一致收敛性及应用初步

合集下载

一致收敛性判别及应用

一致收敛性判别及应用

一致收敛性判别及应用摘要:函数是高等数学中重要的内容之一,但是函数项级数与函数列的一致收敛性问题往往是初学者学习函数的最大障碍,本文对函数项级数、函数列的一致收敛性的常用判别方法进行简单分析并阐述其应用。

关键词:函数项级数 函数列 一致收敛 判别法及应用设(){}n x ⎰为定义在区间Z 上的函数序列,假如那么就存在x 1,x 2∈Z ,当|x 1-x 2|<,对于一切n 有|()()12n -n X X ⎰⎰|<,则称之为函数序列(){}n x ⎰在区间Z 上等度连续。

假设函数列{}n ⎰与函数⎰定义在区间Z 上,假如对于任意给的正数|()()n x -x ⎰⎰|<以上情况则称之为{}n ⎰在区间Z 上一致收敛于⎰。

一、函数列及其一致收敛性假设1⎰,2⎰,,n ⎰,是一列定义在同一数集Z 上的函数,那么则称为定义在Z 上的函数列,可以表达为:{}n ⎰或n ⎰,n=1,2,。

(1) 以x 0∈Z 带入以上数列,可以得出以下数列:(2)假如数列(2)收敛,那么则称为数列(1)在点0X 收敛,x 0则是函数列(1)的收敛点,当函数列(1)在数集D Z 上每一个收敛点都出现收敛时,则称(1)在数集D 上收敛,这时候D 上面的每一个点x 都有相应的数列(){}n x ⎰的一个极限值与之相对应,根据这个对应法则所确定的D 上的函数,则称为函数列(1)的极限函数假如将此极限函数记作为⎰,那么则有:或者是:(),x ∈D例 1 设,n=1,2,,为定义在(-,。

证明:设>0,当>0时,由于有:||=|n x |,只要N (=,当n >(||=|x n |<|x|N=.当x=0,x=1,对于任何正整数n ,都存在||=0<,||=0<.以上结果证明了{}n ⎰在(]-1,1上收敛。

例2 定义在()-∞∞,上的函数列,n=1,2,。

由于对于任何的实数x ,都存在sin nx n≤1n,因此,对于任意>0,只要符合n >N=,就存在sin nx -0n<所以,函数列{}sin nx/n 的收敛域为()-∞∞,。

第1节一致收敛性

第1节一致收敛性

当x 1有 f n (1) f (1) 0 ,
f n ( x )在(1,1]上收敛, 且其极限函数为
0, f ( x) 1,
n
x 1 x 1
当 x 1, 有 x ( n ),
x 1, 有 1,1,1,发散 .
x n 在(1.,1]外均发散
( 2) nx(1 x )n


nx x f ( x) 解 : (1)x [0,1], 有 lim n 1 n x
nx 而 sup f n ( x ) f ( x ) sup x x[ 0 ,1] x[ 0 ,1] 1 n x
x(1 x ) 2 sup n x[ 0,1] 1 n x
而 ln(1 an )或 an收敛 lim an 0
n
ln(1 an ) lim 1, 由比较判别法知 : n an
ln(1 a
n
)与 an同敛散 .
CH13.函数列与函数项级数
第一节 一致收敛性
第二节 一致收敛函数列与 函数项级数的性质
第一节 一致收敛性
2.若一致收敛, 则必收敛; 反之不真.
定理1 : (函数列的一致收敛性)函数列 f n 在数集D上
一致收敛 0, N 0, 使得n, m N
对于一切x D,均有 f n ( x ) f m ( x ) f ( n ), x D 证明 : (必要性)设 f n
1 且f n ( x ) n f ( x ) f ( x ) , 则函数列 f n ( x ) n 在[, ] (a, b)一致收敛于函数f ( x ).
证明: r (, b), x [, ], N1 0, n N1 , 有

函数项级数一致收敛性判别法及其应用

函数项级数一致收敛性判别法及其应用

函数项级数一致收敛性判别法及其应用数学科学学院08级蒙班 包艳玲 20082115054指导老师 苏雅拉图摘 要:本文证明了常用的函数项级数一致收敛性的判别法,并通过例题给出了它的应用. 关键词:一致收敛,函数项级数,和函数.下面我要给出函数项级数的一致收敛性的定义定义 设给定函数项级数∑∞=1)(k k x u ,如果它的部分和序列=)(x S n ∑=π1)(k kx u在区间I 一致收敛到和函数)(x S ;那么称级数∑∞=1)(k k x u 在区间I 一致收敛到和函数)(x S ,即用N -ε语言来叙述,函数项级数∑∞=1)(k k x u 在区间I 一致收敛到)(x S ,是指对任给的0>ε,存在于x 无关的N ,只要N n >就有ε<-=-∑=nk kn x S x ux S x S 1)()()()(对一切I x ∈一直成立.例1 证明函数项级数∑∞=-11k k x 在⎥⎦⎤⎢⎣⎡-21,21一致收敛.证明 已知∑∞=-11k k x=x x n --11,⎥⎦⎤⎢⎣⎡-∈21,21x 时 xx xx S nnk k n --==∑=-11)(11ε<≤-≤-=--12111)()(n nnn x x x x x S x S ;⎥⎦⎤⎢⎣⎡-∈21,21x 时取121ln ln +⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=εN则只要N n >,就有ε<-)()(x S x S n ;⎥⎦⎤⎢⎣⎡-∈21,21x ,∑∞=-11k k x 在⎥⎦⎤⎢⎣⎡-21,21一致收敛.定理1(柯西原理) 函数项级数∑∞=1)(k k x u 在I 上一致收敛的充要条件是,I x N p N n N N N ∈∀∈∀>∀∈=∃>∀++及,,,,0)(εε都有ε<+++=-=++++++=∑)()()()()()(211x u x u x u x S x S x up n n n n p n pn n k k,证明 必要性 已知∑∞=1)(k k x u 在区间I 一致收敛,设其和函数是)(x S ,即2)()(ε<-x S x S n 也有 2)()(ε<-+x S x S p n于是εεε=+<-+-≤-+-=-=+++++=∑22)()()()()()()()()()()(1x S x S x S x S x S x S x S x S x S x S x un p n n p n n p n p n n k k充分性 已知I x N p N n N N N ∈∀∈∀>∀∈=∃>∀++及,,,,0)(εε有ε<-=+++=∑)()()(1x S x S x un p n pn n k k从而∑∞=1)(k k x u 在区间I 收敛,设其和函数是)(x S ,因为p 是任意正整数,所以当∞→p 时,上述不等式有ε<-)()(x S x S n即函数项级数∑∞=1)(k k x u 在区间I 一致收敛.例2 函数项级数∑∞=++-11)1(n n n n x nx 在区间[]1,1-的一致收敛性.证明 有柯西原理;[]0,1,1>∀-∈∀εx 要使不等式ε<+≤++++≤++++≤++-+=++-++++-+++-+=-++++++++++++++1211111111)1()32()21()()(111113221n p n n p n x n x p n x n x p n x p n x n x n x n x n x x S x S p n n p n n p n p n n n n n n p n从ε<+12n 得到12->εn ,则取⎥⎦⎤⎢⎣⎡-=12εN ,于是 [],1,1,,,12,0-∈∀∈∀>∀∈⎥⎦⎤⎢⎣⎡-=∃>∀++x N p N n N N 及εε有ε<-=+++=∑)()()(1x S x S x un p n pn n k k即函数项级数∑∞=++-11)1(n n n n x nx 在区间[]1,1-一致收敛.定理2 (维尔斯特拉斯判别法,或称M 判别法或称控制收敛判别法) 若对函数项级数∑∞=1)(k k x u ,存在),2,1(, =k M k ,使得k k M x u ≤)(,I x ∈∀,而正项数值级数∑∞=1k k M 收敛,则∑∞=1)(k k x u 在区间I I 一致收敛.证明 ∑∞=1k k M 收敛,,,,,0++∈∀>∀∈∃>∀N p N n N N ε有ε<++++++p n n n M M M 21,从而只要+∈∀>N p N n ,,有由柯西原理知,,)()()()()()(212121I x M M M x u x u x u x u x u x u p n n n p n n n p n n n ∈∀<+++≤+++≤++++++++++++ε函数项级数∑∞=1)(k k x u 在区间I 一致收敛.例3 证明∑∞=-11k k x 在⎥⎦⎤⎢⎣⎡-21,21一致收敛.证明 因为⎥⎦⎤⎢⎣⎡-∈∀≤--21,21,)21(11x xk k ,而∑∞=-11)21(k k 收敛,由M 判别法知∑∞=-11k k x在区间⎥⎦⎤⎢⎣⎡-21,21一致收敛.定理3 (狄利克雷判别法)若函数项级数∑∞=1)()(n n n x b x a 满足下面两个条件:1. 函数列{})(x a n 对每一个I x ∈0是单调的,且∞→n 时在区间I 一致收敛于0;2. 函数项级数∑∞=1)(n n x b 的部分和函数列{})(x B n 在区间I 一致有界,则函数项级数∑∞=1)()(n n n x b x a 在区间I 一致收敛.证明 已知函数列{})(x a n 一致收敛于0, 即I x N n N N N ∈∀>∀∈=∃>∀+,,,0εε,有.)(1ε<+x a n又已知函数项级数∑∞=1)(n n x b 的部分和函数列{})(x B n 在区间I 一致有界,即.)(,,,0M x B I x N n M n ≤∈∀∈∀>∃+有从而,有.2)()()()()()(21M x B x B x B x B b x b x b n p n n p n p n n n ≤+≤-=++++++++根据阿贝尔引理,I x ∈∀,有).(2)()()()()()(12211x Ma x b x a x b x a x b x a n p n p n n n n n +++++++≤+++ 于是,,,,,,0I x N p N n N N ∈∀∈∀>∀∈∃>∀++ε有,2)()()()()()(2211εM x b x a x b x a x b x a p n p n n n n n ≤+++++++++ 即函数项级数∑∞=1)()(n n nx b x a在区间I 一致收敛.例4 证明函数项级数∑∞=1sin n n nx在区间[])0(2,πδδπδ<<-一致收敛.证明 []+∈∀-∈∀N n x ,2,δπδ有.2sin121sin 12sin 2)21cos(21cos )21cos()21cos(2sin 212sin sin 22sin 21sin 111M x x xn x x k x k x x kx x kx nk nk nk =≤≤+-=⎥⎦⎤⎢⎣⎡+--==∑∑∑===δ知函数项级数∑∞=1sin n nx 的部分和函数列在[]δπδ-2,一致有界,而数列⎭⎬⎫⎩⎨⎧n 1单调减少趋于0(当然在[]δπδ-2,也是一致收敛于0),根据狄利克雷判别法,函数 项级数∑∞=1sin n n nx在区间[]δπδ-2,一致收敛. 定理4 (阿贝尔判别法)若函数项级数∑∞=1)()(n n n x b x a 满足下面两个条件:1. 函数列{})(x a n 对每一个I x ∈0是单调的,且在区间I 一致有界;2. 函数项级数∑∞=1)(n n x b 在区间I 一致收敛,则函数项级数∑∞=1)()(n n n x b x a 在区间I 一致收敛.证明 由条件知存在.0>M 使得.,2,1,,)( =∈∀≤n I x M x a n由柯西原理知,,,,,0++∈∀>∀∈∃>∀N p N n N N ε有.,)(1I x x bpn n k k∈∀<∑++=ε因此,对任意,N n >任意的正整数p ,用阿贝尔引理,有.,3))(2)(()()(11I x M x a x a x b x ap n n pn n k k k∈∀<+<++++=∑εε再由柯西原理知∑∞=1)()(n n n x b x a 在区间I 一致收敛.例5 已知函数项级数∑∞=1)(n n x a 收敛,证明∑∞=1)(n n n x x a 在[]1,0一致收敛.证明 已知∑∞=1)(n n x a 收敛,而对[]1,0∈∀x ,n x 对n 单调下降,且一致有界,[].,2,1,1,0,1 =∈∀≤n x x n由阿贝尔判别法知∑∞=1)(n n n x x a 在区间[]1,0一致收敛.例6 证明若函数项级数∑∞=1n n n x a (n a 是常数)在)0(>=r x 收敛,则它在区间[]r ,0一致收敛.证明 先把∑∞=1n n n x a 改写为.)(1n n nn n n r x r a x a ∑∑=∞= 已知级数∑∞=1n n n r a 收敛,从而它在区间[]r ,0也是一致收敛,且函数列在⎭⎬⎫⎩⎨⎧n r x )([]r ,0单调减少,又一致有界, 即[]有,,0,,1r x N n M ∈∀∈∀=∃+1)(≤n rx,根据阿贝尔判别法,函数项级数∑∞=1n n nx a在区间[]r ,0一致收敛.参考文献:1. 刘玉琏,傅沛仁,林玎.数学分析讲义.高等教育出版,2003年4月第二版.2. 邓东皋,尹小玲.数学分析简明教程(下).高等教育出版,2006年3月第二版.。

第七节函数项级数的一致收敛性幂级数的一致收敛性

第七节函数项级数的一致收敛性幂级数的一致收敛性

第七节 函数项级数的一致收敛性内容分布图示★ 引例(讲义例1) ★ 一致收敛的概念★ 例2 ★ 例3 ★ 魏尔斯特拉斯判别法 ★ 例4 ★ 例5 一致收敛级数的基本性质 ★ 定理2★ 定理3★ 定理4幂级数的一致收敛性★ 定理5★ 定理6 ★ 内容小结★ 课堂练习★ 习题11—7 ★ 返回讲解注意:一、 一致收敛的概念:函数项级数在收敛域I 上收敛于和)(x s ,指的是它在I 上的每一点都收敛,即对任意给定的0>ε及收敛域上的每一点x ,总相应地存在自然数),(x N ε,使 得当N n >时,恒有ε<-|)()(|x s x s n .一般来说,这里的N 不仅与ε有关,而且与x 也有关. 如果对某个函数项级数能够找到这样的一个只与ε有关而不依赖于x 的自然数N ,则当N n >时,不等式ε<-|)()(|x s x s n 对于区间I 上每一点都成立,这类函数项级数就是所谓的一致收敛的级数.定义1 设函数项级数∑∞=1)(n n x u 在区间I 上收敛于和函数)(x s , 如果对任意给定的0>ε,都存在着一个与x 无关的自然数N , 使得当N n >时, 对区间I 上的一切x 恒有ε<-=|)()(||)(|x s x s x r n n ,则称该函数项级数在区间I 上一致收敛于和)(x s ,此时也称函数序列)}({x s n 在区间I 上一致收敛于)(x s .二、定理1(魏尔斯特拉斯判别法)如果函数项级数∑∞=1)(n n x u 在区间I 上满足条件:(1));,3,2,1(|)(| =≤n a x u n n (2)正项级数∑∞=1n n a 收敛.则该函数项级数在区间I 上一致收敛. 三、 一致收敛级数的基本性质定理2 如果级数∑∞=1)(n n x u 的各项)(x u n 在区间],[b a 上都连续,且级数在区间],[b a 上一致收敛于),(x s 则)(x s 在],[b a 上也连续.定理3 设)(x u n ),3,2,1( =n 在],[b a 上连续,且级数∑∞=1)(n n x u 在区间],[b a 上一致收敛于)(x s ,则⎰xx dx x s 0)(存在,且级数∑∞=1)(n n x u 在],[b a 上可以逐项积分,即])([])([)(11∑⎰⎰∑⎰∞=∞===n xx n x x n n xxdx x u dx x u dx x s (7.2)其中,0b x x a ≤<≤ 且上式右端的级数在],[b a 上也一致收敛.定理4 如果级数∑∞=1)(n n x u 在区间],[b a 上收敛于和)(x s , 它的各项)(x u n 都有连续导数)(x u n',并且级数∑∞='1)(n nx u 在],[b a 上一致收敛,则级数∑∞=1)(n n x u 在],[b a 上也一致收敛,且可 逐项求导,即有∑∑∞=∞='='⎪⎪⎭⎫⎝⎛='11)()()(n nn n x u x u x s (7.3) 四、 幂级数的一致收敛性定理5 如果幂级数∑∞=1n n n x a 的收敛半径为,0>R 则此级数在),(R R -内的任一闭区间],[b a 上一致收敛.定理6 如果幂级数∑∞=1n n n x a 的收敛半径为,0>R 则其和函数)(x s 在),(R R -内可导,且有逐项求导公式,)(111∑∑∞=-∞=='⎪⎪⎭⎫ ⎝⎛='n n n n n n x na x a x s逐项求导后所得到的幂级数与原级数有相同的收敛半径.例题选讲:一致收敛的概念例1(讲义例1)考察函数项级数+-++-+-+-)()()(1232n n x x x x x x x的和函数的连续性.本例表明,即使函数项级数的每一项都在[a , b ]上连续,并且级数在[a , b ]上收敛,但其和函数却不一定在[a , b ]上连续;同样也可举例说明,函数项级数的每一项的导数及积分所成的级数的和也不一定等于它们的和函数的导数及积分. 那么在什么条件下,我们才能够从级数每一项的连续性得出它的和函数的连续性,从级数的每一项的导数及积分所成的级数之和得出原级数的和函数的导数及积分呢? 要回答这个问题,就需要引入函数项级数的一致收敛性概念.例2(讲义例2)研究级数∑∞=+⎪⎪⎭⎫⎝⎛+-111n n n n x n x 在区间]1,1[-上的一致收敛性.例3(讲义例3)研究级数∑∞=-0)1(n n x x 在区间[0,1]上的一致收敛性.例4(讲义例4)证明级数++++22222sin 22sin 1sin nx n x x 在),(+∞-∞上一致收敛.例5(讲义例5)判别级数∑∞=+1241n x n x在),(+∞-∞上一致收敛. 课堂练习1. 研究级数+⎪⎭⎫ ⎝⎛-+-+++⎪⎭⎫ ⎝⎛+-+++111112111n x n x x x x 在区间),0[+∞上的一致收敛性.魏尔斯特拉斯(Weierstrass, Karl Wilhelm ,1815~1897)魏尔斯特拉斯德国数学家,1815年10月31日生于德国威斯特伐利亚地区的奥斯登费尔特;1897年2月19日卒于柏林。

函数项级数一致收敛性判别及应用

函数项级数一致收敛性判别及应用

函数项级数一致收敛性判别及应用1. 引言1.1 研究背景函数项级数是数学分析中一个重要的研究对象,它是由无穷个函数组成的无穷级数求和。

在实际的应用中,往往需要研究级数的收敛性,其中一致收敛性是一个重要的性质。

一致收敛性指的是对于每一个给定的ε>0,存在一个N,使得当n>N时,级数的部分和与其极限的差的绝对值小于ε。

函数项级数一致收敛性的研究有着重要意义,它可以帮助我们更好地理解函数序列之间的关系,从而应用到不同的数学问题中。

函数项级数的一致收敛性判别方法有多种,比较判别法和魏尔斯特拉斯判别法是常用的方法之一。

比较判别法通过比较级数与已知收敛的级数的大小关系来判断级数的收敛性,而魏尔斯特拉斯判别法则利用函数项级数中的Cauchy收敛原理来判断其收敛性。

在实际应用中,函数项级数的一致收敛性判别方法可以帮助我们解决各种数学问题,例如在微积分和数学分析中的应用。

通过深入研究函数项级数的一致收敛性,我们可以更好地理解其数学性质,为进一步的研究提供基础。

【研究背景】1.2 研究意义函数项级数是数学中重要的概念之一,它在分析学、数学物理等领域中有着广泛的应用。

研究函数项级数的一致收敛性对于深入理解这一概念的性质和特点具有重要意义。

一致收敛性是函数项级数收敛的一种较强的方式,它能够保证收敛的速度和稳定性,从而使得我们能够更好地掌握级数的性质和行为。

研究函数项级数的一致收敛性,不仅可以帮助我们更好地理解级数的收敛性质,还可以为我们解决实际问题提供有力的数学工具。

在实际应用中,我们经常会遇到需要考察函数项级数的收敛性的情况,比如在数值计算、信号处理、概率论等领域中都会涉及到函数项级数的处理。

研究函数项级数的一致收敛性具有重要的理论意义和实际应用价值。

1.3 研究目的研究目的是对函数项级数的一致收敛性进行深入探讨,通过研究不同的判别方法来确定函数项级数是否在整个定义域上一致收敛。

通过对比比较判别法和魏尔斯特拉斯判别法的优缺点,可以更好地理解和判断函数项级数的收敛性。

第六节函数项级数的一致收敛性及一致收敛级数的基本性质

第六节函数项级数的一致收敛性及一致收敛级数的基本性质

每项在 [0,1] 上都连续, 其前 n 项之和为 Sn (x) xn ,
0,
和函数 S(x) lim Sn (x)
n
1,
0 x 1 x 1
该和函数在 x=1 间断.
又如, 函数项级数
因为对任意 x 都有:
sin n2x n2
1 n2
(n 1, 2, )
所以它的收敛域为(, ) , 但逐项求导后的级数
1 n2
收敛, 由Weierstrauss判别法知所给级数
在(, )上 一致收敛 .
说明: Weierstrauss判别法不仅能判别级数的一致收
敛性, 而且能判别其绝对收敛性.
当不易观察到不等式 un (x) an 时,可利用导数求
an sup un (x)
xI
例如, 级数
n1
nx 1 n5x2
nx 1 n2
x2
在(0,1)和(1,
)上是否一致收敛?
解: x,
lim
n
fn ( x)
0.
当1 x 时,
nx
nx 1 1
fn ( x) f ( x) 1 n2 x2 n2 x2 nx n
n sup
x(1, )
fn(x)
f (x)
10 n
一致收敛
当0 x 1时,
而n sup
x
lim
n x0
Sn (x)d
x
x
x0
S ( x) d
x
根据级数的一致收敛性, 0, N N( ),使当
n > N 时, 有
S(x) Sn (x)
ba
于是, 当 n > N 时, 对一切 x0, x [a,b] (x0 x), 有

一致收敛性及应用设计

一致收敛性及应用设计

(此文档为word格式,下载后您可任意编辑修改!) 齐齐哈尔大学毕业设计(论文)题目一致收敛性及应用学院理学院成绩2013年 6月20日摘要对函数列和函数项级数一致收敛性的研究,是为了解决函数列的极限函数和函数项级数的和函数的分析性质。

本文利用定义来简单的介绍一致收敛性,利用柯西一致收敛准则,证明函数项级数一致收敛的判别法。

通过研究定理当中,函数列的一致收敛性、函数项级数的一致收敛性以及含参变量广义积分的一致收敛性的一致收敛的充分必要条件、一般性质和判别方法,对比出三者之间的联系。

通过例题,说明了一致收敛是和函数的充分分析性质,而不是必要条件。

由此我们可以看出,在数学分析教学中,合理恰当的例题会更好的展现出定理。

关键词:函数列;函数项级数;含参变量广义积分;一致收敛AbstractStudy the sequence of function and series of functions , is in order to solve the analysis of the nature about limiting function of sequence of functions, and function of the series of functions. Using the definition of simple introduction to the uniform convergence. Using the Cauchy criterion of uniform convergence, Prove discriminance of uniform convergence in series of functions. Through the study of theorem, the necessary and sufficient condition for uniform convergence, general character and discriminant method in uniform convergence of function sequence, uniform convergence of function series and uniform convergence of generalized integral with parameters, contrast between the three contacts. Through examples, instruction the uniform convergence is a full analysis of the nature in function, rather than a necessary condition. From this we can see that, in the teaching of mathematics analysis, reasonable appropriate examples can show the theorem will be better.Keyword:sequence of function;series of functions;generalized integral with parameters;uniform convergence目录摘要......................................................................................................... 错误!未定义书签。

数学分析课件 一致收敛性

数学分析课件  一致收敛性
.
22 充分性 若条件 (4) 成立, 由数列收敛的柯西准则,
{ fn }在D上任一点都收敛, 记其极限函数为 f ( x),
前页 后页 返回
xD. 现固定(4)式中的n, 让m , 于是当n N时,
对一切 xD都有| fn( x) f ( x) | . 由定义1知,
fn( x) f ( x) (n ), x D.
每一点都收敛. 反之, 在 D 上每一点都收敛的函数列,
它在 D 上不一定一致收敛.
例2
中的函数列
sin nx
n
是一致收敛的,
因为对任意
前页 后页 返回
给定的正数 , 不论 x 取(-,+)上什么值, 都有
N
1 ,
当n
N 时,
恒有
sin nx n
,
所以函数列
sin nx n
在(-,+)上一致收敛于
收敛, 而使用余项准则需要知道极限函数, 但使用 较为方便. 如例2, 由于
lim sup sin nx 0 lim 1 0,
n n x(, )
n n
所以在(,
)上,
sin nx n
0
(n ).
前页 后页 返回
例3 定义在[0,1]上的函数列
2n2 x,
0 x 1 , 2n
fn ( x) 2n 2n2 x,
(1)
是一列定义在同一数集 E 上的函数,称为定义在E
上的函数列. (1) 也可记为
{ fn } 或 fn , n 1, 2, .
以 x0 E 代入 (1), 可得数列
f1( x0 ), f2( x0 ), , fn( x0 ), .
(2)
前页 后页 返回

数学分析中的一致收敛及其应用-初稿

数学分析中的一致收敛及其应用-初稿

《数学分析中的一致收敛及其应用-初稿》摘要:由(ⅰ),任给,存在某正整数,使得当及任何正整数,对一切,有又由(ⅰ),(ⅱ)及阿贝尔引理得到 . 于是根据函数项级数一致收敛性的柯西准则就得到本定理的结论. 例16 证明函数项级数在上一致收敛,由(ⅰ),存在正数,对一切,有.因此当为任何正整数时, . 对任何一个,再由(ⅱ)及阿贝尔引理,得到 . 再由(ⅲ),对任给的,存在正数,当时,对一切,有,所以, . 于是由一致收敛性的柯西准则,级数(4)在上一致收敛. 例18 试判别的一致收敛性,因为,,所以 =,.例25 求的值. 解因为,,所以 . 4.4 一致收敛在求导中的应用例26 求在处的阶导数. 解:因为函数在处的泰勒级数为,所以可先将用间接方法展成的幂级数,然后从的系数中解出,进行两次积分:则,即 . 4.5 一致收敛在概率组合计算中的应用定理:设是一个数列,若存在一个函数,使得成立,则称为数列的生成函数. 例27 将一枚硬币不间断扔10次,求出现20的概率是多少目录 1.函数列级数和函数项级数及其一致性 3 1.1函数列级数及其一致收敛性 3 1.2函数项级数一致收敛性 4 2. 函数项级数一致收敛性的基本判别法 6 2.1 定义判别法 6 2.2 M判别法 6 2.3 莱布尼兹判别法 6 2.4 余项判别法 7 2.5 柯西准则 8 2.6 类数项级数判别法的函数项级数判别法 10 2.6.1 比式判别法 10 2.6.2 根式判别法 12 2.6.3 对数判别法 13 2.9 导数判别法 13 2.10 连续性判别法 14 2.11 迫敛性判别法 15 2.12 M判别法的推论 15 3. 关于函数项级数一致收敛的三个重要判别法 16 3.1 阿贝尔判别法 16 3.2 狄利克雷判别法 17 3.3 积分判别法 19 4. 一致收敛的应用 20 4.1 一致收敛在证明等式中的应用 20 4.2 一致收敛在证明不等式中的应用 20 4.3 一致收敛在计算极限中的应用 22 4.4 一致收敛在求导中的应用 22 4.5 一致收敛在概率组合计算中的应用 23 4.6 一致收敛在近似计算中的应用 24 4.7 一致收敛在计算积分中的应用 24 总结 26 参考文献 27 致谢 28 数学分析中的一致收敛及其应用摘要对函数列和函数项级数一致收敛性的研究,是为了解决函数列的极限函数和函数项级数的和函数的分析性质。

函数项级数一致收敛性判别及应用

函数项级数一致收敛性判别及应用

函数项级数一致收敛性判别及应用函数项级数的一致收敛性是数学分析中的重要概念,对于研究函数项级数的性质和应用具有重要意义。

本文将从一致收敛性的定义开始,介绍一致收敛性的判别定理和具体的应用,希望读者通过本文的了解和学习,能够更好地理解和应用函数项级数的一致收敛性。

一、一致收敛性的定义在介绍一致收敛性的判别定理和应用之前,我们首先来了解一下一致收敛性的定义。

对于一般的数项级数来说,我们只需要关注级数的部分和序列是否收敛即可。

但对于函数项级数来说,因为级数的每一项都是函数,所以我们不仅需要考察级数的部分和序列的收敛性,还需要考察函数序列在定义域上的收敛性。

设对于定义在区间上的函数序列,对于给定的,如果对于任意,都存在一个自然数,使得当时,有∣∣fn(x)−f(x)∣∣<ε那么我们称函数序列在区间上一致收敛于函数,并记作。

换句话说,对于一致收敛的函数序列而言,不仅级数的部分和序列收敛于函数,且对于每一个自然数,其函数项序列在整个区间上都趋向于函数。

二、一致收敛性的判别定理对于函数项级数的一致收敛性,我们有一些判别定理可以帮助我们进行判断。

这里我们简要介绍几个重要的判别定理:1. 魏尔斯特拉斯判别定理(Weierstrass判别定理)魏尔斯特拉斯判别定理是判别函数项级数一致收敛性的重要定理之一。

该定理表述如下:若对于区间上的函数序列,存在一个数项级数使得对于任意和有∣∣fn(x)−an∣∣<bn,则级数在区间上一致收敛。

通过以上判别定理的介绍,我们可以看到,判别函数项级数一致收敛性的方法有多种多样,我们可以根据具体的情况选择不同的方法来进行判断,更好地理解和应用函数项级数的一致收敛性。

三、一致收敛性的应用函数项级数的一致收敛性不仅在理论上具有重要意义,而且在实际问题中也有着广泛的应用。

下面我们将介绍一些函数项级数一致收敛性在实际问题中的应用。

1. 函数项级数的积分和微分操作在实际问题中,我们经常会遇到需要对函数项级数进行积分和微分操作的情况。

函数项级数一致收敛性判别及应用

函数项级数一致收敛性判别及应用

函数项级数一致收敛性判别及应用【摘要】本文主要讨论了函数项级数的一致收敛性判别及其应用。

首先介绍了一致收敛性判别定理,然后探讨了函数项级数在实际问题中的应用。

接着列举了几个常见的一致收敛性判别法则,帮助读者更好地理解一致收敛性。

通过应用举例,展示了函数项级数一致收敛性在数学和工程领域的实际应用。

最后讨论了函数项级数一致收敛性的收敛区域,为读者进一步深入研究提供了指导。

通过本文的学习,读者可以更好地理解函数项级数的一致收敛性及其实际应用,为相关领域的研究和应用提供了理论支持。

【关键词】函数项级数、一致收敛性、判别定理、应用、常见法则、收敛区域、举例、总结1. 引言1.1 引言函数项级数一致收敛性是函数分析中一个重要的概念,它涉及到函数序列在整个定义域上的一致收敛性问题。

在实际应用中,我们常常需要判断函数项级数是否一致收敛,以及在一致收敛的条件下如何进行求和。

掌握函数项级数一致收敛性的判别方法和应用是非常必要的。

在本文中,我们将深入探讨函数项级数的一致收敛性判别定理以及其应用。

我们将介绍一致收敛性的判别定理,包括一些常见的判别法则,以及如何判断函数项级数在整个定义域上的一致收敛性。

接着,我们将讨论函数项级数一致收敛性在实际问题中的应用,通过具体的示例来说明如何利用一致收敛性来求出函数项级数的和函数。

我们将讨论函数项级数一致收敛性的收敛区域,即函数序列的收敛性对应的区域范围。

通过本文的学习,读者将能够更加深入地理解函数项级数的一致收敛性及其在实际问题中的应用。

希望本文能够帮助读者更好地理解函数分析中关于一致收敛性的重要概念,进而提高对函数序列和级数问题的认识和应用能力。

2. 正文2.1 一致收敛性判别定理一致收敛性是函数项级数收敛性中的重要性质,它在分析数学中有着广泛的应用。

一致收敛性判别定理是判断函数项级数是否一致收敛的重要工具。

在实际问题中,我们经常需要判断一个函数项级数是否一致收敛,以确保我们得到的结果是可靠的。

函数项级数一致收敛的几个判别法及其应用(终极完整无敌升华版)

函数项级数一致收敛的几个判别法及其应用(终极完整无敌升华版)

函数项级数一致收敛性判别法及其应用栾娈 20111101894数学科学学院数学与应用数学11级汉班指导老师:吴嘎日迪摘要:本文证明了常用的函数项级数一致收敛性的判别法,并通过例题给出了它的应用.另外,仿照极限的夹逼原理,得到函数项级数一致收敛的夹逼判别法. 关键词:一致收敛,函数项级数,和函数1.函数列与一致收敛性(1)函数项级数一致收敛性的定义:设有函数列{S n (x )}(或函数项级数∑∞=1)(n n x u 的部分和序列)。

若对任给的0>ε,存在只依赖于ε的正整数N (ε),使n > N (ε)时,不等式ε<-)()(x S x S n对X 上一切x 都成立,则称{S n (x )}(∑∞=1)(n n x u )在X 上一致收敛于S (x ).一致收敛的定义还可以用下面的方式来表达: 设 =-S S n Xx ∈s u p )()(x S x S n -,如果 0lim =-∞→S S n n 就称S n (x )在X 上一致收敛于S(x ).例1 讨论 =+=X xn nxx S n 在221)([0,1]的一致收敛性 由于S (x )=0, 故211)(m a x 1=⎪⎭⎫ ⎝⎛==-≤≤n S x S S S n n x o n ,不收敛于零,故在[0,1]上非一致收敛 (2)函数项级数一致收敛的几何意义:函数列{f n}一致收敛于的f 几何意义:对任给的正数ε,存N ,对一切序号大于N 的曲线y=fn(x )都落在以曲线y= f (x )+ε与y=f (x )-ε为上,下边界的带形区域内. 2.函数列一致收敛的判别准则(充要条件)柯西准则函数项级数)(1x u k k ∑∞=在I 上一致收敛的充要条件是;εε<+++==∈∀∈∀>∀∈=∃>∀++++++=++∑)(...)()()(-)()(,,,,0211)(x u x u x u x S x S x uI x N p N n N N N p n n n n p n p n n k kE 都有及证明:必要性: 已知)(1x u k k ∑∞=在区间I 一致收敛,设其和函数式S (x ),即2)()(ε<-x S x S n也有2)()(ε<-+x S x S p n于是εεε=+<-+-≤-+-=-=+++++=∑22)()()()()()()()()()()(1x S x S x S x S x S x S x S x S x S x S x un p n n p n n p n pn n k k充分性:已知I x N p N n N N N ∈∀∈∀>∀∈=∃>∀++及,,)(,0εε 有ε<=+=+=∑)(-)()(1x S x S x un p n pn n k k从而)(1x u k k ∑∞=在区间收敛S (x ),因为p 是任意正整数,所以当∞→p 时,上述不等式有ε<-)()(x S x S n 即函数项级数)(1x u k k ∑∞=在区间I 一致收敛. 余项准则函数列{f }n 在D 上一致收敛于f 的充要条件是0)()(sup lim =-∈∞→x f x f n Dx n3.函数项级数一致收敛判别法 (1)充分条件定理1(魏尔斯特拉斯判别法)若对充分大的n ,恒有实数n a 使得n n a x u ≤)(对X 上任意的x 都成立,并且数项级数)(x u a n n ∑∑收敛,则在X 上一致收敛.证明 由∑n a 的收敛性,对任给的ε>0,可得N (ε),使n >N (ε)时 ε<++++++p n n n a a a ...21(p=1,2,…), 对X 上的一切的x 我们有≤++≤++++++)(...)()(...)(11x u x u x u x u p n n p n n ε<++++++p n n n a a a ...21, 由一致收敛的柯西充要条件即得定理的结论.例2 若∑n a 绝对收敛,则∑n a sin nx 和∑n a cos nx 在),(+∞-∞内都是绝对收敛和一致收敛的级数. 事实上,n n a nx a ≤sin , n n a nx a ≤cos , 由魏尔斯特拉斯判别法即可得证. 定理2(阿贝尔判别法)若在X 上)(x b n ∑一致收敛,又对X 中每一固定的x ,数列(x a n 单调.而对任意的n 和X 中每个x ,有L x a n ≤)((不依赖于x 和n 的定数),那么)()(x b x a n n ∑在X 上一致收敛.这个定理与数项级数的阿贝尔定理相似,其证明也大体相同,只要利用阿贝尔引理即可。

含参量积分一致收敛及其应用

含参量积分一致收敛及其应用

含参量积分一致收敛及其应用1 引言无限区间上的积分或无界函数这两类积分叫作广义积分, 又名反常积分. 在讨论定积分时有两个最基本的限制:积分区间的有穷性和被积函数的有界性。

但在许多实际问题中往往需要突破这些限制,这两个约束条件限制了定积分的应用,因为许多理论和实际中往往不满足这两个条件. 因此,就需要研究无穷区间或者无界函数的积分问题,而将这两个约束条件取消,就得到了定积分的两种形式的推广:将函数的积分从积分区间有界扩展到了积分区间无界的无穷积分和被积函数有界扩展到了无界函数的瑕积分, 这两种积分就是通常所说的反常积分或广义积分.广义积分是伴随数学的发展而发展起来的近代数学,作为数学的一类基本命题,它是高等数学中的一个重要概念,它的出现为物理学解决了许多计算上的难题,也为其他科学的发展起到了促进作用,应用十分广泛. 但是,反常积分涉及到一个所谓的收敛性问题,由于反常积分的重要性,所以,对反常敛散性的探讨,也就显得十分必要了. 在一致收敛意义下,极限与积分、求导与积分、积分与积分都是可以交换顺序. 于是判断含参广义积分的一致收敛性变得尤为重要.1. 含参量的广义积分和一元函数的定积分一样,可以将含参变量的广义积分进行推广,形成含参量的广义积分。

从形式上讲,含参量的广义积分也应有两种形式:无穷限形式的广义积分和无界函数的广义积分,由于二者之间可以相互转化,我们仅以无穷限广义积分为例讨论其性质。

1.1无穷限广义积分的定义定义1:设f (x , y ) 为定义在D =[a , +∞)⨯I (I 为某区间,有界或无界)的二元函数,形如⎰+∞af (x , y ) dx 的积分称为含参变量y 的广义积分。

从定义形式决定研究内容:广义积分是否存在-----收敛性问题与一元函数广义积分相区别的是:由于含参量积分的结果不再是一个单纯的数值,而是一个函数,这就决定了含参量广义积分的收敛性问题中,不仅要有收敛性而且还必须讨论收敛性与参量之关系,由此形成一致收敛性。

数学分析13.1一致收敛性

数学分析13.1一致收敛性

第十三章 函数列与函数项级数1 一致收敛性一、函数列及其一致收敛性概念:设f 1,f 2,…,f n ,…是一列定义在同一数集E 上的函数,称为定义在E 上的函数列,也可以简单地写作{f n }或f n , n=1,2,…. 设x 0∈E ,以x 0代入函数列可得数列:f 1(x 0),f 2(x 0),…,f n (x 0),…. 若该数列收敛,则称对应的函数列在点x 0收敛,x 0称为该函数列的收敛点. 若数列发散,则称函数列在点x 0发散. 若函数列在数集D ⊂E 上每一点都收敛,则称该函数列在数集D 上收敛. 这时D 上每一点x 都有数列{f n (x)}的一个极限值与之相对应,由这个对应法则所确定的D 上的函数,称为原函数的极限函数. 若把此极限函数记作f ,则有∞n lim +→f n (x)=f(x), x ∈D ,或f n (x)→f(x) (n →∞), x ∈D.使函数列{f n }收敛的全体收敛点集合,称为函数列{f n }的收敛域.函数列极限的ε-N 定义:对每一个固定的x ∈D ,任给正数ε, 恒存在正数N(ε,x),使得当n>N 时,总有|f n (x)-f(x)|< ε.例1:设f n (x)=x n , n=1,2,…为定义在R 上的函数列,证明它的收敛域是(-1,1]且有极限函数f(x)=⎩⎨⎧=<1x 11|x |0,,.证:任给正数ε<1, 当|x|<1时,∵|f n (x)-f(x)|=|x|n , ∴只要取N(ε,x)=|x |ln ln ε,当n>N 时,就有|f n (x)-f(x)|< ε.当x=0或x=1时,对任何正整数n ,都有|f n (x)-f(x)|=0< ε. ∴f n (x)在(-1,1]上收敛,且有极限函数f(x) =⎩⎨⎧=<1x 11|x |0,,.又当|x|>1时,有|x|n →∞ (n →∞),当x=-1时,对应的数列为: -1,1,-1,1…发散. ∴函数列{x n }在(-1,1]外都是发散的. 得证!例2:证明:函数列f n (x)=nsinnx, n=1,2,…的收敛域是R ,极限函数f(x)=0. 证:∵对任意实数x ,都有n sinnx ≤n 1,∴任给ε>0,只要n>N=ε1, 就有0nsinnx-< ε,得证!定义1:设函数列{f n }与函数f 定义在同一数集D 上,若对任给的正数ε,总存在某一正整数N ,使得当n>N 时,对一切x ∈D ,都有 |f n (x)-f(x)|< ε,则称函数列{f n }在D 上一致收敛于f ,记作 f n (x)⇉f(x) (n →∞), x ∈D.注:反之,若存在某正数ε0,对任何正数N ,都有D 上某一点x ’与正整数n ’>N ,使|f n (x ’)-f(x ’)|≥ε0,则函数列{f n }在D 上不一致收敛于f. 如:例1中的函数列{x n }在(0,1)上收敛于f(x)=0,但不一致收敛.∵令ε0=21,对任何正数N ,取正整数n>N+1及x ’=21n 11⎪⎭⎫ ⎝⎛-∈(0,1),则有|x ’2 -0|=1-n 1≥21. ∴函数列{x n }在(0,1)上不一致收敛于f(x)=0.函数列一致收敛于f 的几何意义:对任何正数ε,存在正整数N ,对于一切序号大于N 的曲线y=f n (x),都落在以曲线y=f(x)+ ε与y=f(x)- ε为边(即以y=f(x)为“中心线”,宽度为2ε)的带形区域内(如图1).(图1)(图2)函数列{x n }在(0,1)内不一致收敛,即对于某个事先给定的正数ε<1, 无论N 多么大,总有曲线y=x n (n>N)不能全部落在以y=ε与y=-ε为边的带形区域内(如图2). 若函数列{x n }只限于在区间(0,b) (b<1)内讨论,则只要n>lnbln ε(其中0<ε<1),曲线y=x n 就全部落在y=ε与y=-ε为边的带形区域内,所以{x n }在区间(0,b)内一致收敛.定理13.1:(函数列一致收敛的柯西准则)函数列{f n }在数集D 上一致收敛的充要条件是:对任给ε>0,总存在正数N ,使得当n,m>N 时, 对一切x ∈D ,都有|f n (x)-f m (x)|< ε.证:[必要性]若f n (x)⇉f(x) (n →∞), x ∈D ,则∀ε>0,∃正数N , 使得当n,m>N 时,对一切x ∈D ,都有|f n (x)-f(x)|<2ε及|f m (x)-f(x)|<2ε. ∴|f n (x)- f m (x)|≤|f n (x)-f(x)|+ |f m (x)-f(x)|<2ε+2ε= ε. [充分性]若|f n (x)-f m (x)|< ε, 则由数列收敛的柯西准则知, {f n }在D 上任一点都收敛,记其极限函数f(x),则有∞m lim +→|f n (x)-f m (x)|=|f n (x)-f(x)|<ε,由定义1知f n (x)⇉f(x) (n →∞), x ∈D.定理13.2:函数列{f n }在区间D 上一致收敛于f 的充要条件是:Dx ∞n sup lim ∈+→|f n (x)-f(x)|=0.证:[必要性]若f n (x)⇉f(x) (n →∞), x ∈D ,则∀ε>0,∃正整数N ,当n>N 时,有|f n (x)-f(x)|<ε, x ∈D.由上确界定义,有Dx sup ∈|f n (x)-f(x)|≤ε. ∴Dx ∞n sup lim ∈+→|f n (x)-f(x)|=0. [充分性]若Dx ∞n sup lim ∈+→|f n (x)-f(x)|=0,则∀ε>0,∃正整数N , 使得当n>N 时,有Dx sup ∈|f n (x)-f(x)|<ε. 又对一切x ∈D ,总有|f n (x)-f(x)|≤Dx sup ∈|f n (x)-f(x)|<ε,∴{f n }在D 上一致收敛于f.推论:函数列{f n }在D 上不一致收敛于f 的充要条件是: 存在{x n }⊂D ,使得{f n (x n )-f(x n )}不收敛于0.例3:设f n (x)=nx 2-nx e , x ∈D=R +,n=1,2,….判别{f n (x)}在D 上的一致收敛性.解法一:对任意x ∈R +, ∞n lim +→nx 2-nx e=0=f(x). 又当f ’n (x)=222ex 2n -n =0时, x=2n1,且f ”(2n1)=-2e 2n2n <0, ∴在R +上,每个nx 2-nx e 只有一个极大值点x n =2n1,而Dx ∞n sup lim ∈+→|f n (x)-f(x)|=∞n lim +→f n (x n )=2enlim∞n +→=+ ∞≠0, ∴{f n (x)}在D 上不一致收敛于f.解法二:取x n =n1∈R +,则∞n lim +→f n (x n )=n 1-∞n e lim +→=1≠0, ∴{f n }在D 上不一致收敛于f.定义1:设函数列{f n }与f 定义在区间I 上,若对任意闭区间[a,b]⊂I, {f n }在[a,b]上一致收敛于f ,则称{f n }在I 上内闭一致收敛于f.注:若I 为有界闭区间,则{f n }在I 上内闭一致收敛于f 与{f n }在I 上一致收敛于f 是一致的.例1中函数列{x n }在[0,1)上不一致收敛于0,但对任意δ>0,]δ,0[x sup ∈|x n |≤δn→0 (n →∞),∴{f n }在[0,1)上内闭一致收敛于0.例3中函数列{f n }在R +上不一致收敛于0,但对任意[a,b]⊂R +,]b ,a [x sup ∈|nx 2-nx e |≤nb 2-na e →0 (n →∞),∴{f n }在R +上内闭一致收敛于0.二、函数项级数及其一致收敛性概念:设{u n (x)}是定义在数集E 上的一个函数列,表达式: u 1(x)+ u 2(x)+…+u n (x)+…, x ∈E称为定义在E 上的函数项级数,简记为∑∞=1n n (x )u 或∑(x)u n .称S n (x)=∑=n1k k (x )u , x ∈E, n=1,2,…为函数项级数∑(x)u n 的部分和函数.若x 0∈E, 数项级数u 1(x 0)+ u 2(x 0)+…+u n (x 0)+…收敛,即部分和 S n (x 0)=∑=n1k 0k )(x u 当n →∞时极限存在,则称级数∑(x)u n 在点x 0收敛,x 0称为级数∑(x)u n 的收敛点.若级数∑)(x u 0n 发散,则称级数∑(x)u n 在点x 0发散.若∑(x)u n 在E 的某个子集D 上每点都收敛,则称∑(x)u n 在D 上收敛. 若D 为级数∑(x)u n 全部收敛点的集合,则称D 为∑(x)u n 的收敛域. 级数∑(x)u n 在D 上每一点x 0与其所对应的数项级数∑)(x u 0n 的和S(x 0)构成一个定义在D 上的函数,称为级数∑(x)u n 的和函数,并写作: S(x)=u 1(x)+ u 2(x)+…+u n (x)+…, x ∈D 即∞n lim +→S n (x)=S(x), x ∈D ,于是函数项级数的收敛性等价于它的部分和函数列{S n (x)}的收敛性.例4:判别函数项级数(几何级数)1+x+x 2+…+x n +…在R 上的收敛性.解:几何级数的部分和函数为S n (x)=x-1x -1n .当|x|<1时,S(x)=∞n lim +→S n (x)=x-11; 当|x|≥1时,S(x)=∞n lim +→S n (x)=+∞.∴几何级数在(-1,1)内收敛于和函数S(x)=x-11;当|x|≥1时,发散.定义3:设{S n (x)}函数项级数∑(x)u n 的部分和函数列. 若{S n (x)}在数集D 上一致收敛于S(x),则称∑(x)u n 在D 上一致收敛于S(x). 若∑(x)u n 在任意闭区间[a,b]⊂I 上一致收敛,则称∑(x)u n 在I 上内闭一致收敛.定理13.3:(一致收敛的柯西准则)函数项级数∑(x)u n 在数集D 上一致收敛的充要条件是:对任给ε>0,总存在某正整数N ,使得当n>N 时, 对一切x ∈D 和一切正整数p ,都有|S n+p (x)-S n (x)|< ε或∑++=pn 1n k k(x)u< ε.推论:函数项级数∑(x)u n 在数集D 上一致收敛的必要条件是函数列{u n (x)}在D 上一致收敛于0.注:设函数项级数∑(x)u n 在数集D 上的和函数为S(x), 称 R n (x)=S(x)-S n (x)为函数项级数∑(x)u n 的余项.定理13.4:函数项级数∑(x)u n 在数集D 上一致收敛于S(x)的充要条件是:Dx ∞n sup lim∈+→|R n (x)|=Dx ∞n sup lim ∈+→|S(x)-S n (x)|=0.注:几何级数∑n x 在(-1,1)上不一致收敛,因为)(-1,1x sup ∈|S(x)-S n (x)|=1-x x sup n )(-1,1x ∈≥1n n -11n n n+⎪⎭⎫⎝⎛+=n 1-n 1n n ⎪⎭⎫ ⎝⎛+ →∞ (n →∞). 又对任意a(0<a<1),]a -a,[x sup ∈|S(x)-S n (x)|=1-x x sup n]a -a,[x ∈=a -1a n →0 (n →∞).∴几何级数∑n x 在(-1,1)上内闭一致收敛.三、函数项级数的一致收敛性判别法定理13.5:(魏尔斯特拉斯判别法或M 判别法或优级数判别法) 设函数项级数∑(x)u n 定义在数集D 上,∑n M 为收敛的正项级数, 若对一切x ∈D ,有|u n (x)|≤M n , n=1,2,…, 则函数项级数∑(x)u n 在D 上一致收敛.证:∵∑n M 为收敛的正项级数,根据数项级数的柯西准则, ∀ε>0,∃正整数N ,使得当n>N 及任何正整数p ,有∑++=pn 1n k kM=∑++=pn 1n k kM< ε,又对一切x ∈D ,有|u n (x)|≤M n , n=1,2,…,∴∑++=pn 1n k k(x)u≤∑++=pn 1n k k(x )u≤∑++=pn 1n k kM< ε,由函数项级数一致收敛的柯西准则知,级数∑(x)u n 在D 上一致收敛.例5:证明函数项级数∑2n nx sin 和∑2n cosnx在R 上一致收敛. 证:∵对一切x ∈R ,有2n nx sin ≤2n 1,∑2n cosnx ≤2n1. 又级数∑2n 1收敛,∴函数项级数∑2n nx sin 和∑2n cosnx在R 上一致收敛.注:当级数∑(x)u n 与级数∑n M 在 [a,b]上,都有|u n (x)|≤M n , n=1,2,…时,称级数∑n M 在[a,b]优于∑(x)u n ,或称∑n M 为∑(x)u n 的优级数.定理13.6:(阿贝尔判别法)设 (1)∑(x)u n 在区间I 上一致收敛; (2)对每一个x ∈I ,{v n (x)}是单调的;(3){v n (x)}在I 上一致有界,即对一切x ∈I 和正整数n ,存在正数M ,使得|v n (x)|≤M ,则级数∑(x)(x)v u n n 在I 上一致收敛. 证:由条件(1),∀ε>0,∃某正整数N ,使得 当n>N 及任何正整数p ,对一切x ∈I ,有∑++=pn 1n k k(x)u< ε.又由条件(2),(3),根据阿贝尔引理得:∑++=pn 1n k k k(x)(x)v u≤[|v n+1(x)|+2|v n+p (x)|]ε≤3M ε.由函数项级数一致收敛的柯西准则知,∑(x)(x)v u n n 在I 上一致收敛.定理13.7:(狄利克雷判别法)设(1)∑(x)u n 的部分和函数列S n (x)=∑=n1k k (x )u , (n=1,2,…)在I 上一致有界;(2)对于每一个x ∈I ,{v n (x)}是单调的; (3)在I 上v n (x)⇉0 (n →∞), 则级数∑(x)(x)v u n n 在I 上一致收敛.证:由条件(1),存在正数M ,对一切x ∈I ,有|S n (x)|≤M , ∴当n,p 为任何正整数时,∑++=pn 1n k k(x)u=|S n+p (x)-S n (x)|<2M.对任何一个x ∈I ,由条件(2)及阿贝尔引理得:∑++=pn 1n k k k(x)(x)v u≤2M[|v n+1(x)|+2|v n+p (x)|]又由条件(3),∀ε>0,∃正数N ,使得当n>N 时,对一切x ∈I , 有|v n (x)|<ε. ∴∑++=pn 1n k k k(x)(x)v u<6M ε.由函数项级数一致收敛的柯西准则知,∑(x)(x)v u n n 在I 上一致收敛.例6:证明:函数项级数∑++-1n nn n )n x ()1(在[0,1]上一致收敛. 证:记u n (x)=n )1(n -, v n (x)=nn x 1⎪⎭⎫⎝⎛+,则∑(x)u n 在[0,1]上一致收敛;又{v n (x)}单调增,且1≤v n (x)≤e, x ∈[0,1],即{ v n (x)}在[0,1]上一致有界.根据阿贝尔判别法知数∑++-1n n n )n x ()1(在[0,1]上一致收敛.例7:证明:若数列{a n }单调且收敛于0,则级数∑cosnx a n 在[α,2π-α] (0<α<π)上一致收敛.证:∵∑=n1k coskx = 21-2x 2sin x 21n sin ⎪⎭⎫ ⎝⎛+≤2x sin21+21≤2α2sin 1+21, x ∈[α,2π-α],∴级数∑cosnx 的部分和函数列在[α,2π-α]上一致有界. 令u n (x)=cosnx, v n (x)=a n ,∵数列{a n }单调且收敛于0, 根据狄利克雷判别法知,级数∑cosnx a n 在[α,2π-α]上一致收敛.注:只要{a n }单调且收敛于0,那么级数∑cosnx a n 在不包含2k π (k 为整数)的任何闭区间上都一致收敛.习题1、讨论下列函数列在所示区间D 上是否一致收敛或内闭一致收敛,并说明理由: (1)f n (x)=22n1x +, n=1,2,…,D=(-1,1); (2)f n (x)=22xn 1x+, n=1,2,…,D=R ;(3)f n (x)=⎪⎩⎪⎨⎧≤<++≤≤++-1x 1n 101n 1x 01x )1n (,,, n=1,2,…; (4)f n (x)=n x, n=1,2,…,D=[0,+∞);(5)f n (x)=nxsin , n=1,2,…,D=R.解:(1)∞n lim +→f n (x)=22∞n n 1x lim ++→ =|x|=f(x), x ∈D=(-1,1);又 D x sup ∈|f n (x)-f(x)|=|x |n 1x sup 22D x -+∈=|x |n1x n 1sup 222D x ++∈≤n 1→0(n →∞).∴22n 1x +⇉|x| (n →∞),x ∈(-1,1). (2)∞n lim +→f n (x)=22∞n x n 1xlim++→ =0=f(x), x ∈D=R ;又Dx sup ∈|f n (x)-f(x)|=22D x xn 1x sup+∈≤nx 2x =n 21→0(n →∞). ∴22x n 1x+⇉0 (n →∞),x ∈R.(3)当x=0时,∞n lim +→f n (x)=1;当0<x ≤1时,只要n>x1-1,就有f n (x)=0, ∴f n (x)在[0,1]上的极限函数为f(x)= ⎩⎨⎧≤<=1x 000x 1,,.又]1,0[x ∞n sup lim ∈+→|f n (x)-f(x)|=1≠0. ∴f n (x)在[0,1]上不一致收敛. (4)∞n lim +→f n (x)=nxlim ∞n +→=0=f(x), x ∈D=[0,+∞);又 )∞[0,+x ∞n sup lim ∈+→|f n (x)-f(x)|=nxsuplim )∞[0,+x ∞n ∈+→=+∞, ∴f n (x)在[0,+∞)上不一致收敛. 在任意[0,a]上,a][0,x ∞n sup lim∈+→|f n (x)-f(x)|=nalim ∞n +→=0, ∴f n (x)在[0,+∞)上内闭一致收敛.(5)∞n lim +→f n (x)=nx sin lim ∞n +→=0=f(x), x ∈D=R ;又 Rx ∞n sup lim ∈+→|f n (x)-f(x)|=nxsinsup lim Rx ∞n ∈+→=1, ∴f n (x)在R 上不一致收敛. 在任意[-a,a]上,a][-a,x ∞n sup lim∈+→|f n (x)-f(x)|=nx sin sup lim a][-a,x ∞n ∈+→≤n a lim ∞n +→=0, ∴f n (x)在R 上内闭一致收敛.2、证明:设f n (x)→f(x), x ∈D , a n →0(n →∞) (a n >0). 若对每一个正整数n 有|f n (x)-f(x)|≤a n , x ∈D ,则{f n }在D 上一致收敛于f. 证:∵|f n (x)-f(x)|≤a n , x ∈D ,且a n →0(n →∞),∴a][-a,x ∞n sup lim∈+→|f n (x)-f(x)|= 0,∴f n (x)⇉f(x) (n →∞),x ∈D.3、判别下列函数项级数在所示区间上的一致收敛性:(1)∑1)!-(n x n , x ∈[-r,r];(2)∑+n221-n )x (1x (-1), x ∈R ;(3)∑n x n , |x|>r>1; (4)∑2n n x , x ∈[0,1];(5)∑+n x (-1)21-n , x ∈R ;(6)∑+1-n 22)x (1x , x ∈R. 解:(1)∀x ∈[-r,r], 有1)!-(n x n≤1)!-(n r n ,记u n =1)!-(n r n ,则n 1n u u +=n r →0(n →∞),∴∑1)!-(n r n 收敛,∴∑1)!-(n x n在[-r,r]上一致收敛.(2)记u n (x)=(-1)n-1, v n (x)=n22)x (1x +,则对任意的x ∈R ,有 |∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在R 上有界;又{v n (x)}单调减,且由0≤n22)x (1x +≤n 1→0(n →∞)知,v n (x)⇉0 (n →∞), 由狄利克雷判别法知∑+n221-n )x (1x (-1)在R 上一致收敛. (3)∀|x|>r>1, 有n x n <n r n ,记u n =nrn,则n 1n u u +=rn 1n +→r 1<1 (n →∞), ∴∑n r n 收敛,∴∑n xn在|x|>r>1上一致收敛. (4)∀x ∈[0,1], 有2nnx ≤2n 1, 又∑2n 1收敛,∴∑2n n x 在[0,1]上一致收敛.(5)方法一:记u n (x)=(-1)n-1, v n (x)=nx 12+,则对任意的x ∈R ,有 |∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在R 上有界;又{v n (x)}单调减,且由0<nx 12+≤n 1→0(n →∞)知,v n (x)⇉0 (n →∞), 由狄利克雷判别法知∑+n x (-1)21-n 在R 上一致收敛.方法二:|∑++=+pn 1n k 21-k kx (-1)|≤1n x 12+++p n x 12++≤n 2.∀ε>0,只要取N=⎥⎦⎤⎢⎣⎡ε2,则当n>N 及任意自然数p ,就有|∑++=+pn 1n k 21-k kx (-1)|<ε,由柯西准则知,∑+n x (-1)21-n 在R 上一致收敛.方法三:由莱布尼兹判别法知,对R 上的任意一点x ,∑+nx (-1)21-n 收敛.又)x (R sup lim n R x ∞n ∈+→=1n 1lim ∞n ++→=0,∴∑+nx (-1)21-n 在R 上一致收敛.(6)当x ≠0时,该函数项级数的部分和函数S n (x)=x 2+22x 1x ++…+1-n 22)x (1x +=1+x 2-1-n 2)x (11+→1+x 2=S(x) (n →∞), ∴Rx sup ∈|R n (x)|=1-n 2Rx )x (11sup+∈=1→/0 (n →∞), ∴∑+1-n 22)x (1x 在R 上不一致收敛.4、设函数项级数∑)x (u n 在D 上一致收敛于S(x),函数g(x)在D 上有界. 证明:级数∑)x (g(x)u n 在D 上一致收敛于g(x)S(x).证:可设|g(x)|≤M ,x ∈D. ∵∑)x (u n 在D 上一致收敛于S(x), ∴∀ε>0,∃N>0,当n>N 时,对一切x ∈D ,都有|∑=n1k k (x )u -S(x)|<Mε. ∴|∑=n 1k k (x )g(x )u - g(x)S(x)|=|g(x)|·|∑=n1k k (x )u -S(x)|< ε. 得证!5、若区间I 上,对任何正整数n ,|u n (x)|≤v n (x),证明: 当∑)x (v n 在I 上一致收敛时,级数∑)x (u n 在I 上也一致收敛. 证:∵|u n (x)|≤v n (x),∴∑=+p1k k n |(x )u |≤∑=+p1k k n (x )v .又∑)x (v n 在I 上一致收敛,∴∀ε>0,∃N>0,当n>N 时, 对一切x ∈I 和一切自然数p ,都有|∑=+p1k k n (x )v |<ε.∴|∑=+p 1k k n (x )u |≤∑=+p 1k k n |(x )u |≤∑=+p 1k k n (x )v ≤|∑=+p1k k n (x )v |<ε,得证!6、设u n (x)(n=1,2,…)是[a,b]上的单调函数,证明:若∑)a (u n 与∑)b (u n 都绝对收敛,则∑)x (u n 在[a,b]绝对且一致收敛. 证:∵u n (x)(n=1,2,…)在[a,b]上单调,∴|u n (x)|≤|u n (a)|+|u n (b)|, 又∑|)a (u |n 与∑|)b (u |n 都收敛,∴正项级数|))b (u ||)a (u (|n n +∑收敛; 根据优级数判别法知,∑)x (u n 在[a,b]绝对且一致收敛.7、证明:{f n } 区间I 上内闭一致收敛于f 的充要条件是:对任意x 0∈I ,存在x 0的邻域U(x 0),使{f n }在U(x 0)∩I 上一致收敛于f. 证: [必要性]设{f n } 区间I 上内闭一致收敛于f ,对任意x 0∈I ,任意邻域U(x 0)∩I ⊂I ,根据内闭一致收敛的定义, {f n }在U(x 0)∩I 上一致收敛于f.[充分性]设任意x 0∈I ,存在x 0的一个邻域U(x 0), 使得{f n }在U(x 0)∩I 上一致收敛于f ,即 对一切x ∈I ,{f n }一致收敛于f ,∴{f n }在I 上一致收敛,从而内闭一致收敛.8、在[0,1]上定义函数列u n (x)=⎪⎩⎪⎨⎧≠=n 1x 0n 1x n1,,,证明: 级数∑)x (u n 在[0,1]上一致收敛,但它不存在优级数.证:∵|∑=+p1k k n (x )u |=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=⋯+=+==+⋯++++=++⋯+⋯+=+⋯++++=+⋯+++其它点p n 1x 2n 1x 1n 1x 00000p n 1p n 102n 102n 101n 1001n 1,,,,,∴当0≤x<1时,恒有|∑=+p1k k n (x )u |<n1,于是∀ε>0,取N=[ε1],则当n>N 时,对一切x ∈[0,1]和一切自然数p ,都有|∑=+p1k k n (x )u |<ε,∴级数∑)x (u n 在[0,1]上一致收敛.若∑)x (u n 在[0,1]上存在优级数∑n M ,取x=n1,则M n ≥|u n (x)|=|u n (n 1)|=n 1>0. 由∑n M 收敛知∑n1收敛,不合理! ∴∑)x (u n 不存在优级数.9、讨论下列函数列或函数项级数在所示区间D 上的一致连续性: (1)∑∞=++2n 2222]1)-(n )[x n (x 2n -1, D=[-1,1];(2)∑nn3x sin 2, D=R +; (3)∑++)nx 1](1)x -(n [1x 222, D=R +;(4)∑nx n , D=[-1,0]; (5)∑++1n 2x (-1)12n n, D=(-1,1);(6)∑∞=1n n sinnx, D=(0,2π).解:(1)∵∑++=++pn 1n k 2222]1)-(k )[x k (x 2k -1=2222n x 1p)(n x 1+-++<22n x 1+≤2n 1; ∴∀ε>0,取N=[ε1]+1,当n>N 时,对一切x ∈[-1,1]和一切自然数p ,都有∑++=++pn 1n k 2222]1)-(k )[x k (x 2k-1<ε,∴原级数在[-1,1]上一致收敛. (2)对任意自然数n ,取x n =n 32π⋅∈R +,有|n n 3x sin 2|=2n →/ 0 (n →∞), ∵原级数在R +上不一致收敛. (3)S n (x)=∑=⎥⎦⎤⎢⎣⎡+-+n1k 22kx 111)x-(k 11=1-2nx 11+→1(n →∞),+∈R x sup |S n (x)-1|=≥2n 1n 11⎪⎭⎫ ⎝⎛+=21(n=1,2,…);∵原级数在R +上不一致收敛.(4)记u n (x)=(-1)n, v n (x)=n(-x)n,则对任意的x ∈[-1,0],有|∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在[-1,0]上有界;又{v n (x)}单调减,且由0<n(-x)n≤n1→0(n →∞)知,v n (x)⇉0 (n →∞),由狄利克雷判别法知原级数在[-1,0]上一致收敛.(5)记u n (x)=(-1)n, v n (x)=1n 2x 12n ++,则对任意的x ∈(-1,1),有|∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在(-1,1)上有界;又{v n (x)}单调减,且由0<1n 2x 12n ++≤1n 21+→0(n →∞)知,v n (x)⇉0 (n →∞),由狄利克雷判别法知原级数在(-1,1)上一致收敛. (6)取ε0=21sin 31,对任意自然数N ,存在n=N ,p=N+1,x 0=1)2(N 1+∈(0,2π),使∑++=pn 1n k 0k )(x u =∑++=+1N 21N k 1)2(N k sin k1>∑++=1N 21N k 2k 1sin >21sin 21>ε0.∴原级数在(0,2π)上不一致收敛.10、证明:级数∑∞=-0n n n )x 1(x (-1)在[0,1]上绝对收敛并一致收敛,但由其各项绝对值组成的级数在[0,1]上却不一致收敛. 证:易见|R n |≤(1-x)x n+1. 又由((1-x)x n+1)’=(n+1)(1-x)x n -x n+1=(n+1)x n -(n+2)x n+1=(n+2)x n (2n 1n ++-x),知 当x=2n 1n ++时,|R n |≤(1-2n 1n ++)1n 2n 1n +⎪⎭⎫ ⎝⎛++=1n 2n 1n 2n 1+⎪⎭⎫ ⎝⎛+++<2n 1+, ∴[0,1]x ∞n sup lim ∈+→|R n |≤2n 1lim ∞n ++→=0. ∴原级数在[0,1]上一致收敛. 对级数∑∞=-0n nn)x 1(x (-1)各项绝对值组成的级数∑∞=-0n n )x 1(x ,∵)x 1(x lim n ∞n -+→=0, x ∈[0,1],∴原级数在[0,1]上绝对收敛.又∞n lim +→S n (x)=∞n lim +→(1-x)∑=nk k x =∞n lim +→(1-x n )=⎩⎨⎧=<≤1x 01x 01,,,可见[0,1]x ∞n sup lim ∈+→|R n |=1→/ 0 (n →∞),得证.11、设f 为定义在区间(a,b)内的任一函数,记f n (x)=n[nf(x)], n=1,2,…, 证明:函数列{f n }在(a,b)内一致收敛于f. 证:由|R n |=|n [nf(x)]-f(x)|=n nf(x )-[nf(x )]≤n11→0 (n →∞),得证!12、设{u n (x)}为[a,b]上正的递减且收敛于零的函数列,每一个u n (x)都是[a,b]上的单调函数. 证明:级数u 1(x)-u 2(x)+u 3(x)-u 4(x)+…在[a,b]上不仅收敛,而且一致收敛. 证:根据莱布尼茨判别法,该级数在[a,b]上收敛. 记v n (x)=(-1)n-1,则对任意的x ∈[a,b],有|∑=n1k k (x )v |≤1, (n=1,2,…),即{v n (x)}的部分和函数列在[a,b]上有界;又u n (x)在[a,b]上单调,且u n (a),u n (b)都收敛于零,∴0<u n (x)<u n (a)+u n (b)→0(n →∞),∴u n (x)⇉0 (n →∞), 由狄利克雷判别法知该级数在[a,b]上一致收敛.13、证明:若{f n (x)}在区间I 上一致收敛于0,则存在子列{in f },使得∑=n1k n if在I 上一致收敛.证:∵{f n (x)}在区间I 上一致收敛于0,∴对任意自然数i ,总存在自然数n i ,使得∀x ∈I ,有|i n f |<2i 1,又级数∑=n1k 2i1收敛,由魏尔斯特拉斯判别法知,∑=n1k n if 在I 上一致收敛.。

实变函数中的一致收敛问题

实变函数中的一致收敛问题

实变函数中的一致收敛问题实变函数是数学分析中一种重要的函数类型。

在研究实变函数的性质和行为时,一致收敛问题是一个关键的概念。

本文将深入探讨实变函数中的一致收敛问题,并介绍相关的定义和定理。

一、一致收敛的定义在介绍一致收敛的概念之前,我们先回顾一下点wise收敛的定义。

给定实变函数序列{fn(x)},当对于任意的x值,序列{fn(x)}都收敛于某个极限L(x),则我们说该序列在点wise意义下收敛。

然而,点wise收敛并不能保证序列{fn(x)}对于x的每个值收敛到相同的极限。

而一致收敛的定义正是解决了这个问题。

定义1:给定实变函数序列{fn(x)},如果对于任意的ε>0,存在正整数N,对于所有的n>N和所有的x值,当|fn(x)-L(x)|<ε时,我们称序列{fn(x)}在区间A上一致收敛于极限函数L(x)。

简而言之,一致收敛要求序列{fn(x)}在整个区间A上以相同的速度接近于极限函数L(x)。

二、一致收敛的性质一致收敛在实变函数的研究中具有重要的性质和特点。

下面我们将介绍几个关于一致收敛的定理。

定理1:如果实变函数序列{fn(x)}在区间A上一致收敛于函数f(x),则函数f(x)在区间A上连续。

这个定理表明一致收敛是连续性的保证,即序列的极限函数也是连续的。

定理2:如果实变函数序列{fn(x)}在闭区间[a,b]上一致收敛于函数f(x),则序列{fn(x)}在该闭区间上也点wise收敛于函数f(x)。

这个定理说明了一致收敛是点wise收敛的必要条件,并且在闭区间上一致收敛可以推导出点wise收敛。

定理3:如果实变函数序列{fn(x)}在区间A上一致收敛于函数f(x),则序列的导函数{fn'(x)}也在该区间上一致收敛于函数f'(x)。

这个定理表明一致收敛在求导运算中具有保持性。

三、一致收敛的应用一致收敛在实变函数的研究和应用中具有广泛的应用价值。

下面我们将介绍两个应用实例。

函数项级数的一致收敛性及一致收敛级数的基本性质

函数项级数的一致收敛性及一致收敛级数的基本性质
因为对任意 x 都有:
sin n x
2
1
cos x cos 2 2 x cos n 2 x
其一般项不趋于0, 所以对任意 x 都发散 .
问题: 对什么样的函数项级数才有:
逐项连续 和函数连续;
逐项求导 = 和函数求导; 逐项积分 = 和函数积分
函数序列的一致收敛
回忆
设 fn ( x) 是区间I 上的函数列, 若x0 I , 数列
n 1

例1. 研究级数 1 1 1 ( x 1)( x 2) ( x 2)( x 3) ( x n)( x n 1)
若 lim n 0, 则 0, N ( ) 0, n N ( )时 反之, n
fn ( x) f ( x)

n ,
x I , fn ( x) f ( x) n .
{ fn ( x)}在I 上一致收敛于f ( x).
例.
x 求证f n ( x ) 在( , )上一致收敛. 2 2 1 n x x lim f n ( x ) lim 0, 逐点收敛于f ( x ) 0. 2 2 n n 1 n x x 1 2n x 1 fn ( x) f ( x) 2 2 2 2 1 n x 2n 1 n x 2n 1 n sup f n ( x ) f ( x ) 0. 2n x( , )
任意 0,
切x I , 都有 fn ( x) f ( x) , 则称 fn ( x) 在I 上一
致收敛于f ( x )。
定理
记: n sup f n ( x ) f ( x ) ,则 fn ( x) 在I 上

函数项级数的一致收敛性与其应用

函数项级数的一致收敛性与其应用

函数项级数的一致收敛性及其应用摘要:随着科学技术的发展,初等函数已经满足不了人们的需要 . 自柯西给出了无穷级数的定义后,随着人们对级数的深入研究,无穷级数的理论得到了飞速的发展 . 有了无穷级数,函数项级数应运而生 . 函数项级数在数学科学本身及工程技术领域里有广泛的应用 , 函数项级数的一致收敛性在应用中起着至关重要的作用 , 因此研究函数项级数的一致收敛性及其判定就成了应用中重要的环节 . 本文介绍函数项级数一致收敛的相关概念,对函数项级数一致收敛性的判定方法进行梳理、归纳,并举例说明,以一类最简单的函数项级数幂级数为例,说明函数项级数在计算方面的应用.关键词:函数项级数;一致收敛;幂级数Uniformly Convergence Series of Functions and Application Abstract: With the development of science and technology, elementary function has failed to meet the needs of the people. Since the Cauchy gives the definition of infinite series, the theory of series has been developed rapidly with the in-depth study of it. With the infinite series, series of functions came into being. Series of functions has a wide application in mathematics and engineering science. The uniformly convergence of series of functions plays an important role in application. During the application, the uniformly convergence of series of function and its judgment become important. This article describes the concept of the uniformly convergence of series of functions, to sum up the judgment of the uniformly convergence of series of functions. We give many examples and take the series of powers to illustrate the application in calculation of series of functions.Key words: series of functions; uniformly convergence; series of powers目录1引言 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1 2函数项级数的相关概念介绍 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,22.1函数列及其一致收敛性 ,,,,,,,,,,,,,,,,,,,,,,,,,,,22.2函数项级数及其一致收敛性 ,,,,,,,,,,,,,,,,,,,,,,,,,32.3一致收敛函数项级数的性质 ,,,,,,,,,,,,,,,,,,,,,,,,,4 3函数项级数的一致收敛性判别法 ,,,,,,,,,,,,,,,,,,,,,,,,,,53.1一般判别法 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,53.2魏尔斯特拉斯判别法 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,73.3阿贝尔判别法与狄利克雷判别法 ,,,,,,,,,,,,,,,,,,,,,,,73.3.1阿贝尔判别法 ,,,,,,,,,,,,,,,,,,,,,,,,,,,83.3.2狄利克雷判别法 ,,,,,,,,,,,,,,,,,,,,,,,,,,83.4类似数项级数判别法的函数项级数一致收敛判别法 ,,,,,,,,,,,,,,103.4.1比式判别法 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,103.4.2根式判别法 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,113.4.3对数判别法 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,123.5Dini 判别法 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,134 幂级数的应用 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,144.1幂级数的定义 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,144.2幂级数的应用 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,144.2.1幂级数在近似计算中的应用 ,,,,,,,,,,,,,,,,,,,,,144.2.2幂级数在计算积分中的应用 ,,,,,,,,,,,,,,,,,,,,,154.2.3幂级数在求极限中的应用 ,,,,,,,,,,,,,,,,,,,,,,154.2.4幂级数在数列求和中的应用 ,,,,,,,,,,,,,,,,,,,,,164.2.5幂级数在欧拉公式推导中的应用 ,,,,,,,,,,,,,,,,,,,164.2.6幂级数在求导中的应用 ,,,,,,,,,,,,,,,,,,,,,,,174.2.7幂级数在概率组合中的应用 ,,,,,,,,,,,,,,,,,,,,,174.2.8幂级数在证明不等式中的应用 ,,,,,,,,,,,,,,,,,,,,184.2.9用幂级数形式表示某些非初等函数 ,,,,,,,,,,,,,,,,,,185 总结 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,19致谢 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,20参考文献 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,211引言随着科学技术的发展,人们对自然界的认识逐步深化,发现许多自然现象和工程技术运用初等函数已经满足不了人们的需要,因此要求人们去构造新的函数. 自 19 世纪柯西给出了无穷级数的定义后,随着人们对其深入研究,无穷级数的理论得到了飞速的发展. 有了无穷级数,函数项级数应运而生 . 首先函数项级数为函数的构造开辟了一个新天地,例如,1872 年魏尔斯特拉斯利用函数项级数给出了一个处处连续但处处不可导的函数的例子. 其次,函数项级数理论提供了研究函数的一个基本方法,特别是利用级数的理论进行函数的Taylor展开和Fourier展开.实际上,函数项级数的一致收敛性理论对近代各种函数逼近理论以及无穷维空间中元素按基底的展开理论都产生了重大的影响 ( 朱正佑 ,2001) [1] . 函数项级数在数学科学本身及工程技术领域里有广泛的应用, 函数项级数的一致收敛性在应用中起着至关重要的作用, 因此研究函数项级数的一致收敛性及其判定就成了应用中重要的环节. 本文介绍函数项级数的一致收敛的相关概念、对函数项级数一致收敛性的判定方法进行梳理、归纳,并举例说明,并且以一类最简单的函数项级数——幂级数为例,对其在计算方面的应用进行举例说明.2函数项级数的相关概念介绍2.1函数列及其一致收敛性定义1设f1 , f 2 ,,f n,是一列定义在同一数集 E 上的函数,称为定义在 E 上的函数列,也可简单的写作:{ f n } 或 f n,n1,2,.设 x0 E ,以 x0代入 { f n } 可得数列f 1 ( x0 ), f 2 ( x0 ),,f n( x0),若数列 { f n (x0 )} 收敛,则称函数列{ f n } 在点 x0收敛, x0称为函数列{ f n } 的收敛点.若数列{ f n (x0 )} 发散,则称函数列{ f n } 在点 x0发散.若函数列 { f n } 在数集D E 上每一点都收敛,则称 { f n } 在数集D上收敛.这时D上每一点 x,都有数列 { f n ( x)} 的一个极限值与之相对应,由这个对应法则所确定的 D 上的函数,称为函数列{ f n } 的极限函数.若极限函数记作 f ,则有lim f n ( x) f ( x) , x Dn或 f n (x) f ( x) (n) , x D .使函数列 { f n } 收敛的全体收敛点集合,称为函数列{ f n } 的收敛域.定义 2 设函数列{ f n}与函数f定义在同一数集 D 上,若对任给的正数,总存在某一正整数 N ,使得当 n N 时,对一切 x D ,都有f n ( x) f ( x),则称函数列 { f n } 在D上一致收敛于f,记作f n ( x)f ( x)(n) ,x D .注:本文用“”表示一致收敛 .由定义看到,如果函数列 { f n } 在D上一致收敛,那么对于所给的,不管 D 上哪一点x,总存在公共的 N ( ) (即 N 的选取仅与有关,与 x 的取值无关),只要n N ,都有f n ( x) f (x).由此可以看到函数列{ f n } 在D上一致收敛,必在 D 上每一点都收敛. 反之,在D上每一点都收敛的函数列 { f n } ,在D上不一定一致收敛.2.2函数项级数及其一致收敛性定义 3设{u n(x)}是定义在数集 E 上的一个函数列,表达式u1 ( x) + u2 ( x) +,+ u n(x) +,, x E()1称为定义在 E 上的函数项级数,简记为n 1u n (x) 或u n ( x)。

一致收敛函数列性质的应用

一致收敛函数列性质的应用
由于被积函数 ,当 时,有 ,

(2)
因此,由 的收敛性知,,对上述 ,存在 ,使当 时,

综合以上所得,结论获证。
或者 ,
显然 , ,关于 是一致的,
对任意 , 在 上是一致的。
故 关于 是一致的,
关于 一致收敛。
证明记 ,
对任意正整数 ,取 , ,

所以 在 上不一致收敛。
四、设 收敛, ,
证明 。
证明:证法一:我们有
,
由假设条件 收敛,知 收敛,而 关于 单调且一致有界,
从而由 判别法知 收敛,即 有定义,
由于 收敛,对任意 存在正整数 ,使得当 时,有 ,
此时,对任何 以及 ,

从而,此时有

所以, , ,
在每一区间 上取出一个有理点 , ,
由于 收敛,
对上述 ,存在 ,当 时,

对任意 ,存在一个区间 ,使得
, ,
综合以上不等式,得

即得 在 上是一致柯西列,故 在 上一致收敛.
3.求证: 在 内一致收敛.
证明: ,
只要证明级数 在 上一致收敛即可,
关于n单调递减,

根据Dirichlet判别法,得
, ,
即得 在 上一致有界.
(2)设 是 中的所有有理数,
对每一 , 是有界数列,
由聚点定理,存在收敛的子列,取子列的子列,利用对角线法则,可选到 的子列 ,
使得,对每一 , 收敛,
下证 在 上一致收敛.
对任意 ,存在一个 ,当 , 时,有

取正整数 充分大,使得 , , ,
区间 被分割成 个小区间 , ,
即 .
证法二:我们有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

龙源期刊网
一致收敛性及应用初步
作者:缪彩花何天荣
来源:《文理导航》2018年第03期
【摘要】本文对函数项级数一致收敛性的判别法进行介绍和举例,还介绍了一致收敛函数项级数性质的初步应用,有助于加深对一致收敛的理解,体会一致收敛的作用,增强数学的应用意识。

【关键词】级数;一致收敛;判别法
函数项级数具有高度的抽象性,特别是函数项级数的一致收敛性更是教学和学习中的难点,以下我们介绍函数项级数一致收敛性的判别方法及其初步应用。

一、函数项级数一致收敛性的判别法
1.M判别法
M判别法的适用范围虽然较窄,但当它适用時,用起来却很方便。

如对于函数项级数,x∈[-1,1]。

由于对任意的x∈[-1,1]有u (x)≤ ,而级数收敛,所以由M判别法知原函数项级数在[-1,1]上一致收敛。

该函数项级数也可用“裂项相消法”去求
部分和序列,证明其一致收敛,但和M判别法比较,就可以发现M判别法简单得多。

2.狄利克雷判别法和阿贝尔判别法
狄利克雷判别法和阿贝尔判别法均适用于讨论通项是两个函数相乘的函数项级数,如对于函数项级数,x∈[0,+∞),记u (x)= ,v (x)= , u (x)在[0,+∞)上一致收敛。

∨x∈[0,+∞),函数列{v (x)}是单调减少的,又因为v (x)≤1对一切x∈[0,+∞)和任意n∈N都成立,所以{v (x)}在[0,+∞)一致有界,由阿贝尔判别法知函数项级数 u (x)v (x)在[0,+∞)上一致收敛。

3.柯西准则及其推论
判别函数项级数一致收敛的M判别法,狄利克雷判别法,阿贝尔判别法都是充分性判别法,不能用它们来判别函数项级数不一致收敛。

判别函数项级数不一致收敛可应用柯西准则及其推论。

对于函数项级数 2 sin(x/3 ),x∈(0,+∞),记u (x)=2 sin(x/3 ),取ε =1,∨N>0, n>N及x =π3 /2∈(0,+∞)有u (x )=2 >1,由此得{u (x)}在(0,+∞)上不一致收敛于零,由柯西准则的推论得:函数项级数 2 sin(x/3 )在(0,+∞)上不一致收敛。

相关文档
最新文档