二元一次方程组的解法
二元一次方程组的解法
解二元一次方程组的基本方法是消元,而我们熟知的方法就是代入消元法和加减消元法,但这两种方法都比较繁琐.下面通过加减消元法的解答过程探讨更简单直接的方法.例.解方程组的解.加减消元法解答过程:······························①两式作差,得···························②··························③将③代入,得··························④所以,原方程组的解为:【解析】由方程组的解可知,,的分母均为,我们可先求二者的分母,而该值亦是②式中的系数,再由①式形式,我们可以通过把原方程组中的两个方程的,的系数写成如下形式:·····························⑤交叉相乘相减,得到二者的分母.再求的分子,即②式右边的数值,可由得到.事实上,用替换⑤中计算可得.即求的值时,用常数列相应替换的系数列.同样地,求的分子,可由得到.即求的值时,则在⑤中用常数列相应替换的系数列计算可得.通过上述推导,我们得到解二元一次方程组的简单方法:,.其中,,,.【注】作为,的分母,因此要求方程组才有解.事实上,二元一次方程组的解可看成两直线和的交点的横纵坐标,而条件“”告诉我们两直线相交,因此方程组有唯一解.而当时,则两直线平行或重合,相应地,方程组要么有无穷多解要么无解.。
二元一次方程组的解法
二元一次方程组的解法在代数学中,二元一次方程组是由两个未知数和两个方程组成的方程组。
解决这种方程组的方法有很多种,下面将介绍其中三种常见的解法。
方法一:代入法代入法是一种比较简单直观的解二元一次方程组的方法。
假设有如下二元一次方程组:{ Equation1{ Equation2首先将其中一个方程(不妨设为方程1)的其中一个未知数表示为另一个未知数的函数,然后代入另一个方程(方程2)中消去这个未知数,从而得到一个只包含一个未知数的一次方程。
例如,假设方程组为:{ 2x + 3y = 7 Equation1{ 5x - y = 1 Equation2我们可以通过将方程2中y表示为x的函数(y = 5x - 1),将其代入方程1中,得到:2x + 3(5x - 1) = 7然后将这个一次方程化简,求解得到x的值。
将x的值代入方程2中,即可得到y的值。
最终得到方程组的解。
方法二:消元法消元法是解二元一次方程组的常用方法之一。
它通过逐步消去一个未知数,将方程组化为只含有一个未知数的一次方程,然后求解得到解。
例如,假设方程组为:{ 2x + 3y = 7 Equation1{ 5x - y = 1 Equation2我们可以通过将方程1乘以5,将方程2乘以2,然后将两个方程相减,消去y的系数,得到一个只含有x的一次方程:10x + 15y = 3510x - 2y = 2--------------17y = 33通过化简这个一次方程,求解得到y的值。
将y的值代入方程1或方程2中,即可得到x的值。
最终得到方程组的解。
方法三:Cramer法则Cramer法则是一种基于行列式的解二元一次方程组的方法。
假设有如下二元一次方程组:{ Equation1{ Equation2首先计算系数矩阵A的行列式值D,然后在D中用方程组右边的常数项替换掉A的某一列,得到矩阵Dx。
同理,用方程组右边的常数项替换掉A的另一列,得到矩阵Dy。
二元一次方程怎么解 详细过程
二元一次方程怎么解详细过程
二元一次方程的解法:代入消元法
例题:
{x-y=3 ①
{3x-8y=4②
由①得x=y+3③
③代入②得
3(y+3)-8y=4
y=1
把y=1带入③
得x=4
则:这个二元一次方程组的解为
x=4
y=1
代入消元法的知识点:
1、选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;
2、将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的);
3、解这个一元一次方程,求出未知数的值;
4、将求得的未知数的值代入变形后的方程中,求出另一个未知数的值;
5、用“{”联立两个未知数的值,就是方程组的解;
6、最后检验(代入原方程组中进行检验,方程是否满足左边=右边)。
二元一次方程的解法
二元一次方程的解法二元一次方程的解:使二元一次方程左、右两边的值相等的一对未知数的值,叫做二元一次方程的一个解。
1.消元解法“消元”是解二元一次方程组的基本思路。
所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元多次方程再解出未知数。
这种将方程组中的未知数个数由多化少,逐一解决的解法,叫做消元解法。
代入消元法(1)概念:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解.。
这种解方程组的方法叫做代入消元法,简称代入法。
(2)代入法解二元一次方程组的步骤①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的);③解这个一元一次方程,求出未知数的值;④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值;⑤用“{”联立两个未知数的值,就是方程组的解;⑥最后检验(代入原方程组中进行检验,方程是否满足左边=右边)。
2.加减消元法(1)概念:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.(2)加减法解二元一次方程组的步骤①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式;②再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法);③解这个一元一次方程,求出未知数的值;④将求得的未知数的值代入原方程组中的任何一个方程中,求出另一个未知数的值;⑤用“{”联立两个未知数的值,就是方程组的解;⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边)。
二元一次方程组公式解法
二元一次方程组公式解法一、二元一次方程组的定义。
含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。
把两个含有相同未知数的二元一次方程(或者一个二元一次方程,一个一元一次方程)联立起来,组成的方程组,叫做二元一次方程组。
一般形式为:a_1x + b_1y = c_1 a_2x + b_2y = c_2其中a_1、a_2、b_1、b_2、c_1、c_2为已知数,且a_1与b_1不同时为0,a_2与b_2不同时为0。
二、代入消元法。
1. 基本思路。
- 从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数(例如y),用含另一个未知数(例如x)的代数式表示出来,即将方程写成y = ax + b的形式。
- 然后将y = ax + b代入另一个方程中,消去y,得到一个关于x的一元一次方程。
- 解这个一元一次方程,求出x的值。
- 把求得的x值代入y = ax + b中,求出y的值,从而得到方程组的解。
2. 示例。
- 对于方程组2x + y=5 x - y = 1- 由方程x - y = 1可得y=x - 1。
- 将y=x - 1代入2x + y = 5,得到2x+(x - 1)=5。
- 展开括号得2x+x - 1 = 5,即3x=6,解得x = 2。
- 把x = 2代入y=x - 1,得y=2 - 1 = 1。
- 所以方程组的解为x = 2 y = 1三、加减消元法。
1. 基本思路。
- 当方程组中两个方程的同一未知数的系数相等或互为相反数时,把这两个方程的两边分别相减或相加,消去这个未知数,得到一个一元一次方程。
- 当同一未知数的系数既不相等,也不互为相反数时,则可给方程两边乘以适当的数,使一个未知数的系数相等或互为相反数,然后再进行相减或相加消元。
2. 示例。
- 对于方程组3x+2y = 10 2x - 2y=2- 因为y的系数分别为2和 - 2,互为相反数,所以将两个方程相加,得到(3x + 2y)+(2x - 2y)=10 + 2。
二元一次方程组的解法
二元一次方程组的解法二元一次方程组是指包含两个未知数的一组线性方程,可以表示成如下形式:```ax + by = cdx + ey = f```其中,a、b、c、d、e、f为已知常数。
解二元一次方程组的方法有数种,下面将介绍几种常见的解法。
1. 消元法消元法是解二元一次方程组的常用方法之一。
其基本思想是通过将一个方程的系数乘以另一个方程的某个倍数,使得两个方程之间的系数相等而得到一个新的方程,从而消去其中一个未知数。
假设给定的二元一次方程组为:```ax + by = c (1)dx + ey = f (2)```1) 首先选择一个系数相等的方程,比如两个方程中x的系数:```a/d = b/e = k```2) 将方程(2)的x系数变为ka,并减去方程(1)的相应部分,得到新的方程:```(ka * dx + ka * ey) - (ax + by) = (ka * f) - (c)(kad-kadx) + (kabe-by) = kaf - c-kadx + kabe - by = kaf - c```3) 然后重新整理方程,消去未知数x,得到一个只包含未知数y的方程:```(y * (ka-b)) = (kaf - c - kad)```4) 最后求解方程,得到y的值。
将y的值代入方程(1)或方程(2),即可求得x的值。
2. 代入法代入法是另一种常用的解二元一次方程组的方法。
其基本思想是通过将一个方程的一个未知数表示为另一个方程的未知数的函数形式,然后代入到另一个方程中进行求解。
假设给定的二元一次方程组为:```ax + by = c (1)dx + ey = f (2)```1) 选择其中一个方程,将其未知数表示为另一个方程的未知数的函数形式。
比如,将方程(1)中的x表示为方程(2)中的未知数:```x = (f - ey)/d```2) 将上述表达式代入方程(1),得到一个只包含一个未知数y的方程:```a * ((f - ey)/d) + by = c```3) 再次整理方程,求解未知数y的值。
二元一次方程的解法
二元一次方程的解法二元一次方程是指形如ax + by = c的方程,其中a、b、c为已知数,并且a和b不同时为零。
解二元一次方程的方法有多种,下面将介绍其中两种常见的解法。
方法一:代入法代入法是解二元一次方程的一种简洁直观的方法。
具体步骤如下:步骤一:选择其中一个方程,通常选择系数较小或较容易计算的方程,将该方程中的一个变量用另一个方程中的表达式代替。
例如,假设给定的方程组为:2x + 3y = 7 (方程1)4x - 5y = 1 (方程2)我们选择方程1中的变量x用方程2中的表达式代替,即将方程1改写为:2(4x - 5y) + 3y = 7化简得:8x - 10y + 3y = 7步骤二:将代入后的方程化简,得到只含有一个变量的一元一次方程。
继续以上例,我们将方程化简为:8x - 7y = 7步骤三:解方程,求得变量的值。
继续以上例,我们解方程得到:8x - 7y = 7对于这个一元一次方程,我们可以使用常见的解法,如移项合并同类项,得到:8x = 7 + 7yx = (7 + 7y) / 8这样,我们求得了变量x的值。
步骤四:将求得的变量值代入原方程,求得另一个变量的值。
继续以上例,将x = (7 + 7y) / 8代入方程1,得到:2( (7 + 7y) / 8) + 3y = 7化简得:14 + 14y + 24y = 56化简为:38y = 42解方程,求得y的值为:y = 42 / 38步骤五:将求得的变量值代入原方程组中,验证解的准确性。
将求得的x和y的值代入原方程组中,验证方程组是否成立。
如果方程都满足,则解是正确的;否则,需要重新检查计算过程。
方法二:消元法消元法是解二元一次方程的另一种常见方法。
步骤如下:步骤一:通过系数的倍数关系,使得其中一个系数(通常是x或y)在两个方程中相等或相反数。
例如,假设给定的方程组为:2x + 3y = 7 (方程1)4x - 5y = 1 (方程2)我们可以通过将方程2的两边乘以2,得到:8x - 10y = 2 (方程3)步骤二:将方程1和方程3相加或相减,消除其中一个变量。
二元一次方程组的解法
二元一次方程组的解法二元一次方程组的解法一、目标认知学习目标:1.了解二元一次方程、二元一次方程组及其解的含义;2.会检验一组数是不是某个二元一次方程组的解;3.会用代入法和加减法解二元一次方程组,了解代入消元法和加减消元法的基本思想;4.能够根据题目特点熟练选用代入法或加减法解二元一次方程组;5.能借助二元一次方程组解决一些实际问题,使用代数方法去反应现实生活中的等量关系,体会代数方法的优越性.重点:二元一次方程组的解法.难点:熟练运用代入法和加减法解二元一次方程组.二、知识要点梳理知识点一:二元一次方程的概念含有两个未知数(一般设为x、y),并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程. 如x+y=24,都是二元一次方程.要点诠释:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数.(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. 如xy的次数是2,所以方程6xy+9=0不是二元一次方程.(3)二元一次方程的左边和右边都必须是整式. 如方程的左边不是整式,所以它就不是二元一次方程.(4)判断某个方程是不是二元一次方程,一般先把它化为ax+by+c=0的形式,再根据定义判断,例如:2x+4y=3+2x不是二元一次方程,因为通过移项,原方程变为4y=3,不符合二元一次方程的形式。
知识点二:二元一次方程的解能使二元一次方程左右两边的值都相等的两个未知数的值,叫做二元一次方程的解。
由于使二元一次方程的左右两边相等的未知数的值不只一个,故每个二元一次方程都有无数组解。
如,,,……,都是二元一次方程x+y=3的解,我们把有无数组解的这样的方程又称之为不定方程。
要点诠释:(1)使二元一次方程左右两边都相等的两个未知数的值(二元一次方程的每一个解,都是一对数值,而不是一个数值),即二元一次方程的解都要用“{”联立起来,如,是二元一次方程x +y=2的解。
二元一次方程组的解法加减消元法
二元一次方程组的解法加减消元法
二元一次方程组是指由两个含有两个未知数的线性方程组成的方程组。
其中,每个方程都可以写成以下形式:ax + by = c。
加减消元法是一种解二元一次方程组的常用方法。
它的基本思想是通过加减方程来消去一个未知数,从而得到一个只含有一个未知数的方程,然后通过解这个方程来求解出另一个未知数。
具体步骤如下:
1. 将方程组写成标准形式。
确保每个方程都按照ax + by = c 的形式排列。
2. 选取合适的方程,通过加减操作消去其中一个未知数。
这通常需要使得其中一个系数相加或相减后为零。
3. 解得一元一次方程,求解出已经消去的未知数的值。
4. 将求得的未知数的值代入消去后的方程中,解得另一个未知数。
5. 检验解的正确性,将求得的未知数代入原方程组中,验证等号两边是否相等。
通过反复使用加减消元法,直到得到最终的解。
需要注意的是,加减消元法在解决二元一次方程组时可能会遇到以下情况:无解、唯一解和无穷解。
无解表示方程组无解;唯一解表示方程组存在且只有一个解;无穷解表示方程组存在且有无限个解。
使用加减消元法可以有效地解决二元一次方程组,但要注意运算的准确性和规范性,以确保得到正确的解答。
二元一次方程组的解法(共6张PPT)
⑵ 5x-10y+15=0
{3t-4s=14
⑴
5t+3s=4
{3x+2y=9
⑵ 6x-10y=-66
变形
{2x-7y=8 代入 3x-8y-10=0
x=
4+
7y 2
x=1.2
代入
y=-0.8
解得
3(4+ 7y )-8y-10=0 2
二元一次方程组的解法
{ 1.方程组
2x+5y=2 如何解?关键是什么?解题
x=8-3y
步骤是什么?
2.把方程2x-7y=8(1)写成用含x的代数式表示y
的形式
y= 2x-8 7
,(2)写成用含y的代数式
表示x的形式
x= 7y+8 2
例1. 解方程组{2x-7y=8 解把得方程2x-y=7-y=08.(1)写成用含x的代数式表示y
x= 4+ 7y3(4+ 7y )-8y-10=0 2
解得 y=-0.8
将y=-0.8代入③,得
x=4+ 7 ×(-0.8 ) 2
x=1.2
{x=1.2
所以 y=-0.8
思考:可以先消 去y吗?
1.将下列各方程变形为用一个未知数的代数 式表示另一个未知数的形式:
⑴ 4x-y=-1
把那方么程 如2何x求-解7y呢=8?(消1)哪写一成个用未含知x数的呢代?数式表示y
式解表得示另一y=个-未0.知数的形式:
解式得表示另一y=个-未0.知数的形式:
那么如何求解呢?消哪一个未知数呢?
如解果得将①写y=成-用0.一个未知数来表示另一
32(x-7y=8 )-8y-10=0
二元一次方程组的解法(共6张PPT)
{2x-7y=8
①
3x-8y-10=0 ②
解:由①得
x= 4+ 7y ③
2 将③代入②,得
3(4+ 7y )-8y-10=0 2
解得 y=-0.8
将y=-0.8代入③,得
x=4+ 7 ×(-0.8 ) 2
x=1.2
{x=1.2
所以
y=-0.8
思考:可以先消 去y吗?
1.将下列各方程变形为用一个未知数的代数
如的果形将 式①写成用一个未,知(数2来)表写示成另用一含y的代数式 3这x两-个8y方-程10中=0的未②知数的系数都不是1,
那么如何求解呢?消哪一个未知数呢? 的这形两式 个方程中的未知数,的(系2数)都写不成是用1含,y的代数式
23x-78y=-810=0 ②①
的如形果式 将①写成用一个未,知(数2来)表写示成另用一含y的代数式
如果将①写成用一个未知数来表示另一
如果将①写成用一个未知数来表示另一 式2x表-示7y另=8一个未知①数的形式:
那如么果如 将何①求写解成呢用?一消个哪未一知个数未来知表数示呢另?一
3式x表-示8y另-一10个=0未知②数的形式: 3x-8y-10=0 ②
个未知数,那么用x来表示y,还是用y来
表示x好呢?
①
的式形表式 示另一个未知数的,形(式2:)写成用含y的代数式 式解表得示另一y=个-未0.知数的形式: 那2x么-如7y何=8求解呢?①消哪一个未知数呢?
3x-8y-10=0 ②
思考 这两个方程中的未知数的系数都不是1, 如 这果两将个① 方写 程成 中用 的一 未个 知未 数知的数 系来 数表 都示 不另 是一1,
二元一次方程组的解法
二元一次方程组的解法步骤
二元一次方程组的解法步骤
引言
在代数学中,二元一次方程组是一种包含两个未知数的线性方程组。
解二元一次方程组是代数中的基本问题之一,下面将介绍解二元一次方程组的步骤。
步骤一:消元法
首先,我们需要对二元一次方程组中的两个方程进行消元操作。
消元法可以让我们得到一个只含有一个未知数的方程,从而简化计算过程。
步骤二:整理方程
经过消元操作后,我们得到一个简化的方程,接下来需要整理方程,将未知数的系数移到方程的一侧,常数移到另一侧,使方程变成标准形式。
步骤三:代入法
在得到整理后的方程之后,我们可以使用代入法来求解未知数的值。
通过将一个方程中的一个未知数用另一个未知数表示,然后代入另一个方程中,可以得到未知数的解。
步骤四:检验解
最后一步是对求得的解进行检验。
将解代入原方程组中,检验是否满足原方程组两个方程中的所有条件,如果满足,则表示求解正确。
结论
通过以上四个步骤,我们可以解出二元一次方程组的未知数的值。
二元一次方程组是代数学中常见的问题,掌握解题步骤对培养逻辑思维能力有很大帮助。
希望以上内容能够帮助您更好地理解二元一次方程组的解法步骤。
(完整版)二元一次方程组的常见解法
二元一次方程组的常见解法二元一次方程组中含有两个未知数,所以解二元一次方程组的主要思路就是消元,即消去一个未知数,使其转化为一元一次方程,这样就可以先解出一个未知数,然后设法求另一个未知数.常见的消元方法有两种:代入消元法和加减消元法.一、代入法即由二元一次方程中的一个方程变形,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程中,实现消元,进而求解.一般情况下用代入法解方程组时,选择变形的方程要尽可能的简单,表示的代数式也要尽可能的简单,以利于计算.2x+5y=-21①例1、解方程组x+3y=8 ②解由②得:x=8-3y ③把③代入①得2(8-3y)+5y=-21解得:y=37把y=37代入③得:x=8-3×37=-103x=-103所以这个方程组的解是y=37二、整体代入法当方程组中的两个方程存在整数倍数关系时,用代入法解可将整数倍数关系数中较小的一个变形,用另一个字母代数式表示它后代入另一个方程.3x-4y=9①例2、解方程组9x-10y=3②解由①得3x=4y+9 ③把③代入②得3(4y+9)-10y=3解得y=-12把y=-12代入③得3x=4×(-12)+9解得x=-13x=-13所以方程组的解是y=-12三、加减消元法即方程组中两个二元一次方程中的同一个未知数的系数相等时,让两个方程相减.如果方程组中两个二元一次方程中的同一个未知数的系数互为相反数时则让两个方程相减.消去一个未知数,得到一个一元一次方程,这种方法叫加减消元法.2x+3y=14 ①例3、解方程组4x-5y=6②解由①×2得4x+6y=28 ③③-②得:11y=22解得y=2把y=2代入②得4x-5×2=6解得x=4x=4所以方程组的解为y=2四、整体运用加减法即当两个二元一次方程中的某一部分完全相同或符号相反时,可以把这两个方程两边相加或相减,把相同的部分整体消去.3(x+2)+(y-1)=4 ①例4 解方程组3(x+2)+(1-y)=2 ②解①-②得(y-1)-(1-y)=4-2整理得2y=4解得y=2把y=2 代入①得3(x+2)+(2-1)=4整理得3x+7=4解得x=-1x=-1所以方程组的解为y=2解二元一次方程组的主要方法有代入法和消元法,因为方程的形式是多种多样的.所以在解方程中一定要仔细观察方程中各部分以及各个未知数和它们的系数之间的关系的找到最简便的解题方法.。
二元一次方程组的解法
解法有如下:
1.一元一次方程的解法:去分母→去括号→移项→合并同类项→ 系数化成1→解。
2.元一次方程组的解法:⑴基本思想:“消元”⑵方法:①代入法②加减法
二元一次方程组有两种解法,一种是代入消元法,一种是加减消元法.
例: 1)x-y=3 2)3x-8y=4 3)x=y+3 代入得3×(y+3)-8y=4
y=1
所以x=4 这个二元一次方程组的解x=4 y=1
以上就是代入消元法,简称代入法。
利用等式的性质使方程组中两个方程中的某一个未知数前的系数的绝对值相等,然后把两个方程相加(或相减),以消去这个未知数,是方程只含有一个未知数而得以求解。
这种解二元一次方程组的方法叫作加减消元法,简称加减法。
例题:(1)3x+2y=7 (2)5x-2y=1
解:消元得:8x=8 x=1 3x+2y=7 3*1+2y=7 2y=4 y=2 x=1 y=2
你看下,明白没?没得话,我再解释!
这里说实在的最主要的还是方法,方法掌握了,类似的问题都能解决了!
希望我的回答对你有帮助,祝你好运!像这样的问题自己多尝试下,下次才会的!
祝你学业进步!。
二元一次方程组的解的公式
二元一次方程组的解的公式
对于二元一次方程组,我们可以使用消元法或代入法来求解。
消元法:
将两个方程相加,得到一个新方程,这个新方程的右边为0。
将新方程两边同时除以未知数的系数,得到一个新方程,这个新方程的右边为0。
解这个新方程,即可得到一个未知数的值。
将这个未知数的值代入原方程组中的任意一个方程,即可得到另一个未知数的值。
代入法:
从第一个方程中解出一个未知数,得到这个未知数的值。
将这个未知数的值代入第二个方程中,得到另一个未知数的值。
例如,对于方程组:
3x + 2y = 18
5x - y = 3
我们可以使用消元法来求解:
解得: [{x: 24/13, y: 81/13}]
图像法:将二元一次方程组转化为一元一次方程,通过求解一元一次
方程得到答案。
拉格朗日插值法:利用拉格朗日插值多项式求解二元一次方程组。
牛顿插值法:利用牛顿插值多项式求解二元一次方程组。
最小二乘法:利用最小二乘法求解二元一次方程组。
反代法:将二元一次方程组的两个方程相减,得到一个新的方程。
再将这个新的方程代入其中一个方程中,即可得到另一个未知数的值。
参数法:将二元一次方程组的两个方程都转化为含有同一个参数的方程,通过求解参数得到答案。
联立解法:将二元一次方程组的两个方程联立起来,构成一个新的方程组,然后解这个新的方程组得到答案。
矩阵法:将二元一次方程组转化为矩阵形式,通过求解矩阵得到答案。
二元一次方程组的解法步骤
二元一次方程组的解法步骤二元一次方程组的解法步骤第 1 篇代入消元法(1)等量代换:从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数(例如y),用另一个未知数(如x)的代数式表示出来,即将方程写成y=ax+b的形式;(2)代入消元:将y=ax+b代入另一个方程中,消去y,得到一个关于x的一元一次方程;(3)解这个一元一次方程,求出x的值;(4)回代:把求得的x的值代入y=ax+b中求出y的值,从而得出方程组的解;(5)把这个方程组的解写成x=c y=d的形式。
换元法解一些复杂的问题,常用到换元法,即对结构比较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化,明朗化。
该方法在减少多项式项数,降低多项式结构复杂程度等方面能起到独到作用。
加减消元法(1)变换系数:利用等式的基本性质,把一个方程或者两个方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数互为相反数或相等;(2)加减消元:把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)回代:将求出的未知数的值代入原方程组的任何一个方程中,求出另一个未知数的值;(5)把这个方程组的解写成x=c y=d的形式。
二元一次方程组的解法步骤第 2 篇教学目的1、使学生巩固等式与方程的概念。
2、使学生掌握等式的*质和灵活掌握一元一次方程的解法,培养学生求解方程的计算能力。
教学分析重点:熟练掌握一元一次方程的解法。
难点:灵活地运用一元一次方程的解法步骤,计算简化而准确。
突破:多练习,多比较,多思考。
教学过程一、复习1、什么是一元一次方程?一元一次方程的标准形式是什么?它的解是什么?2、等式的*质是什么?(要求说出应注意的两点)3、解一元一次方程的基本步骤是什么?以解方程-2x+=为例,说明解一元一次方程的基本步骤与注意点,并口头检验。
二、新授1、已知方程(n+1)x|n|=1是关于x的一元一次方程,求n 的值。
二元一次方程组的概念及解法
二元一次方程组的概念及解法二元一次方程组是含有两个未知数,且未知数的指数都是1的方程。
当把两个二元一次方程合在一起时,就组成了一个二元一次方程组。
方程组的解是使得两个方程的未知数相等的值。
公共解是指两个方程的解都相同的值。
例如,在方程组中,是一个二元一次方程组的例子。
另外,已知二元一次方程2x-y=1,当x=2时,y=3;当y=1时,x=3.消元解法是解二元一次方程组的一种方法。
代入消元法是将一个方程中的一个未知数表示为另一个未知数的函数,然后代入另一个方程中进行消元。
加减消元法是将两个方程相加或相减,消去一个未知数,然后解出另一个未知数。
例如,方程2x-y-5=0可以表示为x=(y+5)/2,y=2x-5.另外,方程组可以用消元解法来解,例如,方程组(2x+3y=40.x-y=-5)可以用加减消元法解出x=11,y=6.举例来说,如果有一个两位数,其个位和十位数字之和为11,将其个位数字和十位数字对调后得到的数比原数大63,那么可以用代数式表示原数为(10y+x),对调后的数为(10x+y),则可以列出方程组(10y+x+63=10x+y。
x+y=11)。
解方程组可以得到x=8,y=3,因此原数为83.鸡兔同笼”问题是另一个例子,可以用二元一次方程组表示。
题目中给出了总共30个头和94只脚,因此可以列出方程组(2x+4y=30.2x+2y=94),其中x表示鸡的数量,y表示兔的数量。
解方程组可以得到x=12,y=9,因此鸡的数量为12,兔的数量为9.综上所述,二元一次方程组是含有两个未知数和未知数的指数都是1的方程组。
解二元一次方程组可以使用消元解法,包括代入消元法和加减消元法。
实际问题可以用二元一次方程组来表示,然后解方程组得出答案。
1.在方程y=-3x-2中,若x=2,则y=-8.若y=2,则x=-4.2.若方程2x-y=3写成用含x的式子表示y的形式:y=2x-3;写成用含y的式子表示x的形式:x=(y+3)/2.3.已知43=2x-3y+1,4x-15y-17=0,6x-25y-23=0,则x=3,y=-2.4.二元一次方程3x-my=4和mx+ny=3有一个公共解,则m=-4,n=3.5.已知|a-b+2|+(b-3)^2=1,那么ab=-1.6.对于方程组(1){xy= -10.x+y=-2},是二次方程组;(2){x-y=1.x/y=3/4},是一次方程组;(3){x+y=5.xy=3},是二次方程组;(4){x+y=3.x=2y},是一次方程组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程组的解法一、目标认知学习目标:1.了解二元一次方程、二元一次方程组及其解的含义;2.会检验一组数是不是某个二元一次方程组的解;3.会用代入法和加减法解二元一次方程组,了解代入消元法和加减消元法的基本思想;4.能够根据题目特点熟练选用代入法或加减法解二元一次方程组;5.能借助二元一次方程组解决一些实际问题,使用代数方法去反应现实生活中的等量关系,体会代数方法的优越性.重点:二元一次方程组的解法.难点:熟练运用代入法和加减法解二元一次方程组.二、知识要点梳理知识点一:二元一次方程的概念含有两个未知数(一般设为x、y),并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程. 如x+y=24,都是二元一次方程.要点诠释:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数.(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. 如xy的次数是2,所以方程6xy+9=0不是二元一次方程.(3)二元一次方程的左边和右边都必须是整式. 如方程的左边不是整式,所以它就不是二元一次方程.(4)判断某个方程是不是二元一次方程,一般先把它化为ax+by+c=0的形式,再根据定义判断,例如:2x+4y=3+2x不是二元一次方程,因为通过移项,原方程变为4y=3,不符合二元一次方程的形式。
知识点二:二元一次方程的解能使二元一次方程左右两边的值都相等的两个未知数的值,叫做二元一次方程的解。
由于使二元一次方程的左右两边相等的未知数的值不只一个,故每个二元一次方程都有无数组解。
如,,,……,都是二元一次方程x+y=3的解,我们把有无数组解的这样的方程又称之为不定方程。
要点诠释:(1)使二元一次方程左右两边都相等的两个未知数的值(二元一次方程的每一个解,都是一对数值,而不是一个数值),即二元一次方程的解都要用“{”联立起来,如,是二元一次方程x+y=2的解。
(2)在二元一次方程的无数个解中,两个未知数的值是相互联系、一一对应的。
即其中一个未知数的值确定后,另一个未知数的值也随之确定并且唯一。
知识点三:二元一次方程组的概念把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.例如,都是二元一次方程组.此外,组成方程组的各个方程也不必同时含有两个未知数.例如也是二元一次方程组.知识点四:二元一次方程组的解一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.要点诠释:(1)方程组的解要用大括号联立,如,而不能表示成x=9,y=4.(2)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组无解,而方程组的解有无数个.(3)检验一组数是否是二元一次方程组的解时,一定要将这一组数代入方程组中的每一个方程,看是否满足每一个方程,只有这组数满足方程组中的所有方程时,该组数才是原方程组的解,否则不是。
知识点五:消元法1.消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想.2.消元的基本思路:未知数由多变少.3.消元的基本方法:把二元一次方程组转化为一元一次方程.知识点六:代入消元法1.代入消元法是解方程组的两种基本方法之一。
代入消元法就是把方程组其中一个方程的某个未知数用含另一个未知数的代数式表示,然后代入另一个方程,消去一个未知数,将二元一次方程组转化为一元一次方程来解。
这种解二元一次方程组的方法叫代入消元法,简称代入法。
2.用代入法解二元一次方程组的一般步骤:(1)从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数用含另一个未知数的代数式表示;(2)将变形后的这个关系式代入另一个方程,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求出一个未知数的值;(4)将求得的这个未知数的值代入变形后的关系式中,求出另一个未知数的值;(5)把求得的两个未知数的值用符号“{”联立起来写成方程组的解的形式.要点诠释:(1)用代入法解二元一次方程组时,应先观察各项系数的特点,尽可能选择变形后比较简单或代入后化简比较容易的方程变形;(2)变形后的方程不能再代入原方程,只能代入原方程组中的另一个方程;(3)要善于分析方程的特点,寻找简便的解法。
如将某个未知数连同它的系数作为一个整体用含另一个未知数的代数式来表示,代入另一个方程,或直接将某一方程代入另一个方程,这种方法叫做整体代入法。
整体代入法是解二元一次方程组常用的方法之一,它的运用可使运算简便,提高运算速度及准确率。
知识点七:加减消元法1.加减消元法是解二元一次方程组的基本方法之一,加减消元法是通过将两个方程相加(或相减)消去一个未知数,将二元一次方程组转化为一元一次方程来解,这种解法叫做加减消元法,简称加减法。
2.用加减法解二元一次方程组的一般步骤:(1)方程组中的两个方程,如果同一个未知数的系数既不互为相反数又不相等,就可用适当的数去乘一个方程或两个方程的两边,使两个方程中的某一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加减(相同时相减,相反时相加),消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得其中一个未知数的值;(4)把所求得的这个未知数的值代入到原方程组中系数比较简单的一个方程,求出另一个未知数的值;(5)把求得的两个未知数的值用符号“{”联立起来写成方程组的解的形式。
要点诠释:一般地,加减消元法的选择方法是:(1)选择系数绝对值较小的未知数消元;(2)某一未知数绝对值相等,如果符号不同,用加法消元,如果符号相同,用减法消元;(3)某一未知数系数成倍数关系时,直接对其中一个方程变形,使其系数绝对值相等,再运用加减法消元;(4)当相同的未知数的系数都不相等时,找出某一个未知数的最小公倍数,同时对两个方程进行变形,转化为绝对值相同的系数,再用加减法来解。
用加减法解方程组时需注意:①对某个方程变形处理时各项都要扩大相同的倍数;②两个方程的左右两边的各项都要同时相加或相减。
三、规律方法指导1.二元一次方程的整数解的求法:一般情况下,一个二元一次方程都有无数个整数解,解这类问题时,先用一个未知数的代数式表示另一个未知数,然后根据条件逐一求出相应的解.2.判断二元一次方程组的方法:把具有相同未知数的两个二元一次方程合在一起就组成一个二元一次方程组,判断一个方程是不是二元一次方程组,就看它是否满足以下两个条件:(1)看整个方程组里含有的未知数是不是两个;(2)看含未知数的项的次数是不是1.3.检验一对数是不是某个二元一次方程组的解,常用的方法是:将这对数值分别代入方程组中的每个方程,只有当这对数值满足其中的所有方程时,才能说这对数值是此方程组的解;否则,如果这对数值不满足其中的任何一个方程,那么它就不是此方程组的解.4.运用代入法、加减法解二元一次方程组要注意的问题:(1)当方程组中含有一个未知数表示另一个未知数的代数式时,用代入法比较简单;(2)若方程组中未知数的系数为1(或-1),选择系数为1(或-1)的方程进行变形,用代入法比较简便;(3)当方程组中的两个方程有某个未知数的系数相同或相反时,进行加减消元比较方便;(4)若两个方程中,同一个未知数的系数成倍数关系,利用等式性质,可以转化成(3)的类型,选择加减消元法比较简便;(5)若两个方程中,同一个未知数的系数的绝对值都不相等,那么,应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数,然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公倍数),再加减消元;(6)对于比较复杂的二元一次方程组,应先化简(去分母、去括号、合并同类项等). 通常要把每个方程整理成含未知数的项在方程的左边,常数项在方程的右边的形式,再作加减消元的考虑.经典例题透析类型一:求二元一次方程的解1.写出二元一次方程4x+y=20的所有正整数解.思路点拨:要把4x+y=20变形,再根据代数式的特点求解.解析:由原方程得y=20-4x.因为x、y都是正整数,所以当x=1,2,3,4时,y=16,12,8,4.所以方程4x+y=20的所有正整数解为:,,,.总结升华:(1)可以把二元一次方程中的一个未知数看成已知数,先解关于另一个未知数的一元一次方程,然后两个未知数取正整数值即可.(2)对题意理解,要注意两点:①要正确;②不重、不漏. 两个未知数的取值均为正整数才符合题意的解.举一反三:【变式1】在方程3x+4y-2=0中,若y分别取2、、0、-1、-4,求相应的的值.【答案】将3x+4y-2=0变形得.把已知y值依次代入方程的右边,计算相应值,如下表:2 0 -1 -4-2 2 6【变式2】求二元一次方程2x+y=9在自然数范围内的解。
思路点拨:首先明确自然数的概念,自然数是指0,1,2, 3,…,也就是非负整数,最小的自然数是0。
再把二元一次方程变形,用一个未知数表示另一个未知数,可变为y=9-2x,这样再让未知数x按顺序0,1,2,3,…取值,即可获得所求的自然数范围内的解。
解析:原方程变形为y=9-2x当x=0时,y=9,当x=1时,y=7,当x=2时,y=5当x=3时,y=3,当x=4时,y=1,当x=5时,y=-1所以方程在自然数范围内的解为,,,,。
类型二:确定方程的待定系数2.若是关于的二元一次方程,求的值.思路点拨:根据二元一次方程的定义,a-3≠0,即a≠3;|a|-2=1,即a=±3,所以a=-3.解析:由题意得|a|-2=1,所以a=±3.而a-3≠0,即a≠3,所以a=-3.总结升华:二元一次方程的待定系数的求解,要同时考虑两个未知数的系数与次数,不管方程的形式如何变化,必须满足①含有两个未知数,②未知数的次数是1,这两个条件.举一反三:【变式1】如果是方程组的解,求a2009-2b2009的值.思路点拨:把代入方程组,可以得到关于a、b的方程组,解这个方程组,可得a、b的值.解析:由是方程组的解,得.解这个方程组,得,当时,a2009-2b2009=12009-2×12009=-1.总结升华:把x、y的值代入方程组,转化为关于a、b的方程组,解出a、b的值. 本题体现了“系数”与“未知数”的转化关系.【变式2】方程2x m+1+3y2n=5是二元一次方程,则m=________,n=________.【答案】0,解析:由方程是二元一次方程得:m+1=1,2n=1,解得:m=0,n=。
【变式3】若是方程组的解,则a=_______,b=_______.【答案】a=2,b=1解析:把代入原方程得。