n =≠,D 选项错误.【点睛】本题主要考查了多边形的内角和、外角和定理,熟练掌握计算公式是解决本题的关键. 3.D解析:D【解析】【分析】根据勾股定理的逆定理对四个选项进行逐一判断即可.【详解】A、∵52+42≠62,∴此组数据不能构成直角三角形,故本选项错误;B、12+22≠32,∴此组数据不能构成直角三角形,故本选项错误;C、∵22+32≠42,∴此组数据不能构成直角三角形,故本选项错误;D、∵12+)2=)2,∴此组数据能构成直角三角形,故本选项正确.故选:D.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4.D解析:D【解析】【分析】根据平方根和算术平方根的定义解答即可.【详解】A、(﹣3)2的平方根是±3,故该项错误;B4,故该项错误;C、1的平方根是±1,故该项错误;D、4的算术平方根是2,故该项正确.故选D.【点睛】本题考查了平方根、算术平方根的定义,解决本题的关键是熟记平方根、算术平方根的定义.5.C解析:C【解析】【分析】根据轴对称图形的概念对各个大写字母判断即可得解.【详解】A.“E”是轴对称图形,故本选项不合题意;B.“M”是轴对称图形,故本选项不合题意;C.“N”不是轴对称图形,故本选项符合题意;D.“H”是轴对称图形,故本选项不合题意.故选:C.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.D解析:D【解析】【分析】先在直角△AOB中利用勾股定理求出AB=5cm,再利用直角三角形斜边上的中线等于斜边的一半得出OD=12AB=2.5cm.然后根据旋转的性质得到OB1=OB=4cm,那么B1D=OB1﹣OD=1.5cm.【详解】∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB=5cm,∵点D为AB的中点,∴OD=12AB=2.5cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.5cm.故选:D.【点睛】本题主要考查勾股定理和直角三角形的性质以及图形旋转的性质,掌握“直角三角形斜边上的中线等于斜边的一半”是解题的关键.7.A解析:A【解析】【详解】B,C,D不是轴对称图形,A是轴对称图形.故选A.8.C解析:C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.根据概念进行判断即可.【详解】解:了解我区八年级学生的身高情况,抽查了1000名学生的身高进行统计分析.所抽查的1000名学生的身高是这个问题的样本,故选:C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不带单位.9.C解析:C【解析】【分析】当C′落在AB上,点B与E重合时,AC'长度的值最小,根据勾股定理得到AB=5cm,由折叠的性质知,BC′=BC=3cm,于是得到结论.【详解】解:当C′落在AB上,点B与E重合时,AC'长度的值最小,∵∠C=90°,AC=4cm,BC=3cm,∴AB=5cm,由折叠的性质知,BC′=BC=3cm,∴AC′=AB-BC′=2cm.故选:C.【点睛】本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键.10.C解析:C【解析】【分析】根据二次根式有意义的条件即可确定x的取值范围.【详解】解:由题意得,2x+5≥0,解得x≥﹣52,故选:C.【点睛】a0a 时有意义,正确理解二次根式有意义的条件是解题的关键.二、填空题11.【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE ,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】解:∵在正方形中,,,在解析:30AEB ∠=【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE ,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】解:∵在正方形ABCD 中,AD DC =,90ADC ∠=,在等边三角形CDE 中,CD DE =,60CDE DEC ∠=∠=,∴150ADE ADC CDE ∠=∠+∠= ,AD DE =,在等腰三角形ADE 中1801801501522ADE DEA ︒-∠︒-︒∠===︒, 同理得:15BEC ∠=,则60151530AEB DEC DEA BEC ∠=∠-∠-∠=--=.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形内角和定理;熟练掌握正方形和等边三角形的性质是解决问题的关键.12.1【解析】【分析】观察图形可知,小正方形的面积=大正方形的面积4个直角三角形的面积,利用已知,则大正方形的面积为13,每个直角三角形的面积都是3,可以得出小正方形的面积,进而求出答案.【详解解析:1【解析】观察图形可知,小正方形的面积=大正方形的面积-4个直角三角形的面积,利用已知c =,则大正方形的面积为13,每个直角三角形的面积都是3,可以得出小正方形的面积,进而求出答案.【详解】解:根据题意,可知,∵c =,132ab =, ∴221()42b a ab c -+⨯=,213c =, ∴2()13431b a -=-⨯=,∴1b a -=±;∵a b <,即0b a ->,∴1b a -=;故答案为:1.【点睛】此题主要考查了勾股定理、完全平方公式、四边形和三角形面积的计算,利用数形结合的思想是解题的关键.13.【解析】解:,,∴.又∵垂直平分,∴,.∵,∴,∴,,.由勾股定理可得.故答案为.解析:【解析】解:90B ∠=︒,30A ∠=︒,∴60ACB ∠=︒.又∵DE 垂直平分AC ,∴CD AD =,30ACD A DCB ∠=∠=︒=∠.∵1BD =,∴2CD AD ==,∴3AB =,30A ∠=︒,12BC AC =.由勾股定理可得AC =故答案为 14.1【解析】【分析】直接把点P (-1,0)代入一次函数y=kx+1,求出k 的值即可.【详解】∵一次函数y=kx+1的图象经过点P (-1,0),∴0=-k+1,解得k=1.故答案为1.【解析:1【分析】直接把点P (-1,0)代入一次函数y=kx+1,求出k 的值即可.【详解】∵一次函数y=kx+1的图象经过点P (-1,0),∴0=-k+1,解得k=1.故答案为1.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15.4【解析】【分析】先求出直线与y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入即可求出m 的值.【详解】解:当x=0时,=4,则直线与y 轴的交点坐标为(0,4),把(解析:4【解析】【分析】先求出直线24y x =-+与y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入y x m =+即可求出m 的值.【详解】解:当x=0时,24y x =-+=4,则直线24y x =-+与y 轴的交点坐标为(0,4), 把(0,4)代入y x m =+得m=4,故答案为:4.【点睛】本题考查了两条直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.16.−1<x<2.【解析】【分析】根据x 轴上方的图象的y 值大于0进行解答.【详解】如图所示,x>−1时,y>0,当x<2时,y>0,∴使y 、y 的值都大于0的x 的取值范围是:−1<x<2.解析:−1<x<2.【解析】【分析】根据x 轴上方的图象的y 值大于0进行解答.【详解】如图所示,x>−1时,y 1>0,当x<2时,y 2>0,∴使y 1、y 2的值都大于0的x 的取值范围是:−1<x<2.故答案为:−1<x<2.【点睛】此题考查两条直线相交或平行问题,解题关键在于x 轴上方的图象的y 值大于017.1≤m≤【解析】【分析】根据题意求得x0,结合已知2≤x0≤3,即可求得m 的取值范围.【详解】当时,,∴,当时,,,当时,,,m 的取值范围为:1≤m≤故答案为:1≤m≤【点睛】解析:1≤m ≤32 【解析】【分析】根据题意求得x 0,结合已知2≤x 0≤3,即可求得m 的取值范围.【详解】当0y =时,3x m =, ∴03x m=, 当03x =时,33m=,1m =,当02x=时,32m =,32m =, m 的取值范围为:1≤m ≤32 故答案为:1≤m ≤32【点睛】 本题考查了一次函数与坐标轴的交点以及不等式的求法,根据与x 轴的交点横坐标的范围求得m 的取值范围是解题的关键.18.【解析】【分析】设的中点为,过作的垂直平分线,通过待定系数法求出直线的函数表达式,根据可以得到直线的值,再求出中点坐标,用待定系数法求出直线的函数表达式即可.【详解】解:设的中点为,过作的解析:1548x + 【解析】【分析】设AB 的中点为D ,过D 作AB 的垂直平分线EF ,通过待定系数法求出直线AB 的函数表达式,根据EF AB ⊥可以得到直线EF 的k 值,再求出AB 中点坐标,用待定系数法求出直线EF 的函数表达式即可.【详解】解:设AB 的中点为D ,过D 作AB 的垂直平分线EF∵A(1,3),B(2,-1)设直线AB 的解析式为11y k x b =+,把点A 和B 代入得:321k b k b +=⎧⎨+=-⎩解得:1147k b =-⎧⎨=⎩∴47y x =-+∵D 为AB 中点,即D (122+,312-) ∴D (32,1) 设直线EF 的解析式为22y k x b =+∵EF AB ⊥∴121k k =- ∴ 214k = ∴把点D 和2k 代入22y k x b =+可得:213142b =⨯+ ∴258b =∴1548y x =+ ∴点C(x ,y )在直线1548y x =+上 故答案为1548x + 【点睛】 本题主要考查了等腰三角形的性质,中垂线的性质,待定系数法求一次函数的表达式,根据题意作出中垂线,再用待定系数法求出一次函数的解析式是解题的关键.19.8【解析】【分析】作BC 边上的高AF ,利用等腰三角形的三线合一的性质求BF =3,利用勾股定理求得AF 的长,利用面积相等即可求得AB 边上的高CP 的长.【详解】解:如图,作AF⊥BC 于点F ,作解析:8【解析】【分析】作BC 边上的高AF ,利用等腰三角形的三线合一的性质求BF =3,利用勾股定理求得AF 的长,利用面积相等即可求得AB 边上的高CP 的长.【详解】解:如图,作AF⊥BC于点F,作CP⊥AB于点P,根据题意得此时CP的值最小;解:作BC边上的高AF,∵AB=AC=5,BC=6,∴BF=CF=3,∴由勾股定理得:AF=4,∴S△ABC=12AB•PC=12BC•AF=12×5CP=12×6×4得:CP=4.8故答案为4.8.【点睛】此题主要考查直角三角形的性质,解题的关键是熟知勾股定理及三角形的面积公式的运用. 20.(2,0)【解析】【分析】把y=0代入y=2x+4求出x的值,即可得出答案.【详解】把y=0代入y=2x-4得:0=2x-4,x=2,即一次函数y=2x-4与x轴的交点坐标是(2,0)解析:(2,0)【解析】【分析】把y=0代入y=2x+4求出x的值,即可得出答案.【详解】把y=0代入y=2x-4得:0=2x-4,x=2,即一次函数y=2x-4与x轴的交点坐标是(2,0).故答案是:(2,0).【点睛】考查了一次函数图象上点的坐标特征,注意:一次函数与x轴的交点的纵坐标是0.三、解答题21.(1)100,35;(2)详见解析;(3)800人.【解析】【分析】(1)由共享单车的人数以及其所占百分比可求得总人数m,用支付宝人数除以总人数可得其百分比n的值;(2)总人数乘以网购的百分比可求得网购人数,用微信人数除以总人数求得其百分比,由此即可补全两个图形;(3)总人数乘以样本中微信人数所占百分比即可求得答案.【详解】(1)抽查的总人数m=10÷10%=100,支付宝的人数所占百分比n%=35100100%⨯=35%,所以n=35,故答案为:100,35;(2)网购人数为:100×15%=15人,微信对应的百分比为:40100%40% 100⨯=,补全图形如图所示:(3)估算全校2000名学生种,最认可“微信”这一新生事物的人数为:2000×40%=800人.【点睛】本题考查了条形统计图与扇形统计图信息相关问题,读懂统计图,从中找到必要的信息是解题的关键.22.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据ASA证明ΔABF≌ΔBCE即可;(2)根据直角三角形两锐角互余、角平分线的性质以及余角的性质可得∠DBC=∠BDE,根据等角对等边即可得到BC=CD,从而得到结论.【详解】(1)∵BE⊥CD,AF⊥BE,∴∠BEC=∠AFB=90°,∴∠ABE+∠BAF=90°.∵∠ABC=90°,∴∠ABE+∠EBC=90°,∴∠BAF=∠EBC.在ΔABF和ΔBCE中,∵∠AFB=∠BEC,AF=BE,∠BAF=∠EBC,∴ΔABF≌ΔBCE.(2)∵∠ABC=90°,∴∠ABD+∠DBC=90°.∵∠BED=90°,∴∠DBE+∠BDE=90°.∵BD分∠ABE,∴∠ABD=∠DBE,∴∠DBC=∠BDE,∴BC=CD,即ΔBCD是等腰三角形.【点睛】本题考查了等腰三角形的判定与全等三角形的判定与性质.解题的关键是证明ΔABF≌ΔBCE.23.(1)∠D是直角.理由见解析;(2)234.【解析】【分析】(1)连接AC,先根据勾股定理求得AC的长,再根据勾股定理的逆定理,求得∠D=90°即可;(2)根据△ACD和△ACB的面积之和等于四边形ABCD的面积,进行计算即可.【详解】(1)∠D是直角.理由如下:连接AC.∵AB=20,BC=15,∠B=90°,∴由勾股定理得AC2=202+152=625.又∵CD=7,AD=24,∴CD2+AD2=625,∴AC2=CD2+AD2,∴∠D=90°.(2)四边形ABCD的面积=12AD•DC+12AB•BC=12×24×7+12×20×15=234.【点睛】考查了勾股定理以及勾股定理的逆定理的综合运用,解决问题时需要区别勾股定理及其逆定理.通过作辅助线,将四边形问题转化为三角形问题是关键.24.(1)7b =(2)73x -<<-(3)点P 坐标为(3,4)-或(9,12)-【解析】【分析】(1)将点C 横坐标代入243y x =-求得点C 的纵坐标为4,再把(-3,4)代入1y x b =+求出b 即可;(2)求出点A 坐标,结合点C 坐标即可判断出当120y y <<时, x 的取值范围; (3)设P (a,-43a ),可求出Q (473a --,43a -),即可得PQ=773a +,再求出OC=5,根据145PQ OC =求出a 的值即可得出结论. 【详解】 (1)把3x =-代入243y x =-, 得4y =.∴C (-3,4)把点(3,4)C -代入1y x b =+,得7b =.(2)∵b=7∴y=x+7,当y=0时,x=-7,x=-3时,y=4,∴当120y y <<时,73x -<<-.(3)点P 为直线43y x =-上一动点, ∴设点P 坐标为4(,)3a a -. //PQ x ∵轴, ∴把43y a =-代入7y x =+,得473x a =--. ∴点Q 坐标为447,33a a ⎛⎫--- ⎪⎝⎭,477733PQ a a a ∴=++=+ 又点C 坐标为()3,4-,22345OC ∴=+=14145PQ OC ∴== 77143a ∴+= 解之,得3a =或9a =-.∴点P 坐标为(3,4)-或(9,12)-.【点睛】理解点在直线上则它的坐标满足直线的解析式.学会用坐标表示线段的长.25.(1)详见解析;(2)报亭到小路端点A 的距离50m .【解析】【分析】(1)作AC 的垂直平分线交AD 与点H ,进而得出答案;(2)利用勾股定理以及线段垂直平分线的性质得出即可.【详解】(1)如图所示:H 点即为所求;(2)根据作图可知:A H =H C ,设AH =xm ,则DH =(80﹣x )m ,HC =xm ,在Rt △DHC 中,222DH CD HC +=,∴222(80)40x x +=﹣, 解得:x =50,答:报亭到小路端点A 的距离50m .【点睛】本题主要考查了应用设计与作图以及勾股定理和线段垂直平分线的性质和作法等知识,得出A H =H C ,进而利用勾股定理得出是解题关键. 四、压轴题26.(1)①6;②5或﹣3;(2)直线AC的表达式为:y=﹣x+3或y=x+1;(3)m的取值范围为﹣3≤m≤﹣或2m≤3.【解析】【分析】(1)①由矩形的性质即可得出结果;②由矩形的性质即可得出结果;(2)过点A(1,2)作直线y=﹣1的垂线,垂足为点G,则AG=3求出正方形AGCH的边长为3,分两种情况求出直线AC的表达式即可;(3)由题意得出点M在直线y=2上,由等边三角形的性质和题意得出OD=OE=12DE=1,EF=DF=DE=2,得出OF OD①当点N在边EF上时,若点N与E重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣3,2)或(1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣2);得出m的取值范围为﹣3≤m≤﹣或2﹣≤m≤1;②当点N在边DF上时,若点N与D重合,点M,N的“相关矩形”为正方形,则点M 的坐标为(3,2)或(﹣1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(22);得出m的取值范围为2≤m≤3或2﹣≤m≤1;即可得出结论.【详解】解:(1)①∵b=﹣2,∴点B的坐标为(﹣2,0),如图2﹣1所示:∵点A的坐标为(1,2),∴由矩形的性质可得:点A,B的“相关矩形”的面积=(1+2)×2=6,故答案为:6;②如图2﹣2所示:由矩形的性质可得:点A,B的“相关矩形”的面积=|b﹣1|×2=8,∴|b﹣1|=4,∴b=5或b=﹣3,故答案为:5或﹣3;(2)过点A(1,2)作直线y=﹣1的垂线,垂足为点G,则AG=3,∵点C在直线y=﹣1上,点A,C的“相关矩形”AGCH是正方形,∴正方形AGCH的边长为3,当点C在直线x=1右侧时,如图3﹣1所示:CG=3,则C(4,﹣1),设直线AC的表达式为:y=kx+a,则214k ak a=+⎧⎨-=+⎩,解得;13ka=-⎧⎨=⎩,∴直线AC的表达式为:y=﹣x+3;当点C在直线x=1左侧时,如图3﹣2所示:CG=3,则C(﹣2,﹣1),设直线AC的表达式为:y=k′x+b,则212k bk b=+⎧⎨-=-+''⎩,解得:k1 b1=⎧⎨='⎩,∴直线AC的表达式为:y=x+1,综上所述,直线AC的表达式为:y=﹣x+3或y=x+1;(3)∵点M的坐标为(m,2),∴点M在直线y=2上,∵△DEF是等边三角形,顶点F在y轴的正半轴上,点D的坐标为(1,0),∴OD=OE=12DE=1,EF=DF=DE=2,∴OF OD分两种情况:如图4所示:①当点N在边EF上时,若点N与E重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣3,2)或(1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣2)或(2,2);∴m的取值范围为﹣3≤m≤﹣2m≤1;②当点N在边DF上时,若点N与D重合,点M,N的“相关矩形”为正方形,则点M的坐标为(3,2)或(﹣1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(22)或(﹣,2);∴m的取值范围为2m≤3或﹣1≤m≤﹣综上所述,m的取值范围为﹣3≤m≤﹣2m≤3.【点睛】此题主要考查图形与坐标综合,解题的关键是熟知正方形的性质、一次函数的图像与性质及新定义的应用.27.(1)8;(2)145°;(3)详见解析.【解析】【分析】(1)作AD x轴于D,BE⊥x轴于E,由点A,B的坐标可得出AD=OD=2,BE=EO=4,DE=6,由面积公式可求出答案;(2)作CH∥x轴,如图2,由平行线的性质可得出∠AOG=∠ACH,∠DEC=∠HCE,求出∠DEC+∠AOG=∠ACB=90°,可求出∠DEC=35°,则可得出答案;(3)证得∠NEC=∠HEC,则∠NEF=180°-∠NEH=180°-2∠HEC,可得出结论.【详解】解:(1)作AD⊥x轴于D,BE⊥x轴于E,如图1,∵A(﹣2,2)、B(4,4),∴AD=OD=2,BE=OE=4,DE=6,∴S△ABC=S梯形ABED﹣S△AOD﹣S△AOE=12×(2+4)×6﹣12×2×2﹣12×4×4=8;(2)作CH // x轴,如图2,∵D(0,﹣4),M(4,﹣4),∴DM // x轴,∴CH // OG // DM,∴∠AOG=∠ACH,∠DEC=∠HCE,∴∠DEC+∠AOG=∠ACB=90°,∴∠DEC=90°﹣55°=35°,∴∠CEF=180°﹣∠DEC=145°;(3)证明:由(2)得∠AOG+∠HEC=∠ACB=90°,而∠HEC+∠CEF=180°,∠NEC+∠CEF=180°,∴∠NEC=∠HEC,∴∠NEF=180°﹣∠NEH=180°﹣2∠HEC,∵∠HEC=90°﹣∠AOG,∴∠NEF=180°﹣2(90°﹣∠AOG)=2∠AOG.【点睛】本题是三角形综合题,考查了坐标与图形的性质,三角形的面积,平行线的性质,三角形内角和定理,熟练掌握平行的性质及三角形内角和定理是解题的关键.28.(1)AD =DE ,见解析;(2)AD =DE ,见解析;(3)见解析,△ADE 是等边三角形,【解析】【分析】(1)根据题意,通过平行线的性质及等边三角形的性质证明ADF EDC ∆∆≌即可得解; (2)根据题意,通过平行线的性质及等边三角形的性质证明AFD DCE ∆∆≌即可得解; (3)根据垂直平分线的性质及等边三角形的判定定理进行证明即可.【详解】(1)如下图,数量关系:AD =DE .证明:∵ABC ∆是等边三角形∴AB =BC ,60B BAC BCA ∠∠∠︒===∵DF ∥AC∴BFD BAC ∠∠=,∠BDF =∠BCA∴60B BFD BDF ∠∠∠︒===∴BDF ∆是等边三角形,120AFD ∠︒=∴DF =BD∵点D 是BC 的中点∴BD =CD∴DF =CD∵CE 是等边ABC ∆的外角平分线∴120DCE AFD ∠︒∠==∵ABC ∆是等边三角形,点D 是BC 的中点∴AD ⊥BC∴90ADC ∠︒=∵60BDF ADE ∠∠︒==∴30ADF EDC ∠∠︒==在ADF ∆与EDC ∆中AFD ECDDF CDADF EDC∠∠⎧⎪⎨⎪∠∠⎩===∴()ADF EDC ASA∆∆≌∴AD=DE;(2)结论:AD=DE.证明:如下图,过点D作DF∥AC,交AB于F ∵ABC∆是等边三角形∴AB=BC,60B BAC BCA∠∠∠︒===∵DF∥AC∴BFD BAC BDF BCA∠∠∠∠=,=∴60B BFD BDF∠∠∠︒===∴BDF∆是等边三角形,120AFD∠︒=∴BF=BD∴AF=DC∵CE是等边ABC∆的外角平分线∴120DCE AFD∠︒∠==∵∠ADC是ABD∆的外角∴60ADC B FAD FAD∠∠∠︒∠=+=+∵60ADC ADE CDE CDE ∠∠∠︒∠=+=+∴∠FAD=∠CDE在AFD∆与DCE∆中AFD DCEAF CDFAD EDC∠∠⎧⎪⎨⎪∠∠⎩===∴()AFD DCE ASA∆∆≌∴AD=DE;(3)如下图,ADE∆是等边三角形.证明:∵BC CD =∴AC CD =∵CE 平分ACD ∠∴CE 垂直平分AD∴AE =DE∵60ADE ∠=︒∴ADE ∆是等边三角形.【点睛】本题主要考查了等边三角形的性质及判定,三角形全等的判定及性质,平行线的性质,垂直平分线的性质等相关内容,熟练掌握三角形综合解决方法是解决本题的关键.29.(1)A(-4,0) ;B(0,4);C(2,0);(2)①点E 的位置见解析,E (43-,0);②D 点的坐标为(-1,3)或(45,125) 【解析】【分析】(1)先利用一次函数图象上点的坐标特点求得点A 、B 的坐标;然后把B 点坐标代入y=−2x +b 求出b 的值,确定此函数解析式,然后再求C 点坐标;(2)①根据轴对称—最短路径问题画出点E 的位置,由待定系数法确定直线DB 1的解析式为y=−3x−4,易得点E 的坐标;②分两种情况:当点D 在AB 上时,当点D 在BC 上时.当点D 在AB 上时,由等腰直角三角形的性质求得D 点的坐标为(−1,3);当点D 在BC 上时,设AD 交y 轴于点F ,证△AOF 与△BOC 全等,得OF=2,点F 的坐标为(0,2),求得直线AD 的解析式为122y x =+,与y=−2x +4组成方程组,求得交点D 的坐标为(45,125). 【详解】 (1)在y=x +4中,令x =0,得y=4,令y =0,得x=-4,∴A(-4,0) ,B(0,4)把B(0,4)代入y=-2x+b ,得b =4,∴直线BC 为:y=-2x+4在y=-2x +4中,。
八年级(上)第二次月考数学试卷(含答案)
八年级(上)第二次月考数学试卷(含答案)一、选择题1.如图,点 P 在长方形 OABC 的边 OA 上,连接 BP ,过点 P 作 BP 的垂线,交射线 OC 于 点 Q ,在点 P 从点 A 出发沿 AO 方向运动到点 O 的过程中,设 AP=x ,OQ=y ,则下列说法正 确的是( )A .y 随 x 的增大而增大B .y 随 x 的增大而减小C .随 x 的增大,y 先增大后减小D .随 x 的增大,y 先减小后增大2.以下关于多边形内角和与外角和的表述,错误的是( ) A .四边形的内角和与外角和相等B .如果一个四边形的一组对角互补,那么另一组对角也互补C .六边形的内角和是外角和是 2 倍D .如果一个多边形的每个内角是120,那么它是十边形.3.下列四组数,可作为直角三角形三边长的是4cm 、5cm 、6cm 2cm 、3cm 、4cm B .1cm 、2cm 、3cm A . C . D .1cm 、2cm 、3cm4.下列说法正确的是( ) =±4A .(﹣3) 的平方根是 3B . 16 2C .1 的平方根是 1D .4 的算术平方根是 25.在下列黑体大写英文字母中,不是轴对称图形的是(A .B .C .)D .6.已知:如图,在△AOB 中,∠AOB =90°,AO =3cm ,BO =4cm ,将△AOB 绕顶点 O , 按顺时针方向旋转到△A OB 处,此时线段 OB 与 AB 的交点 D 恰好为 AB 的中点,则线段 1 1 1 B D 的长度为( )11 A . cm23 D . cm2B .1cmC .2cm7.下列电视台的台标中,是轴对称图形的是( ) A .B .C .D .8.为了解我区八年级学生的身高情况,教育局抽查了1000 名学生的身高进行了统计分析 所抽查的 1000 名学生的身高是这个问题的( ) A .总体B .个体C .样本D .样本容量C 90 ,AC 4 3 cm ,点 D 、E 分别在 AC 、BC 9.如图,在 AB C 中, cm , BC ' A C ,则 AC长度的最小值 上,现将 D C E 沿 DE 翻折,使点 C 落在点C 处,连接( )A .不存在B .等于 1cmC .等于 2 cmD .等于 2.5 cm2x 510.若 在实数范围内有意义,则 x 的取值范围是()352552 5A .x >﹣B .x >﹣ 且 x ≠0C .x ≥﹣D .x ≥﹣ 且 x ≠02 2二、填空题11.如图,在正方形 AB C D 的外侧,作等边三角形C D E ,连接 AE , BE,试确定AEB的度数.12.公元前 3 世纪,我国数学家赵爽曾用“弦图”证明了勾股定理.如图,“弦图”是由四个全 等的直角三角形(两直角边长分别为 a 、b 且 a <b )拼成的边长为 c 的大正方形,如果每个 直角三角形的面积都是 3,大正方形的边长是 13 ,那么 b -a =____.13.如图,在Rt△AB C中,B90A30,,DE垂直平分斜边A C,交AB于1,则AC的长是__________.,E是垂足,连接C D,若B D D14.已知一次函数y k x1的图像经过点P(1,0),则________.ky x m与直线y 2x4的交点在轴上,则my15.若直线_______.16.函数y=x+1与y=ax+b的图象如图所示,那么,使y、y的值都大于0的x的取值范2211围是______.17.已知一次函数y=mx-3的图像与x轴的交点坐标为(x,0),且2≤x≤3,则m的取00值范围是________.18.如图,在平面直角坐标系xOy中,点A的坐标为(1,3),点B的坐标为(2,-1),点C在同一坐标平面中,且△ABC是以AB为底的等腰三角形,若点C的坐标是(x,y),则x、y之间的关系为y=______(用含有x的代数式表示).19.在△ABC中,AB=AC=5,BC=6,若点P在边AB上移动,则CP的最小值是_____.20.一次函数 y =2x -4 的图像与 x 轴的交点坐标为_______.三、解答题21.目前“微信”、“支付宝”、“共享单车”和“网购”给我们带来了很多便利,初二数学小组在 m 校内对“你最认可的四大新生事物”进行了调查,随机调查了 人(每名学生必选一种且只 能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.m n (1)根据图中信息求出 =___________, =_____________; (2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校 2000 名学生种,大约有多少人最认可“微信”这一 新生事物?22.如图,在四边形 AB C D 中,ABC 90,过点 作 B BE C D ,垂足为点 ,过点EA 作 AF ⊥BE,垂足为点 ,且 BE AF .F ABF BCE (1)求证: ; (2)连接 B D ,且 B D 平分ABE交 AF 于点G .求证:BCD 是等腰三角形. 23.如图,四边形 ABCD 中,AB=20,BC=15,CD=7,AD=24,∠B=90°.(1)判断∠D 是否是直角,并说明理由. (2)求四边形 ABCD 的面积. yx b 1y 的图像与 轴 轴分别交于点 、点 ,函数 yx b,24.如图,一次函数 x A B 14 x 3与 y的图像交于第二象限的点C ,且点C 横坐标为3. 2(1)求b 的值;0 y y (2)当 时,直接写出 x 的取值范围; 1 24x yx b1(3)在直线 y上有一动点 ,过点 作 x 轴的平行线交直线 于点Q ,P P 3 214OC 当 P Q 时,求点 的坐标.P5 25.如图,有一个长方形花园,对角线 AC 是一条小路,现要在 AD 边上找一个位置建报亭 H ,使报亭 H 到小路两端点 A 、C 的距离相等.(1)用尺规作图的方法,在图中找出报亭 H 的位置(不写作法,但需保留作图痕迹,交 代作图结果)(2)如果 AD =80m ,CD =40m ,求报亭 H 到小路端点 A 的距离.四、压轴题26.在平面直角坐标系 xOy 中,若 P ,Q 为某个矩形不相邻的两个顶点,且该矩形的边均 与某条坐标轴垂直,则称该矩形为点 P ,Q 的“相关矩形”.图 1 为点 P ,Q 的“相关矩 形”的示意图.已知点 A 的坐标为(1,2). (1)如图 2,点 B 的坐标为(b ,0).①若 b =﹣2,则点 A ,B 的“相关矩形”的面积是 ②若点 A ,B 的“相关矩形”的面积是 8,则 b 的值为; .(2)如图3,点C在直线y=﹣1上,若点A,C的“相关矩形”是正方形,求直线AC的表达式;(3)如图4,等边△DEF的边DE在x轴上,顶点F在y轴的正半轴上,点D的坐标为(1,0).点M的坐标为(m,2),若在△DEF的边上存在一点N,使得点M,N的“相关矩形”为正方形,请直接写出m的取值范围.27.已知三角形ABC中,∠ACB=90°,点D(0,-4),M(4,-4).(1)如图1,若点C与点O重合,A(-2,2)、B(4,4),求△ABC的面积;(2)如图2,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,若∠AOG=55°,求∠CEF的度数;(3)如图3,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,N为AC上一点,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,∠NEC+∠CEF=180°,求证∠NEF=2∠AOG.28.问题情景:数学课上,老师布置了这样一道题目,如图1,△ABC是等边三角形,点D 是BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线于点E.试探究AD与DE 的数量关系.操作发现:(1)小明同学过点D作DF∥AC交AB于F,通过构造全等三角形经过推理论证就可以解决问题,请您按照小明同学的方法确定AD与DE的数量关系,并进行证明.类比探究:(2)如图2,当点D是线段BC上任意一点(除B、C外),其他条件不变,试猜想AD与DE之间的数量关系,并证明你的结论.拓展应用:(3)当点D在线段BC的延长线上,且满足CD=BC,在图3中补全图形,直接判断△ADE的形状(不要求证明).29.如图,A,B是直线y=x+4与坐标轴的交点,直线y=-2x+b过点B,与x轴交于点C.(1)求A,B,C三点的坐标;(2)点D是折线A—B—C上一动点.①当点D是AB的中点时,在x轴上找一点E,使ED+EB的和最小,用直尺和圆规画出点E 的位置(保留作图痕迹,不要求写作法和证明),并求E点的坐标.②是否存在点D,使△ACD为直角三角形,若存在,直接写出D点的坐标;若不存在,请说明理由30.在《经典几何图形的研究与变式》一课中,庞老师出示了一个问题:“如图1,等腰BAC 90,且每两l l l直角三角形的三个顶点分别落在三条等距的平行线,,上,123条平行线之间的距离为1,求AB的长度”.在研究这道题的解法和变式的过程中,同学们提出了很多想法:l(1)小明说:我只需要过B、C向作垂线,就能利用全等三角形的知识求出AB的长.1AC BAC 120,,且每(2)小林说:“我们可以改变AB C的形状.如图2,AB两条平行线之间的距离为1,求AB的长.”(3)小谢说:“我们除了改变AB C的形状,还能改变平行线之间的距离.如图3,等边l l l1l l1l l2三角形ABC三个顶点分别落在三条平行线,,上,且与之间的距离为1,与2323之间的距离为2,求AB的长、”请你根据3位同学的提示,分别求出三种情况下AB的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】连接B Q,由矩形的性质,设B C=A O=a,A B=O C=b,利用勾股定理得到PBP Q22BQ2,然后得到y与x的关系式,判断关系式,即可得到答案.解,如图,连接 B Q ,由题意可知,△OP Q ,△QP B ,△A BP 是直角三角形, 在矩形 A B C O 中,设 B C=A O =a ,A B=O C=b ,则 a x C Q , b y,O P= 由勾股定理,得:P Q y (a x ) , PB x b( ), B Qa b y ,2 2 2 2 2 2 22 2 PB BQ2,∵ P Q 22(a x) x b a (b y) ∴ y 2 2 2 2 2 2 , x ax 整理得:by , 21 a a2 (x ) ∴ y , 2 b2 4b 10 ∵ ,b a a 2y 时, 有最大值 ∴当 x ;2 4b∴随 x 的增大,y 先增大后减小; 故选择:C. 【点睛】本题考查了矩形的性质,勾股定理,解题的关键是利用勾股定理找到y 与 x 的关系式,从 而得到答案.2.D解析:D 【解析】 【分析】根据多边形的内角和和外角和定理,逐一判断排除即可得解. 【详解】A.四边形的内角和为 360°,外角和也为 360°,A 选项正确;B.根据四边形的内角和为 360°可知,一组对角互补,则另一组对角也互补,B 选项正确;C.六边形的内角和为(62)180 720,外角和为 360°,C 选项正确;(n 2)180120 6 10,D 选项错误.D.假设是 n 边形,解得n n【点睛】本题主要考查了多边形的内角和、外角和定理,熟练掌握计算公式是解决本题的关键.3.D解析:D 【解析】 【分析】根据勾股定理的逆定理对四个选项进行逐一判断即可. 【详解】A 、∵5 +4 ≠6 ,∴此组数据不能构成直角三角形,故本选项错误; 2 2 2B 、1+2 ≠3 ,∴此组数据不能构成直角三角形,故本选项错误; 2 2 2 C 、∵2 +3≠4 ,∴此组数据不能构成直角三角形,故本选项错误; 2 2 2 3 ) ,∴此组数据能构成直角三角形,故本选项正确. 2 D 、∵1 +( ) =( 2 2 2 故选:D .【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a ,b ,c 满足 a +b =c ,那么这2 2 2 个三角形就是直角三角形.4.D解析:D 【解析】 【分析】根据平方根和算术平方根的定义解答即可. 【详解】16=4,故该项错误;C 、1 的平方根是 A 、(﹣3) 的平方根是±3,故该项错误;B 、 2 ±1,故该项错误;D 、4 的算术平方根是 2,故该项正确.故选 D. 【点睛】本题考查了平方根、算术平方根的定义,解决本题的关键是熟记平方根、算术平方根的定 义.5.C解析:C 【解析】 【分析】根据轴对称图形的概念对各个大写字母判断即可得解. 【详解】A .“E ”是轴对称图形,故本选项不合题意;B .“M ”是轴对称图形,故本选项不合题意;C .“N ”不是轴对称图形,故本选项符合题意;D .“H ”是轴对称图形,故本选项不合题意.故选:C .【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重 合.6.D解析:D【解析】【分析】先在直角△AOB 中利用勾股定理求出 AB =5cm ,再利用直角三角形斜边上的中线等于斜边1的一半得出 OD = AB =2.5cm .然后根据旋转的性质得到 OB =OB =4cm ,那么 B D =OB 21 1 1 ﹣OD =1.5cm .【详解】∵在△AOB 中,∠AOB =90°,AO =3cm ,BO =4cm ,∴AB = =5cm ,O A 2 O B 2 ∵点 D 为 AB 的中点,1 ∴OD = AB =2.5cm . 2∵将△AOB 绕顶点 O ,按顺时针方向旋转到△A OB 处, 1 1∴OB =OB =4cm , 1∴B D =OB ﹣OD =1.5cm . 1 1故选:D .【点睛】本题主要考查勾股定理和直角三角形的性质以及图形旋转的性质,掌握“直角三角形斜边 上的中线等于斜边的一半”是解题的关键.7.A解析:A【解析】【详解】B,C,D 不是轴对称图形,A 是轴对称图形.故选 A.8.C解析:C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的 一部分个体,而样本容量则是指样本中个体的数目.根据概念进行判断即可.【详解】解:了解我区八年级学生的身高情况,抽查了1000名学生的身高进行统计分析.所抽查的1000名学生的身高是这个问题的样本,故选:C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不带单位.9.C解析:C【解析】【分析】当C′落在A B上,点B与E重合时,A C'长度的值最小,根据勾股定理得到A B=5cm,由折叠的性质知,BC′=B C=3c m,于是得到结论.【详解】解:当C′落在A B上,点B与E重合时,A C'长度的值最小,∵∠C=90°,A C=4c m,B C=3c m,∴A B=5c m,由折叠的性质知,BC′=B C=3c m,∴A C′=A B-BC′=2cm.故选:C.【点睛】本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键.10.C解析:C【解析】【分析】根据二次根式有意义的条件即可确定x的取值范围.【详解】5解:由题意得,2x+5≥0,解得x≥﹣,2故选:C.【点睛】a本题考查了二次根式有意义的条件,对于二次根式,当被开方数a时有意义,正确理解二次根式有意义的条件是解题的关键.二、填空题11.【解析】【分析】由正方形和等边三角形的性质得出∠A D E =150°,A D=D E,得出∠DE A=15°,同理可求出∠CE B=15°,即可得出∠AE B 的度数.【详解】解:∵在正方形中,,,在解析:AEB30【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】DC解:∵在正方形A B C D中,A D,AD C90,在等边三角形C D E中,C D D E ,C D E DE C60,∴ADE AD C CDE150A D D E,,A D E在等腰三角形中180ADE180150DEA152 2,同理得:BEC15,则AEB DEC DEA BE C60151530.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形内角和定理;熟练掌握正方形和等边三角形的性质是解决问题的关键.12.1【解析】【分析】观察图形可知,小正方形的面积=大正方形的面积4个直角三角形的面积,利用已知,则大正方形的面积为13,每个直角三角形的面积都是3,可以得出小正方形的面积,进而求出答案.【详解解析:1【解析】观察图形可知,小正方形的面积=大正方形的面积- 4 个直角三角形的面积,利用已知 c 13 ,则大正方形的面积为 13,每个直角三角形的面积都是 3,可以得出小正方形的 面积,进而求出答案.【详解】解:根据题意,可知,1 3 ∵c 13 , ab , 21 (b a ) 4 ab c ∴ ∴2 2 ,c 2 13 , 2(b a )2 13 43 1, ∴b∵ a ∴b a 1; b ,即b a 0 ,a 1;故答案为:1.【点睛】此题主要考查了勾股定理、完全平方公式、四边形和三角形面积的计算,利用数形结合的 思想是解题的关键.13.【解析】解:,,∴.又∵垂直平分,∴,.∵,∴,∴,,.由勾股定理可得.故答 案为.解析: 2 3【解析】B 90 30 , A ACB 60.又∵ 解: ,∴ 垂直平分 D E C D A D 2 A C ,∴ C D AD ,AC D A 30 DCB .∵ 1,∴,∴ B D 1 2 3 .故答案为2 3 A 30 . A B 3 , , B C A C .由勾股定理可得 A C 2 14.1【解析】【分析】直接把点P (-1,0)代入一次函数y=kx+1,求出k 的值即可.【详解】∵ 一次函数y=kx+1的图象经过点P (-1,0),∴ 0=-k+1,解得k=1.故答案为1.【解析:1【分析】直接把点 P (-1,0)代入一次函数 y=kx+1,求出 k 的值即可.【详解】∵一次函数 y=kx+1 的图象经过点 P (-1,0),∴0=-k+1,解得 k=1.故答案为 1.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此 函数的解析式是解答此题的关键.15.4【解析】【分析】先求出直线与 y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把 (0,4)代入即可求出 m 的值.【详解】解:当 x=0 时,=4,则直线与 y 轴的交点坐标为(0,4),把(解析:4【解析】【分析】 2x 4 先求出直线 与 y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把 y (0,4)代入 y【详解】x m 即可求出 m 的值.解:当 x=0 时, =4,则直线 x m 得 m=4,y 2x 4 y 2x 4与 y 轴的交点坐标为(0,4), 把(0,4)代入 y 故答案为:4.【点睛】本题考查了两条直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应 的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的 自变量系数相同,即 k 值相同. 16.−1<x<2.【解析】【分析】根据 x 轴上方的图象的 y 值大于 0 进行解答.【详解】如图所示,x>−1 时,y>0,当 x<2 时,y>0,∴使 y 、y 的值都大于 0 的 x 的取值范围是:−1<x<2.解析: 1<x<2.【解析】【分析】根据 x 轴上方的图象的 y 值大于 0 进行解答.【详解】如图所示,x>−1 时,y >0,1 当 x<2 时,y >0,2 ∴使 y 、y 的值都大于 0 的 x 的取值范围是:−1<x<2.2 1 故答案为:−1<x<2.【点睛】此题考查两条直线相交或平行问题,解题关键在于x 轴上方的图象的 y 值大于 0 17.1≤m≤【解析】【分析】根据题意求得x0,结合已知2≤x0≤3,即可求得m 的取值范围.【详解】当时,,∴ ,当时,,,当时,,,m 的取值范围为:1≤m≤故答案为:1≤m≤【点睛】3 解析:1≤m≤ 2【解析】【分析】根据题意求得 x ,结合已知 2≤x ≤3,即可求得 m 的取值范围. 00 【详解】3x 当 ∴ 当 0时, ,y m 3 , x 0m 3 3时, 3 m , 1, mx 033 2 x 2 2 m ,当 时, , 0 m 3 m 的取值范围为:1≤m≤ 23 故答案为:1≤m≤ 2【点睛】本题考查了一次函数与坐标轴的交点以及不等式的求法,根据与x 轴的交点横坐标的范围 求得 m 的取值范围是解题的关键. 18.【解析】【分析】设的中点为,过作的垂直平分线,通过待定系数法求出直线的函数表达式,根 据可以得到直线的值,再求出中点坐标,用待定系数法求出直线的函数表达式 即可.【详解】解:设的中点为,过作的1 4 5 8解析: x 【解析】【分析】设 AB 的中点为 D ,过 D 作 AB 的垂直平分线 EF ,通过待定系数法求出直线 AB 的函数 AB EF 表达式,根据 EF 可以得到直线 的 值,再求出 AB 中点坐标,用待定系数法求 k 出直线 EF 的函数表达式即可.【详解】解:设 AB 的中点为 D ,过 D 作 AB 的垂直平分线 EF∵A(1,3),B(2,-1)设直线 的解析式为 AB y k x b ,把点 A 和 B 代入得: 1 1b 32k b 1解得: k 4 k 1 b 7 14x 7∴ y 31 1 2 ∵D 为 AB 中点,即 D( , ) 2 23 ∴D( ,1) 2y k x b 设直线 EF 的解析式为 2 2AB∵ EF k k 11 2∴ 1 ∴ k 2 4y k x b ∴把点 D 和 k 代入 可得: 2 2 21 3 1 b 42 25 ∴b 82 1 5 8x ∴ y 4 1 5 x 上 ∴点 C(x ,y)在直线 y 4 81 故答案为 x 4 5 8【点睛】本题主要考查了等腰三角形的性质,中垂线的性质,待定系数法求一次函数的表达式,根 据题意作出中垂线,再用待定系数法求出一次函数的解析式是解题的关键.19.8【解析】【分析】作 BC 边上的高 AF ,利用等腰三角形的三线合一的性质求 BF =3,利用勾股定理 求得 AF 的长,利用面积相等即可求得 AB 边上的高 CP 的长.【详解】解:如图,作 AF⊥BC 于点 F ,作解析:8【解析】【分析】作 BC 边上的高 AF ,利用等腰三角形的三线合一的性质求 BF =3,利用勾股定理求得 AF 的 长,利用面积相等即可求得 AB 边上的高 CP 的长.【详解】解:如图,作AF⊥BC于点F,作CP⊥AB于点P,根据题意得此时CP的值最小;解:作BC边上的高AF,∵AB=AC=5,BC=6,∴BF=CF=3,∴由勾股定理得:AF=4,1111∴S△ABC=AB•PC=BC•AF=×5CP=×6×42222得:CP=4.8故答案为4.8.【点睛】此题主要考查直角三角形的性质,解题的关键是熟知勾股定理及三角形的面积公式的运用. 20.(2,0)【解析】【分析】把y=0代入y=2x+4求出x的值,即可得出答案.【详解】把y=0代入y=2x-4得:0=2x-4,x=2,即一次函数y=2x-4与x轴的交点坐标是(2,0)解析:(2,0)【解析】【分析】把y=0代入y=2x+4求出x的值,即可得出答案.【详解】把y=0代入y=2x-4得:0=2x-4,x=2,即一次函数y=2x-4与x轴的交点坐标是(2,0).故答案是:(2,0).【点睛】考查了一次函数图象上点的坐标特征,注意:一次函数与x轴的交点的纵坐标是0.三、解答题21.(1)100,35;(2)详见解析;(3)800人.【解析】【分析】(1)由共享单车的人数以及其所占百分比可求得总人数m,用支付宝人数除以总人数可得其百分比n的值;(2)总人数乘以网购的百分比可求得网购人数,用微信人数除以总人数求得其百分比,由此即可补全两个图形;(3)总人数乘以样本中微信人数所占百分比即可求得答案.【详解】(1)抽查的总人数m=10÷10%=100,35支付宝的人数所占百分比n%=100100%=35%,所以n=35,故答案为:100,35;(2)网购人数为:100×15%=15人,40微信对应的百分比为:100100%40%,补全图形如图所示:(3)估算全校2000名学生种,最认可“微信”这一新生事物的人数为:2000×40%=800人.【点睛】本题考查了条形统计图与扇形统计图信息相关问题,读懂统计图,从中找到必要的信息是解题的关键.22.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据ASA证明ΔABF≌ΔBCE即可;(2)根据直角三角形两锐角互余、角平分线的性质以及余角的性质可得∠DBC=∠BDE,根据等角对等边即可得到BC=CD,从而得到结论.【详解】(1)∵BE⊥CD,AF⊥BE,∴∠BEC=∠AFB=90°, ∴∠ABE+∠BAF=90°. ∵∠ABC=90°, ∴∠ABE+∠EBC=90°, ∴∠BAF=∠EBC . 在 ΔABF 和 ΔBCE 中,∵∠AFB=∠BEC ,AF=BE ,∠BAF=∠EBC , ∴ΔABF ≌ΔBCE . (2)∵∠ABC=90°, ∴∠ABD+∠DBC=90°. ∵∠BED=90°, ∴∠DBE+∠BDE=90°. ∵BD 分∠ABE , ∴∠ABD=∠DBE , ∴∠DBC=∠BDE , ∴BC=CD ,即 ΔBCD 是等腰三角形. 【点睛】本题考查了等腰三角形的判定与全等三角形的判定与性质.解题的关键是证明 ΔABF ≌ΔBCE .23.(1)∠D 是直角.理由见解析;(2)234. 【解析】 【分析】(1)连接 AC ,先根据勾股定理求得 AC 的长,再根据勾股定理的逆定理,求得∠D=90°即 可;(2)根据△ACD 和△ACB 的面积之和等于四边形 ABCD 的面积,进行计算即可. 【详解】(1)∠D 是直角.理由如下: 连接 AC .∵AB=20,BC=15,∠B=90°,∴由勾股定理得 AC =20 +15 =625.2 又∵CD=7,AD=24, ∴CD +AD =625, 2 2 2 2 ∴AC =CD +AD , 2 2 2 ∴∠D=90°.1 1 1 1(2)四边形 ABCD 的面积= AD•DC+ AB•BC= ×24×7+ ×20×15=234.2 2 2 2【点睛】考查了勾股定理以及勾股定理的逆定理的综合运用,解决问题时需要区别勾股定理及其逆 定理.通过作辅助线,将四边形问题转化为三角形问题是关键.7 7 x 3 (3,4) (9,12) (3)点 坐标为 或24.(1)b 【解析】(2) P【分析】4xy x b1(1)将点 横坐标代入 y 求得点 C 的纵坐标为 4,再把(-3,4)代入C 32求出 b 即可;0 y y (2)求出点 A 坐标,结合点 C 坐标即可判断出当 时, x 的取值范围; 1 2 4 3 4 47 3 a 7a , 7 a a (3)设 P (a,- ),可求出 Q ( ),即可得 PQ= ,再求出 3 314OC OC=5,根据 P Q 求出 a 的值即可得出结论.5【详解】43(1)把 x 代入 y x , 324 得 y .∴C (-3,4) 把点C(3,4)代入 yx b 1,7 得b . (2)∵b=7 ∴y=x+7,当 y=0 时,x=-7,x=-3 时,y=4, 0 yy 7 3.∴当 时,x 124x (3) 点 为直线 y 上一动点,P 3 4( , ) 设点 坐标为 a a. P 3∵P Q / /x 轴,44把 y y x7 4 ,得 a .7a 代入x 3 3 4a 7,a 点Q 坐标为 , 334 7P Q a a 7 a 73 3 (3,4 ) 又 点 坐标为 C, OC 3 4 52 2 14PQ OC 1457a 7 14 33 a 9或 .解之,得a (3,4) (9,12) 或 .点 坐标为 P 【点睛】理解点在直线上则它的坐标满足直线的解析式.学会用坐标表示线段的长. 25.(1)详见解析;(2)报亭到小路端点 A 的距离 50m . 【解析】 【分析】(1)作 AC 的垂直平分线交 AD 与点 H ,进而得出答案; (2)利用勾股定理以及线段垂直平分线的性质得出即可. 【详解】(1)如图所示:H 点即为所求;(2)根据作图可知: H H ,A = C设 AH =xm ,则 DH =(80﹣x )m ,HC =xm , 在 Rt △DHC 中,D H 2 C D 2 HC 2 ,(80﹣x)40 x2 ,∴ 2 2 解得:x =50,答:报亭到小路端点 A 的距离 50m . 【点睛】本题主要考查了应用设计与作图以及勾股定理和线段垂直平分线的性质和作法等知识,得 出 H H ,进而利用勾股定理得出是解题关键.A = C四、压轴题26.(1)①6;②5 或﹣3;(2)直线 AC 的表达式为:y =﹣x+3 或 y =x+1;(3)m 的 取值范围为﹣3≤m ≤﹣2+ 3 或 2﹣ 3 ≤m ≤3. 【解析】 【分析】(1)①由矩形的性质即可得出结果; ②由矩形的性质即可得出结果;(2)过点 A (1,2)作直线 y =﹣1 的垂线,垂足为点 G ,则 AG =3 求出正方形 AGCH 的 边长为 3,分两种情况求出直线 AC 的表达式即可;1(3)由题意得出点 M 在直线 y =2 上,由等边三角形的性质和题意得出OD =OE = DE =23 OD= 3 ,分两种情况:1,EF =DF =DE =2,得出 OF = ①当点 N 在边 EF 上时,若点 N 与 E 重合,点 M ,N 的“相关矩形”为正方形,则点 M 的 坐标为(﹣3,2)或(1,2);若点 N 与 F 重合,点 M ,N 的“相关矩形”为正方形,则 3 3或 2﹣点 M 的坐标为(﹣2+ ,2);得出 m 的取值范围为﹣3≤m ≤﹣2+ 3 ≤m ≤1;②当点 N 在边 DF 上时,若点 N 与 D 重合,点 M ,N 的“相关矩形”为正方形,则点 M 的坐标为(3,2)或(﹣1,2);若点 N 与 F 重合,点 M ,N 的“相关矩形”为正方形, 3 3≤m ≤3 或 2﹣则点 M 的坐标为(2﹣ ,2);得出 m 的取值范围为 2﹣ 3 ≤m ≤1;即可得出结论. 【详解】解:(1)①∵b =﹣2,∴点 B 的坐标为(﹣2,0),如图 2﹣1 所示: ∵点 A 的坐标为(1,2),∴由矩形的性质可得:点 A ,B 的“相关矩形”的面积=(1+2)×2=6, 故答案为:6; ②如图 2﹣2 所示:由矩形的性质可得:点 A ,B 的“相关矩形”的面积=|b ﹣1|×2=8, ∴|b ﹣1|=4, ∴b =5 或 b =﹣3, 故答案为:5 或﹣3;(2)过点 A (1,2)作直线 y =﹣1 的垂线,垂足为点 G ,则 AG =3, ∵点 C 在直线 y =﹣1 上,点 A ,C 的“相关矩形”AGCH 是正方形, ∴正方形 AGCH 的边长为 3,当点 C 在直线 x =1 右侧时,如图 3﹣1 所示: CG =3,则 C (4,﹣1),设直线 AC 的表达式为:y =kx+a ,2 k a则,, 1 4k ak 1解得;a 3∴直线 AC 的表达式为:y =﹣x+3;当点 C 在直线 x =1 左侧时,如图 3﹣2 所示: CG =3,则 C (﹣2,﹣1),设直线 AC 的表达式为:y =k ′x+b ,2 kb则,1 2k bk 1 解得:, b 1∴直线 AC 的表达式为:y =x+1,综上所述,直线 AC 的表达式为:y =﹣x+3 或 y =x+1; (3)∵点 M 的坐标为(m ,2), ∴点 M 在直线 y =2 上,∵△DEF 是等边三角形,顶点 F 在 y 轴的正半轴上,点 D 的坐标为(1,0), 1∴OD =OE = DE =1,EF =DF =DE =2,2 3 OD= 3 ,∴OF =分两种情况:如图 4 所示:①当点 N 在边 EF 上时,若点 N 与 E 重合,点 M ,N 的“相关矩形”为正方形, 则点 M 的坐标为(﹣3,2)或(1,2);若点 N 与 F 重合,点 M ,N 的“相关矩形”为正方形, 3 3 则点 M 的坐标为(﹣2+ ,2)或(2﹣ ,2);3 3 m 1≤ ≤ ;∴m 的取值范围为﹣3≤m ≤﹣2+ 或 2﹣ ②当点 N 在边 DF 上时,若点 N 与 D 重合,点 M ,N 的“相关矩形”为正方形, 则点 M 的坐标为(3,2)或(﹣1,2);若点 N 与 F 重合,点 M ,N 的“相关矩形”为正方形, 3 22+ 3 2 , );则点 M 的坐标为(2﹣ , )或(﹣ 3 m 3 2+ 3 1 m ∴m 的取值范围为 2﹣ ≤ ≤ 或﹣ ≤ ≤﹣ ; 3 或 2﹣≤ ≤ .3 m 3综上所述,m 的取值范围为﹣3≤m ≤﹣2+【点睛】此题主要考查图形与坐标综合,解题的关键是熟知正方形的性质、一次函数的图像与性质及新定义的应用.27.(1)8;(2)145°;(3)详见解析.【解析】【分析】(1)作AD x 轴于D,BE⊥x 轴于E,由点A,B 的坐标可得出AD=OD=2,BE=EO=4,DE=6,由面积公式可求出答案;(2)作CH∥x 轴,如图2,由平行线的性质可得出∠AOG=∠ACH,∠DEC=∠HCE,求出∠DEC+∠AOG=∠ACB=90°,可求出∠DEC=35°,则可得出答案;(3)证得∠NEC=∠HEC,则∠NEF=180°-∠NEH=180°-2∠HEC,可得出结论.【详解】解:(1)作AD x 轴于D,BE x 轴于E,如图1,∵A(﹣2,2)、B(4,4),∴AD=OD=2,BE=OE=4,DE=6,111∴S△ABC=S 梯形ABED﹣S△AOD﹣S△AOE=×(2+4)×6﹣×2×2﹣×4×4=8;222(2)作CH // x 轴,如图2,∵D(0,﹣4),M(4,﹣4),∴DM // x 轴,∴CH // OG // DM,∴∠AOG=∠ACH,∠DEC=∠HCE,∴∠DEC+∠AOG=∠ACB=90°,∴∠DEC=90°﹣55°=35°,∴∠CEF=180°﹣∠DEC=145°;(3)证明:由(2)得∠AOG+∠HEC=∠ACB=90°,而∠HEC+∠CEF=180°,∠NEC+∠CEF=180°,∴∠NEC=∠HEC,∴∠NEF=180°﹣∠NEH=180°﹣2∠HEC,∵∠HEC=90°﹣∠AOG,∴∠NEF=180°﹣2(90°﹣∠AOG)=2∠AOG.【点睛】本题是三角形综合题,考查了坐标与图形的性质,三角形的面积,平行线的性质,三角形内角和 定理,熟练掌握平行的性质及三角形内角和定理是解题的关键.28.(1)AD =DE ,见解析;(2)AD =DE ,见解析;(3)见解析,△ADE 是等边三角 形, 【解析】 【分析】(1)根据题意,通过平行线的性质及等边三角形的性质证明ADF ≌ED C (2)根据题意,通过平行线的性质及等边三角形的性质证明AFD ≌DCE(3)根据垂直平分线的性质及等边三角形的判定定理进行证明即可.【详解】即可得解; 即可得解;(1)如下图,数量关系:AD =DE.证明:∵ABC是等边三角形∴AB =BC ,B =BAC =BCA =60∵DF ∥AC BF D =BAC ∴ ∴ ,∠BDF =∠BCAB =BF D =B D F =60是等边三角形,AFD =120∴BDF ∴DF =BD∵点 D 是 BC 的中点 ∴BD =CD ∴DF =CD∵CE 是等边ABC 的外角平分线DCE =120=AF D∴ ∵ABC是等边三角形,点 D 是 BC 的中点∴AD ⊥BC AD C =90 ∴ ∵ ∴ 在 BDF =ADE =60ADF =ED C =30 EDC ADF 与 中A F D =EC D=C DDFADF =ED CADF ≌ED C(ASA)∴∴AD=DE;(2)结论:AD=DE.证明:如下图,过点D作DF∥AC,交AB于F ∵ABC是等边三角形∴AB=BC ,B =BAC =BCA=60∵DF∥ACBF D =BAC ,BDF =BC AB =BF D =B D F=60∴∴是等边三角形,AFD=120∴BDF∴BF=BD∴AF=DC∵CE 是等边ABC的外角平分线DCE=120=AF D∴ABD∵∠ADC是的外角AD C =B +FA D=60+FA D∴∵AD C =ADE +C DE=60+C D E ∴∠FAD=∠CDEDCE在AFD与中A F D =DCE=C DAFFAD =ED CAFD ≌DCE(ASA)∴∴AD=DE;(3)如下图,A D E是等边三角形.。
2020—2021年人教版八年级数学上册第二次月考测试卷及参考答案
2020—2021年人教版八年级数学上册第二次月考测试卷及参考答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若二次根式51x -有意义,则x 的取值范围是( )A .x >15B .x ≥15C .x ≤15D .x ≤52.将抛物线23y x =-平移,得到抛物线23(1)2y x =---,下列平移方式中,正确的是( )A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位3.已知:20n 是整数,则满足条件的最小正整数n ( )A .2B .3C .4D .54.若不等式组11324x x x m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为( ) A .2m ≤ B .2m < C .2m ≥ D .2m >5.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .6.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .1257.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .8.如图,在△ABC 中,∠C=90°,按以下步骤作图:①以点A 为圆心、适当长为半径作圆弧,分别交边AC 、AB 于点M 、N ;②分别以点M 和点N 为圆心、大于12MN 的长为半径作圆弧,在∠BAC 内,两弧交于点P ;③作射线AP 交边BC 于点D ,若CD=4,AB=15,则△ABD 的面积是( )A .15B .30C .45D .609.如图将直尺与含30°角的三角尺摆放在一起,若120∠=︒,则2∠的度数是( )A .30B .40︒C .50︒D .60︒10.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为( )A .x y 50{x y 180=-+=B .x y 50{x y 180=++=C .x y 50{x y 90=++=D .x y 50{x y 90=-+= 二、填空题(本大题共6小题,每小题3分,共18分)1.若0xy >,则二次根式2y x x -________.2.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______. 3.因式分解:2a 2﹣8=________.4.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需______米.5.如图,在□ABCD 中,BE 平分∠ABC ,BC=6,DE=2,则□ABCD 的周长等于__________.6.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .三、解答题(本大题共6小题,共72分)1.解方程组:25342x y x y -=⎧⎨+=⎩2.化简:x(4x +3y)-(2x +y)(2x -y)3.已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c 13分.(1)求a ,b ,c 的值;(2)求3a b c -+的平方根.4.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数.5.如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.6.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、A5、D6、C7、D8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)12、03、2(a+2)(a-2).4、5、206、42.三、解答题(本大题共6小题,共72分)1、21 xy=⎧⎨=-⎩2、3xy+y23、(1)a=5,b=2,c=3 ;(2)±4.4、略(2)∠EBC=25°5、(1)略;(2)略.6、(1) 4800元;(2) 降价60元.。
2020—2021年人教版八年级数学上册第二次月考试卷及答案【可打印】
2020—2021年人教版八年级数学上册第二次月考试卷及答案【可打印】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是( )A .﹣3B .3C .-13D .132.下列二次根式中,是最简二次根式的是( ).A .2xyB .2abC .12D .422x x y +3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x4.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )A .(2,3)B .(-2,-3)C .(-3,2)D .(3,-2)5.下列各组数中,能构成直角三角形的是( )A .4,5,6B .1,1,2C .6,8,11D .5,12,236.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40), B .(0)4, C .40)(-, D .(0,4)-7.如图,直线y=kx+b (k ≠0)经过点A (﹣2,4),则不等式kx+b >4的解集为( )A.x>﹣2 B.x<﹣2 C.x>4 D.x<48.在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()A.B.C.D.9.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°10.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△=15,则CD的长为()ABDA.3 B.4 C.5 D.6二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x<5,化简2x +|x-5|=________.(1)2.将命题“同角的余角相等”,改写成“如果…,那么…”的形式_____.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.如图,在△ABC中,∠B=46°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=________.5.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ____________.6.如图,四边形ABCD 中,AB =AD ,AC =5,∠DAB =∠DCB =90°,则四边形ABCD 的面积为_____.三、解答题(本大题共6小题,共72分)1.解方程组:4311213x y x y -=⎧⎨+=⎩2.先化简,再求值:(1﹣11a -)÷2244a a a a-+-,其中a=2+2.3.已知:关于x 的方程2x (k 2)x 2k 0-++=,(1)求证:无论k 取任何实数值,方程总有实数根;(2)若等腰三角形ABC 的一边长a=1,两个边长b ,c 恰好是这个方程的两个根,求△ABC 的周长.4.在□ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF.(1)求证:四边形BFDE 是矩形;(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB .5.在△ABC 中,AB=AC ,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧..作△ADE ,使AD=AE ,∠DAE =∠BAC ,连接CE . (1)如图1,当点D 在线段BC 上,如果∠BAC=90°,则∠BCE=________度;(2)设BAC α∠=,BCE β∠=.①如图2,当点在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由;②当点在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.6.某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、C4、C5、B6、A7、A8、C9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、42、如果两个角是同一个角的余角,那么这两个角相等3、如果两个角互为对顶角,那么这两个角相等4、67°.5、46、12.5三、解答题(本大题共6小题,共72分)1、53x y =⎧⎨=⎩.2、原式=2aa -=.3、(1)略;(2)△ABC 的周长为5.4、(1)略(2)略5、(1)90;(2)①180αβ+=︒,理由略;②当点D 在射线BC.上时,a+β=180°,当点D 在射线BC 的反向延长线上时,a=β.6、(1) 甲种商品的每件进价为40元,乙种商品的每件进价为48元;(2)甲种商品按原销售单价至少销售20件.。
2020—2021年人教版八年级数学上册第二次月考考试卷及答案1套
2020—2021年人教版八年级数学上册第二次月考考试卷及答案1套 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若m >n ,则下列不等式正确的是( ) A .m ﹣2<n ﹣2 B .44m n > C .6m <6n D .﹣8m >﹣8n2.不等式3(x ﹣1)≤5﹣x 的非负整数解有( )A .1个B .2个C .3个D .4个3.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >4.已知-10m 是正整数,则满足条件的最大负整数m 为( )A .-10B .-40C .-90D .-1605.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:x 甲=x 丙=13,x 乙=x 丁=15:s 甲2=s 丁2=3.6,s 乙2=s 丙2=6.3.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁 6.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .1320 7.已知=2{=1x y 是二元一次方程组+=8{ =1mx ny nx my -的解,则2m n -的算术平方根为( )A.±2 B.2C.2 D.48.如图,在平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE,BF相交于H,BF与AD的延长线相交于点G,下面给出四个结论:①2BD BE=;②∠A=∠BHE;③AB=BH;④△BCF≌△DCE,其中正确的结论是()A.①②③B.①②④C.②③④D.①②③④9.如图,在下列条件中,不能证明△ABD≌△ACD的是().A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC10.尺规作图作AOB∠的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于12CD长为半径画弧,两弧交于点P,作射线OP,由作法得OCP ODP≌的根据是()A.SAS B.ASA C.AAS D.SSS 二、填空题(本大题共6小题,每小题3分,共18分)1.若a、b为实数,且b=22117a aa--++4,则a+b=________.2.若关于x、y的二元一次方程3x﹣ay=1有一个解是32xy=⎧⎨=⎩,则a=_____.3.如果实数a,b满足a+b=6,ab=8,那么a2+b2=________.4.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组22{20x m xx+----<<的解集为________.5.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为___________cm(杯壁厚度不计).6.如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的垂直平分线,点E、N在BC上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解方程组:4311 213x yx y-=⎧⎨+=⎩2.先化简,再求值:2282442xxx x x⎛⎫÷--⎪-+-⎝⎭,其中2x=.3.已知关于x的方程x2-(m+2)x+(2m-1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.4.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.5.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.6.某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数.(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、A5、D6、B7、C8、A9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、5或32、43、204、﹣2<x<25、206、32°三、解答题(本大题共6小题,共72分)1、53xy=⎧⎨=⎩.2、22x-,12-.3、(1)略;(2)4或4+.4、答案略5、(1)略;(2)112.5°.6、(1)2400个, 10天;(2)480人.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学(上)第二次月考试卷
班级: 座位: 姓名: 成绩:
一、填空题(每空3分,共45分)
1、计算:32)(a a -⋅-= ;2782÷= 。
2、若y ≤0,则33y =___ __.若,01822=-x 则=2x ;
3、若1962+-ax x 是一个完全平方式,则 a= 。
4、若2m-4与3m-1是同一个数的平方根,则m=
5、若9)9(2-=-x x ,则x 的取值范围是:___ _ _____。
6、一个正五边形要绕它的中心至少旋转 度,才能和原来的图形重合.
7、已知3320x -是整数,则最小整数x 的值为
8、矩形ABCD 的周长是28cm,对角线AC 与BD 相交于点O,△OAB 与
△OBC 的周长差是2cm,则矩形ABCD 的对角线长是
9. 如图,在平行四边形ABCD 中,BC AE ⊥于E,AC=AD, ∠CAE=︒56,则∠D= . 10、∆ABC ≌∆DEF,若∆ABC 的周长为50cm ,AB=18cm,EF=22cm,则DE= .
11、26个英文字母中,即是轴对称又是中心对称的字母有: (至少写出3个) 12、已知菱形的一条对角线长为6cm ,面积为183 cm 2,则菱形较小的内角为 ° 13、如图所示,直角△AOB 顺时针旋转后与△COD 重合,若
∠AOD =127°,则旋转角度是 .
二、选择题:(每题3分,共33分)
14、在实数中,绝对值等于它本身的数有( ).
A.1个
B.2个
C.3个
D.无数个 第13题 15、已知,a b 是实数,则下列命题正确的是 ( ) A、若a b ≠,则22a b ≠ B、若22a b >,则a b > C、若a b >,则a b > D、若a b >,则22a b >
16、四边形ABCD 中,4:2:3:3:::=∠∠∠∠D C B A ,则四边形是( )
A.任意四边形
B.平行四边形
C. 等腰梯形
D.直角梯形
17、下列说法:①有理数和数轴上点一一对应;②不带根号的数一定是有理数;③负数没有
立方根;④17
-是17的平方根,其中正确的有( )
A.1个B.2个C.3个D.4个
18. 图中阴影部分是一个正方形,则此正方形的面积是()
A.9 B.16 C.25 D.1 第18题
19.观察下列图形,其中与另外三张变换形式不同的是( )
(A) (B) (C) (D)
20、如图是一个等腰梯形,如果阴影部分的面积是50 ,
梯形的面积为()。
A. 100
B. 110
C.120
D. 130
21、等腰梯形上、下底差等于一腰的长,则腰与下底的夹角是()
A.B.C.D.
22、正方形具有而菱形不一定具有的性质()
A、四条边相等.
B、对角线相等.
C、对角线平分一组对角.
D、对角线互相垂直平分.
23.如图正方形ABCD中E为BC延长线上一点,F为DC上一点,
且CF=CE,则BF与DE的关系是()第23题
A.B F=DE B.B F⊥DE C.B F=DE且B F⊥DE D.无法确定
24、如图所示,等腰梯形ABCD中,AD∥BC,AB=CD,O是
AC、BD的交点,则图中全等三角形的个数有()
A.3对
B. 4对
C. 5对
D. 6对
三、解答题
25. 分解因式:(8分)
①48
34-
x
②1
)3
)(
1
(+
-
-x
x 26.先化简,再求值。
(7分)
①⎪
⎭
⎫
⎝
⎛
-
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
⎪
⎭
⎫
⎝
⎛
+
+
⎪
⎭
⎫
⎝
⎛
-2
2
2
2
2
1
2
2
1
2
1
y
x
y
x
y
x;其中2
,5.0=
-
=y
x.
27、如图15.3.6所示的两个图形成中心对称,请你找出对称中心。
(4分)
5
4
A D
B C
E
F
第24题
A
B
C
D
O
第20题
图15.3.6
29、已知
211
2()022
a b b c c -+++-=, 求()a b c +的值. (7分)
28. 先将方格纸中的图形向左平移5格,然后再向下平移3格. (4分)
30、已知10m =4,10n =5.求102m+n+1的值.(7分)
31、如图,正方形ABCD 的两条对角线相交于点O, 求∠AOB 和∠BAO 的度数. (8分)
32. 如图ABCD 中,E 为BC 边上的点,若△AEB 为等边三角形,延长AE 交DC 的延长线于F ,请问此时△AFD 也为等边三角形吗?请说明理由.(8分)
33. 如图所示,矩形ABCD 中,F 在CB 延长线上,AE=EF,CF=CA.求证:BE ⊥DE .(8分)
A
D
E
34、(11分)已知:如图AB∥CD,AC平分∠DAB,∠ACB=90°,且CD=AE=BE。
①试说明DE与AC互相垂直平分;
②探究:当四边形AECD是正方形时,求∠B的度数?
③探究:当四边形ABCD是等腰梯形,求∠B的度数?
33、将矩形ABCD对折,设折痕为MN,再把B点叠在折痕线MN上点B′,若AB=3
,求折
痕AE的长? (9分)
31. 如图,ABC
∆中,AB=AC,点P是BC上任一点,PE//AC,PF//AB,分别交AB、AC于E、F,试问线段PE、PF、AB之间有什么关系,并说明理由.
20、(12分)如图,ABC
∆中,
35
90,12,,
22
C C
D BD
∠=︒∠=∠==,求AC的长。
B
AD
C
E
MN
B′
如图,延长等腰梯形ABCD 的两腰BA 与CD,相交于点E, 试说明△EBC 和△EAD 都是等腰三角形.
2. 如图,在梯形ABCD 中,BC ∥AD , DE ∥AB , DE =DC , ∠A =100°,试求梯形ABCD的其他三个内角的度数.请问此时ABCD 为等腰梯形吗?说说你的理由.
已知:E 、F 分别是正方形ABCD 的边BC.CD 上的点,AE,AF 分别与对角线BD 交于M 、N,若∠EAF=50°,求∠CME+∠CNF 度数?
如图是一个等腰梯形,如果阴影部分的面积是60平方厘米,求梯形的面积。
(8分)
D
A
B
E
F
N
M。