聚合物近代测试及表征DTA、DSC、TG、DTG..
高聚物的测试与表征
1.在涉及高聚物力学行为的场合下,必须同时考虑应变、应力、温度、时间四个参数。
2.测定链结构的方法:X射线衍射法(大角),电子衍射法,紫外吸收光谱,红外吸收光谱,拉曼光谱,核磁共振法,荧光光谱,旋光分光法,电子能谱。
3.测定聚集态结构的方法:X射线小角散射,电子衍射法,电子显微镜(TEM、SEM),原子力显微镜。
4.测定结晶度的方法:X射线衍射法,电子衍射法,核磁共振吸收(宽线),红外吸收光谱,密度法,热分析法。
5.高聚物本身从某种模式分子运动状态改变到另一种平衡模式分子运动的状态,这就是转变,或称松弛。
6.测定体积的变化:膨胀计法,折射系数测定法测定热学性质的方法:差热分析法(DTA),差示扫描量热法(DSC)测定力学性质的变化的方法:热机械法,应力松弛法测定电磁效应:介电松弛,核磁共振第一章波谱分析1.中红外区,波长:2um~25um;运动形式:分子基频振动;光谱法:红外光谱第二章红外光谱IR(分子振动-转动光谱)1.红外光区在电磁总谱中指波长在750nm~1000um的区域。
分成近红外区,中红外区,远红外区。
2.复杂分子的简正振动分为两类:伸缩振动和弯曲振动伸缩:指原子沿着键轴方向伸缩使键长发生变化的振动方式。
特点:键长变化,键角基本不变弯曲振动:变形振动。
特点:键长不变化,键角发生变化(周期性)3.红外光谱两种表示方法。
(横坐标相同,纵坐标不同)a.记录原始光强在通过样品后透过光的强度变化百分比(透过率T)b.记录样品吸收的红外光强度(吸光度A)T=I/I0³100% A=lg1/T=lgI0/I I0:入射光强度 I:透过光强度4.通常把能代表某种基团存在并有较高强度的吸收峰称为基团的特征吸收峰,此峰所在的频率称为基团的特征吸收频率。
P11表2-1!5.聚合物的红外光谱图能反应:①聚合物结构单元的化学组成,单体之间的连接方式;②特殊结构如支化,交联及序列分布6.制样方法:溶液流延薄膜法,热压薄膜法(用于聚烯烃),溴化钾压片法(粉末状),切片法,可拆卸液体池法(低聚物,有机物)7.影响吸收谱带位移的内部因素a.诱导效应(I效应)与电负性有关b.共轭效应(C效应)吸收频率低c.氢键效应伸缩振动:作用越强,吸收频率下降,谱带变宽;弯曲振动:氢键形成,吸收频率升高,谱带变窄d.偶合效应分子内两个基团位置很近,振动频率很近,发生振动偶合8.影响谱图质量因素:仪器参数的影响,环境因素。
聚合物的差热分析(DTA)和差动热分析(DSC)
实验 聚合物的差热分析(DTA )和差动热分析(DSC)一、实验目的1.了解聚合物差热分析(DTA)和差动热分析(DSC)的基本原理和应用,及相互间的差别。
2.初步掌握解释聚合物DTA 和DSC 热谱图的方法。
3.了解CDR-4P 差热分析仪的构造原理、基本操作。
4.熟练掌握使用CDR-4P 差热分析仪分别测量聚合物差热分析(DTA)和差动热分析(DSC)。
二、实验原理热分析是测量在受控程序温度条件下,物质的物理性能随温度变化的函数关系的一组技术。
目前热分析已经发展成为系统的分析方法,它对于材料的研究是一种极为有用的工具,特别是在高聚合物的分析测定方面应用更为广泛。
它不仅能获得结构方面的信息,而且还能测定性能,热分析仪已成为从事材料测试的实验室必备的仪器。
差热分析是测定试样在受热(或冷却)过程中,由于物理变化或化学变化所产生的热效应来研究物质转化及化学反应的一种分析方法,(即在程序温度下,测量物质与参比物的温度差值△T 与温度的函数关系。
△T 向上为放热反应,向下为吸热反应)简称DTA (Differential Thermal Analysis )。
可用于测定物质在热反应时的特征温度及吸热或放出的热量,包括物质相变、分解、化合、凝固、脱水、蒸发等,尤其在聚合物(如聚烯烃、玻璃钢等)的热分析方面有重要意义。
差动热分析(DSC) 也叫做示差扫描热量法(Differential Scanning Calorimetry ),是在程序温度下,测量物质与参比物的功率差值△W 与温度的函数关系。
是和DTA 在应用上相近而在原理上稍有改进的一种热分析技术。
差动热分析仪CDR-4P 用于测定物质在热反应时的特征温度及吸热或放出的热量,包括物质相变、分解、化合、凝固、脱水、蒸发等物理或化学反应,广泛应用于无机、硅酸盐、陶瓷、矿物金属、航天耐温材料等领域。
是无机、有机、特别是高分子聚合物、玻璃钢等方面热分析的重要仪器。
聚合物三种Tg测试方法(DSC,DMA,TMA)
聚合物三种Tg测试⽅法(DSC,DMA,TMA)The thermal properties of polymeric materials are important to the function of components and assemblies that will operate in warm environments. Glass Transition Temperature (referred herein as Tg) is the point at which a material goes from a hard brittle state to a soft rubbery state. Amorphous polymers only have a Tg. Crystalline polymers exhibit a Tm (melt temperature) and typically a Tg since there is usually an amorphous portion as well ("semi"-crystalline). Identifying the Tg of polymers is of interest for various reasons, but is most often used for quality control and research and development.There are three general techniques for measuring Tg:Differential Scanning Calorimetry (DSC) – This is probably the most traditional and common technique for most polymeric materials. Simply stated, DSC utilizes a heat flow technique and compares the amount of heat supplied to the test sample and a similarly heated "reference" to determine transition points. Tg is typically calculated by using a half-height technique in the transition region. The heating rate and sample heat history are a couple of factors that may affect the test result. Depending on the equipment capability, DSC can be used for a wide range of thermoplastic and thermoset polymers. For materials that have broad Tg's, DSC may not be sensitive enough to show a large enough transition for calculation purposes.Thermal Mechanical Analysis (TMA) – TMA is used to measure Coefficient of Thermal Expansion (CTE) of polymers. TMA uses a mechanical approach for measuring Tg. A sensitive probe measures the expansion of the test specimen when heated. Polymers typically expand as temperature is increased. From the expansion curve, a CTE canbe calculated over a temperature range. If a material goes through a Tg during a TMA test, the curve shape changes significantly and Tg can be calculated by using an onset technique. Amorphous polymers would typically not utilize the TMA approach because the material would soften to the point where the probe penetrates into the sample. Samples that remain somewhat rigid through Tg would be good candidates for Tg by TMA. The heating rate chosen can affect the Tg. Dynamic Mechanical Analysis (DMA) – DMA is probably the most sensitive technique (of the discussed methods)for Tg analysis. DMA measures the response of a material to an applied oscillatory strain (or stress), and how that response varies with temperature, frequency, or both. DMA is able to separate and measure the elastic and viscous components of polymers. How the material responds to the temperature increase can be illustrated by various means on the DMA graph. There are three typical approaches for reporting Tg by DMA. All techniques are viable but may yield different results. Several results may include: 1) Onset of the storage modulus curve; 2) Peak of the loss modulus curve; and/or 3) Peak of the Tan Delta curve.There also are different modes of oscillation used for DMA such as torsional, single and dual cantilever, tension, compression, three-point bend and compression. Various heating rates, frequencies and strains can be utilized as well. All of these variables can affect the Tg. Compared to DSC, DMA can be 10 to 100 times more sensitive to the changes occurring at the Tg. DMA is useful for polymers with difficult to find Tg's such as epoxies, polymers with Tg's well below ambient temperature and highly crosslinked polymers. It is important to note Tg by DMA can vary significantly from one reporting technique to the next.As you can see there are various approaches to obtain Tg of polymeric materials. Sometimes trial and error has to be used to see what technique is best. It is extremely important to know which technique and test parameters were used to determine Tg if comparing back to historical data. Similarly, if testing to a specification or industry standard, the technique and test parameters must be well defined. Even within a test technique, the means of obtaining the Tg can be performed various ways and the result can vary significantly. The Tg by DSC, TMA or DMA rarely will be the same and can vary by as much as 20°C or more.转⾃:Techniques for Obtaining Glass Transition Temperature of Polymeric Materials原⽂后⾯有条评论可以看看:DMA is probably the best equipment for this. It is typically preferable to have homogenous specimens for DMA testing, but it is unlikely DSC or TMA is going to be able to detect the Tg of the FRP or the Silicone. Since you have a multi-layer specimen, there may be some challenges in obtaining the Tg of both components. Depending on your objective, you may need to isolate the silicone layer from the FRP and test them separately.另外,我看了⼀家⽇本卖测试仪器的,对这些指标也做了些介绍,有兴趣可以看看。
聚合物的热谱分析——差示扫描量热法(DSC)-化学实验中心
聚合物的热谱分析——差示扫描量热法(DSC)一、实验目的1.了解DTA、DSC的原理。
2.掌握用DTA、DSC测定聚合物的T g、T c、T m、X D。
二、实验原理1.DTA图(11-1)是DTA的示意图。
通常由温度程序控制、气氛控制、变换放大、显示记录等部分所组成。
比较先进的仪器还有数据处理部分。
温度程序控制是使试样在要求的温度范围内进行温度控制,如升温、降温、恒温等,它包括炉子(加热器、制冷器等)、控温热电偶和程序温度控制器。
气氛控制是为试样提供真空、保护气氛和反应气氛,它包括真空泵、充气钢瓶、稳压阀、稳流阀、流量计等。
交换器是由同种材料做成的一对热电偶,将它们反向串接,组成差示热电偶,并分别置于试样和参比物盛器的底部下面,示差热电偶的电压信号,加以放大后送到显示记录。
参比物应选择那些在实验温度范围内不发生热效应的物质,如α-Al2O3、石英粉、MgO粉等,它的热容和热导率与样品应尽可能相近,当把参比物和试样同置于加热炉中的托架上等速升温时,若试样不发生热效应,在理想情况下,试样温度和参比物温度相等,ΔT=0,差示热电偶无信号输出,记录仪上记录温差的笔仅划一条直线,称为基线。
另一支笔记参比物温度变化。
而当试样温度上升到某一温度发生热效应时,试样温度与参比物温度不再相等,ΔT≠0,差示热电偶有信号输出,这时就偏离基线而划出曲线。
ΔT随温度变化的曲线即DTA曲线。
温差ΔT作纵坐标,吸热峰向下,放热峰向上。
炉子的温度T w以一定的速度变化,基准物的温度T r在t=0时与T w相等。
但当T w开始随时间增加时,由于基准物与容器有热容C r,发生一定的滞后;试样温度T s也相同,不同的热容,滞后的时间也不同,T w、T r、T s之间出现差距,在试样不发生任何热变化时ΔT呈定值,如图12-2所示。
其值与热容、热导和升温速度有关。
而热容、热导又随温度变化,这样,在整个升温过程中基线会发生不同程度的漂移。
DTA、DSC、TG、DTG测试方法和表征专题培训课件
(3)研究高聚物中单体含量对Tg的影响
聚甲基丙烯酸甲酯的差 热曲线,可以明显看 出,PMMA的MMA 含量不同则曲线形状 不同,玻璃化温度随 MMA含量的增加而 降低
(4)共聚物结构的研究
用分析手段测定共聚物的热转变,可借以阐明 无规,嵌段共聚物的形态结构。
在差热曲线出现两个峰,表明是嵌段乙丙共聚物,一个峰
试样较好。例如a.空的
坩埚b.0.2克c.0.6克
(2)样品粒度、形状和装填的影响
颗粒过大的试样会爆裂而造成TG曲线 形状异常。 样品的装填方式对TG有影响,主要是 改变了热传导及质量传递性能。样品 装填越紧密,接触越好,有利于热传 导。
(3)试样性质的影响
试样的比热、导热性和反应热对热重 曲线都有影响
3.4TG, DTG在高分子科学与工程中应用
TG, DTG 的定量性强,能准确测定物质的变 化速率
近年来在冶金学、漆料及油墨科学、制陶学、 食品工艺学、无机化学、有机化学、生物 化学及地球化学等学科中,热重法都有广 泛的应用。
热重法在高分子行业主要用来评估: 高分子材料的热稳定性 添加剂对热稳定的影响 氧化稳定性的测定 含湿量和添加剂含量的测定 反应动力学的研究和共聚物 共混物体系的定量分析 聚合物和共聚物的热裂解 热老化的研究等等
(6)用DSC直接计算热量和测定结晶度
DSC谱图具有热力学函数意义,因为 (dH/dt)/(dT/dt)=dH/dT=Cp(比热容)
dH/dt为DSC谱的纵坐标, dT/dt为升、降温 速率(在DSC实验中一般为定值),故纵 坐标的高低表明了此时样品比热的相对大 小。
用DSC法求得的熔融热可计算结晶性高聚物 的结晶度。
2.3.2操作条件方面的影响
聚合物近代测试及表征DTA、DSC、TG、DTG
2.2.3失重率的计算
根据原始试样用量及各温度区间的失重量, 可以分别计算各温度区间的失重百分率。 失重率计算式如下:失重前的重量与失重后的 重量之差(W0-W1)除以样品重量W0 失重率=(W0-W1)/W0×100%
2.3影响热重曲线的因素 温度的动态特性和天平的平衡特性,使 影响热重曲线(TG曲线)的因素更加 复杂 影响因素可分为三个方面: 仪器方面的影响 操作条件方面的影响 样品方面的影响
DTA和DSC的主要区别:
针对聚合物: DTA:定性测定Tg,Tm等,测定热稳定性, 耐热性,检测氧化反应,聚合反应等其它。 DSC:定量测定:热化学测量△Hm,△He, 比热,动力学,分解,结晶△H聚合反应,
DTA DSC 一般高温炉可达到1500℃以上, 主要优点:热量定量方 对超高温 DTA ,最高 T 可达到 便、分辨率高,灵敏度 2400℃,因此对高温矿物,冶 好。 金等领域应用可采用 DTA 。 缺点:使用温度低(以 而对温度要求不高,而灵敏度 温度补偿型 DSC为例) 要求较高的有机物,高分子及 最高温度只能达725℃ 生物化学领域,DSC则是一种 很有用的技术,正因为如此, DSC发展非常迅速。
试样较好。例如a.空的
(2)样品粒度、形状和装填的影响 颗粒过大的试样会爆裂而造成TG曲线 形状异常。 样品的装填方式对TG有影响,主要是 改变了热传导及质量传递性能。样品 装填越紧密,接触越好,有利于热传 导。
(3)试样性质的影响
试样的比热、导热性和反应热对热重 曲线都有影响
3.4 TG, DTG在高分子科学与工程中应用
TG, DTG 的定量性强,能准确测定物质的变 化速率 近年来在冶金学、漆料及油墨科学、制陶学、 食品工艺学、无机化学、有机化学、生物 化学及地球化学等学科中,热重法都有广 泛的应用。
聚合物材料测试方法
I
W bd
(J / m2)
18
4、硬度——表征材料表面抵抗外力变形的能力 由一种较硬的材料做为压头,在一定的试验条
件下将压头压入试样中,以压痕的深度计算材料 的硬度。
塑料球压痕硬度 布氏硬度 洛氏硬度
19
四、应力—应变曲线
对聚合物进行拉伸试验,以试样的应力值对试样 的形变值作图所得到的曲线。通常以应力为纵坐标、 应变为横坐标。
43
§2-1 数均分子量的测定
一、端基分析法
使用端基分析法测定聚合物分子量的条件: 1)聚合物必须是已知化学结构的线型或支链型
大分子; 2)大分子链端带有可供定量分析的基团; 3)每个分子链上所含的基团数量是一定的;
44
端基分析法测定聚合物分子量的程序:
1) 精确称量出试样重量W;
2) 测出重量为W的试样中端基的摩尔数nt;
聚合物材料测试方法
1
聚合物材料的合成、加工与应用——
聚合物结构的表征——了解聚合物的微观结构、 亚微观结构和宏观结构。
聚合物性能的测定——评价和应用新材料、控制 产品的质量、研究聚合物结构与性能的关系。
聚合物分子运动的测定——分子运动方式不同会 导致聚合物所处的力学状态发生改变——转变。 每种聚合物都有其特定的转变。研究聚合物的松 弛与转变可以帮助人们了解聚合物的结构,建立 结构与性能之间的关系
机械式拉伸试验机——历史悠久,使用简单,价 格低廉。但加载速度不稳,测量精度较差,不具 有数据记录和处理功能。
电子式拉伸试验机——结构简单,用途单一,数 据处理能力有限,控制测量精度也相对较低,但 价格很低廉。
电子万能材料试验机——试验量程和拉伸速度可
调,控制精度和控制范围很高很宽。可按需要增
热分析技术简介大全TG-DTA-DSC
热重仪器结构示意图
3、影响热重法测定结果的因素
➢仪器因素
• 升温速率 • 炉内气氛 • 支持器及坩埚材料 • 炉子的几何形状 • 热天平灵敏度
➢试样因素
• 试样用量 • 试样粒度
升温速率
➢ 对热重法影响比较大。
➢ 升温速率越大,所产生的热滞后现象越严重, 往往导致热重曲线上的起始温度Ti和终止温度Tf 偏高。虽然分解温度随升温速率变化而变化, 但失重量保持恒定。
差热曲线或DTA曲线:描述这种变化的曲线。
参比物:在测定条件下不产生任何热效应的惰性物质。 常见的α-Al2O3、MgO等
热分析依据:
物质在受热或冷却过程中发生的物理变化和化学变化伴随着 吸热和放热现象。如晶型转变、升华、蒸发、熔融等物理变 化,以及氧化还原、分解、脱水和离解等等化学变化均伴随 一定的热效应变化。差热分析正是建立在物质的这类性质基 础之上的一种方法。
寿命的研究; ➢ 石油、煤炭和木材的热裂解 ➢ 反应动力学研究。
应用举例
Weight loss(wt%, daf) Rate of weight loss (%/s)
• 大同煤的TG-DTG分析
0.00
100
-0.02
90
10K/min
N 25ml/min
80
2
25mg
70
-0.04 -0.06 -0.08 -0.10 -0.12
1953年 W.L.De Keyser在热重分析仪器基础上发明了微熵热 重仪,得到了热重—微熵热重曲线图。
1964年美国的瓦特逊(Watson)和奥尼尔(O‘Neill)在DTA 技术的基础上发明了差示扫描量热法(DSC),美国PE公 司最先生产了差示扫描量热仪,为热分析热量的定量作出 了贡献。
实验1.聚合物的热分析 实验报告
实验五 聚合物差热热重同时热分析法差热分析是在温度程序控制下测量试样与参比物之间的温度差随温度变化的一种技术。
简称DTA(Differential Thermal Analysis)。
在DTA 基础上发展起来的另一种技术是差示扫描量热法。
差示扫描量热法是在温度程序控制下测量试样相对于参比物的热流速度随温度变化的一种技术。
简称DSC (Differential Scanning Calorimetry )。
试样在受热或冷却过程中,由于发生物理变化或化学变化而产生热效应,这些热效应均可用DTA 、DSC 进行检测。
DTA 、DSC 在高分子方面的应用特别广泛。
它们的主要用途是:①研究聚合物的相转变,测定结晶温度T c 、熔点T m 、结晶度X D 、等温结晶动力学参数。
②测定玻璃化转变温度T g 。
③研究聚合、固化、交联、氧化、分解等反应,测定反应温度或反应温区、反应热、反应动力学参数。
图1 是聚合物DTA 曲线或DSC 曲线的模式图。
当温度达到玻璃化转变温度T g 时,试样的热容增大就需要吸收更多的热量,使基线发生位移。
假如试样是能结晶的,并且处于过冷的非晶状态,那么在T g 以上可以进行结晶,同时放出大量的结晶热而产生一个放热峰。
进一步升温,结晶熔融吸热,出现吸热峰。
再进一步升温,试样可能发生氧化、交联反应而放热,出现放热峰,最后试样则发生分解,吸热,出现吸热峰。
当然并不是所有的聚合物试样都存在上述全部物理变化和化学变化。
通常按图2 a 的方法确定T g :由玻璃化转变前后的直线部分取切线,再在实验曲线上取一点,使其平分两切线间的距离∆,这一点所对应温度即为T g 。
T m 的确定对低分子纯物质来说,象苯甲酸,如图2 b 所示,由峰的前部斜率最大处作切线与基线延长线相交,此点所对应的温度取作为T m 。
对聚合物来说,如图2 c 所示,由峰的两边斜率最大处引切线,相交点所对应的温度取作为T m 。
聚合物近代仪器分析
此方法也不需求校正因子,但要求有纯的待测组分,且 加入量一定要准确。
裂解气相色谱法(PGC)
➢ 根据谱图的指纹性或特征碎片峰,表征聚合 物的化学结构和几何构型。
重原子降低荧光但增强磷光,如苯环被卤素取代, 从氟苯到碘苯,荧光逐渐减弱到消失,该现象也称 重原子效应。
影响基团红外特征频率的因素
诱导效应 共轭效应 环张力效应 氢键效应 耦合效应 物质状态及溶剂效应
核磁共振波谱法(NMR)
➢ 根据峰的化学位移、 强度、裂分数和耦 合常数,提供分子 中原子核的数目、 所处化学环境和几 何构型的信息。
内标法
此方法是通过测量内标物及欲测组份的峰面积的相对值 来进行计算的,因而受色谱操作条件变化的影响较小,但 内标物加入量一定要准确。
在试样中增加了一个内标物,这常常给分离造成一定的 困难。
内标物必须是待测试样中不存在的; 内标峰应与试样中各组份的峰分开,并尽量接近欲分析 的组份。
外标法
在相同的操作条件下,分别将等量的试样和含待测组 分的标准试样进行色谱分析,再按下式计算组分的含量:
在已知量的试样中加入能与所有组分完全分离的已知量 的内标物质,用相应的校正因子校准待测组分的峰值并与内 标物质的峰值进行比较,用下式求出待测组分的百分含量:
xi(%) mm sAiAsfs,i 100
式中,Ai,As分别代表组分i与内标物的峰面积;fs,i 为组分 i与内标物质相比的校正因子;m和ms分别为试样和内标物的 质量。
化学位移
即使使用不同的仪器或在不同的场强下,相同的官能团具有相同的ppm值.不同 的官能团由于存在于不同的电子环境因而具有不同的化学位移,从而使结构鉴 定成为可能.
DTA、DSC、TG、DTG测试方法及表征知识交流
失重率计算式如下:失重前的重量与失重后的 重量之差除以样品重量
失重率=(W0-W1)/W0×100%
2.3影响热重曲线的因素
温度的动态特性和天平的平衡特性,使影响热 重曲线(TG曲线)的因素更加复杂
影响因素可分为三个方面: 仪器方面的影响 操作条件方面的影响 样品方面的影响
例2,低压聚乙烯的DTA 曲线,在空气中的差热 曲线上于熔融和分解两 吸收峰之间出现两个小 氧化峰(见图)。可见 在较高温度下氧化作用 是显著的。对于高聚物 氧化类化学反应,由于 反应热比熔融热大,故 须在惰性气体中实验。
1为在空气中,2为在氦气 中
(3)研究高聚物中单体含量对Tg的影响
聚甲基丙烯酸甲酯的差 热曲线,可以明显看 出,PMMA的MMA 含量不同则曲线形状 不同,玻璃化温度随 MMA含量的增加而 降低
DTA和DSC的主要区别:
针对聚合物: DTA:定性测定Tg,Tm等,测定热稳定性,
耐热性,检测氧化反应,聚合反应等其它。 DSC:定量测定:热化学测量△Hm,△He,
比热,动力学,分解,结晶△H聚合反应,
DTA
DSC
一般高温炉可达到1500℃以上,主要优点:热量定量方 对超高温DTA,最高T可达到 便、分辨率高,灵敏度 2400℃,因此对高温矿物,冶 好。 金等领域应用可采用DTA。 缺点:使用温度低(以 而对温度要求不高,而灵敏度 温度补偿型DSC为例) 要求较高的有机物,高分子及 最高温度只能达725℃ 生物化学领域,DSC则是一种
用DTA研究未拉伸的和 经过拉伸的尼龙6、尼 龙66、尼龙610和涤纶 等纤维时发现未拉伸 的纤维只有一个熔融 吸热峰,而经过拉伸 的纤维有两个吸热峰, 其中第一个峰是拉伸 过的纤维取向吸热峰。
聚合物检测方法
聚合物检测方法聚合物是由重复单元组成的高分子化合物,应用广泛于塑料制品、橡胶制品、纺织品、化妆品等领域。
随着聚合物制品的不断增多和应用领域的不断拓展,对聚合物的检测方法也提出了更高的要求。
本文将从传统的物理检测方法到现代的化学和生物技术检测方法进行综合介绍,以期为聚合物检测领域的科研和实践工作者提供一些参考和借鉴。
一、传统的物理检测方法1. 热分析法热分析法是通过测量聚合物在一定温度范围内的热学性质来判断其性能的一种方法。
其中包括差热分析法(DSC)、热重分析法(TGA)等。
通过观察聚合物在升温或降温过程中的吸热、放热,以及失重情况,可以初步判断其组成和性质。
2. 拉伸实验拉伸实验是一种简单直观的物理检测方法,通过对聚合物样品在一定温度下的拉伸过程进行观察,获得相关的拉伸特性参数。
这种方法适用于常见的塑料和橡胶制品,可以直接反映材料的物理性能。
二、化学分析方法1. 光谱分析紫外-可见光谱(UV-Vis)、红外光谱(FTIR)、核磁共振氢谱(HNMR)等光谱分析方法可用于聚合物材料的结构表征和成分分析。
通过检测聚合物在特定波长下的吸收、发射或散射情况,可以分析其分子链结构和可能的功能团。
2. 质谱分析质谱分析是一种高灵敏度的化学分析方法,适用于聚合物样品中微量成分的检测。
通过检测聚合物样品中分子离子的质荷比,可以确定其相对分子质量、分子结构和可能的附加元素。
三、生物技术检测方法1. 核酸检测法聚合物中常常携带有一定的核酸成分,利用聚合酶链式反应(PCR)等核酸检测技术可以对聚合物样品中的核酸成分进行扩增和鉴定。
这种方法对于化妆品等含有生物成分的聚合物制品有着重要的应用价值。
2. 生物传感器检测法生物传感器是一种利用生物材料(如酶、抗体)和传感器结合的检测技术。
通过将特定的生物材料与聚合物样品接触,观察其生物传感反应产生的信号变化,可以实现对聚合物样品中特定成分的快速检测和定量分析。
随着科学技术的发展,聚合物检测方法也在不断创新和完善。
高聚物结构分析与表征-第四章-DSC和DTA
(2)应力历史
储存在样品中的应力历史,在玻璃化转变区会以放热式膨 胀的形式释放。
在加压冷却情况下,分子链 中的不稳定构象被冻结。随 温度升高,在低于Tg时,由 于局部的不稳定构象向稳定 构象转变,故出现放热峰。
不同制样压力下 PS的DTA曲线
4.1 DTA和DSC的基本原理 4.1.1 差热分析仪(DTA)的基本原理
DTA主要部分示意图
同时升温,当加热到某一温度,试样发生放热或吸热时, 试样与参比物间产生温差△T,该温差经差热放大器放大后 输入记录仪,得到差热曲线,即DTA曲线。
4.1.2 差式扫描量热仪(DSC)的基本原理
差示扫描量热法(DSC)是六十年代以后研制出的一种热分 析方法,它是在程序控制温度下, 测量输入到物质和参比物 的热量差和温度的关系的一种技术。
Tg/ oC
3. 结晶度对Tg的影响
➢ 聚合物不同,结晶度对Tg的影响有所不同。
聚合物
结晶度增 加,Tg的 变化趋势
原因
PET IPS IPMMA
增加
结晶度增加,增加了无定形分子链运动 的阻力。
聚4-甲基 戊烯-1
IPP
PCTFE
降低 不变
提高结晶度使“低Tg”的等规部分增加, “高Tg”的间规部分减少。
结晶度的提高并不影响该聚合物无定形 部分软硬程度。
➢ 样品的结晶度越低,玻璃化转变台阶越明显。
固化温度
4. 交联固化对Tg的影响
聚合物交联一般引起Tg的升高。
• 410℃以下,固化温度升高, 交联度增加,使Tg升高; • 410℃以上,Tg下降,可能由 于高温裂解,使交联密度降低, 致使 Tg降低。
聚合物材料表征与测试课程教学浅析_王倡春
334现代企业教育MODERN ENTERPRISE EDUCATION在历次教学过程中,教员都会强调学习讨论和研究的重要性,尤其是对我校集体生活的学员来说,互助学习的重要作用更为凸显。
学习互助的方式很多,例如,学员队可根据学员的实际情况,指定学习优秀的学员充当“小教员”,以辅导的形式组成学习帮扶小组。
或者是,由教员制定讨论话题,在教员的指导下,由学员队定期组织学习研讨活动,帮助所有学员巩固和强化所学内容,达到教学相长的效果,促进共同进步。
四、结束语函数连续性教学中透露出的问题在学员学习本课程的过程具有一定的普遍性,教员在分析原因和制定措施时都要从学员的现实情况考虑,充分结合自身的教学实际,多思考多总结,突出针对性和实用性。
只有这样,教员在教学中才能不断提高教学水平,促进教学质量和教学层次的不断提升。
参考文献:[1]吴振英.论极限的思想方法[J ].广州大学学报(自然科学版),2003,10.[2]张奠宙.教育数学是具有教育形态的数学[J ].数学教育学报,2005.8.[3]辛志英,王升.保证主体教学有效性的策略[J ].课程·教材·教法,2009,(5):21.聚合物材料表征与测试课程教学浅析王倡春(南京工程学院211167)聚合物材料表征与测试是南京工程学院高分子材料与工程专业的一门专业必修课。
该课程安排在大学第七学期,是在学生学习了高分子物理,高分子化学等专业基础课后开设的一门课程。
该课程主要是利用近现代发展的仪器来研究聚合物分子链的结构、分子链聚集体的结构、链长的分布等内容,理论性较强。
课程中介绍的仪器众多,各种仪器的原理复杂,涉及物理理论、数学处理等内容,难度较大。
通过该课程的学习,能够让高分子材料与工程等相关专业的本科生掌握高分子材料性能的表征及结果分析的方法,了解现代测试技术在高分子领域中的应用,培养学生的动手能力。
该课程主要包括波谱分析、聚合物的相对分子质量及相对分子质量分布表征、热分析、高聚物流变性能以及显微分析技术等五个方面。
TG,TMA,DSC,DMA,DETA五大材料热性能分析,材料人必看!!!
TG,TMA,DSC,DMA,DETA五大材料热性能分析,材料人必看热分析简介热分析的本质是温度分析。
热分析技术是在程序温度(指等速升温、等速降温、恒温或步级升温等)控制下测量物质的物理性质随温度变化,用于研究物质在某一特定温度时所发生的热学、力学、声学、光学、电学、磁学等物理参数的变化,即P = f(T)。
按一定规律设计温度变化,即程序控制温度:T = (t),故其性质既是温度的函数也是时间的函数:P =f (T, t)。
材料热分析意义:在表征材料的热性能、物理性能、机械性能以及稳定性等方面有着广泛的应用,对于材料的研究开发和生产中的质量控制都具有很重要的实际意义。
热分析简史回顾常用热分析方法解读根据国际热分析协会(ICTA)的归纳和分类,目前的热分析方法共分为九类十七种,常用的热分析方法包括热重分析法(TG)、差示扫描量热法(DSC)、静态热机械分析法(TMA)、动态热机械分析(DMTA)、动态介电分析(DETA)等,它们分别是测量物质重量、热量、尺寸、模量和柔量、介电常数等参数对温度的函数。
(1) 热重分析(TG)热重法(TG)是在程序温度控制下测量试样的质量随温度或时间变化的一种技术。
应用范围:(1)主要研究材料在惰性气体中、空气中、氧气中的热稳定性、热分解作用和氧化降解等化学变化;(2)研究涉及质量变化的所有物理过程,如测定水分、挥发物和残渣、吸附、吸收和解吸、气化速度和气化热、升华速度和升华热、有填料的聚合物或共混物的组成等。
原理详解:样品重量分数w对温度T或时间t作图得热重曲线(TG 曲线):w = f (T or t),因多为线性升温,T与t只差一个常数。
TG曲线对温度或时间的一阶导数dw/dT 或 dw/dt 称微分热重曲线(DTG曲线)。
图1 热重曲线(TG曲线)图2中,B点Ti处的累积重量变化达到热天平检测下限,称为反应起始温度;C点Tf处已检测不出重量的变化,称为反应终了温度;Ti或Tf亦可用外推法确定,分为G点H点;亦可取失重达到某一预定值(5%、10%等)时的温度作为Ti。
《近代测试及表征技术》教材大纲
《近代测试及表征技术》教材大纲一、课程基本信息课程名称(中、英文):《近代测试及表征技术》(Modern Technology of Test and Characterization)课程号(代码):300027020课程类别:专业选修课学时: 32 学分:2二、教学目的及要求近代测试及表征技术是应用近代仪器分析的基本原理,研究聚合物链的结构、单体结构单元、谱图解析、分析试样及各种仪器在高聚物中应用的一门科学。
本课程为高分子化学、化工、材料等相关专业本科生今后毕业论文的材料结构表征、成分和表面分析打下良好的理论基础,培养实际解谱能力,学会怎样应用近代仪器分析手段进行高分子材料的研究。
本课程安排总学时32学时,共12周。
对毕业要求及其分指标点支撑情况:(1)毕业要求 1,分指标点1.4和1.5;(2)毕业要求2,分指标点2.4和2.5;(3)毕业要求3,分指标点3.4;(4)毕业要求6,分指标点6.2;三、教学内容(含各章节主要内容、学时分配,并用*号方式注明重点难点)第一章绪论(1学时)简要介绍高分子近代分析的研究对象,高分子近代仪器分析方法及仪器,高分子的研究和分析方法概述。
使学生对本课程的重要性及学习内容方法建立整体概念。
要点:高分子近代分析的研究对象、定义和重要性(举例)高分子近代仪器分析方法分类及仪器高分子的研究和分析方法概述。
课程学习的目的、方法和要求第二章光谱分析(3~9学时)介绍紫外光谱基本原理及分子结构,紫外光谱技术在高分子中的应用。
红外光谱基本原理及分子结构,红外光谱图谱解析方法,红外光谱技术在高分子分析鉴定中的应用。
激光拉曼光谱,激光拉曼光谱高分子中的应用。
要点:紫外光谱基本原理及分子结构*紫外光谱技术在高分子中的应用红外光谱基本原理及分子结构*红外光谱图谱解析方法*红外光谱技术在高分子分析鉴定中的应用*激光拉曼光谱理论*激光拉曼光谱高分子中的应用。
布置作业及思考题第三章核磁共振波谱 (6学时)介绍1H-核磁共振波谱,13C-核磁共振波谱的基本原理、产生条件和影响化学位移因素,核磁共振波谱在高聚物研究中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
熔融
例2,低压聚乙烯的DTA 曲线,在空气中的差热 曲线上于熔融和分解两 吸收峰之间出现两个小 氧化峰(见图)。可见 在较高温度下氧化作用 是显著的。对于高聚物 氧化类化学反应,由于 反应热比熔融热大,故 须在惰性气体中实验。 1为在空气中,2为在氦气 中
氧化峰
(3)研究高聚物中单体含量对Tg的影响 聚甲基丙烯酸甲酯的差 热曲线,可以明显看 出,PMMA的MMA 含量不同则曲线形状 不同,玻璃化温度随 MMA含量的增加而 降低
(1)测定聚合物的玻璃化转变
例1.用DTA测定 聚 苯 乙 烯的 玻 璃化转变。由 于 聚 苯 乙烯 的 玻 璃 态 和高 弹 态的比热不同, 所 以 在 差热 曲 线 上 有 一个 转 折,Tg=82℃
(2)高聚物在空气和惰性气体中的受热情况
放热
熔融吸热峰
例1,商品尼龙-6在氦气 和空气中的DTA曲线。 由于在空气中氧化约 在180℃基线急剧偏 向放热方面,并与熔 融吸热峰相重合,而 在氦气中因有惰性气 体的保护,只呈熔融 吸热峰。其它聚合物 也有其它的现象。1为 在氦气中,2为在空气 中
2.3.2操作条件方面的影响
2.记录(走纸)速率的影响 3.气氛的影响
4.灵敏度的影响
2.3.3样品方面的影响因素
(1)样品用量的影响
样品用量主要影响 热传导(温度梯度) 挥发性产物的扩散(逸 出气体) 影响TG曲线的形状 样品用量在仪器灵敏度 允许范围内,用小量的 坩埚b.0.2克c.0.6克
2.1.2微商热重法DTG的定义
微商热重法DTG是将热重法得到的热重 曲线对时间或温度一阶微商的方法 记录的曲线为微商热重曲线简称DTG曲 线,纵坐标为质量变化速率,dm/dt或 dm/dT;横坐标为时间或温度
纵坐标也可是失重百分刻度,把失重 百分率直接表示为温度或时间的函数。
2.2测试原理和仪器结构组成
2.1.1热重法TG的定义
热重法TG是在程序控制温度下,测量物质的 质量与温度或时间的函数关系的一种技术 W=f(T或t) 式中:W为物质质量,T为温度,t为时间
热重曲线或TG曲线
TG曲线纵坐标表示重量(mg),向下表示重 量减少,向上表示重量增加;横坐标表示温度 T(℃或K)或时间t,从左往右表示T或t增加
2.3.1仪器方面的影响因素
包括炉子形状 试样支持器形状 天平和记录机构的灵敏度 试样容器(坩埚)材料等
浮力和对流两种因素,因随机性较大,也是
热重法误差来源,必须予以注意。
2.3.2操作条件方面的影响
1.升温速率是对 TG曲线测定影 响最大的因素。 升温速率不同, 造成炉壁与坩埚 间温度差也不Байду номын сангаас, 可以产生3~14 ℃的温差。
A
(5)研究纤维的拉伸取向
用DTA研究未拉伸的和 经过拉伸的尼龙6、尼 龙66、尼龙610和涤纶 等纤维时发现未拉伸 的纤维只有一个熔融 吸热峰,而经过拉伸 的纤维有两个吸热峰, 其中第一个峰是拉伸 过的纤维取向吸热峰。
(6)用DSC直接计算热量和测定结晶度 DSC谱图具有热力学函数意义,因为 (dH/dt)/(dT/dt)=dH/dT=Cp(比热容) dH/dt为DSC谱的纵坐标, dT/dt为升、降温速率 (在DSC实验中一般为定值),故纵坐标的高 低表明了此时样品比热的相对大小。 用DSC法求得的熔融热可计算结晶性高聚物的结 晶度。 X= ΔHf/ ΔH∞ 熔融热ΔHf,与完全结晶熔融热ΔH∞
2.2.3失重率的计算
根据原始试样用量及各温度区间的失重量, 可以分别计算各温度区间的失重百分率。 失重率计算式如下:失重前的重量与失重后的 重量之差(W0-W1)除以样品重量W0 失重率=(W0-W1)/W0×100%
2.3影响热重曲线的因素 温度的动态特性和天平的平衡特性,使 影响热重曲线(TG曲线)的因素更加 复杂 影响因素可分为三个方面: 仪器方面的影响 操作条件方面的影响 样品方面的影响
(4)共聚物结构的研究
用分析手段测定共聚物的热转变,可借以阐明 无规,嵌段共聚物的形态结构。
在差热曲线出现两个峰,表明是嵌段乙丙共聚物,一个峰 表示聚乙烯的熔点,另一个峰表示聚丙烯的熔点。只有 一个峰的是无规共聚物。 (a)嵌段共聚物(49%丙 烯);A乙烯B丙烯(b)无规共聚物 (15%丙烯)
第二章 热重法和微商热重法
2.1 2.2 2.3 2.4 TG, DTG的起源与发展 测试原理和仪器组成 影响热重曲线的因素 TG, DTG在高分子科学与工程中应用
2.1 TG, DTG的起源与发展
热重法,它的渊源比差热分析还要早。十八世 纪,1782年英国J Wedgood首次记录瓷土的热彭胀 曲线和瓷土的温度-重量变化曲线,开创了热重法。 “热天平”这个词是日本东北大学教授本多光太郎 (K Honda)于1915年首次提出来的。 1953年W L De Keyser发明了微商热重法 我国第一台商品热天平是在60年代初由北京光学仪 器厂研制生产的
1.4.DTA、DSC在研究高聚物中的应用
DTA,DSC在高聚物的研究中的应用十分广泛, 可以获得聚合物体系的各种转变温度。以及热 转变的各种参数,下面分成几个方面来介绍。 DSC和DTA在功能上基本相同,在研究聚合物 热,反应热及固化反应和高分子反应等方面这 两种方法是十分有效的。除此而外,以上的研 究中,DSC与DTA应用更占优势。
DTA和DSC的主要区别:
针对聚合物: DTA:定性测定Tg,Tm等,测定热稳定性, 耐热性,检测氧化反应,聚合反应等其它。 DSC:定量测定:热化学测量△Hm,△He, 比热,动力学,分解,结晶△H聚合反应,
DTA DSC 一般高温炉可达到1500℃以上, 主要优点:热量定量方 对超高温 DTA ,最高 T 可达到 便、分辨率高,灵敏度 2400℃,因此对高温矿物,冶 好。 金等领域应用可采用 DTA 。 缺点:使用温度低(以 而对温度要求不高,而灵敏度 温度补偿型 DSC为例) 要求较高的有机物,高分子及 最高温度只能达725℃ 生物化学领域,DSC则是一种 很有用的技术,正因为如此, DSC发展非常迅速。