北航14系 保障性分析 大作业
最新北航-系统可靠性设计分析_赵廷弟_综合测试题2
北航-系统可靠性设计分析_赵廷弟_综合测试题21.判断题(共20分,每题2分)(1)()系统优化权衡的核心是效能、寿命周期费用两个概念之间的权衡。
(2)()产品的故障密度函数反映了产品的故障强度。
(3)()对于含有桥联的可靠性框图,在划分虚单元后得到的可靠性框图应是一个简洁的串、并联组合模型。
(4)()提高机械零件安全系数,就可相应提高其静强度可靠度。
(5)()相似产品可靠性预计法要求新产品的预计结果必须好于相似的老产品。
(6)()并非所有的故障都经历潜在故障再到功能故障这一变化过程。
(7)()故障树也是一种可靠性模型。
(8)()事件树中的后续事件是在初因事件发生后,可能相继发生的非正常事件。
(9)()电子元器件是能够完成预定功能且不能再分割的电路基本单元。
(10)()与电子产品相比,机械产品的失效主要是耗损型失效。
2.填空题(共20分,每空1分)(1)系统效能是系统、及的综合反映。
(2)产品可靠性定义的要素为、和。
(3)可靠性定量要求的制定,即对定量描述产品可靠性的及其。
(4)应力分析法用于阶段的故障率预计。
(5)在进行FMEA之前,应首先规定FMEA从哪个产品层次开始到哪个产品层次结束,这种规定的FMEA层次称为,一般将最顶层的约定层次称为。
(6)故障树构图的元素是和。
(7)事件的风险定义为与的乘积。
(8)PPL的含义是。
(9)田口方法将产品的设计分为三次:、和。
3.简答题(20分)(1)(10分)画出典型产品的故障率曲线,并标明:1)故障阶段;2)使用寿命;3)计划维修后的故障率变化情况。
(2)(10分)什么是基本可靠性模型?什么是任务可靠性模型?举例说明。
4.(10分)题图4(a)、(b)两部分是等价的吗?请说明理由。
当表决器可靠度为1,组成单元的故障率均为常值 时,请推导出三中取二系统的可靠度和MTBCF表达式。
(a)(b)题图45.(10分)四个寿命分布为指数分布的独立单元构成一个串联系统,每个单元的MTBF分别为:300、500、250和150小时。
北航数值分析报告大作业一
北京航空航天大学数值分析大作业一学院名称自动化专业方向控制工程学号 ZY1403140学生许阳教师玉泉日期 2014 年 11月26 日设有501501⨯的实对称矩阵A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=5011A a b c b c c b c b a其中,064.0,16.0),501,,2,1(64.0)2.0sin()024.064.1(1.0-==⋅⋅⋅=--=c b i e i i a ii 。
矩阵A 的特征值为)501,,2,1(⋅⋅⋅=i i λ,并且有||min ||,501150121i i s λλλλλ≤≤=≤⋅⋅⋅≤≤1.求1λ,501λ和s λ的值。
2.求A 的与数4015011λλλμ-+=kk 最接近的特征值)39,,2,1(⋅⋅⋅=k k i λ。
3.求A 的(谱数)条件数2)A (cond 和行列式detA 。
一 方案设计1 求1λ,501λ和s λ的值。
s λ为按模最小特征值,||min ||5011i i s λλ≤≤=。
可使用反幂法求得。
1λ,501λ分别为最大特征值及最小特征值。
可使用幂法求出按模最大特征值,如结果为正,即为501λ,结果为负,则为1λ。
使用位移的方式求得另一特征值即可。
2 求A 的与数4015011λλλμ-+=kk 最接近的特征值)39,...,2,1(=k k i λ。
题目可看成求以k μ为偏移量后,按模最小的特征值。
即以k μ为偏移量做位移,使用反幂法求出按模最小特征值后,加上k μ,即为所求。
3 求A 的(谱数)条件数2)(A cond 和行列式detA 。
矩阵A 为非奇异对称矩阵,可知,||)(min max2λλ=A cond(1-1)其中m ax λ为按模最大特征值,min λ为按模最小特征值。
detA 可由LU 分解得到。
因LU 均为三角阵,则其主对角线乘积即为A 的行列式。
二 算法实现1 幂法使用如下迭代格式:⎪⎪⎩⎪⎪⎨⎧⋅===⋅⋅⋅=------||max |)|sgn(max ||max /),,(111111)0()0(10k k k k k k k k Tn u u Ay u u u y u u u β任取非零向量 (2-1)终止迭代的控制理论使用εβββ≤--||/||1k k k , 实际使用εβββ≤--||/||||||1k k k(2-2)由于不保存A 矩阵中的零元素,只保存主对角元素a[501]及b,c 值。
可靠性工程技术(北航可靠性研究所培训资料)220页
10 培训教程
表1 基本可靠性与任务可靠性
基本可靠性 在规定条件下产品无故
障工作能力的度量 考虑所有需要维修保
障的故障 采用冗余,降低基本
可靠性 通常低于或等于任务
可靠性
主要参数:平均故障间隔时间(MTBF)
任务可靠性 产品完成规定任务能力
不可修复产品的一种基本可靠性参数。其度量方法为:在 规定的条件和规定的期间内,产品寿命单位总数与故障产品总 数之比。
18 培训教程
2.1.2 可靠性定量要求——主要指标参数
d.平均首次故障前时间 mean time to first failure (MTTFF) 可修复产品的一种基本可靠性参数。其度量方法为:在规
2.1.2 可靠性定量要求——主要参数特征量
a. 可靠度 可靠性的概率度量,其符号为R(t) 例如: R(t)=0.95,0.99等。
b. 平均故障间隔时间 mean time between failures (MTBF) 可修复产品的一种基本可靠性参总次数 比。 c. 平均故障前时间 mean time to failures (MTTF)
1 可靠性和可靠性工程概述 1.1 可靠性工作的基本原则
f. 尽可能通过规范化的工程途径, 开展各项可靠性 工作;
g. 必须加强对研制和生产过程中可靠性工作的监督 和控制;
h. 应充分重视使用阶段的可靠性工作, 以尽快达到 可靠性的目标值;
i. 在选择可靠性工作项目时, 应根据各种因素对工 作项目的适用性和有效性进行分析, 以选择效费 比高的工作项目。
a.目的 通过制定并贯彻产品可靠性设计准则,把有助于保证、提高
【航空航天】可靠性、维修性和保障性(共19页)
国外直升机可靠性、维修性和保障性发展综述1. 引言可靠性、维修性和保障性(RMS)是响影军用直升机作战效能、作战适用性和寿命周期费用的关键特性。
特别是在现代高技术战争中,RMS成为武装直升机战斗力的关键因素。
美国武装直升机AH-64“阿柏支”由于在研制中重视RMS工作,具有较高的RMS水平,保证AH-64具有较的战备完好性和任务成功概率。
在1990年12月至1991年4月的海湾战争中,美国陆军101师攻击直升机营的8架AH-64直升机,突袭伊拉克,摧毁了通往巴格达沿途的雷达站,为盟国空军执行空战任务开辟了空中通道,仅在2月28日,第一武装分队的AH-64摧毁了36辆坦克,俘获了850名伊军官兵。
在海湾战争中,美军出动了288架AH-64,累计飞行18700小时,仅有一架AH-64被地面炮火击落,在“沙漠盾牌”和“沙漠风暴”行动中,AH-64的能执行任务率分别达到80%和90%,超过了设计要求。
AH-64的战例充分表明,RMS是现代武装直升机形成战斗力的基础,是发挥其作战效能的保证,也是现代军用直升机设计中必须考虑的、与性能同等重要的设计特性。
2. 国外直升机RMS技术的发展随着直升机在现代战争中和国民经济建设中的作用及地位的日益提高,直升机RMS越发引起各工业发达国家的重视,特别是对直升机可靠性和安全性问题早就得到重视;随着武装直升机的应用与发展、机载雷达及火控系统的可靠性及维修性也相继引起各国军方的重视;近十多年来,尤其是海湾战争之后,为了满足现代高技术战争的需要,要求直升机具有快速出动能力和高的战备完好性,降低武装直升机的寿命周期费用,要求直升机具有低的维修工时、少量维修人力、少量备件和良好的测试性和保障性。
总的说来,近50年来,国外直升机RMS技术的发展大至可划分为如下3个阶段。
2.1 50年代中期至60年代末期50年代中期或末期开始研制或60年代初期开始研制、在60年代投入服役的直升机,如美国的CH-47A、CH-53A、AH-1A、AH-56A、OH-58A、UH-1A等。
北航可靠性故障模式影响及危害度分析FMECA课件
FMECA虽是有效的可靠性分析方法,但并非万能。 它不能代替其他可靠性分析工作。应注意FMECA一 般是静态的、单一因素的分析方法。在动态方面还 很不完善,若对系统实施全面分析还需与其他分析 方法(如FTA、ETA等)相结合。
2024/3/4
17
故障模式
故障与故障模式
8
2 故障模式影响分析FMEA
初始约定层次产品
约定层次产品
代 产品 功
码
或
能
功能
标志
1
对每一 产品的 每一故 障模式 采用一 种编码 体系进 行标识
2
记录被 分析产 品或功 能的名 称与标
3
简要描 述产品 所具有 的主要 功能
任务
分析人员
故 故 任务
障
障 阶段
模
原
与
式
因
工作 方式
4
根据故 障模式 分析的 结果简 要描述 每一产 品的所 有故障 模式
2024/3/4
12
实施FMECA应注意的问题
强调“谁设计、谁分析”的原则
“谁设计、谁分析”的原则,也就是产品设计人员 应负责完成该产品的FMECA工作,可靠性专业人员 应提供分析必须的技术支持。
实践表明,FMECA工作是设计工作的一部分。“谁 设计、谁分析”、及时改进是进行FMECA的宗旨, 是确保FMECA有效性的基础,也是国内外开展 FMECA工作经验的结晶。如果不由产品设计者实施 FMECA,必然造成分析与设计的分离,也就背离了 FMECA的初衷。
有效性。对分析提出的改进、补偿措施的实现予以跟踪 和分析,以验证其有效性。这种过程也是积累FMECA工 程经验的过程。
2024/3/4
基于性能保障分析的飞机备件需求预测模型
的 产 品 保 障 策 略 。鉴 于 目 前 飞 行 训 练 任 务 期 间 备 件 需 求 量 预 测 方 法 与 定 期 维 修 保 障 模 式 顶 层 指 标 相 脱 节 ,预 测 结
果 无 法 适 应 飞 行 训 练 及 面 向 性 能 保 障 的 需 求 ,文 章 通 过 基 于 性 能 的 保 障 性 分 析 方 法 ,给 出 了 基 于 性 能 保 障 分 析 的
基于性能保障分析的飞机备件需求预测模型
涂继亮 ' 余 洪 、余 松 、王 彦 晓 1
( 1 .江西洪都航空工业集团有限责任公司650所 ,南 昌 330024;2.南昌航空大学信息工程学院,南 昌 330063)
摘 要 :基于性能的后勤保障其实质就是购买性能而不是传统的购买产品和服务。 目前这已成为美国国防部首选
2019 年 第 34卷 第 4期
海军航空工程学院学报 Journal of Naval Aeronautical and Astronautical Universit(2019)04-0356-07
DOI: 10.7682/j.issn.l673-1522.2019.04.004
随着国内正在推行的基于性能的后勤保障工作
收 稿日期:2 0 1 9 -0 5 -2 9 ;修 回 日 期 :2019-06-22 基 金 项 目 :国 家 自 然 科 学 基 金 资 助 项 目 (71862025, 6 1 861033);江 西 省 教 育 厅 科 技 资 助 项 目 (GJJ180521) 作 者简介:涂 继 亮 (1 9 8 0 - ) ,男 ,高级主任设计师,博士后。
备件需 求 规 划 流 程 ; 以维修保障费用最低为目标,飞机使用可用度、备 件 保 障 概 率 、备件利用率等保障性指标为约
北航系统可靠性设计分析赵廷弟综合测试题.doc
1.判断题(共20分,每题2分,答错倒扣1分)(1)()系统可靠性与维修性决定了系统的可用性和可信性。
(2)()为简化故障树,可将逻辑门之间的中间事件省略。
(3)()在系统寿命周期的各阶段中,可靠性指标是不变的。
(4)()如果规定的系统故障率指标是每单位时间0.16,考虑分配余量,可以按每单位时间0.2进行可靠性分配。
(5)()MTBF和MFHBF都是基本可靠性参数。
(6)()电子元器件的质量等级愈高,并不一定表示其可靠性愈高。
(7)()事件树的后果事件指由于初因事件及其后续事件的发生或不发生所导致的不良结果。
(8)()对于大多数武器装备,其寿命周期费用中的使用保障费用要比研制和生产费用高。
(9)()所有产品的故障率随时间的变化规律,都要经过浴盆曲线的早期故障阶段、偶然故障阶段和耗损故障阶段。
(10)()各种产品的可靠度函数曲线随时间的增加都呈下降趋势。
2.填空题(共20分,每空2分)(1)MFHBF的中文含义为。
(2)平均故障前时间MTTF与可靠度R(t)之间的关系式是。
(3)与电子、电器设备构成的系统相比,机械产品可靠性特点一是寿命不服从分布,二是零部件程度低。
(4)在系统所处的特定条件下,出现的未预期到的通路称为。
(5)最坏情况容差分析法中,当网络函数在工作点附近可微且变化较小、容差分析精度要求不高、设计参数变化范围较小时,可采用;当网络函数在工作点可微且变化较大,或容差分析精度要求较高,或设计参数变化范围较大时,可采用。
(6)一般地,二维危害性矩阵图的横坐标为严酷度类别,纵坐标根据情况可选下列三项之一:、或。
3.简要描述故障树“三早”简化技术的内容。
(10分)4.写出故障率、可靠度及故障密度函数的定义式,推导出三者的关系式,并最终推导出可靠度与故障率函数的关系式。
(20分)5.如题6图 (a)所示系统,表示当开关E 打开时,发电机A 向设备B 供电,发电机C 向设备D 供电。
如果发电机A 或C 坏了,合上开关E ,由发电机C 或A 向设备B 和D 供电。
北航可靠性课件3
可靠性验收试验
模拟实际使用环境,对产品施加工作应力,验证批生 产产品的可靠性是否保持在规定的水平,即产品经过 生产期间的工艺、工装、工作流程变化后的可靠性。
2019/5/16
4
可靠性验证
概念
在设计定型阶段和试用阶段,对产品的可靠性是否达 到合同规定的要求给出结论性意见所需进行的鉴定、 考核或评价工作的总称
目的
及早发现和纠正研制缺陷 考核装备可靠性特性在装备研制结束时能达到的水平,
以判定(或确定)规定的要求是否达到,为装备定型 提供依据 为装备到部队服役后提供使用、维修、保障等所需的 信息
为装备后期改进提供所需的信息
2019/5/16
5
可靠性验证
目标定位:在目前的各种约束的条件下,给出一个可以切 实可行的方法与程序,通过这些方法验证得出接受的结论
6
验证策略
以设计定型的过程为主线
将可靠性的验证融入到常规定型的过程中,可靠性验 证工作是定型工作不可分割的一部分
给定条件下的验证
从管理和技术两部分考虑
管理:总体方案、工作计划;组织机构与职责分工
技术:验证的方法、实施手段(技术)
验证方法的核心
统计/技术方案 信息
验证的剖面
GJB450A在可靠性工作项目中规定的可靠性试验: 环境应力筛选 可靠性研制试验 可靠性增长试验 可靠性鉴定试验 可靠性验收试验
2019/5/16
2
可靠性试验
环境应力筛选试验(ESS—Environment Stress
Screen)
在产品出厂前或使用前,有意将环境应力施加到产品 上,以便发现和排除不良元器件、制造工艺和其他原 因引入的缺陷造成的早期故障。
系统可靠性模型
系统可靠性模型
_可靠性框图模型
孙博
办公室:为民楼535房间 电话:10-82313214
E-mail:sunbo@ 北航可靠性与系统工程学院
2014年12月
• 复杂产品应该如何建模?
• 如何根据系统组成部件/单元的故障规律来推 断系统的故障规律?
• 可见,尽管单元故障率都是常数,但并联系统 的故障率不再是常数。
λ
λ1>λ2
λ1 λ
λ2
λs(t)
λ1=λ2 λs(t)
t
t
并联模型故障率曲线
2014/12/31
北航可靠性与系统工程学院
11
并联模型(续)
• 当系统各单元的寿命分布为指数分布时,对于 n个相同单元并联系统,有
Rs (t) 1 (1 et )n
1
2
n
• 其数学模型为:
n
RS (t) 1 1 Ri (t) i 1
2014/12/31
北航可靠性与系统工程学院
9
并联模型(续)
• 当系统各单元的寿命分布为指数分布时,对于 两单元并联系统,有
1 2
2014/12/31
Rs (t) e1t e2t e(12 )t
n
Ri (t)
n
e e it
it
i1
i 1
i 1
2014/12/31
北航可靠性与系统工程学院
7
串联模型(续)
• 当各单元的寿命分布均为指数分布时,系统的
寿命也服从指数分布,系统的故障率为各单元
的故障率之和。
s
ln(Rs (t)) t
北航可靠性-故障模式影响及危害性分析案例教学2
每一故 品或功 产品
障模式 能的名 所具
采用一 称与标 有的
种编码 志 主要
体系进
功能
行标识
2020/3/19
故障模 式
故障 原因
任务阶 故障影响
段与 工作方 局部
式 影响
高一 层次 影响
最终 影响
严酷度
故障检 测方法
设计改进措施 使用补偿措施
备注
4
5
6 7 8 9 10 11
12
13
根据故 根据故 根据任 根据故障影响分析 按每个 根据产 根据故障影响、主要记录
这种故障对顺桨系统的功能无影响,仅轻度 Ⅳ类 影响产品有效使用和操作。
2020/3/19
11
危害性分析
进行定性的危害性分析之前须明确给出故障模式发生概 率等级定义。结合航空产品的特点,给出升降舵系统故 障发生概率等级定义
故障模式发生
等级 定义
概率的特 故障模式发生概率(在产品使用时间内)
征
A 经常发生
设计改进措施等
2020/3/19
2
产品描述
J16-G10A螺旋桨顺桨系统 螺旋桨除了在工作范围内能变距外,还能固定在 顺桨位置,即桨叶对飞机飞行时产生最小阻力这 样一种位置.
2020/3/19
正常位置
顺桨位置
3
产品描述
功能及组成
2020/3/19
4
产品描述
2020/3/19
5
产品描述
2020/3/19
2020/3/19
10
故障模式影响分析
严酷度类别定义:结合航空产品的特点,确定升降舵系 统严酷度类别定义
严酷度类别
严重程度定义
复杂系统可靠性
山东科学SHANDONGSCIENCE第37卷第2期2024年4月出版Vol.37No.2Apr.2024收稿日期:2024 ̄02 ̄01基金项目:国家自然科学基金(72225012ꎬ72288101ꎬ71822101)ꎻ民航安全能力建设基金项目(ASSA2023/19)作者简介:刘一萌(1994 )ꎬ女ꎬ博士研究生ꎬ研究方向为复杂网络可靠性ꎮE ̄mail:liuyimeng@buaa.edu.cn∗通信作者ꎬ张小可ꎬ男ꎬ副研究员ꎬ研究方向为复杂系统ꎮTel:189****9787ꎬE ̄mail:zhangxiaoke2013@hotmail.com复杂系统可靠性刘一萌1ꎬ白铭阳1ꎬ张小可2∗ꎬ李大庆1(1.北京航空航天大学可靠性与系统工程学院ꎬ北京100191ꎻ2.复杂系统仿真国家重点实验室ꎬ北京100101)摘要:随着科学技术的发展ꎬ社会技术系统的体系化㊁网络化㊁智能化程度逐渐加深ꎬ形成系统的复杂性ꎮ这些复杂系统的 故障 ꎬ诸如交通拥堵㊁谣言传播㊁金融崩溃ꎬ可以看作是一种 1+1<2 的系统能力负向涌现ꎬ难以直接通过系统单元的还原解析来理解ꎬ这对原有可靠性理论提出了挑战ꎮ现有复杂系统可靠性的研究主要从故障规律展开ꎬ从两个角度出发进行ꎬ一是考虑故障传播的系统脆弱性研究ꎻ二是考虑故障恢复的系统适应性研究ꎮ系统脆弱性研究的重点在于挖掘系统崩溃的内在机理ꎬ即故障的传播机理ꎮ系统适应性研究的重点关注于系统适应恢复能力ꎬ包括系统故障恢复机理ꎮ在此基础上ꎬ本文介绍了相关的可靠性方法研究ꎮ关键词:复杂系统ꎻ可靠性ꎻ脆弱性ꎻ适应性中图分类号:N945㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:1002 ̄4026(2024)02 ̄0074 ̄11开放科学(资源服务)标志码(OSID):ComplexsystemreliabilityLIUYimeng1ꎬBAIMingyang1ꎬZHANGXiaoke2∗ꎬLIDaqing1(1.SchoolofReliabilityandSystmesEngineeringꎬBeihangUniversityꎬBeijing100191ꎬChinaꎻ2.NationalKeyLaboratoryforComplexSystemsSimulationꎬBeijing100101ꎬChina)AbstractʒWiththedevelopmentofscienceandtechnologyꎬthesystematizationꎬnetworkingandintelligentizationofthesocialtechnologysystemgraduallydeepenꎬformingthecomplexityofthesystem.Thefailuresofthesecomplexsystemsꎬsuchastrafficjamsꎬrumorspreadingꎬandfinancialcollapseꎬcanberegardedasakindof"1+1<2"negativeemergenceofsystemcapabilityꎬwhichisdifficulttounderstanddirectlythroughthereductionanalysisofsystemcomponents.Itchallengestheclassicalreliabilitytheory.Researchonthecomplexsystemsreliabilitymainlyfocusesonfailureslawsꎬwhichincludestwoperspectives.Oneisthestudyofsystemvulnerabilityconsideringfailurepropagation.Theotheristhestudyofsystemadaptabilityconsideringfailurerecovery.Systemvulnerabilitystudiesfocusonexploringtheinternalmechanismofsystemcollapseꎬnamelythefailurepropagationmechanism.Systemadaptabilitystudiesfocusonthecapacitytoadaptandrecoverꎬincludingthesystemfailurerecoverymechanism.Basedonthisꎬthearticleintroducesrelevantresearchonreliabilitymethod.Keywordsʒcomplexsystemꎻreliabilityꎻvulnerabilityꎻadaptability㊀㊀复杂系统具有涌现性ꎬ难以简单地由单元的规律推理得到整体的规律[1 ̄2]ꎮ系统工程为构建复杂社会技术系统提供指导ꎬ并被广泛应用于各个工业部门中ꎮ在钱学森等老一辈领军学者带领下ꎬ我国的系统科学和工程取得较大发展ꎬ从工程系统走向社会系统ꎬ提出开放的复杂巨系统方法论[3]及其实践形式[4]ꎮ近年来ꎬ系统学内涵得到不断深化并形成丰富理论成果[5 ̄12]ꎬ在社会管理[13]㊁应急救援[14]㊁农业[15 ̄16]㊁交通运输[17 ̄18]等各领域均做出积极贡献ꎮ在系统工程方法论与技术上ꎬ我国学者提出的WSR(物理-事理-人理)方法论[19]㊁灰色系统方法[20]㊁TEI@I方法论[21]等都在国内外产生了一定影响ꎮ基于火箭及计算机的工程实践ꎬLusser㊁冯 诺伊曼等人指出随着系统越来越复杂ꎬ可靠性成为了决定社会技术系统能否成功运行的关键问题[22 ̄23]ꎬ可靠性学科随之迅速发展ꎮ20世纪90年代ꎬ可靠性系统工程理论被提出[24]ꎬ进而学者们又进一步细化了可靠性系统工程理论并提出其技术框架[25]ꎮ近几年ꎬ系统复杂性随着信息技术和智能技术的进步而不断提高ꎮ一方面ꎬ这种复杂性给系统带来了脆弱性挑战ꎬ系统出现了不同于简单系统的故障模式ꎬ形成了 1+1<2 的负向涌现ꎮ例如复杂系统内单元之间存在故障耦合ꎬ这使得少量单元的故障可能引发级联失效ꎬ导致整个系统崩溃ꎮ另一方面ꎬ复杂性也可能带来系统的适应性ꎬ可使系统具备从扰动中恢复和适应的能力ꎮ例如生态系统中物种多样性[26]㊁内稳态机制[27]㊁共生网络的嵌套性[28]等在增加了系统复杂度的同时ꎬ也使得种群和个体能在各种各样的风险挑战和环境变化下幸存ꎮ传统可靠性方法是在元件数相对较少㊁元件间关系较为简单的系统上发展起来的ꎬ难以适用于分析复杂系统的可靠性ꎮ为此想要解决这些复杂系统的可靠性问题ꎬ必须借助系统科学研究和发展新理论㊁新方法应对新挑战ꎮ可靠性系统工程的实质是与故障做斗争ꎬ通过研究有关故障的规律ꎬ从而基于故障规律对故障进行事前预防和事后修理[24]ꎮ对复杂系统可靠性的研究也需要围绕其特有故障机理展开ꎮ系统可能因故障扩散而全面崩溃ꎬ也可能因故障恢复而稳定维持自身性能ꎮ因此可将复杂系统可靠性研究分为考虑故障传播的系统脆弱性研究和考虑故障恢复的系统适应性研究两类ꎮ1㊀考虑故障传播的系统脆弱性研究系统脆弱性是指系统被干扰后容易发生全局性崩溃的性质ꎬ一些具有罕见性㊁突发性等特点的重大事件往往是引发系统崩溃的原因之一ꎮ这类事件通常危害性高且迅速发生ꎬ后果严重并且难以预测ꎮ最为常见的导致系统发生全局性崩溃的原因是故障在系统中的传播ꎮ识别故障传播的机制和途径ꎬ有助于减少系统故障ꎬ降低系统脆弱性并提高可靠性ꎮ1.1㊀复杂网络渗流理论对故障传播的研究可以基于复杂网络渗流理论ꎮ渗流属于几何相变现象[29]ꎬ统计物理中的渗流理论[30]定量地刻画了网络整体层面的连通性丧失ꎮ在渗流过程中ꎬ网络的节点/连边被逐步移除ꎬ导致最大连通子团规模(其度量了网络连通性)降低ꎮ网络节点/连边移除的方法包括逐步随机移除节点/连边ꎬ或给定某属性的阈值ꎬ通过提高阈值来逐步移除属性低于阈值的节点/连边等ꎮ渗流过程中存在临界点ꎬ称为渗流阈值ꎬ在临界点附近ꎬ最大连通子团统计上变为0ꎮ以交通网络为例[31](如图1所示)ꎬ该研究对每条连边(道路)计算了当前道路车速与最大限速的比例(r)ꎮ对于给定的阈值qꎬ每条道路可以被分为功能正常的道路(r>q)和故障的道路(r<q)ꎮ对于任何给定的qꎬ根据原始路网的交通状态可构建功能性交通网络ꎮ如图1所示ꎬ分别以q为0.19㊁0.38和0.69表示低速㊁中速和高速阈值状态ꎮ随着q值的增加ꎬ交通网络变得更加稀疏(如图1(a)~1(c)所示)ꎮ图中只绘制了最大的三个连通子团ꎬ分别用绿色(最大连通子团G)㊁蓝色(第二大连通子团SG)和粉色(第三大连通子团)来标记ꎮ在渗流阈值处(q=0.38)ꎬ第二大连通子团大小会达到最大值(如图1(d)所示)ꎮ系统故障传播是发生在系统单元上的故障在各单元间扩散的过程ꎮ复杂网络渗流理论可以展现一个复杂网络通过移除网络节点/连边使网络碎片化的过程ꎬ能够对复杂系统脆弱性的内因进行分析描述ꎬ适用于对故障传播的研究ꎮ图1㊀交通网络中的渗流[31]Fig.1㊀Percolationintrafficnetwork[31]1.2㊀故障传播机理利用渗流理论对系统故障传播机理进行研究主要关注系统的扰动模式以及故障传播方式ꎮ系统的扰动模式是指故障出现的方式ꎬ主要包括随机扰动和蓄意攻击两类ꎮ故障传播方式主要指故障的扩散方式ꎬ包括传染病故障模型和级联失效模型等ꎮ下面主要介绍以上两种扰动模式和两种传播方式ꎮ1.2.1㊀系统的扰动模式随机扰动是指节点/连边的故障在复杂网络中随机产生ꎮ研究发现随机扰动下的无标度网络具有优于随机网络的鲁棒性[32]ꎮ无标度网络是一种度分布(即对复杂网络中节点度数的总体描述)服从或者接近幂律分布P(k)~k-α的复杂网络[33]ꎮ理论推导和数值仿真表明幂律分布的参数α<3的无标度网络在随机攻击下难以解体[34]ꎮ此外研究还发现ꎬ像互联网这种度分布近似为幂律分布的复杂网络ꎬ虽然对于随机删除节点这种攻击具有高度鲁棒性ꎬ但是针对蓄意攻击却相对脆弱ꎮ蓄意攻击是指挑选复杂网络中具有度数高㊁介数高等特征的重要节点ꎬ或权重高㊁重要度高的重要连边进行攻击使其故障的扰动方式ꎮ在蓄意攻击下ꎬ如果按照度的大小顺序来移除节点ꎬ无标度网络只要删除极少数的中心节点就会崩溃ꎬ比随机网络更加脆弱[32]ꎮ这也表明了无标度网络的高度异质性ꎬ即大部分连边集中于中心节点处ꎮ除了基于节点度数的攻击策略外ꎬ许多研究也基于其他原则的攻击策略分析故障传播ꎬ例如介数或基于其他不同中心性的攻击策略[35]ꎮ1.2.2㊀系统的故障传播方式常见的系统故障传播模型主要有传染病模型和级联失效模型ꎮ传染病模型是一种引入复杂网络理论来对流行病传染现象进行分析的方法ꎮ传染病模型框架主要基于两个假设:可划分性和均匀混合性ꎮ可划分性是指传染病模型按照个体所处阶段对其进行分类ꎬ并且个体可以在不同阶段之间转化ꎮ均匀混合性是指可以认为任何人都可以感染其他任何人[36]ꎬ而不需要确切地知道疾病传播所依赖的接触网ꎮ传染病模型可以应用于不同学科领域的场景ꎬ分析不同类型系统的故障传播特征ꎬ对系统的脆弱性进行研究[37]ꎮ通过传染病模型研究发现ꎬ在故障动态传播过程中ꎬ网络的拓扑结构是很大的影响因素ꎮ例如在疾病传播过程中ꎬ个体主动与已感染个体彻底断开联系[38 ̄39]ꎬ网络拓扑结构因此变化ꎬ进而会产生磁滞等丰富的动力学现象ꎮ级联失效是指初始一小部分单元的故障有可能引发其他单元故障ꎬ进而产生连锁反应ꎬ最终导致网络无法履行正常功能[40]ꎮ因此级联失效模型可用于研究少数单元的故障是否会触发整个系统的故障等问题ꎮ级联失效模型大致可分为基于负载重新分配㊁基于节点相互依赖关系和基于邻居生存数量等三大类[41]ꎮ在基于负载重新分配的级联失效模型中ꎬ每个单元有相应的容量并承担一定的负载ꎮ当某单元故障时ꎬ其所承担的负载会重新分配给其他单元ꎮ重新分配后ꎬ其他单元节点的负载可能超出容量ꎬ然后出现新的故障ꎬ从而引起故障传播ꎮ最直接的一类假设是ꎬ故障节点的负载会传播给邻居节点ꎬ如纤维束模型(fiberbundlemodel)[42]㊁沙堆模型[43 ̄44]等ꎮ研究者围绕这些模型分析了网络的脆弱度如何随网络结构异质性等因素而改变ꎮ此外ꎬ在输送物质㊁能量㊁信息的基础设施网络中ꎬ流量重配策略并不只是简单地分配给邻居[45]ꎮ2002年Motter等[46]提出的级联失效模型则假定每对节点之间的流量(如因特网中的数据流量㊁交通系统中的车辆流量)按照最短路径分配ꎬ每个节点的负载是该节点的介数(通过该节点的最短路径数量)ꎬ容量是初始负载的1+α倍ꎬ其中α为大于0的容忍(tolerance)参数ꎮ该模型表明ꎬ对于该类流量为负载的异质网络ꎬ级联失效机制也会引发类似于只攻击关键节点而造成整个系统崩溃的现象ꎮ在基于节点相互依赖关系的级联失效模型中ꎬ节点与节点之间存在依赖关系ꎬ某个节点故障会引发依赖于该节点的相关节点发生故障ꎮ例如ꎬ互联网依赖于电力网络供电ꎬ电力网络依赖于互联网进行控制ꎬ电力网与互联网形成了相互耦合的网络ꎮ电力网络中的节点失效ꎬ将会导致依赖该节点的互联网中的节点失效ꎬ进而引发依赖于这些互联网节点的电力网络节点失效ꎬ故障不断传播导致系统崩溃ꎮ对该耦合网络模型[47]的研究发现ꎬ耦合关系较强时会产生不连续的渗流相变ꎬ即最大连通子团规模随着删去节点比例的增加而不连续地跳变为0ꎮ这对于系统风险的预测㊁管理是十分不利的ꎮParshani等[48]提出了一个分析框架ꎬ用于研究同时包括连接关系连边和依赖关系连边的网络的稳健性ꎮ研究表明连接关系连边的故障和依赖关系连边之间存在协同作用ꎬ并引发了级联故障的迭代过程ꎬ对网络稳健性产生破坏性影响ꎮLi等[49]建立了空间嵌入的相互依赖网络模型ꎬ并发现首次故障的范围超过阈值半径时就可能导致全局崩溃ꎮ上述负载重新分配的级联失效模型也可以建模为节点间相互依赖关系[50]ꎮ在基于邻居存活数量的级联失效模型中ꎬ当节点邻居存活数量小于给定阈值时节点故障ꎮ这一类模型包括阈值模型(thresholdmodel)[51]㊁k ̄core渗流[52]以及Bootstrap渗流[53]等模型ꎮ阈值模型中ꎬ每个节点故障当且仅当邻居故障的比例超过该节点的阈值ꎬ从而初始故障节点可能触发整个系统的崩溃ꎮk ̄core渗流过程中ꎬ度小于k的节点会被移除ꎬ移除节点可能带来其他节点的度也小于kꎬ从而引发级联失效的现象ꎮk ̄core渗流能够区分出核心节点与边缘节点ꎬ可用于分析网络结构㊁识别脆弱节点[54]ꎮBootstrap渗流模型中ꎬ初始激活f比例的节点ꎬ其他节点若有k个邻居激活则也会被激活ꎬ从而产生级联现象ꎮ此外ꎬ除了基于故障传播模型之外ꎬ随着人工智能的发展ꎬ神经网络㊁图学习等方法也逐渐用于研究故障传播[55]ꎮ1.3㊀基于故障传播模型的可靠性研究上述故障机理揭示了复杂系统故障的传播规律ꎬ为分析和降低系统脆弱性提供有力的理论支持ꎮ目前研究者们基于故障传播模型展开了对系统可靠性方法的研究ꎬ包括对复杂系统的可靠性设计㊁可靠性评估㊁关键节点识别等ꎮ在复杂系统可靠性设计方面ꎬAdilson等[56]提出了一种基于在初始攻击后选择性地进一步移除部分节点和连边的无成本防御策略ꎬ通过移除部分单元阻断了故障级联传播ꎬ提高系统的可靠性ꎮYingrui等[57]研究了相互依赖网络的负载重分配策略ꎮ相互依赖网络中ꎬ故障连边的一部分负载会通过耦合关系转移给相互依赖的另一个网络上ꎮ该研究提出了通过恰当选择网络耦合强度(一个网络中分配给其他网络的负载比例)可以增加两个网络生存的可能性ꎮChristian等[58]提出了通过正确选择一小部分节点进行自治(独立于网络其他部分)可以显著提高鲁棒性ꎮ研究发现介数和度是选择此类节点的关键参数ꎬ通过保护介数最高的少数节点可显著降低系统崩溃的可能性ꎮSchäfer等[59]提出了在故障发生时重新分配负载的策略ꎮ该策略中基于最短流路径的策略能够将之前的异构负载分布的网络节点和链路变为更加均匀的负载分布ꎮ这些流路径的使用能够增加网络的鲁棒性ꎬ同时减少网络容量布局的投入成本ꎮPastor ̄Satorras等[60]提出了依赖于网络特定无标度结构的最佳免疫策略ꎬ为避免故障传播并提高系统鲁棒性提供了理论分析ꎮ在复杂系统可靠性评估方面ꎬLi等[31]对交通流网络进行渗流分析ꎬ发现在渗流阈值附近交通系统的连通状态会从全局连通变为局部连通ꎬ为控制系统拥堵提供了有效帮助ꎮ此外ꎬLi等[50]发现因局部故障引发的故障呈现辐射状以近似常速进行传播ꎬ通过理论分析给出故障传播速度则随着单元对故障的容忍程度的升高而降低ꎬ并在大量网络中得到了验证ꎮZeng等[61]基于渗流理论对故障模式进行研究ꎬ提出了涵盖交通拥堵从出现㊁演化到消散整个生命周期的健康管理框架ꎬ为未来交通的智能管理提供了理论支撑ꎮ在识别关键节点方面ꎬYang等[62]提出了一个动态级联失效模型ꎬ模拟了电网系统中的级联故障ꎮ研究基于该模型识别出了电网的关键脆弱节点并发现给定电网中的相同扰动会在不同条件下导致不同的结果ꎬ即从没有损坏到大规模级联ꎮNesti等[63]构建了故障传播模型ꎬ对电网的故障模式进行识别ꎬ根据故障的可能性对线路故障模式进行排序ꎬ并确定了此类电网最可能的故障发生方式和故障传播方式ꎮLiu等[64]利用小世界网络理论分析了系统的拓扑结构统计特性ꎬ提出了基于小世界聚类的故障传播模型ꎬ并利用Dijkstra算法找到了具有高扩散能力的故障传播路径和相关关键节点ꎬ验证了该方法能够有效地发现系统的薄弱点ꎬ为设计改进和故障预防提供重要依据ꎮ2㊀考虑故障恢复的系统适应性研究适应性是指系统在不断变化的环境中仍然保持自身性能的能力ꎮ系统适应性使系统能从压力中恢复[65]ꎬ反映系统适应性的两个关键因素分别是系统降级程度和系统性能恢复时间[66]ꎮ图2展示了系统性能在扰动前后的变化[67]ꎮte时刻系统受到扰动ꎬtd时刻系统受扰结束ꎬ系统性能水平由F(t0)降至F(td)ꎮts时刻系统开始恢复性能ꎬtf时刻系统到达最终平衡状态ꎬ系统性能水平恢复至F(tf)ꎮ图2㊀系统性能指标特征在扰动不同阶段下的变化[67]Fig.2㊀Changesofsystemperformanceindicatorcharacteristicsunderdifferentdisturbancestages[67]2.1㊀复杂系统适应性的景观理论复杂系统对扰动的适应过程可用动力系统理论进行建模ꎮ动力系统理论中ꎬ系统由一组状态变量所刻画ꎬ系统状态变量的各个分量联合定义了系统是否健康可靠ꎮ一个处在健康状态的复杂系统ꎬ在扰动下可能会突然进入故障状态ꎬ例如生态系统的物种灭绝[65]㊁热带雨林的沙地化[68]㊁金融危机[69]等等ꎮ系统状态变量的演化规律由微分方程或随机微分方程所描述ꎬ系统的稳定状态就是微分方程的吸引子[70]ꎬ系统内可能存在多个吸引子ꎮ外界对一个复杂系统的状态变量x或者系统参数θ进行扰动ꎬ系统因适应性不会直接脱离现有吸引子状态ꎬ依旧维持稳定ꎮ但当扰动足够大ꎬ超过系统恢复能力的临界点ꎬ使系统无法适应该变化时ꎬ系统可能脱离原有的吸引子状态ꎬ被其他吸引子吸引ꎮ由于微分方程或随机微分方程常常可由能量景观所表示ꎬ复杂系统扰动前后的适应过程可以用景观进行直观描述[71](如图3所示)ꎮ系统可以看作景观曲面上运动的小球ꎬ景观高度表示系统的能量(Lyapunov函数值)ꎬ小球倾向于往系统能量低的状态运动ꎬ即小球会倾向于向谷底运动ꎮ如图3(a)所示该景观有两个 谷底 ꎬ每个 谷底 表示一个吸引子ꎮ对处于健康态的系统施加扰动ꎬ系统状态发生改变ꎬ对应于图中实心小球的移动ꎮ小扰动下系统状态不会脱离健康态吸引子ꎮ大扰动下系统则会脱离健康态吸引子ꎬ进入故障态ꎮ对系统参数θ的扰动ꎬ对应于图中三维景观形状的改变(如图3(b)所示)ꎮ当系统参数改变到临界点时ꎬ健康态失稳ꎬ系统发生故障ꎮ而当系统健康态对应的吸引域越大㊁越深时ꎬ系统越容易在扰动后保持在健康态ꎮ图3㊀系统的三维景观示意图Fig.3㊀Schematicdiagramofthesystemthree ̄dimensionallandscape在处理由少数变量描述的低维系统时ꎬ只需沿用经典的动力系统理论即可ꎮ但当处理由高维状态变量描述的系统时ꎬ例如大量基因组成的调控网络或由大量物种组成的生态系统ꎬ就会面临状态空间指数爆炸㊁系统参数多等困难ꎮ对于此类高维系统ꎬ可结合统计物理中的粗粒化㊁平均场近似等技术来克服局限性[72 ̄73]ꎮ近年来ꎬ自旋玻璃理论被引入用于分析生态系统的稳态性质[74]ꎮ例如Altieri等[75]使用自旋玻璃中的Replica方法对广义L ̄V方程进行求解ꎬ发现了低噪音下存在玻璃相ꎬ系统吸引子的个数正比于变量数的指数倍ꎮGao等[76]对包括基因㊁化学反应等多种类型网络动力学进行粗粒化得到了系统崩溃的临界点ꎮ2.2㊀基于景观理论的系统适应性分析景观理论能够衡量系统是否即将发生故障或者崩溃ꎬ并揭示复杂系统崩溃的根源ꎬ为分析系统适应性提供支持ꎬ被广泛应用于不同领域ꎮ例如在生物领域ꎬHuang等[77]发现了癌症等疾病可以理解为基因调控网络动力学中的吸引子ꎮ这种吸引子可能是正常细胞中本就具备的ꎬ也可能是基因突变后产生的ꎮ在生态领域ꎬHoegh ̄Guldberg等[78]分析了珊瑚礁的恢复能力ꎬ识别了珊瑚生长速率(系统参数)的临界点ꎮ当珊瑚生长速率下降到临界点ꎬ原本由珊瑚主导的生态环境将突变为水藻主导的生态环境ꎮ在社会科学领域ꎬ极端思想的传播在互联网属于一种故障态对应的吸引子ꎮJohnson等[79]建立了网络极端思想的模型ꎬ指出了由于极端思想网络的适应性ꎬ单个平台大幅度封杀并不足以使极端思想在互联网上灭绝ꎬ反而可能加剧极端思想的发展ꎮ将复杂系统的崩溃或者故障建模为健康状态吸引子的失稳ꎬ也可以指导不同领域复杂系统可靠性设计和诊断ꎮ在复杂系统可靠性设计方面ꎬ研究发现元素间存在强耦合的系统容易存在临界点ꎬ减少耦合可避免系统发生突变[40]ꎮ随着复杂系统单元之间的交互变强ꎬ系统单元的行为可能会严重改变或损害其他单元的功能或操作ꎮ因为强耦合系统的动态变化往往很快ꎬ可能超过人类反应的速度ꎮ金融危机就是强耦合导致系统崩溃的事例ꎮ因此为了使系统具有更高的可靠性ꎬ需要适当降低系统中的耦合强度ꎮ在可靠性诊断方面ꎬ有研究利用临界点附近存在临界慢化[80]以及闪烁(flickerling)[81]等现象实现对系统状态(是否达到临界点)的预测[82]ꎮ例如ꎬVeraart等[83]构建了蓝藻微观世界来测试临界慢化现象ꎬ蓝藻微观世界受到扰动的实验表明ꎬ临界慢化确实发生ꎬ恢复速度可用于衡量复杂系统的恢复能力ꎬ预测系统到临界状态的距离ꎬ从而判断系统是否即将崩溃ꎮ3㊀讨论与结论可靠性学科是一门与故障做斗争的学科ꎬ复杂系统可靠性的研究主要围绕故障展开ꎮ故障有两种演化方向:故障扩散与故障恢复ꎮ研究从这两个角度出发ꎬ一是考虑故障传播的系统脆弱性研究ꎻ二是考虑故障恢复的系统适应性研究ꎮ系统脆弱性研究的重点在于挖掘系统崩溃的内在机理ꎬ即故障的传播机理ꎮ系统适应性研究的重点在于基于动力系统与景观理论挖掘系统故障恢复机理ꎬ包括分析系统故障恢复的临界点ꎮ基于故障传播[31ꎬ50]和故障恢复机理[84 ̄86]ꎬ提出了一系列复杂系统可靠性技术ꎬ从而实现对复杂系统的评估㊁诊断㊁调控[87 ̄89]ꎮ伴随着全球化以及信息技术的发展ꎬ交通系统㊁电力系统㊁金融系统等系统必将越发复杂ꎬ系统内单元数量以及关联程度都将大大增加ꎮ单元间的相互依赖可能使少数单元的故障引发整个系统的级联失效ꎬ单元间的复杂相互作用也可能产生未知的故障态吸引子ꎬ产生负向涌现ꎮ因此ꎬ构建㊁维护复杂系统必将面临可靠性的挑战ꎮ在过度耦合带来风险的同时ꎬ也可以利用系统的复杂性来增强系统的可靠性ꎮ如何通过在系统内恰当地引入复杂性(单元之间恰当的组织形式)以赋予系统自我恢复能力ꎬ将是未来构建高可靠复杂系统的关键[90]ꎮ参考文献:[1]于景元.钱学森系统科学思想和系统科学体系[J].科学决策ꎬ2014(12):1 ̄22.DOI:10.3773/j.issn.1006 ̄4885.2014.12.002. [2]GALLAGHERRꎬAPPENZELLERT.Beyondreductionism[J].Scienceꎬ1999ꎬ284(5411):79.DOI:10.1126/science.284.5411.79.[3]钱学森ꎬ于景元ꎬ戴汝为.一个科学新领域:开放的复杂巨系统及其方法论[J].自然杂志ꎬ1990ꎬ12(1):3 ̄10. [4]钱学森.创建系统学[M].太原:山西科学技术出版社ꎬ2001:11.[5]郭雷.系统科学进展[M].北京:科学出版社ꎬ2017.[6]方福康.神经系统中的复杂性研究[J].上海理工大学学报ꎬ2011ꎬ33(2):103 ̄110.DOI:10.13255/j.cnki.jusst.2011.02.006.[7]方福康ꎬ袁强.经济增长的复杂性与 J 结构[J].系统工程理论与实践ꎬ2002ꎬ22(10):12 ̄20.DOI:10.3321/j.issn:1000 ̄6788.2002.10.003.[8]王众托.知识系统工程与现代科学技术体系[J].上海理工大学学报ꎬ2011ꎬ33(6):613 ̄630.DOI:10.13255/j.cnki.jusst.2011.06.007.[9]彭张林ꎬ张强ꎬ杨善林.综合评价理论与方法研究综述[J].中国管理科学ꎬ2015ꎬ23(S1):245 ̄256.[10]陈光亚.向量优化问题某些基础理论及其发展[J].重庆师范大学学报(自然科学版)ꎬ2005ꎬ22(3):6 ̄9.DOI:10.3969/j.issn.1672 ̄6693.2005.03.002.[11]狄增如.探索复杂性是发展系统学的重要途径[J].系统工程理论与实践ꎬ2011ꎬ31(S1):37 ̄42.[12]吴俊ꎬ邓宏钟ꎬ谭跃进.基于自然连通度的随机网络抗毁性研究[C]//第五届全国复杂网络学术会议论文(摘要)汇集.青岛:中国工业与应用数学学会ꎬ2009:100.。
可靠性
可靠性——生命的机遇北京航空航天大学可靠性工程研究所赵廷弟世界上没有永恒的东西,高可靠和长寿命是我们永恒的追求——寿命与可靠性的哲学理念。
美国第51届可靠性和维修性年会(RAMS)将“可靠性和维修性——生命的机遇”作为其主题,足以体现可靠性在现代社会的地位与重要性。
我们可从以下几个方面理解:⏹对人生命的尊重。
2004年美国航天飞机的解体事故,是这一命题成为年会主题的主要起因。
⏹企业经营层的理念——可靠性经营。
一个企业得以持续稳定的生存与发展,根本上是企业的“可靠性与寿命”问题。
企业可以看作为一个运行中的复杂系统,企业的问题即是“企业(系统)”的“故障”,高“可靠性”是企业生命的机遇。
⏹产品的机遇。
可靠性是产品的固有属性,是产品在使用过程中,用户最为关心的问题之一,产品的可靠性也是企业可靠性经营的核心,没有了“可靠性”便没有了产品存在的价值,也没有了企业生存的基础。
1.机遇与挑战在当今经济全球化的信息时代,人们对产品的可靠性要求日益增高,同时日益复杂的产品也给我们带来更多的问题。
企业面临的竞争日益加剧,特别是我国加入WTO 后,本来不太健壮和可靠的企业,更要面临国际竞争,价格优势也将逐步消失。
虽然竞争是多方面的,但产品质量与可靠性是竞争的核心之一,我国家电产品,如电视机、冰箱等经过几十年的努力,在国内市场占据主导地位,并向国际市场挺进,与其产品可靠性的不断提高是分不开的。
“捷达”汽车为什么持久畅销,因为“皮实、可靠”。
当企业发展到一定规模和水平时,质量与可靠性的效应便成为企业核心竞争力的体现,也是企业长久可持续发展的需求,没有产品可靠性的企业是没有生命力的。
在目前我国融入WTO的国际大环境下,我国的产品可靠性与国外产品相比,存在很大的差距,面临着巨大的挑战。
同时,全球化的经济环境也该我们带来了学习与进步,提高产品可靠性,迎接挑战的机遇。
可靠性工程20世纪40年代诞生于美国,我国机械行业在上世纪70年代开始可靠性工程的研究与应用。
可靠性工程ReliabilityEnginnering-北航
工程过程与质量管理(各阶段的关键点)
2013-7-15
12
可靠性工程概述
可靠性工程概念
为达到产品的可靠性要求而进行的一套设计、研制、 生产和试验工作:设计分析、试验与验证、管理、信 息与评估 RE是可靠性系统工程的一个分支,是可靠性系统工程 的核心,也是RMSE的首要任务。产品的可靠性是设计、 生产和管理出来的 可靠性工程装备开发系统工程的一个分支。服从装备 开发系统工程和工程过程的基本规律
并行
改传统的串行方式为并行方式 并行与协调
以产品为核心
需求牵引,思想观念的更新
2013-7-15 11
工程过程概念
设计 (方案) RMS 产品 功能/ 性能 其他 其他 生产 制造(工 艺、工 装、生产) RMS 产品 工装 设计 工艺 RMS
设计 工艺 产品 工装 其他 生产 其他 生产 工装 RMS 产品 设计 工艺
2013-7-15 0.865 0.925 0.8
功能/性能,款式、构型等 0.6 可靠性(寿命)、维修性、产品支援 质量 价格/使用费用
0.865
0.52
6
装备研制与可靠性工程
系统工程(System Engineering)
系统工程是组织管理系统的规划、研究、设计、制造、 试验和使用的科学方法,是一种对所有系统都具有普 遍意义的科学方法[钱学森] 从整体出发合理开发、设计、实施和运用系统的工程 技术[中国大百科]
2013-7-15 15
可靠性工程内涵及其外延
产品特性
产品(系统)
固有属性
可靠性 维修性 保障性
故障
系统失效 (不可靠) 事故 (不安全)
安全性
工程系统规划与设计_4-3 装备综合保障
一、装备综合保障基本概念
(一)装备综合保障的内涵 (二)装备综合保障的重要作用 (三)装备综合保障的主要工作 (四)总装备部对装备综合保障工作 的要求
工程系统规划与设计
北航可靠性与系统工程学院
一、装备综合保障基本概念
(一)装备综合保障的内涵 1.装备综合保障( ILS) (1)定义
在装备的寿命期内,综合考虑装备的保障问 题,确定保障性要求,影响装备设计,规划保障 并研制保障资源,进行保障性试验与评价,建立 保障系统等,以最低费用提供所需保障而反复进 行的一系列管理和技术活动。工程系统规划与设计北航可靠性与系统工程学院
一、装备综合保障基本概念
(2)综合保障的目的 综合保障是一种装备采办的策略。 两个目的: ——对装备设计施加影响,使装备设计地便 于保障; ——在获得装备的同时,提供经济有效保障 资源和建立相应的保障系统,以便使所 部署的装备是可以得到保障的。
1.84小时;二者相差约2.3倍。
工程系统规划与设计
北航可靠性与系统工程学院
一、装备综合保障基本概念
➢ 物资运输量大 布防最初两个月累计飞行14.5万小时,人员
与物资周转量达20亿吨公里;(每月10亿吨公里) 二战历史上最大规模的“柏林空运”15个月,
总周转量11.22亿吨公里;(每月0.7亿吨公里) 二者相差14倍。 ➢ 飞机损失率小
工程系统规划与设计
北航可靠性与系统工程学院
一、装备综合保障基本概念
(3)装备综合保障组成要素 管理方面要素: ◇规划使用与维修保障; ◇保障性设计接口。 资源方面要素: ◇人力和人员;◇训练与训练保障; ◇供应保障; ◇计算机资源保障; ◇保障设备; ◇保障设施; ◇技术资料; ◇包装、装卸、贮存和运输保障
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自行车关键结构保障性方案课程:保障性分析技术教师:郭霖翰目录1.引言 (3)1.1.自行车 (3)1.2.自行车的保障方案 (3)2.自行车的结构及部件 (4)2.1.自行车的结构 (4)2.2.自行车的组成 (4)2.3.自行车的部件 (5)3.故障模式影响分析(FMEA) (7)4.维修工作项目确定分析(CMIA) (23)5.使用与维修任务分析(O&MTA) (26)6.结论 (30)1.引言1.1.自行车自行车,又称脚踏车或单车,通常是二轮的小型陆上车辆。
人骑上车后,以脚踩踏板为动力,是绿色环保的交通工具。
自行车的车架、轮胎、脚踏、刹车、链条等25个部件中,其基本部件缺一不可。
其中,车架是自行车的骨架,它所承受的人和货物的重量最大。
按照各部件的工作特点,大致可将其分为导向系统、驱动系统、制动系统:1.导向系统:由车把、前叉、前轴、前轮等部件组成。
乘骑者可以通过操纵车把来改变行驶方向并保持车身平衡。
2.驱动(传动或行走)系统:由脚蹬、中轴、牙盘、曲柄、链条、飞轮、后轴、后轮等部件组成。
人的脚的蹬力是靠脚蹬通过曲柄,链轮、链条、飞轮、后轴等部件传动的,从而使自行车不断前进。
3.制动系统:它由车闸部件组成、乘骑者可以随时操纵车闸,使行驶的自行车减速、停驶、确保行车安全。
此外,为了安全和美观,以及从实用出发,还装配了车灯,支架等部件。
1.2.自行车的保障方案保障性反映系统与保障能力相关的设计特性,是装备的设计特性和计划的保障资源能满足平时战备完好性和战时利用率要求的能力。
保障方案是保障系统的完整的总体描述,它满足装备的保障要求并与设计方案及使用方案相协调。
保障方案的内容包括使用保障方案和维修保障方案,其中使用保障方案是完成使用任务所需的装备保障的描述,包括动用准备方案、能源补充、弹药装挂、储存方式、运输方式和特殊保障;维修保障方案是装备采用的维修级别、维修原则、各级维修级别的主要工作等的描述,包括维修类别、维修级别及任务、维修原则、诊断方案、保障约束条件等。
保障性要求包括:使用和维修人力和人时要求、人员技能水平要求、使用和保障费用要求、在维修级别可修复系统故障的目标比率、使用环境平均停机时间、使用环境再次出动时间、标准化和互操作要求、寿命周期费用、材料贮存要求、和修理级别。
保障性分析是确保保障性要求在装备的设计过程得以考虑的各种技术与方法的综合与应用。
其作用包括:(1)提出和确定与保障有关的设计因素以影响装备设计,使装备设计既满足任务要求又便于实施保障;(2)在研制装备的过程中,尽早的确定影响保障和费用的主导因素,以便确定分析工作的重点,并及时制定改进的目标和解决办法;(3)提出装备使用与维修所需的各类保障资源的要求,以便进行保障资源的研制与采购;(4)利用分析所得的数据资料形成保障性分析记录,建立统一的保障数据库,以便于装备设计和综合保障工作的使用。
装备的保障性分析主要进行两个方面的工作,即确定装备的作战使用特性、保障特性和制定保障性要求,及保障资源要求分析。
国军标中保障性分析的项目包括:(1)100系列,保障性分析的工作的规划与控制,目的是为保障性分析制定计划和提出评审要求;(2)200系列,装备与保障系统的分析,目的是通过与比较系统的对比和保障性、费用、战备完好性主导因素分析,确定保障性初定目标和有关保障性的设计目标值、门限值及约束;(3)300系列,备选方案的制定与评价,目的是优化新研装备的保障方案并研制在费用、进度、性能和保障性之间达到最佳平衡的装备系统;(4)400系列,确定保障资源要求,目的是确认新研装备在使用环境中的保障资源要求并制定停产后保障计划;(5)500系列,保障性评估。
本文主要选取自行主要功能结构的某些部件进行相关的保障性分析,包括故障模式影响分析(FMEA)、以可靠性为中心的维修分析(RCMA)、维修工作项目确定分析(CMIA)和使用与维修任务分析(O&MTA)。
最后根据分析结果,给出简要的自行车建议保障方案。
2.自行车的结构及部件2.1.自行车的结构根据图1所示的自行车(010000)结构图,将自行车按功能划分为三大主要系统:控制系统,如刹车握把、前夹器、变速器等;支架系统,如座垫、上管等;传动系统,如轮胎、链条、飞轮等。
2.2.自行车的组成车体部分:包括车架、前叉、车把、鞍座和前叉合件等,是自行车的主体。
自行车(20张)传动部分包括脚蹬、曲柄、链轮、链条、中轴和飞轮等,由人力踩动脚蹬,通过以上传动件带动车轮旋转,驱车前行。
行动部分:即前后车轮、包括前后轴部件、辐条、轮辋(车圈)、轮胎等。
安全装臵:包括制动器(车闸)、车灯、车铃、反射装臵等。
根据需要,还可增加一些附件,如支架、衣架、保险叉、挡泥板、气筒等。
另外,装有变速机构的运动车、竞赛车、山地车等还装有变速控制器和前后拨链器等。
2.3.自行车的部件车架部件是构成自行车的基本结构体,也是自行车的骨架和主体,其他部件也都是直接或间接安装在车架上的。
车架部件的结构形式有很多,但总体可以分为两大类:即男式车架和女式车架。
由于自行车是依靠人体自身的驱动力和骑车技能而行驶的,车架便成为承受自行车在行驶中所产生的冲击载荷以及能否舒适、安全地运载人体的重要结构体,车架部件制造精度的优劣,将直接影响乘骑的安全、平稳、和轻快。
一般辐条是等径的,为了减轻重力,也有制成两端大、中间小的变径辐条,还有为了减少空气阻力将辐条制成扁流线型。
外胎:分软边胎和硬边胎两种。
软边胎断面较宽,能全部裹住内胎,着地面积比较大,能适宜多种道路行驶。
硬边胎自重轻,着地面积小适宜在平坦的道路上行驶,具有阻力小,行驶轻快等优点。
外胎上的花纹是为了增加与地面的摩擦力。
山地自行车的外胎宽度特别宽,花纹较深也是适应越野山地用。
脚蹬部件:脚蹬部件装配在中轴部件的左右曲柄上,是一个将平动力转化为转动力的装臵,自行车骑行时,脚踏力首先传递给脚蹬部件,然后由脚蹬轴转动曲柄,牙盘,中轴,链条飞轮,使后轮转动,从而使自行车前进。
因此脚蹬部件的结构和规格是否合适,将直接影响骑车人的放脚位臵是否合适,自行车的驱动能否顺利进行。
脚踏:可分为整体式脚踏和组合式脚踏。
无论什么款式的脚踏都必须有脚踏面,必须安全可靠,具有一定的防滑性能,可以选用橡胶、塑料或金属材料制造。
脚踏必须转动灵活。
前叉部件:前叉部件在自行车结构中处于前方部位,它的上端与车把部件相连,车架部件与前管配合,下端与前轴部件配合,组成自行车的导向系统。
转动车把和前叉,可以使前轮改变方向,起到了自行车的导向作用。
此外,还可以起到控制自行车行驶的作用。
前叉部件的受力情况属悬臂梁性质,故前叉部件必须具有足够的强度等性质。
链条:链条又称车链、滚子链,安装在连轮和飞轮上。
其作用是将脚踏力由曲柄、链轮传递到飞轮和后轮上,带动自行车前进。
链轮:用高强度钢材制成,保证其达到需要的拉力。
飞轮:飞轮以内螺纹旋拧固定在后轴的右端,与链轮保持同一平面,并通过链条与链轮相连接,构成自行车的驱动系统。
从结构上可分为单级飞轮和多级飞轮两大类。
单级飞轮又称为单链轮片飞轮,主要由外套、平挡和芯子、千斤、千斤簧、垫圈、丝挡几钢球等零件组成。
其单级飞轮工作原理:当向前踏动脚踏是,链条带动飞轮向前转动,这时飞轮内齿和千斤相含,飞轮的转动力通过千斤传到芯子,芯子带动后轴和后轮转动,自行车就前进了。
当停止踏动脚踏板时,链条和外套都不旋转,但后轮在惯性作用下仍然带动芯子和千斤向前转动,当反向踏动脚踏时,外套反向转动,会加速千斤的滑动,使“嗒嗒”声响得更急促。
多级飞轮是自行车变速装臵中的一个重要部件。
多级飞轮是在单级飞轮的基础上,增加几片飞轮片,与中轴上的链轮结合,组成各种不同的传递比,从而改变了自行车的速度。
图1 自行车结构图在本文中,主要选取导向系统(010100)的刹车握把(010101)、支架系统(010200)的座垫(010201)、传动系统(010300)的轮胎(010301)和链条(010302)四个部件进行保障性分析。
3.故障模式影响分析(FMEA)在保障性分析中,故障模式影响分析(简称FMEA)的目的是通过系统分析,确定系统、外场可更换单元(LRU)、车间可更换单元(SRU)在设计和制造过程中所有可能的故障模式,以及每一故障模式的原因及影响,以便确定装备的修复性维修工作项目,并给RCMA提供故障模式、原因及影响输入。
通过在保障性分析中执行FMEA,可以提出保障系统的维修保障要求,并得到检测手段、拆装工具、所需备件、人员、技术资料等与规划保障资源相关的信息。
保障性分析中FMEA方法一般分为硬件FMEA方法和修复性维修工作项目确定方法。
在进行自行车的故障模式影响分析时,首先分析出产品可能存在的各种故障模式,然后分析这些故障能否通过改进设计来消除或用预防性维修来减缓。
并确定相应的修复性维修工作项目。
在此基础上,就可以考虑将工作项目分解为故障的诊断、隔离与定位,拆卸与分解,更换故障件(或原件修复),组装和安装、调试等作业。
从而可以提出检测手段、拆装工具、所需备件、人员、技术资料等与规划保障资源相关的信息。
并给RCMA提供故障模式、原因及影响输入。
本例选取自行车的四个部件进行FMEA分析,见表1所示。
表1 自行车FMEA分析表格初始约定层次:自行车010000 任务:自行车结构FMEA分析审核:第1 页• 共1 页约定层次:导向系统010100,支架系统010200,传动系统010300 分析人员:袁航批准:填表日期:2012年6月6日910以可靠性为中心的维修分析(RCMA)以可靠性为中心的维修分析(简称RCMA),是按照以最少的维修资源消耗保持装备固有可靠性和安全性的原则,应用逻辑决断的方法确定装备预防性维修要求的过程。
在保障性分析过程中,通过RCMA可以确定预防性维修的工作项目和要求,确定其维修工作类型、预防性维修工作的间隔期,从而可以分析提出进行预防性维修工作所需的保障资源。
RCMA方法主要包括以下三项内容:(1)系统和设备以可靠性为中心的维修分析系统和设备以可靠性为中心的维修分析用以确定设备的预防性维修的产品、预防性维修工作类型、维修间隔期及维修级别。
它适用于各种类型的设备预防性维修大纲的制订,具有通用性。
(2)结构以可靠性为中心的维修分析结构以可靠性为中心的维修分析用以确定结构项目的检查等级、检查间隔期及维修级别。
它适用于大型复杂设备的结构部分。
此处所指的结构包括各承受载荷的结构项目。
(3)区域检查分析区域检查分析用以确定区域检查的要求,如检查非重要项目的损伤,检查由邻近项目故障引起的损伤。
它适用于需要划分区域进行检查的大型设(装)备。
根据需要,选择系统和设备以可靠性为中心的维修分析方法对自行车进行RCMA。