初升高数学衔接教材(完整)(2020年8月整理).pdf
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲数与式
1、绝对值
(1)绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即
,0,||0,0,,0.a a a a a a >⎧⎪
==⎨⎪−<⎩
(2)绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. (3)两个数的差的绝对值的几何意义:b a −表示在数轴上,数a 和数b 之间的距离. 2、绝对值不等式的解法 (1)含有绝对值的不等式
①()(0)f x a a <>,去掉绝对值后,保留其等价性的不等式是()a f x a −<<。 ②()(0)f x a a >>,去掉绝对值后,保留其等价性的不等式是()()f x a f x a ><−或。 ③2
2
()()()()f x g x f x g x >⇔>。 (2)利用零点分段法解含多绝对值不等式:
①找到使多个绝对值等于零的点.
②分区间讨论,去掉绝对值而解不等式.一般地n 个零点把数轴分为n +1段进行讨论. ③将分段求得解集,再求它们的并集. 例1.求不等式354x −<的解集
例2.求不等式215x +>的解集
例3.求不等式32x x −>+的解集
例4.求不等式|x +2|+|x -1|>3的解集.
例5.解不等式|x -1|+|2-x |>3-x .
例6.已知关于x 的不等式|x -5|+|x -3|<a 有解,求a 的取值范围. 练习
解下列含有绝对值的不等式: (1)13x x −+−>4+x (2)|x +1|<|x -2| (3)|x -1|+|2x +1|<4 (4)327x −< (5)578x +>
3、因式分解 乘法公式
(1)平方差公式2
2
()()a b a b a b +−=− (2)完全平方公式2
2
2
()2a b a ab b ±=±+ (3)立方和公式2
2
3
3
()()a b a ab b a b +−+=+ (4)立方差公式2
2
3
3
()()a b a ab b a b −++=−
(5)三数和平方公式2
2
2
2
()2()a b c a b c ab bc ac ++=+++++ (6)两数和立方公式3
3
2
2
3
()33a b a a b ab b +=+++
(7)两数差立方公式33223
()33a b a a b ab b −=−+−
因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.
1.十字相乘法 例1分解因式:
(1)x 2
-3x +2;(2)2672x x ++
(3)22
()x a b xy aby −++;(4)1xy x y −+−.
2.提取公因式法
例2.分解因式: (1)()()b a b a −+−552
(2)32933x x x +++
3.公式法
例3.分解因式: (1)164+−a (2)()()2
2
23y x y x −−+
4.分组分解法
例4.(1)x y xy x 332−+−(2)22
2456x xy y x y +−−+− 5.关于x 的二次三项式ax 2
+bx +c (a ≠0)的因式分解.
若关于x 的方程2
0(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2
(0)ax bx c a ++≠就可分
解为12()()a x x x x −−.
例5.把下列关于x 的二次多项式分解因式: (1)221x x +−;(2)2
2
44x xy y +−.
练习
(1)256x x −−(2)()2
1x a x a −++(3)21118x x −+
(4)24129m m −+(5)2576x x +−(6)22
126x xy y +−
(7)()()3211262
+−−−p q q p (8)22365ab b a a +−(9)()
2
2244+−−x x (10)1224+−x x (11)
by ax b a y x 222222++−+−
(12)91264422++−+−b a b ab a (13)x 2
-2x -1
(14)31a +;(15)424139x x −+;
(16)22222b c ab ac bc ++++; (17)22
35294x xy y x y +−++−
第二讲一元二次方程与二次函数的关系
1、一元二次方程 (1)根的判别式
对于一元二次方程ax 2
+bx +c =0(a ≠0),有:
(1) 当Δ>0时,方程有两个不相等的实数根x 1,2
(2)当Δ=0时,方程有两个相等的实数根x 1=x 2=-2b a
; (3)当Δ<0时,方程没有实数根. (2)根与系数的关系(韦达定理)
如果ax 2
+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a −
,x 1·x 2=c
a
.这一关系也被称为韦达定理.
2、二次函数2y ax bx c =++的性质
1.当0a >时,抛物线开口向上,对称轴为2b
x a =−,顶点坐标为2424b ac b a a ⎛⎫−− ⎪⎝⎭
,。
当2b x a <−时,y 随x 的增大而减小;当2b x a >−时,y 随x 的增大而增大;当2b
x a
=−时,y 有最小值244ac b a −。