(完整版)人教版七年级上册数学期末复习总结,推荐文档
人教版七年级数学上册期末复习知识点大全doc
人教版七年级数学上册期末复习知识点大全doc一、选择题1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线2.已知max{}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max {}21,,2x x x =时,则x 的值为( ) A .14-B .116C .14D .123.一个角是这个角的余角的2倍,则这个角的度数是( ) A .30B .45︒C .60︒D .75︒4.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28B .30C .32D .345.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( ) A .1601603045x x-= B .1601601452x x -= C .1601601542x x -= D .1601603045x x+= 6.互不相等的三个有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C 。
若:||||||a b b c a c -+-=-,则点B ( )A .在点 A, C 右边B .在点 A,C 左边C .在点 A, C 之间D .以上都有可能7.﹣3的相反数是( ) A .13-B .13C .3-D .38.已知∠A =60°,则∠A 的补角是( ) A .30°B .60°C .120°D .180°9.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a+b >0B .ab >0C .a ﹣b <oD .a÷b >0 10.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是( ) A .513B .﹣511C .﹣1023D .102511.图中是几何体的主视图与左视图, 其中正确的是( )A .B .C .D .12.下列计算正确的是( ) A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=1二、填空题13.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.14.甲乙两个足够大的油桶各装有一定量的油,先把甲桶中的油的一半给乙桶,然后把乙桶中的油倒出18给甲桶,若最终两个油桶装有的油体积相等,则原来甲桶中的油是乙桶中油的______倍。
人教版七年级上册数学知识点(必背基础打印稿)
人教版七年级上册数学知识点(必背基础
打印稿)
本文档旨在帮助学生掌握人教版七年级上册数学的必背基础知
识点,以下是其中的重点内容:
1. 数的概念和整数运算
- 自然数的概念:自然数是以1为开始的整数序列,用N表示。
- 整数的概念:整数是正整数、零和负整数的统称,用Z表示。
- 整数的加法和减法运算规则:整数之间的加法和减法满足交
换律和结合律。
- 整数的乘法和除法运算规则:整数之间的乘法和除法满足交
换律和结合律。
2. 有理数
- 有理数的概念:有理数是可以表示为两个整数之商的数,包
括整数、分数和小数。
- 有理数的加法和减法运算规则:有理数之间的加法和减法满足交换律和结合律。
- 有理数的乘法和除法运算规则:有理数之间的乘法和除法满足交换律和结合律。
3. 分数
- 分数的概念:分数是一个整数与一个自然数的比值,可以表示为a/b的形式,其中a为分子,b为分母。
- 分数的加法和减法运算规则:分数之间的加法和减法需要先找到相同的分母,然后进行相应的运算。
- 分数的乘法和除法运算规则:分数之间的乘法和除法直接进行相应的运算。
4. 整数、分数和小数的大小比较
- 整数的大小比较规则:整数之间比较大小可以根据它们的绝对值进行判断。
- 分数和小数的大小比较规则:将分数和小数转化为带分子的整数进行比较。
5. 数轴
- 数轴的概念:数轴是用来表示数的一种方法,是将数与点在一条直线上对应起来。
- 数轴上的数的位置:数轴上的数从左到右依次增大。
以上是人教版七年级上册数学的必背基础知识点的简要介绍,希望能对学生的学习有所帮助。
(完整版)人教版七年级数学上册知识点思维导图及总结,推荐文档
人教版七年级数学上册知识点思维导图及总结人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一、知识框架二.知识概念1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;)0p q ,p (pq ≠为整数且正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数; 不是有理数;(2)有理数的分类: ① ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 a+b=0 a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:或 ;绝对值的问题经常分类讨⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a ⎩⎨⎧<-≥=)0a (a )0a (a a 论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么的倒数是a ;若ab=1 a 、b 互为倒数;若ab=-1 a 、b 互为负倒数.a17. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.无意义即0a 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
202X年人教版七年级第一学期数学期末总复习知识点汇总
千里之行,始于足下。
202X年人教版七班级第一学期数学期末总复习
学问点汇总
数学是一门基础学科,也是一门格外重要的学科。
在学校阶段,数学的学习内容也渐渐增多和深化。
下面是202X年人教版七班级第一学期数学期末总复习学问点的汇总。
一、整数的概念和运算:整数的定义;整数的四则运算规章;整数的加法和减法法则;数轴。
二、有理数的概念和运算:有理数的定义;有理数的四则运算规章;有理数的大小比较;确定值与相反数;有理数的加法和减法法则。
三、正比例和反比例:正比例关系的定义和性质;正比例函数的图象和特征;反比例关系的定义和性质;反比例函数的图象和特征。
四、平面图形:二维图形的分类;多边形的性质;平行四边形的性质;三角形的性质;相像三角形的性质。
五、解方程:一元一次方程的定义和性质;方程的等价变形;解一元一次方程的基本步骤;实际问题中的方程。
六、数据统计与概率:统计图的制作和分析;均值与中位数;概率的定义和性质;概率的计算。
七、数学问题的解决思路和方法:数学问题的分析和解决过程;常用的问题解决方法。
第1页/共2页
锲而不舍,金石可镂。
以上是202X年人教版七班级第一学期数学期末总复习学问点的汇总。
这些学问点涵盖了整数、有理数、比例、图形、方程、统计和概率等内容。
在复习时,可以通过做题、总结学问点和解题方法等方式来加深对这些学问点的理解和把握。
期望对你的学习有所挂念!。
新人教版七年级数学上册期末专题总复习资料
新人教版七年级数学上册期末专题总复习资料人教版七年级数学上册期末专题总复资料类比归纳专题:有理数加、减、乘、除中的简便运算——灵活变形,举一反三类型一加减混合运算的技巧一、相反数相结合或同号结合1.计算:【方法2】515-3;1-(+6)-3+(-1.25)- 48/82.3+(-1.7)+6.2+(-2.2)-1.1.二、同分母或凑整结合2.计算:【方法2】6.82)+3.78+(-3.18)-3.78;311/-5 + (-9)/8 - 1.25.三、计算结果成规律的数相结合3.计算1+2-3-4+5+6-7-8+…+2013+2014-2015-2016的结果是()A。
B。
-1 C。
2016 D。
-20164.★阅读:因为一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥时,|a|=a;当a<0时,|a|=-a.根据以上阅读完成下列问题:1)|3.14-π|=________;1/1-1/11+1/111-1/1111+…-1/2013+1/2014-1/2015-1/2016 2)计算:2/3-3/2+4/3-9/8+10/9类型二运用分配律解题的技巧一、正用分配律5.计算.131/2-4+8×(-24);39×(-14).二、逆用分配律666/(-3)-3×(-3)-6×3.6.计算:4×7/7.三、除法变乘法,再利用分配律122/6-7+3÷(-42).参考答案与解析1.解:(1)原式=1+(-1.25)-6+4/8= -4.75.2)原式=2.3+6.2-(-1.7-2.2-1.1)= 3.5.2.解:(1)原式=[(-6.82)+(-3.18)]+(3.78-3.78)= -10.2)原式=19+8/4-9/8-1.25= 3.3.D4.解:(1)π-3.14=π-3.14.2)原式=1-1/2-1/10= 3/5.5.解:(1)原式=-12+18-3=3.2)原式=2/3-3/2+4/3-9/8+10/9= 55/72.1.下列说法正确的是()A。
人教版七年级数学上册期末复习总结
人教版七年级数学上册期末复习总结第一章 有理数人教版七年级数学上册期末复习总结【说明】1.有理数由“符号”和“数值”两部分组成.(符号问题是我们在今后的学习中经常忘记的问题.)2.正数前面的符号可以省略,负数前面的符号不能省略.3.正数大于0,负数小于0,正数大于负数.4. 0既不是正数,也不是负数.5.正、负数通常表示相反意义的量,这些量包括:向东与向西;收入与支出;盈利与亏损;(温度)零上与零下;(水位)上升与下降;高于与低于(水平面);(出口)增长与减少……例如:向东走2米,记作:+2米;那么向西走3米,记作—3米.6.用正负数表示加工允许误差 例如:①图纸上注明一个零件的直径是2.03.030+-Φmm,表示零件的直径标准是30mm,但是,在生产的过程中,由于生产工艺存在的误差,因此直径可以比30mm 大0.2mm,也可以比30mm 小0.3mm.即零件的直径在29.7mm~30.2mm 之间都合格.但在这个范围以外的就不合格了.人教版七年级数学上册期末复习总结A .0小于所有正数B .0大于所有负数C .0既不是正数也不是负数D .0没有绝对值1.2有理数1.2.1 有理数 有理数的概念:整数和分数统称有理数.【说明】1.整数分为正整数、0、负整数.⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数0⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数02.分数分为正分数、负分数.13.无限循环小数是有理数,它可以化成分数.如0.333…=34.无限不循环小数是无理数,如:π.5.没有最大的有理数,也没有最小的有理数.6.最大的负整数是-1,最小的正整数是1。
7.几个常见的概念:非负数:指正数和零;非正数:负数和零;【例2】在﹣22,(﹣2)2,﹣(﹣2),﹣|﹣2|中,负数的个数是()A.1个 B.2个C.3个D.4个1.2.2 数轴规定了原点、正方向、单位长度的直线叫做数轴;【说明】1.数轴有三要素:原点、正方向、单位长度。
人教版2022~2023学年七年级上册数学期末复习 知识点归纳(含练习)【含答案】
人教版2022~2023学年七年级上册数学期末复习:知识点归纳(含练习)第一章有理数一、知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。
有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。
有理数的运算是全章的重点。
在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。
基础知识:1.正数(position number):大于0的数叫做正数。
2.负数(negation number):在正数前面加上负号“-”的数叫做负数。
3.0既不是正数也不是负数。
4.有理数(rational number):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。
5.数轴(number axis):通常,用一条直线上的点表示数,这条直线叫做数轴。
数轴满足以下要求:(1)在直线上任取一个点表示数0,这个点叫做原点(origin);(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;(3)选取适当的长度为单位长度。
6.相反数(opposite number):绝对值相等,只有负号不同的两个数叫做互为相反数。
7.绝对值(absolute value)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
记做|a|。
由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。
8.有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数。
加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。
表达式:a+b=b+a。
2023年期末复习人教版七年级上册数学课本知识点归纳
人教版七年级上册数学书本知识点归纳第一章有理数(一)正负数1.正数:不小于0旳数。
2.负数:不不小于0旳数。
3.0即不是正数也不是负数。
4.正数不小于0,负数不不小于0,正数不小于负数。
(二)有理数1.有理数:由整数和分数构成旳数。
包括:正整数、0、负整数,正分数、负分数。
可以写成两个整之比旳形式。
(无理数是不能写成两个整数之比旳形式,它写成小数形式,小数点后旳数字是无限不循环旳。
如:π)2.整数:正整数、0、负整数,统称整数。
3.分数:正分数、负分数。
(三)数轴1.数轴:用直线上旳点表达数,这条直线叫做数轴。
(画一条直线,在直线上任取一点表达数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选用合适旳长度为单位长度,以便在数轴上取点。
)2.数轴旳三要素:原点、正方向、单位长度。
3.相反数:只有符号不一样旳两个数叫做互为相反数。
0旳相反数还是0。
4.绝对值:正数旳绝对值是它自身,负数旳绝对值是它旳相反数;0旳绝对值是0,两个负数,绝对值大旳反而小。
(四)有理数旳加减法1.先定符号,再算绝对值。
2.加法运算法则:同号相加,到相似符号,并把绝对值相加。
异号相加,取绝对值大旳加数旳符号,并用较大旳绝对值减去较小旳绝对值。
互为相反数旳两个数相加得0。
一种数同0相加减,仍得这个数。
3.加法互换律:a+b= b+ a 两个数相加,互换加数旳位置,和不变。
4.加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
5. a−b = a +(−b)减去一种数,等于加这个数旳相反数。
(五)有理数乘法(先定积旳符号,再定积旳大小)1.同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
2.乘积是1旳两个数互为倒数。
3.乘法互换律:ab= b a4.乘法结合律:(ab)c = a (b c)5.乘法分派律:a(b +c)= a b+ ac(六)有理数除法1.先将除法化成乘法,然后定符号,最终求成果。
(word完整版)人教版初一数学上册知识点归纳总结,推荐文档
⎪ ⎨ ⎨ ⎨- a 人教版七年级数学上册期末总复习第一章有理数1. 有理数:(1) 凡能写成 q (p, q 为整数且p ≠ 0) 形式的数,都是有理数,整数和分数统称有理数.p注意:0 即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;⎧ ⎧正整数 ⎧⎪⎪⎧正整数 ⎪正有理数⎨正分数整数 零(2) 有理数的分类:① ⎪⎩ 有理数⎨零 ⎪ ② 有理数⎨ ⎨ ⎩负整数负有理数⎧负整数 负分数 ⎪分数⎧正分数 负分数⎩⎩⎩⎩(3) 注意:有理数中,1、0、-1 是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4) 自然数⇔ 0 和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a≥0 ⇔ a 是正数或 0 ⇔ a 是非负数; a≤ 0 ⇔ a 是负数或 0 ⇔ a 是非正数.2. 数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线.3. 相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0 的相反数还是 0; (2)注意: a-b+c 的相反数是-(a-b+c)= -a+b-c ;a-b 的相反数是 b-a ;a+b 的相反数是-a-b ;(3)相反数的和为 0 ⇔ a+b=0 ⇔ a 、b 互为相反数. (4)相反数的商为-1.(5)相反数的绝对值相等w w w .x k b 1.c o m4. 绝对值:(1) 正数的绝对值等于它本身,0 的绝对值是 0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为: a ⎪a ⎨0 ⎩- a (a > 0)(a = 0)或(a < 0) a = ⎧a ⎩(a ≥ 0);(a ≤ 0)(3) (3) a= 1 ⇔ a > 0 ;= -1 ⇔ a < 0 ;a(4) |a|是重要的非负数,即|a|≥0,非负性; 5. 有理数比大小:(1) 正数永远比 0 大,负数永远比 0 小; (2) 正数大于一切负数;(3) 两个负数比较,绝对值大的反而小;aa =(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
人教版七年级数学上册期末复习知识点大全doc
人教版七年级数学上册期末复习知识点大全doc一、选择题1.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( ) A .(b ﹣a )元B .(b ﹣10)元C .(10a ﹣b )元D .(b ﹣10a )元2.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是( ) A .B .C .D .3.已知线段AB 的长为4,点C 为AB 的中点,则线段AC 的长为( )A .1B .2C .3D .44.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A .208B .480C .496D .5925.下列分式中,与2x yx y ---的值相等的是()A .2x y y x+-B .2x y x y+-C .2x y x y--D .2x y y x-+6.在下边图形中,不是如图立体图形的视图是( )A .B .C .D .7.下列各数中,有理数是( ) A .2B .πC .3.14D .378.2019年3月15日,中山市统计局发布2018年统计数据,我市常住人口达3 310 000人.数据3 310 000用科学记数法表示为( ) A .3.31×105 B .33.1×105 C .3.31×106 D .3.31×1079.如果单项式13a x y +与2b x y 是同类项,那么a b 、的值分别为( )A .2,3a b ==B .1,2a b ==C .1,3a b ==D .2,2a b ==10.如图的几何体,从上向下看,看到的是( )A .B .C .D .11.如果2|2|(1)0a b ++-=,那么()2020a b +的值是( )A .2019-B .2019C .1-D .112.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=ba;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程 3x •a = 2x ﹣ 16(x ﹣6)无解,则a 的值是( ) A .1 B .﹣1 C .±1 D .a≠1二、填空题13.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.14.已知方程22x a ax +=+的解为3x =,则a 的值为__________. 15.36.35︒=__________.(用度、分、秒表示)16.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________.17.如图,已知OC 是∠AOB 内部的一条射线,∠AOC =30°,OE 是∠COB 的平分线.当∠BOE =40°时,则∠AOB 的度数是_____.18.把(a ﹣b )看作一个整体,合并同类项:3()4()2()-+---a b a b a b =_____. 19.小颖按如图所示的程序输入一个正数x ,最后输出的结果为131.则满足条件的x 值为________.20.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.21.请先阅读,再计算: 因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11111111911223349101010=-+-+-++-=-= 则111110010110110210210320192020++++=⨯⨯⨯⨯_________.22.若2a +1与212a +互为相反数,则a =_____. 23.某校全体同学的综合素质评价的等级统计如图所示,其中评价为C 等级所在扇形的圆心角是____度.24.若4a +9与3a +5互为相反数,则a 的值为_____.三、压轴题25.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =22,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)出数轴上点B 表示的数 ;点P 表示的数 (用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.26.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.27.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)28.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
人教版七年级数学上册期末复习知识点总结
【最新】人教版七年级数学上册期末复习知识点总结人教版七年级数学上册期末复习知识点总结第一章:有理数一.有理数的根底知识〔1〕正数〔2〕负数〔3〕0即不是正数也不是负数,0是一个具有特殊意义的数字,0是正数和负数的分界,不是表示不存在或无实际意义.2.有理数的概念及分类整数和分数统称为有理数.有理数的分类如下:(1)按定义分类:(2)按性质符号分类:3.数轴标有原点.正方向和单位长度的直线叫作数轴.数轴有三要素:原点.正方向.单位长度.4.相反数如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数.0的相反数是0,互为相反的两个数,在数轴上位于原点的两那么,并且与原点的距离相等.概念剖析:(1)在数轴上离某点的距离等于a的点有两个.(2)如果数a和数b互为相反数,那么a+b=0;abb1(ab0)或a1(ab0);(3)求一个数的相反数,只要在这个数的前面加上〝〞即可;例如ab的相反数是ba;5.绝对值数轴上表示数a的点与原点的距离叫做数a的绝对值.〔1〕绝对值的几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离.〔2〕绝对值的代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个负数的a(a0)绝对值是它的相反数,可用字母a表示如下:a0(a0)a(a0)〔3〕两个负数比拟大小,绝对值大的反而小.概念剖析:①〝一个数的绝对值就是数轴上表示该数的点与原点的距离〞,而距离是非负,也就是说任何一个数的绝对值都是非负数,即a0.②互为相反数的两个数离原点的距离相等,也就是说互为相反数的两个数绝对值相等.二.有理数的运算1.有理数的加法2.有理数的减法:减去一个数等于加上这个数的相反数.3.有理数的乘法倒数的定义:乘积是1的两个有理数互为倒数,即ab=1,那么a和b互为倒数;倒数也可以看成是把分子分母的位置颠倒过来.注意:0没有倒数.4.有理数的除法:除以一个数,等于乘上这个数的倒数,0不能做除数.5.有理数的乘方〔1〕有理数的乘方:求几个相同因数a的积的运算叫做乘方,乘方的结果叫做幂.〔2〕正数的任何次方都是正数,负数的偶数次方是正数,负数的奇数次方是负数,0的任何非0次幂都是0,1的任何非0次幂都是1,1偶数次幂是1.1奇数次幂是1;概念剖析:①〝an〞所表示的意义是n个a相乘,不是n乘以a;②(a)nan.因为an表示n个a相乘,而(a)n表示n个a的相反数;③任何数的偶次幂都得非负数,即a2n0.知识窗口:所有的奇数可以表示为2n1或2n1;所有的偶数可以表示为2n.6.有理数的混合运算7.科学记数法〔1〕把一个大于10的数记成a10n的形式,其中a是整数位只有一位的数,这种记数方法叫做科学记数法.〔2〕与实际完全符合的数叫做准确数,与准确数接近的数叫做近似数.一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.〔3〕一个数,从左边第一个不是0的数字起,到精确到的数位止〔最末尾一位〕,所得的数字,叫做这个数的有效数字.第二章:整式的加减1单项式由数与字母的积组成的代数式叫做单项式,其中数字因数叫做单项式的系数,所有字母因数的指数之和叫做单项式的次数.单独的一个数或字母也叫做单项式.2多项式几个多项式的和叫做多项式,其中.每个单项式都叫做多项式的项,不含字母的项叫做常数项,次数最高项的次数叫做该多项式的次数,每个单项式的系数都是多项式的系数;如果一个多项式有n项,且次数为m,那么我们称该多项式为m次n项式.二.代数式的计算1.同类项所含字母相同,并且相同字母的指数也相同的项,叫做同类项,常数项也是同类项.2.合并同类项把多项式中的同类项合并成一项叫做合并同类项,不是同类项不能合并.合并同类项法那么:〔1〕系数相加,所得结果作为系数;〔2〕字母和字母的指数不变.3.去括号去括号法那么:〔1〕括号前是〝+〞号,把括号和它前面的〝+〞号去掉后,原括号里各项符号都不改变;〔2〕括号前是〝〞号,把括号和它前面的〝〞号去掉后,原括号里各项的符号都要改变.4.整式的加减:整式的加减实质上就是合并同类项第三章:一元一次方程一.方程的有关概念在一个方程中,只含有一个未知数,并且未知数的指数是1,系数不为0,这样的方程叫一元一次方程.2.等式的根本性质〔1〕等式两边同时加上〔或减去〕同一个数或代数式,所得结果仍是等式.假设ab,那么acbc或acbc.〔2〕等式两边同时乘以〔或除以〕同一个数〔除数不能为0〕,所得结果仍是等式.假设ab,那么acbc或abcc;二.解方程1.解方程及解方程的解的含义求得方程的解的过程,叫做解方程.使方程的左.右两边的值相等的未知数的值,叫做方程的解.3.解一元一次方程的步骤〔1〕去分母:注意每一项都要乘分母的最小公倍数,分子是一个整体的时候用括号〔2〕去括号:注意括号外面的符号,括号外的系数要乘上括号内的每一项;〔3〕移项:项放到等号另外一边时,注意变号;〔4〕合并同类项;〔5〕系数化为1;二.列方程初步〔列代数式〕路程问题:路程=时间×速度速度=路程÷时间时间=路程÷速度平均速度=总路程÷总时间轮船航行问题:顺水航行的速度=静水速度+水流速度逆水航行的速度=静水速度水流速度工程问题:工作量=工作时间×工作效率工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率价格问题:总价=单价×数量单价=总价÷数量数量=总价÷单价利润问题:利润=售价本钱售价=利润+本钱本钱=售价利润数字问题:表示数字的方法:1a个10a十100a百1000a千10000a万〔其中a个.a十.a百.a千.a万表示个位.十位.百位.千位万位的数字〕.面积问题:记住特殊图形的面积公式,非特殊图形的面积可用〝面积分割补法〞.第四章:几何图形初步一几何图形从实物中抽象出的各种图形统称为几何图形.几何图形可分为立体图形和平面图形.二.点.线.面.体(1)点动成线.线动成面.面动成体;(2)体是由面组成.面与面相交成线.线与线相交成点;二.线段.射线.直线1.线段.射线.直线的表示方法〔1〕线段的表示方法有两种:一是用两个大写字母,二是用一个小写的英文字母.〔2〕射线的表示方法一种:用端点和射线上的另一个点来表示,端点字母要写在前面.〔3〕直线的表示方法有两种:一是用直线上的两个点来表示,二是用一个小写的英文字母来表示.线段.射线.直线的联系:射线和线段都可以看成是直线的一局部.3.直线性质:过两点有且只有一条直线.简称两点确定一条直线.4.线段的比拟〔1〕叠合法;〔2〕度量法.5.线段性质:〝两点之间,线段最短〞.连接两点的线段的长度,叫做这两点的距离.6.线段的中点:如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点.假设C是线段AB的中点,那么:AC=BC=12AB或AB=2AC=2BC.二.角〔1〕角可以看成是由两条有共同端点的射线组成的图形.两条射线叫角的边,共同的端点叫角的顶点.〔2〕角还可以看成是一条射线绕着他的端点旋转所成的图形.2.角的表示方法:角用〝∠〞符号表示〔1〕分别用两条边上的两个点和顶点来表示.〔顶点必须在中间〕〔2〕在角的内部写上阿拉伯数字,然后用这个阿拉伯数字来表示角.〔3〕在角的内部写上小写的希腊字母,然后用这个希腊字母来表示角.〔4〕直接用一个大写英文字母来表示.〔当顶点只有一个角时才可以用该方法〕3.角的度量:会用量角器来度量角的大小.4.角的单位:角的单位有度.分.秒,用°.′.″表示,角的单位是60进制与时间单位是类似的.度.分.秒的换算:1°=60′,1′=60″,1°=3600″.5.锐角.直角.钝角.平角.周角的概念和大小〔1〕平角:角的两边成一条直线时,这个角叫平角.〔2〕周角:角的一边旋转一周,与另一边重合时,这个角叫周角.〔3〕0°180度的角互为补角,同角或等角的补角相等.扩展阅读:七年级数学下册期末复习知识点总结七年级数学〔下册〕知识点总结任课教师:闫冠彬★必考▲重点√了解★复习重点:七至十单元测试卷相交线与平行线【知识点】√1.▲平面上不相重合的两条直线之间的位置关系为_______或________2.两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线.性质是对顶角相等.P3例;P82题;P97题;P352〔2〕;P353题3.两条直线相交所成的四个角中,如果有一个角为90度,那么称这两条直线互相垂直.其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足.4.垂直三要素:垂直关系,垂直记号,垂足5.做直角三角形的高:两条直角边即是钝角三角形的高,只要做出斜边上的高即可.6.做钝角三角形的高:最长的边上的高只要向最长边引垂线即可,另外两条边上的高过边所对的顶点向该边的延长线做垂线.AACBC7.垂直公理:过一点有且只有一条直线与直线垂直.8.垂线段最短;CB9.点到直线的距离:直线外一点到这条直线的垂线段的长度.10.两条直线被第三条直线所截:同位角F〔在两条直线的同一旁,第三条直线的同一侧〕,内错角Z〔在两条直线内部,位于第三条直线两侧〕,同旁内角U〔在两条直线内部,位于第三条直线同侧〕.P7例.练习111.平行公理:过直线外一点有且只有一条直线与直线平行.12.如果两条直线都与第三条直线平行,那么这两条直线也互相平行.如果b//a,c//a,那么b//cP174题13.平行线的判定.P15例结论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行.P15练习;P177题;P368题.14.平行线的性质.P21练习1,2;P236题15.★命题:〝如果+题设,那么+结论.〞P22练习116.真.假命题P2411题;P3712题17.平移的性质P28归纳三角形和多边形1.三角形内角和定理★【重点题目】P763例:三角形三个内角之比为2:3:4,那么他们的度数分别为_____________2.构成三角形满足的条件:三角形两边之和大于第三边.判断方法:在△ABC中,a.b为两短边,c为长边,如果a+b>c那么能构成三角形,否那么〔a+bc〕不能构成三角形〔即三角形最短的两边之和大于最长的边〕【重点题目】P64例;P692,6;P7073.三角形边的取值范围:三角形的任一边:小于两边之和,大于两边之差〔的绝对值〕【重点题目】三角形的两边分别为3和7,那么三角形的第三边的取值范围为_____________4.等面积法:三角形面积12底高,三角形有三条高,也就对应有三条底边,任取其中一组底和高,三角形同一个面积公式就有三个表示方法,任取其中两个写成连等〔可两边同时2消去12〕底高底高,知道其中三条线段就可求出第四条.例如:如图1,在直角△ABC中,ACB=900,CD是斜边AB上的高,那么有ACBCCDAB【重点题目】P708题A 例直角三角形的三边长分别为3.4.5,那么斜边上的高为_____________D5.等高法:高相等,底之间具有一定关系〔如成比例或相等〕【例】AD是△ABC的中线,AE是△ABD的中线,SABC4cm2,那么SABE=_____________CB图16.三角形的特性:三角形具有_____________【重点题目】P695题7.外角:【根底知识】什么是外角?外角定理及其推论【重点题目】P75例2P765.6.8题8.n边形的★内角和_____________★外角和_______√对角线条数为_____________【根底知识】正多边形:各边相等,各角相等;正n边形每个内角的度数为_____________【重点题目】P83.P84练习1,2,3;P843,4,5,6;P904.5题9.√镶嵌:围绕一个拼接点,各图形组成一个周角〔不重叠,无空隙〕.单一正多边形的镶嵌:镶嵌图形的每个内角能被3600整除:只有6个等边三角形〔600〕,4个正方形〔900〕,3个正六边形〔1200〕三种〔两种正多边形的〕混合镶嵌:混合镶嵌公式nm3600:表示n个内角度数为的正多边形与m个内角度数为的正多边形围绕一个拼接点组成一个周角,即混合镶嵌.【例】用正三角形与正方形铺满地面,设在一个顶点周围有m个正三角形.n个正方形,那么m,n的值分别为多少?平面直角坐标系▲根本要求:在平面直角坐标系中1.给出一点,能够写出该点坐标2.给出坐标,能够找到该点▲建系原那么:原点.正方向.横纵轴名称〔即_.y〕√语言描述:以…〔哪一点〕为原点,以…〔哪一条直线〕为_轴,以…〔哪一条直线〕为y轴建立直角坐标系▲根本概念:有顺序的两个数组成的数对称为〔有序数对〕【三大规律】1.平移规律★点的平移规律〔P51归纳〕例将P(2,3)向左平移3个单位,向上平移5个单位得到点Q,那么Q点的坐标为_____________图形的平移规律〔P52归纳〕重点题目:P53练习;P543.4题;P557题.2.对称规律▲关于_轴对称,纵坐标取相反数关于y轴对称,横坐标取相反数关于原点对称,横.纵坐标同时取相反数例:P点的坐标为(5,7),那么P点〔1.〕关于_轴对称的点为_____________(2.)关于y轴的对称点为_____________〔3.〕关于原点的对称点为_____________3.位置规律★假设在平面直角坐标系上有一点P〔a,b〕y1.如果P点在第一象限,有a>0,b>0〔横.纵坐标都大于0〕第二象限第一象限2.如果P点在第二象限,有a0〔横坐标小于0,纵坐标大于0〕3.如果P点在第三象限,有a。
人教版七年级数学上册期末复习知识点大全doc
人教版七年级数学上册期末复习知识点大全doc一、选择题1.已知max{}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max {}21,,2x x x =时,则x 的值为( ) A .14-B .116C .14D .122.下列方程中,以32x =-为解的是( ) A .33x x =+B .33x x =+C .23x =D .3-3x x =3.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取BC AB =,若点A 表示的数是a ,则点C 表示的数是( )A .2aB .3a -C .3aD .2a -4.在223,2,7-四个数中,属于无理数的是( ) A .0.23B 3C .2-D .2275.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程() A .10050062x x += B .1005006x 2x += C .10040062x x += D .1004006x 2x+= 6.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM 的长( ) A .7cmB .3cmC .3cm 或 7cmD .7cm 或 9cm7.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32018﹣1的个位数字是( )A.2 B.8 C.6 D.08.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( )A.①④B.②③C.③D.④9.下列变形不正确的是()A.若x=y,则x+3=y+3 B.若x=y,则x﹣3=y﹣3C.若x=y,则﹣3x=﹣3y D.若x2=y2,则x=y10.若a<b,则下列式子一定成立的是( )A.a+c>b+c B.a-c<b-c C.ac<bc D.a b c c11.a,b,c三个数在数轴上的位置如图所示,则下列结论中错误的是()A.a+b<0 B.a+c<0 C.a-b>0 D.b-c<012.已知点A,B,P在一条直线上,则下列等式中,能判断点P是线段AB中点个数有()①AP=BP;②.BP=12AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个二、填空题13.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需____元.14.如图,点B在线段AC上,且AB=5,BC=3,点D,E分别是AC,AB的中点,则线段ED的长度为_____.15.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.16.15030'的补角是______.17.如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=4∠DOE,∠COE=α,则∠BOE的度数为___________.(用含α的式子表示)18.按照下面的程序计算:如果输入x的值是正整数,输出结果是166,那么满足条件的x的值为___________.19.如果m﹣n=5,那么﹣3m+3n﹣5的值是_____.20.五边形从某一个顶点出发可以引_____条对角线.21.当12点20分时,钟表上时针和分针所成的角度是___________.22.规定:用{m}表示大于m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}=-1等;用[m] 表示不大于m 的最大整数,例如[72]= 3,[2]= 2,[-3.2]=-4,如果整数x 满足关系式:3{x}+2[x]=23,则x =________________.23.若2a﹣b=4,则整式4a﹣2b+3的值是______.24.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n个图案有2019个黑棋子,则n=______.三、压轴题25.如图,已知数轴上有三点A,B,C ,若用AB 表示A,B 两点的距离,AC 表示A ,C 两点的距离,且BC = 2 AB ,点A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点P,Q 分别从A,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到B 的距离与P 到B 的距离相等?(2)若点P ,Q 仍然以(1)中的速度分别从A ,C 两点同时出发向右运动,2 秒后,动点R 从A点出发向左运动,点R 的速度为1个单位长度/秒,点M 为线段PR 的中点,点N为线段RQ的中点,点R运动了x 秒时恰好满足MN +AQ = 25,请直接写出x的值.26.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等.6a b x-1-2...(1)可求得 x =______,第 2021 个格子中的数为______; (2)若前 k 个格子中所填数之和为 2019,求 k 的值;(3)如果m ,n 为前三个格子中的任意两个数,那么所有的|m -n | 的和可以通过计算|6-a |+|6-b|+|a -b|+|a -6| +|b -6|+|b -a| 得到.若m ,n 为前8个格子中的任意两个数,求所有的|m-n|的和.27.如图1,线段AB 的长为a .(1)尺规作图:延长线段AB 到C ,使BC =2AB ;延长线段BA 到D ,使AD =AC .(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB 所在的直线画数轴,以点A 为原点,若点B 对应的数恰好为10,请在数轴上标出点C ,D 两点,并直接写出C ,D 两点表示的有理数,若点M 是BC 的中点,点N 是AD 的中点,请求线段MN 的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D 处开始,在点C ,D 之间进行往返运动;乙从点N 开始,在N ,M 之间进行往返运动,甲、乙同时开始运动,当乙从M 点第一次回到点N 时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.28.已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30,C 点在B 点左侧,C 点到A 点距离是B 点到A 点距离的4倍.(1)求出数轴上B 点对应的数及AC 的距离.(2)点P 从A 点出发,以3单位/秒的速度向终点C 运动,运动时间为t 秒. ①当P 点在AB 之间运动时,则BP = .(用含t 的代数式表示)②P 点自A 点向C 点运动过程中,何时P ,A ,B 三点中其中一个点是另外两个点的中点?求出相应的时间t .③当P 点运动到B 点时,另一点Q 以5单位/秒的速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直.接.写.出.相遇时P 点在数轴上对应的数29.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB =.(1)点D 表示的数是 ;(直接写出结果)(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时. ①求t 的值;②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.30.已知:∠AOB 是一个直角,作射线OC ,再分别作∠AOC 和∠BOC 的平分线OD 、OE . (1)如图①,当∠BOC=70°时,求∠DOE 的度数;(2)如图②,若射线OC 在∠AOB 内部绕O 点旋转,当∠BOC=α时,求∠DOE 的度数. (3)如图③,当射线OC 在∠AOB 外绕O 点旋转时,画出图形,直接写出∠DOE 的度数.31.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空)()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.32.如图,已知线段AB=12cm ,点C 为AB 上的一个动点,点D 、E 分别是AC 和BC 的中点.(1)若AC=4cm ,求DE 的长;(2)试利用“字母代替数”的方法,说明不论AC 取何值(不超过12cm ),DE 的长不变; (3)知识迁移:如图②,已知∠AOB=α,过点O 画射线OC ,使∠AOB:∠BOC=3:1若OD 、OE 分别平分∠AOC 和∠BOC ,试探究∠DOE 与∠AOB 的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C 【解析】 【分析】 利用max{}2,,x x x 的定义分情况讨论即可求解.【详解】 解:当max {}21,,2x x x =时,x ≥0 x 12,解得:x =14x >x >x 2,符合题意; ②x 2=12,解得:x 2x x >x 2,不合题意; ③x =12x x >x 2,不合题意; 故只有x =14时,max {}21,,2x x x =. 故选:C . 【点睛】此题主要考查了新定义,正确理解题意分类讨论是解题关键.2.A解析:A 【解析】 【分析】把32x =-代入方程,只要是方程的左右两边相等就是方程的解,否则就不是. 【详解】解: A 中、把32x =-代入方程得左边等于右边,故A 对; B 中、把32x =-代入方程得左边不等于右边,故B 错; C 中、把32x =-代入方程得左边不等于右边,故C 错; D 中、把32x =-代入方程得左边不等于右边,故D 错. 故答案为:A. 【点睛】本题考查方程的解的知识,解题关键在于把x 值分别代入方程进行验证即可.3.B解析:B 【解析】 【分析】根据题意和数轴可以用含a 的式子表示出点B 表示的数,从而得到点C 表示的数. 【详解】解:由点O 为原点,OA OB =,可知A 、B 表示的数互为相反数, 点A 表示的数是a ,所以B 表示的数为-a , 又因为BC AB =,所以点C 表示的数为3a -. 故选B. 【点睛】本题考查数轴,解答本题的关键是明确题意结合相反数,利用数形结合的思想解答.4.B解析:B 【解析】 【分析】根据无理数为无限不循环小数、开方开不尽的数、含π的数判断即可. 【详解】0.23是有限小数,是有理数,不符合题意,是开方开不尽的数,是无理数,符合题意,-2是整数,是有理数,不符合题意,227是分数,是有理数,不符合题意, 故选:B.本题考查无理数概念,无理数为无限不循环小数、开方开不尽的数、含π的数,熟练掌握无理数的定义是解题关键.5.D解析:D【解析】【分析】根据共用6天完成任务,等量关系为:用老机器加工100个零件用的时间+用新机器加工400套用的时间=6即可列出方程.【详解】设该厂原来每天加工x个零件,根据题意得:1004006 x2x+=故选:D.【点睛】此题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.6.C解析:C【解析】【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在点A与B之间或点C在点B 的右侧两种情况进行分类讨论.【详解】①如图1所示,当点C在点A与B之间时,∵线段AB=10cm,BC=4cm,∴AC=10-4=6cm.∵M是线段AC的中点,∴AM=12AC=3cm,②如图2,当点C在点B的右侧时,∵BC=4cm,∴AC=14cmM是线段AC的中点,∴AM=12AC=7cm.综上所述,线段AM的长为3cm或7cm.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.7.B解析:B【解析】【分析】由31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…得出末尾数字以2,8,6,0四个数字不断循环出现,由此用2018除以4看得出的余数确定个位数字即可.【详解】∵2018÷4=504…2,∴32018﹣1的个位数字是8,故选B.【点睛】本题考查了尾数的特征,关键是能根据题意得出个位数字循环的规律是解决问题的关键.8.A解析:A【解析】【分析】根据点到直线的距离,直线的性质,线段的性质,可得答案.【详解】①用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故①正确;②把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故②错误;③体育课上,老师测量某个同学的跳远成绩,利用了点到直线的距离,故③错误;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,利用了两点确定一条直线,故④正确.故选A.【点睛】本题考查了线段的性质,熟记性质并能灵活应用是解答本题的关键.9.D解析:D【解析】【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【详解】解:A、两边都加上3,等式仍成立,故本选项不符合题意.B、两边都减去3,等式仍成立,故本选项不符合题意.C、两边都乘以﹣3,等式仍成立,故本选项不符合题意.D、两边开方,则x=y或x=﹣y,故本选项符合题意.故选:D.【点睛】本题主要考查了等式的基本性质.解题的关键是掌握等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.10.B解析:B【解析】【分析】根据不等式的基本性质逐一进行分析判断即可.【详解】A.由a<b,两边同时加上c,可得 a+c<b+c,故A选项错误,不符合题意;B. 由a<b,两边同时减去c,得a-c<b-c,故B选项正确,符合题意;C. 由a<b,当c>0时,ac<bc,当c<0时,ac<bc,当c=0时,ac=bc,故C选项错误,不符合题意;D.由 a<b,当a>0,c≠0时,a bc c<,当a<0时,a bc c>,故D选项错误,故选B.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.11.C解析:C【解析】【分析】根据数轴上的数,右边的数总是大于左边的数,即可判断a、b、c的符号,根据到原点的距离即可判断绝对值的大小,再根据有理数的加减法法则即可做出判断.【详解】根据数轴可知:a<b<0<c,且|a|>|c|>|b|则A. a+b<0正确,不符合题意;B. a+c<0正确,不符合题意;C.a-b>0错误,符合题意;D. b-c<0正确,不符合题意;故选C.【点睛】本题考查了数轴以及有理数的加减,难度适中,熟练掌握有理数的加减法法则和利用数轴比较大小是解题关键.12.A解析:A【解析】①项,因为AP =BP ,所以点P 是线段AB 的中点,故①项正确;②项,点P 可能是在线段AB 的延长线上且在点B 的一侧,此时也满足BP =12AB ,故②项错误;③项,点P 可能是在线段BA 的延长线上且在点A 的一侧,此时也满足AB =2AP ,故③项错误;④项,因为点P 为线段AB 上任意一点时AP +PB =AB 恒成立,故④项错误.故本题正确答案为①.二、填空题13.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a+3b)元解析:(23)a b【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系. 14.5【解析】【分析】首先求出AC 的长度是多少,根据点D 是AC 的中点,求出AD 的长度是多少;然后求出AE 的长度,即可求出线段ED 的长度为多少.【详解】解:∵AB=5,BC =3,∴AC=5+3解析:5【解析】【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB=5,BC=3,∴AC=5+3=8;∵点D是AC的中点,∴AD=8÷2=4;∵点E是AB的中点,∴AE=5÷2=2.5,∴ED=AD﹣AE=4﹣2.5=1.5.故答案为:1.5.【点睛】此题主要考查了两点间的距离,以及线段的中点的含义和应用,要熟练掌握.15.30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30解析:30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30﹣.考点:列代数式16.【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】解:.故答案为.【点睛】此题考查补角的意义,以及度分秒解析:2930'【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】-=.解:18015030'2930'故答案为2930'.【点睛】此题考查补角的意义,以及度分秒之间的计算,注意借1当60.17.270°-3α【解析】【分析】设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x的一次方程解析:270°-3α【解析】【分析】设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x的一次方程式,求解即可.【详解】设∠DOE=x,根据OC平分∠AOD,∠BOD=4∠DOE,∠COE=α,∴∠BOD=4x,∠AOC=∠COD=α-x,由∠BOD+∠AOD=180°,∴4x+2(α-x )=180°解得x=90°-α,∴∠BOE=3x=3(90°-α)=270°-3α,故答案为:270°-3α.【点睛】本题考查了角平分线的定义,平角的定义,一元一次方程的应用,掌握角平分线的定义是解题的关键.18.42或11【解析】【分析】由程序图可知,输出结果和x的关系:输出结果=4x-2,当输出结果是166时,可以求出x的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求解析:42或11【解析】【分析】由程序图可知,输出结果和x 的关系:输出结果=4x-2,当输出结果是166时,可以求出x 的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求出x 的之即可.【详解】解:当4x-2=166时,解得x=42当4x-2小于149时,将4x-2作为一个整体重新输入即4(4x-2)-2=166,解得x=11故答案为42或11【点睛】本题考查了程序运算题,解决本题的关键是正确理解题意,熟练掌握一元一次方程的解法,考虑问题需全面,即当输出结果小于149时,将4x-2作为一个整体重新输入程序.19.-20.【解析】【分析】把所求代数式化成的形式,再整体代入的值进行计算便可.【详解】解:,,故答案为:.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式解析:-20.【解析】【分析】把所求代数式化成3()5m n ---的形式,再整体代入m n -的值进行计算便可.【详解】解:5m n -=,335m n ∴-+-3()5m n =---355=-⨯-155=--故答案为:20-.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式化成()m n -的代数式形式.20.2【解析】【分析】从n 边形的一个顶点出发有(n −3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记解析:2【解析】【分析】从n 边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记知识点(从n 边形的一个顶点出发有(n−3)条对角线)是解此题的关键.21.110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为解析:110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12时20分时,时针转过的角度是:0.5°×20=10°,分针转过的角度是:6°×20=120°,所以12时20分钟时分针与时针的夹角120°-10°=110°.故答案为:110°【点睛】本题考查了角的度量,解决的关键是理解钟面上的分针每分钟旋转6°,时针每分钟旋转0.5°.22.4【解析】【分析】由题意可得,求解即可.【详解】解:解得故答案为:4【点睛】本题属于新定义题型,正确理解{m}和[m]的含义是解题的关键.解析:4【解析】【分析】由题意可得{}[]1,x x x x =+=,求解即可.【详解】解:{}[]323(1)25323x x x x x +=++=+=解得4x =故答案为:4【点睛】本题属于新定义题型,正确理解{m }和[m ]的含义是解题的关键. 23.11【解析】【分析】对整式变形得,再将2a ﹣b=4整体代入即可.【详解】解:∵2a ﹣b=4,∴=,故答案为:11.【点睛】本题考查代数式求值——已知式子的值,求代数式的值.能根据已解析:11【解析】【分析】对整式423a b -+变形得2(2)3a b -+,再将2a ﹣b=4整体代入即可.【详解】解:∵2a ﹣b=4,∴423a b -+=2(2)324311a b -+=⨯+=,故答案为:11.【点睛】本题考查代数式求值——已知式子的值,求代数式的值.能根据已知条件对代数式进行适当变形是解决此题的关键.24.404【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】解:观察图1有5×1-1=4个黑棋子;图2有5×2-1=9个黑棋子;图3有解析:404【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】解:观察图1有5×1-1=4个黑棋子;图2有5×2-1=9个黑棋子;图3有5×3-1=14个黑棋子;图4有5×4-1=19个黑棋子;…图n 有5n-1个黑棋子,当5n-1=2019,解得:n=404,故答案:404.【点睛】本题考查探索与表达规律——图形类规律探究.能根据题中已给图形找出黑棋子的数量与序数之间的规律是解决此题的关键.三、压轴题25.(1)107秒或10秒;(2)1413或11413.【解析】【分析】(1)由绝对值的非负性可求出a,c的值,设点B对应的数为b,结合BC = 2 AB,求出b 的值,当运动时间为t秒时,分别表示出点P、点Q对应的数,根据“Q到B的距离与P 到B的距离相等”列方程求解即可;(2)当点R运动了x秒时,分别表示出点P、点Q、点R对应的数为,得出AQ的长,由中点的定义表示出点M、点N对应的数,求出MN的长.根据MN+AQ=25列方程,分三种情况讨论即可.【详解】(1)∵|a-20|+|c+10|=0,∴a-20=0,c+10=0,∴a=20,c=﹣10.设点B对应的数为b.∵BC=2AB,∴b﹣(﹣10)=2(20﹣b).解得:b=10.当运动时间为t秒时,点P对应的数为20+2t,点Q对应的数为﹣10+5t.∵Q到B的距离与P到B的距离相等,∴|﹣10+5t﹣10|=|20+2t﹣10|,即5t﹣20=10+2t或20﹣5t=10+2t,解得:t=10或t=107.答:运动了107秒或10秒时,Q到B的距离与P到B的距离相等.(2)当点R运动了x秒时,点P对应的数为20+2(x+2)=2x+24,点Q对应的数为﹣10+5(x+2)=5x,点R对应的数为20﹣x,∴AQ=|5x﹣20|.∵点M为线段PR的中点,点N为线段RQ的中点,∴点M对应的数为224202x x++-=442x+,点N对应的数为2052x x-+=2x+10,∴MN =|442x +﹣(2x +10)|=|12﹣1.5x |. ∵MN +AQ =25,∴|12﹣1.5x |+|5x ﹣20|=25.分三种情况讨论:①当0<x <4时,12﹣1.5x +20﹣5x =25, 解得:x =1413; 当4≤x ≤8时,12﹣1.5x +5x ﹣20=25,解得:x =667>8,不合题意,舍去; 当x >8时,1.5x ﹣12+5x ﹣20=25,解得:x 31141=. 综上所述:x 的值为1413或11413. 【点睛】本题考查了一元一次方程的应用、数轴、绝对值的非负性以及两点间的距离,找准等量关系,正确列出一元一次方程是解题的关键.26.(1)6,-1;(2)2019或2014;(3)234【解析】【分析】(1)根据三个相邻格子的整数的和相等列式求出a 、x 的值,再根据第9个数是-2可得b =-2,然后找出格子中的数每3个为一个循环组依次循环,在用2021除以3,根据余数的情况确定与第几个数相同即可得解.(2)可先计算出这三个数的和,再照规律计算.(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.【详解】(1)∵任意三个相邻格子中所填整数之和都相等,∴6+a +b =a +b +x ,解得x =6,a +b +x =b +x -1,∴a =-1,所以数据从左到右依次为6、-1、b 、6、-1、b ,第9个数与第三个数相同,即b =-2,所以每3个数“6、-1、-2”为一个循环组依次循环.∵2021÷3=673…2,∴第2021个格子中的整数与第2个格子中的数相同,为-1. 故答案为:6,-1.(2)∵6+(-1)+(-2)=3,∴2019÷3=673.∵前k 个格子中所填数之和可能为2019,2019=673×3或2019=671×3+6,∴k 的值为:673×3=2019或671×3+1=2014.故答案为:2019或2014.(3)由于是三个数重复出现,那么前8个格子中,这三个数中,6和-1都出现了3次,-2出现了2次.故代入式子可得:(|6+2|×2+|6+1|×3)×3+(|-1-6|×3+|-1+2|×2)×3+(|-2-6|×3+|-2+1|×3)×2=234.【点睛】本题考查了列一元一次方程解实际问题的运用,规律推导的运用,此类题的关键是找出是按什么规律变化的,然后再按规律找出字母所代表的数,再进行进一步的计算.27.(1)详见解析;(2)35;(3)﹣5、15、1123、﹣767.【解析】【分析】(1)根据尺规作图的方法按要求做出即可;(2)根据中点的定义及线段长度的计算求出;(3)认真分析甲、乙物体运行的轨迹来判断它们相遇的可能性,分情况建立一元一次方程来计算相遇的时间,然后计算出位置.【详解】解:(1)如图所示;(2)根据(1)所作图的条件,如果以点A为原点,若点B对应的数恰好为10,则有点C对应的数为30,点D对应的数为﹣30,MN=|20﹣(﹣15)|=35(3)设乙从M点第一次回到点N时所用时间为t,则t=223522MN⨯==35(秒)那么甲在总的时间t内所运动的长度为s=5t=5×35=175可见,在乙运动的时间内,甲在C,D之间运动的情况为175÷60=2……55,也就是说甲在C,D之间运动一个来回还多出55长度单位.①设甲乙第一次相遇时的时间为t1,有5t1=2t1+15,t1=5(秒)而﹣30+5×5=﹣5,﹣15+2×5=﹣5这时甲和乙所对应的有理数为﹣5.②设甲乙第二次相遇时的时间经过的时间t2,有5t2+2t2=25+30+5+10,t2=10(秒)此时甲的位置:﹣15×5+60+30=15,乙的位置15×2﹣15=15这时甲和乙所对应的有理数为15.③设甲乙第三次相遇时的时间经过的时间t3,有5t3﹣2t3=20,t3=203(秒)此时甲的位置:30﹣(5×203﹣15)=1123,乙的位置:20﹣(2×203﹣5)=1123这时甲和乙所对应的有理数为112 3④从时间和甲运行的轨迹来看,他们可能第四次相遇.设第四次相遇时经过的时间为t4,有5t4﹣1123﹣30﹣15+2t4=1123,t4=91621(秒)此时甲的位置:5×91621﹣45﹣1123=﹣767,乙的位置:1123﹣2×91621=﹣767这时甲和乙所对应的有理数为﹣767.四次相遇所用时间为:5+10+203+91621=3137(秒),剩余运行时间为:35﹣3137=347(秒)当时间为35秒时,乙回到N点停止,甲在剩余的时间运行距离为5×347=5257=1767.位置在﹣767+1767=10,无法再和乙相遇,故所有相遇点对应的有理数为﹣5、15、1123、﹣767.【点睛】本题考查数轴作图及线段长度计算的基础知识,重要的是两个点在数轴上做复杂运动时的运动轨迹和相遇的位置,具有比较大的难度.正确分析出可能相遇的情况并建立一元一次方程是解题的关键.28.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣483 4【解析】【分析】(1)根据A点对应的数为60,B点在A点的左侧,AB=30求出B点对应的数;根据AC=4AB求出AC的距离;(2)①当P点在AB之间运动时,根据路程=速度×时间求出AP=3t,根据BP=AB﹣AP 求解;②分P点是A、B两个点的中点;B点是A、P两个点的中点两种情况讨论即可;③根据P、Q两点的运动速度与方向可知Q点在往返过程中与P点相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.根据AQ ﹣BP=AB列出方程;第二次相遇是点Q到达C点后返回到A点的途中.根据CQ+BP=BC列出方程,进而求出P点在数轴上对应的数.【详解】(1)∵A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,∴B点对应的数为60﹣30=30;∵C点到A点距离是B点到A点距离的4倍,∴AC=4AB=4×30=120;(2)①当P点在AB之间运动时,∵AP=3t,∴BP=AB﹣AP=30﹣3t.故答案为30﹣3t;②当P点是A、B两个点的中点时,AP=12AB=15,∴3t=15,解得t=5;当B点是A、P两个点的中点时,AP=2AB=60,∴3t=60,解得t=20.故所求时间t的值为5或20;③相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.∵AQ﹣BP=AB,∴5x﹣3x=30,解得x=15,此时P点在数轴上对应的数是:60﹣5×15=﹣15;第二次相遇是点Q到达C点后返回到A点的途中.∵CQ+BP=BC,∴5(x﹣24)+3x=90,解得x=1054,此时P点在数轴上对应的数是:30﹣3×1054=﹣4834.综上,相遇时P点在数轴上对应的数为﹣15或﹣4834.【点睛】本题考查了一元一次方程的应用,行程问题相等关系的应用,线段中点的定义,进行分类讨论是解题的关键.29.(1)16;(2)①t的值为3或143秒;②存在,P表示的数为314.【解析】【分析】(1)由数轴可知,AB=3,则CD=6,所以D表示的数为16,(2)①当运动时间是t秒时,在运动过程中,B点表示的数为3+2t,A点表示的数为2t,C点表示的数为10-t,D点表示的数为16-t,分情况讨论两条线段重叠部分是2个单位长度。
人教版初一数学上册知识点归纳总结
七年级数学上册期末总复习第一章有理数1.有理数:1凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;不是有理数;2有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数3注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性; 4自然数 0和正整数; a >0 a 是正数; a <0 a 是负数;a ≥0 a 是正数或0 a 是非负数; a ≤ 0 a 是负数或0 a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度数轴的三要素的一条直线.3.相反数:1只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; 2注意: a-b+c 的相反数是-a-b+c= -a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;3相反数的和为0 a+b=0 a 、b 互为相反数.4相反数的商为-1.5相反数的绝对值相等w w w .x k b o m4.绝对值:1正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离; 2 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧≤-≥=)0()0(a a a a a ; 3 0a 1a a>⇔= ; 0a 1a a<⇔-=;4 |a|是重要的非负数,即|a|≥0,非负性;5.有理数比大小:1正数永远比0大,负数永远比0小;2正数大于一切负数;3两个负数比较,绝对值大的反而小;4数轴上的两个数,右边的数总比左边的数大;5-1,-2,+1,+4,,以上数据表示与标准质量的差,绝对值越小,越接近标准.6.倒数:乘积为1的两个数互为倒数;注意:0没有倒数; 若ab=1 a 、b 互为倒数; 若ab=-1 a 、b 互为负倒数.等于本身的数汇总:相反数等于本身的数:0倒数等于本身的数:1,-1绝对值等于本身的数:正数和0平方等于本身的数:0,1立方等于本身的数:0,1,-1.7. 有理数加法法则:1同号两数相加,取相同的符号,并把绝对值相加;2异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;3一个数与0相加,仍得这个数.8.有理数加法的运算律:1加法的交换律:a+b=b+a ;2加法的结合律:a+b+c=a+b+c.9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+-b.10 有理数乘法法则:1两数相乘,同号得正,异号得负,并把绝对值相乘;2任何数与零相乘都得零;3几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正.11 有理数乘法的运算律:1乘法的交换律:ab=ba;2乘法的结合律:abc=abc;3乘法的分配律:ab+c=ab+ac .简便运算12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能a.做除数,无意义即13.有理数乘方的法则:1正数的任何次幂都是正数;2负数的奇次幂是负数;负数的偶次幂是正数;14.乘方的定义:1求相同因式积的运算,叫做乘方;2乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;3a 2是重要的非负数,即a 2≥0;若a 2+|b|=0 a=0,b=0;4正数的任何次幂都是正数,0的任何次幂都是0;负数的奇次幂是负数,负数的偶次幂是正数.5据规律 ⇒⎪⎪⎭⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位. 15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数即1≤a<10,这种记数法叫科学记数法.10的指数=整数位数-1, 整数位数=10的指数+116.近似数的精确位:一个近似数,四舍五入到哪一位,就说这个近似数精确到那一位.17.混合运算法则:先乘方,后乘除,最后加减; 注意:不省过程,不跳步骤.18.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.常用于填空,选择.第二章 整式的加减1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式.2.单项式的系数与次数:单项式中的数字因数,称单项式的系数要包括前面的符号;单项式中所有字母指数的和,叫单项式的次数只与字母有关.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;5.⎩⎨⎧多项式单项式整式 整式是代数式,但是代数式不一定是整式.6.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项与系数无关,与字母的排列顺序无关.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去添括号法则:去添括号时,若括号前边是“+”号,括号里的各项都不变号; 若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:一找:标记;二“+”务必用+号开始合并三合:合并10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大或从大到小排列起来,叫做按这个字母的升幂排列或降幂排列.第三章 一元一次方程1.等式:用“=”号连接而成的式子叫等式.2.等式的性质:等式性质1:等式两边都加上或减去同一个数或式子,结果仍相等; 等式性质2:等式两边都乘以或除以同一个不为零的数,结果仍相等.3.方程:含未知数的等式,叫方程方程是含有未知数的等式,但等式不一定是方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”.5.移项:把等式一边的某项变号后移到另一边叫移项.移项的依据是等式性质1移项变号.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式: ax+b=0x是未知数,a、b是已知数,且a≠0.8.一元一次方程解法的一般步骤:化简方程----------分数基本性质去分母----------同乘不漏乘最简公分母去括号----------注意符号变化移项----------变号留下靠前合并同类项--------合并后符号w w w .x k b o m系数化为1---------除前面10.列一元一次方程解应用题:1读题分析法:…………多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数⎧⎨⎩式,得到方程.2画图分析法: ………… 多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系可把未知数看做已知量,填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:1行程问题: 路程=速度·时间 时间路程速度= 速度路程时间=; 2工程问题:工作量=工作效率·工作时间 工时工作量工效= 工效工作量工时=; 工程问题常用等量关系: 先做的+后做的=完成量w w w .x k b o m3顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度; 顺水逆水问题常用等量关系: 顺水路程=逆水路程4商品利润问题: 售价=定价10几折 , %100⨯-=成本成本售价利润率; 利润问题常用等量关系: 售价-进价=利润5配套问题:6分配问题第四章 图形初步认识一多姿多彩的图形立体图形:棱柱、棱锥、圆柱、圆锥、球等. 1、几何图形 平面图形:三角形、四边形、圆、多边形等.⎧⎨⎩主视图---------从正面看2、几何体的三视图 左视图---------从左边看 俯视图---------从上面看 1会判断简单物体棱柱、圆柱、圆锥、球的三视图.2能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图1同一个立体图形按不同的方式展开,得到的平现图形不一样的.2了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体1几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.2点动成线,线动成面,面动成体.二直线、射线、线段经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线.3、画一条线段等于已知线段1度量法2用尺规作图法4、线段的长短比较方法1度量法2叠合法3圆规截取法5、线段的中点二等分点、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点.图形:A M B符号:若点M 是线段AB 的中点,则AM=BM=21AB,AB=2AM=2BM.6、线段的性质两点的所有连线中,线段最短.简单地:两点之间,线段最短.7、两点的距离连接两点的线段的长度叫做两点的距离距离是线段的长度,而不是线段本身.8、点与直线的位置关系1点在直线上或者直线经过点 2点在直线外或者直线不经过点. 三角1、角:有公共端点的两条射线所组成的图形叫做角.1=60=3600, 1=60; 1=601, 1=601=360011度量法2叠合法6、角的四则运算角的和、差、倍、分及其近似值7、画一个角等于已知角1借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.2借助量角器能画出给定度数的角.3用尺规作图法.8、角的平分线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线若OB 是AOC 的平分线,则AOB=BOC=21AOC, AOC=2AOB =2BOC.9、互余、互补1若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.2若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.3∠1的余角可以用90°-∠1表示;∠1的补角可以用180°-∠1表示.4余角的性质:同角等角的余角相等; 补角的性质:同角等角的补角相等.10、方向角 1正方向2南或北写在前面,东或西写在后面 北偏东、北偏西、南偏东、南偏西东 西 北 南 东北 西北 西南东南 北偏北偏南偏南偏。
2023最新人教版初一上数学期末复习知识点总结
2023最新人教版初一上数学期末复习知识点总结人教版初一上册数学期末复习知识点总结一、四则运算:1. 加法:理解和计算整数、分数、小数的加法运算;2. 减法:理解和计算整数、分数、小数的减法运算;3. 乘法:理解和计算整数、分数、小数的乘法运算;4. 除法:理解和计算整数、分数、小数的除法运算;二、数的比较和排序:1. 数的比较:掌握三种形式的比大小,理解和计算比较数的正确性;2. 数的排序:了解六种排序方法,包括从小到大、从大到小等;三、计算:1. 乘方:理解和计算乘方的含义,包括乘方的特性、乘方的展开、乘方的计算等;2. 解方程:掌握常见一元二次方程的求解;3. 求根:理解和计算平方根、立方根的求解;四、图形:1. 直线:掌握直线的标准方程、斜率的定义;2. 圆:理解和计算圆的标准方程;3. 坐标系:了解坐标系及图形的基本概念,掌握坐标系下图形、点、直线、圆的表达;五、几何:1. 平面几何:了解平面几何空间内的基本概念,如点、线段、角、直角三角形、等边三角形等;2. 空间几何:了解空间几何的基本概念,如平面、直线、曲线、立体等;六、数值描述:1. 算术平均数:掌握算术平均数的计算方法,了解算术平均数的含义;2. 加权平均数:掌握加权平均数的计算方法,了解加权平均数的含义;3. 方差:掌握方差的计算方法,了解方差的含义;4. 百分率:掌握百分率的计算方法,了解百分率的含义;七、统计:1. 算术平均数:掌握算术平均数的应用,包括划分等级、数据分布、对比分析等;2. 中位数:掌握中位数的计算方法,了解中位数的含义;3. 分布趋势:理解和计算数据分布的趋势,如尖峰曲线等;八、概率:1. 概率:掌握概率的定义、计算方法;2. 几何概率:理解和计算几何概率的问题;3. 事件概率:理解和计算事件概率的问题;以上是2020年人教版初一上册数学期末复习知识点总结,希望通过学习,考试顺利,取得优异成绩。
(完整版)人教版七年级上册数学期末复习总结,推荐文档
★★一、选择题1. - 1的绝对值为( )3 综合复习(一)A. - 1 3 B . 1 C.3D.-332. 某天北京的温度是-2℃~6℃,这一天北京的温差是()A.10℃B.8℃C.4℃D.-4℃3. 我国领土面积大约是 9600000 平方公里,用科学记数法应记为( )A. 0.96 ⨯107 平方公里B. 9.6 ⨯105 平方公里C. 96 ⨯105 平方公里D. 9.6 ⨯106 平方公里4. x=2 是下列方程()的解.A.2x=6B.(x-3)(x+2)=0C.x 2=3D.3x-6=05. 若代数式3x - 7 和6x +13 互为相反数,则 x 的值为( )A. 2 3B. 3 2C. - 3 2D. - 2 3 6. 下列运算正确的是()A.4a +5b=9abB.6xy-xy=6xyC.6a 3+4a 3=10a 6D.8a 2b-8ba 2=07. 下列说法正确的是()A.0.750有两个有效数字B.3.6万精确到千位C.800有一个有效数字D.5.078精确到个位8. 将如图 7 所示的正方体沿某些棱展开后,能得到的图形是()A B C D9. 已知|a|=4,a >0; |b|=8,b <0 那么 a-b 的值为()A.12B.-4C.-12D.410.如图所示是一个自行设计的计算程序,若输入 x 的值为 1,那么执行此程序后,输出的数 y 是() A -2B 2C 3D 4输入 x否则若结果大于 0输出 y减去 4乘以 2平方 ★★)二、填空题11.计算:-3-(-5)=3xy 312. 单项式- 的系数 , 次数是.513. 昆明市某天上午的温度是 5℃,中午又上升了 3℃,下午由于冷空气南下,到夜间又下降了 9℃,则这天夜间的温度是 ℃.14. 比较大小: - 1 7 - 1; -(-18) 6 -|-20|15. 如果一个角的补角是150 ,那么这个角的余角是.16. 一架飞机在两个城市之间飞行, 顺风飞行需 2.5h, 逆风飞行需 3h, 若风速是 24km/h, 求两城市间的距离.若飞机在无风飞行时的速度为 x(km/h),根据题意,所列正确方程是.17. 若5 x 2 y 和- x m y n 是同类项,则2 m - 5n =18. 若│x -1│+(y+2)2=0,则 x-y=19. 当 x =1 时,代数式mx 2- 3 x - 4 的值为 0,则 m 的值为.20. 已知方程m 2三、解答题m 14 7 是关于 x 的一元一次方程,则 m=.20. 画出数轴,在数轴上表示下列各数,并用“<”连接:-(-5) ,-︱-3.5︱, - 11,+4, 0221. 计算:(1)16 ÷ (-2)3 - (- 1⨯(-4) 8(2)-32⨯(-2) - ⎣- (-2)÷(-1)⎦3422. 解方程(1) 5x - 2(3 - 2x ) = -3(2)x - 3- x - 4 = 15 323.化简:(1) 1mn - 4mn ;(2) 3x 2 - ⎣7x - (4x - 3) - 2x 2 ⎦ ;(3)(2xy - y ) - (- y + yx ) ;24. 先化简,再求值:(1) (4a 2 - 2a - 6) - 2(2a 2 - 2a - 5) , 其中 a = -1.(2)1 x-2(x- 1 y 2)+(- 3 x+ 1 y 2),其中 x =-2,y =- 1 2323 225.有8 筐白菜,以每筐 25 千克为准,超过的千克数记为正数,不足的千克数记为负数,称后的记录如下: 1.5, -3, 2, -0.5, 1, -2, -2, -2.5 ,这 8 筐白菜一共多少千克?26.某商店在某一时间内以每件 60 元的价格卖出两件衣服,其中一件盈利 25%,另一件亏损40%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?27.如图所示,点 O 是直线 AB 上一点,OE,OF 分别平分∠AOC和∠BOC,若∠AOC=68°,则∠BOF和∠EOF是多少度?一 选择题综合复习(二)1. 如果一个有理数的绝对值是 5,那么这个数一定是( )A. 5B. -5C.-5 或 5D.以上都不对2.下列各组整式中,不属于同类项的是( )A. —1 和 2B.x 2y 和 4×105 x 2yC. 4 a b 和 4b 2a D.3x 2y 和—3x 2y5 52b xy 3. 在代数式 -2x 、3xy 、 a 、- 3 、0、mx -ny中,整式的个数是( )A.2B.3C.4D.54. 下列各组数中,互为相反数的是( ).1A .2 与 2B .(- 1)2 与 1C .- 1 与(- 1)2D .2 与| -2|5. 下列结论正确的是( )A. x yz 的系数为 0B.3x 2-x+1 中一次项系数为-1C.a 2b 3c 的次数为 5D.a 2-33 是 一 个 三 次 二 项 式 6. 现规定一种运算:a*b=ab+a-b ,其中 a 、b 为有理数,则 3*5 的值为( )A.11B.12C.13D.14 7. 下列变形正确的是( )A. 由 5 = x - 2 得 x = -5 - 2C.由2x = 3x + 5得- 5 = 3x - 2x B. 由5y = 0得y = 15D.由3x = -2得x = - 328. 某商店有两个进价不同的计算器都卖了 80 元,其中一个赢利 60%,另一个亏本 20%, 在这次买卖中,这家商店 ( )A. 不赔不赚B.赚了 10 元C.赔了 10 元D.赚了 50 元9.钟表在 8:25 时,时针与分针的夹角是()度A.101.5B.102.5C.120D.12510.如图的几何体,从左面看到的是()A B C D11.方程2x + 3 = 5 ,则6x + 10 等于( ).A.15B.16C.17D.3412. 小王利用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据是 8 时,输出的数据是()A.861B. 63C. 65D.6713. 如图所示的正方体的展开图是( )A B C14. 如图,点 A 位于点 O 的方向上。
新人教版七年级数学上册重点知识复习资料(全册)
新人教版七年级数学上册重点知识复习资
料(全册)
单元一:整数
- 整数的概念:整数由正整数、0和负整数组成。
- 整数的比较:比较整数大小时,先比较绝对值大小,再根据
正负确定大小关系。
- 整数的加法和减法:同号相加减取结果的绝对值,符号与原
值相同;异号相加减取结果的绝对值,符号与较大数相同。
- 整数的乘法和除法:同号相乘除结果为正,异号相乘除结果
为负。
单元二:分数
- 分数的概念:分数由分子和分母组成,表示真数、假数和零。
- 分数的相等:两个分数相等表示代表同一量的两个数。
- 分数的大小比较:分数大小比较可以通过求公共分母,比较
分子大小进行。
- 分数的加法和减法:分数加减法可以通过通分,然后对分子进行加减。
- 分数的乘法:分数乘法可以直接对分子和分母进行相乘。
- 分数的除法:分数除法可以先求倒数,再进行相乘。
单元三:代数式
- 代数式的概念:含有变量的数学式子称为代数式。
- 代数式的运算:代数式的运算包括加法、减法和乘法。
- 代数式的化简:对代数式进行合并同类项、提取公因式、运用分配律等方法进行化简。
...
(继续写下去,覆盖全册)。
(完整word版)人教版七年级上册数学知识点总结归纳
七年级数学上册知识点总结第一章有理数正数和负数⒈正数和数的看法数:比0 小的数正数:比0 大的数0 既不是正数,也不是数注意:①字母 a 能够表示任意数,当 a 表示正数,-a 是数;当 a 表示数,-a 是正数;当 a 表示 0 , -a 仍是 0。
〔若是出判断:正号的数是正数,号的数是数,种法是的,比方 +a,-a 就不能够做出判断〕②正数有也能够在前面加“+〞,有“ +〞省略不写。
所以省略“+〞的正数的符号是正号。
2.拥有相反意的量假设正数表示某种意的量,数能够表示拥有与正数相反意的量,比方:零上 8℃表示: +8℃;零下 8℃表示: -8 ℃表示的意⑴ 0表示“ 没有〞,如教室里有0 个人,就是教室里没有人;⑵ 0是正数和数的分界, 0 既不是正数,也不是数。
〔 3〕0 表示一个确实的量。
如:0℃以及有些目中的基准,比方以海平面基准,0 米就表示海平面。
有理数1.有理数的看法⑴正整数、 0、整数称整数〔0 和正整数称自然数〕⑵正分数和分数称分数⑶正整数, 0,整数,正分数,分数都能够写成分数的形式,的数称有理数。
理解:只有能化成分数的数才是有理数。
①π是无量不循小数,不能够写成分数形式,不是有理数。
②有限小数和无量循小数都可化成分数,都是有理数。
3,整数也能化成分数,也是有理数注意:引入数今后,奇数和偶数的范也大了,像-2,-4,-6,-8⋯也是偶数,-1,-3,-5⋯也是奇数。
2. 有理数的分⑴按有理数的意分⑵按正、来分正整数正整数整数0正有理数整数正分数有理数有理数0〔 0 不能够忽〕正分数整数分数有理数分数分数:①正整数、0 称非整数〔也叫自然数〕② 整数、 0 称非正整数③正有理数、0 称非有理数④ 有理数、0 称非正有理数3.数轴⒈数轴的看法规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无量延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不能;⑶同一数轴上的单位长度要一致;⑷数轴的三要素都是依照实质需要规定的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
输入
··· ···
1
2
3
4
5
··· ···
输出
··· ···
★
★
★
★
) 输入 x
平方
A
B
C
D
9. 已知|a|=4,a>0; |b|=8,b<0 那么 a-b 的值为(
)
乘以 2 减去 4
A.12
B.-4
C.-12
D.4
否则 若结果大于 0
输出 y
10.如图所示是一个自行设计的计算程序,若输入 x 的值为 1,那么执行此程序后,输出的 数 y 是( )
A -2
26. 某商店在某一时间内以每件 60 元的价格卖出两件衣服,其中一件盈利 25%,另一件亏 损 40%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?
27. 如图所示,点 O 是直线 AB 上一点,OE,OF 分别平分∠AOC 和∠BOC, 若∠AOC=68°,则∠BOF 和∠EOF 是多少度?
4/8
19. 当 x =1 时,代数式mx 2 3 x 4 的值为 0,则 m 的值为
.
20. 已知方程 m 2 m 1 4 7是关于 x 的一元一次方程,则 m=
.
三、解答题
20. 画出数轴,在数轴上表示下列各数,并用“<”连接:
-(-5) ,-︱-3.5︱, 11 ,+4, 0 2
21. 计算:
人教版七年级上册数学期末复习总结
综合复习(二)
一 选择题
1. 如果一个有理数的绝对值是 5,那么这个数一定是( )
A. 5
B. -5
C.-5 或 5
D.以上都不对
2.下列各组整式中,不属于同类项的是( )
A.—1 和 2
B.x2y 和 4×105 x2y C. 4 a b 和 4 b2a
5
5
2
b xy
人教版七年级上册数学期末复习总结
综合复习(一)
一、选择题
1. 1 的绝对值为(
3 A. 1
B .1
3
3
) C.3
D.-3
2. 某天北京的温度是-2℃~6℃,这一天北京的温差是(
)
A.10℃
B.8℃ C.4℃
D.-4℃
3. 我国领土面积大约是 9600000 平方公里,用科学记数法应记为(
)
A. 0.96 107 平方公里
B. 由5y 0得y 1 5
C.由2x 3x 5得 5 3x 2x
D.由3x 2得x 3 2
8.某商店有两个进价不同的计算器都卖了 80 元,其中一个赢利 60%,另一个亏本 20%,
在这次买卖中,这家商店 ( )
A.不赔不赚 B.赚了 10 元 C.赔了 10 元 D.赚了 50 元
D.3x2y 和—3x2y
3. 在代数式 -2x 、3xy、 a 、- 3 、0、mx-ny 中,整式的个数是( )
A.2
B.3
C.4
D.5
4. 下列各组数中,互为相反数的是(
).
A.2 与 1 2
B.(- 1)2 与 1 C.- 1 与(- 1)2 D.2 与| -2|
5. 下列结论正确的是( )
(2) 3x2 7x (4x 3) 2x2 ;
(3)
24. 先化简,再求值: (1) (4a 2 2a 6) 2(2a 2 2a 5) , 其中 a 1.
(2) 1 x-2(x- 1 y2)+(- 3 x+ 1 y2),其中 x=-2,y=- 1
2
3
23
2
3/8
人教版七年级上册数学期末复习总结 25. 有 8 筐白菜,以每筐 25 千克为准,超过的千克数记为正数,不足的千克数记为负数, 称后的记录如下: 1.5, -3, 2, -0.5, 1, -2, -2, -2.5 ,这 8 筐白菜一共多少千克?
D.3x-6=0 )
A.4a+5b=9ab
B.6xy-xy=6xy C.6a3+4a3=10a6
D.8a2b-8ba2=0
7. 下列说法正确的是(
)
A.0.750有两个有效数字
B.3.6万精确到千位
C.800有一个有效数字
D.5.078精确到个位
8. 将如图 7 所示的正方体沿某些棱展开后,能得到的图形是(
(1)16 (2)3 ( 1 )(4) 8
( 2 ) 32 (2) 21 3
2/8
人教版七年级上册数学期末复习总结
22. 解方程 (1) 5x 2(3 2x) 3
(2) x 3 x 4 1 53
23.化简:(1) 1 mn 4mn ; 4
(2xy y) ( y yx) ;
B. 9.6 105 平方公里
C. 96 105 平方公里
D. 9.6 106 平方公里
4. x=2 是下列方程( )的解.
A.2x=6
B.(x-3)(x+2)=0
C.x2=3
5. 若代数式3x 7 和 6x 13 互为相反数,则 x 的值为(
A. 2
B. 3
3
2
C. 3 2
D. 2 3
6.下列运算正确的是( )
9.钟表在 8:25 时,时针与分针的夹角是( )度
A.101.5
B.102.5 10. C.120
如图的几何体,从左面看到的是(
)
D.125
A
B
C
D
11.方程2x 3 5 ,则 6x 10 等于(
).
A.15
B.16
C.17
D.34
12. 小王利用计算机设计了一个计算程序,输入和输出的数据如下表:
B2
C3
D4
1/8
人教版七年级上册数学期末复习总结
二、填空题
11.计算:-3-(-5)=
3xy 3
12. 单项式
的系数
, 次数是
.
5
13. 昆明市某天上午的温度是 5℃,中午又上升了 3℃,下午由于冷空气南下,到夜间又下
降了 9℃,则这天夜间的温度是
14. 比较大小: 1 7
1 ; -(-C.a2b3c 的次数为 5
B.3x2-x+1 中一次项系数为-1
D.a2-33
是 一 个 三 次 二 项式
6.现规定一种运算:a*b=ab+a-b ,其中 a、b 为有理数,则 3*5 的值为( )
A.11
B.12
7. 下列变形正确的是(
C.13 )
D.14
A. 由5 x 2得x 5 2
℃. -|-20|
15. 如果一个角的补角是150 ,那么这个角的余角是
.
16. 一架飞机在两个城市之间飞行, 顺风飞行需 2.5h, 逆风飞行需 3h, 若风速是 24km/h,
求两城市间的距离.若飞机在无风飞行时的速度为 x(km/h),根据题意,
所列正确方程是
. 1 7 . 若 5 x 2 y和 x m y n 是同类项,则 2m 5n = 18. 若│x-1│+(y+2)2=0,则 x-y=