微积分第4节幂级数
微积分之幂级数
注意:对于级数1nn u∞=∑,当1nn u∞=∑收敛时,1nn u∞=∑绝对收敛.例 证121(1)(21)n n n -∞=--∑绝对收敛:令12(1)(21)n n u n --=-,则 222211111,(21)[(1)]n n u n n n n n ∞===≤-+-∑收敛⇒1n n u ∞=∑收敛故 原级数绝对收敛.§7.5 幂级数教学目的:弄清幂级数的相关概念;掌握幂级数收敛半径、收敛区间、 收敛域定义与求法;掌握幂级数的性质,能灵活正确运用性质 求幂级数的和函数.重难点:掌握幂级数收敛半径、收敛区间、收敛域概念与求法;掌握幂 级数的性质,能灵活正确运用性质求幂级数的和函数,以及常 数项级数的和. 教学方法:启发式讲授 教学过程:一、函数项级数的概念1.【定义】设 ΛΛ),(,),(),(21x u x u x u n 是定义在区间I 上的函数,则ΛΛ++++=∑∞=)()()()(211x u x u x u x u nn n称为定义在区间I 上的(函数项)无穷级数. 2.收敛域(1) 收敛点I x ∈0—— 常数项级数 ∑∞=10)(n nx u 收敛;(2) 发散点I x ∈0——常数项级数∑∞=1)(n nx u 发散;(3) 收敛域D —— 函数项级数∑∞=1)(n nx u的所有收敛点形成的集合D ;(4) 发散域G ——∑∞=1)(n nx u的发散点的全体构成的集合G .3.和函数)(x S —— ∑∞==1)()(n n x u x S , D x ∈.若函数项级数∑∞=1)(n nx u在收敛域内每一点都对应于)(x S 的一个函数值,则称)(x S 为函数项级数∑∞=1)(n nx u的和函数.4.余项)(x r n —— )()()(x S x S x r n n -=, ∑==nk kn x ux S 1)()(, D x ∈.注: ①只有在收敛域D 上, )(x r n 才有意义; ② 0)(lim =∞→x r n n , D x ∈.二、幂级数及其收敛半径和收敛域 1.【定义】形如nn nx x a )(0∑∞=-的函数项级数称为0()x x -的幂级数.(也称为一般幂级数),其中 012,,,.,n a a a a L L 为常数,称为幂级数的系 数.当00=x 时,∑∞=0n nn xa 称为x 的幂级数(也称为标准幂级数), 其中常数n a (0,1,2,n =L )称为幂级数的系数. 结论:对于级数nn nx x a )(0∑∞=-,作代换0t x x =-可以将一般幂级数化为标准幂级数n nn a t∞=∑,所以我们只研究标准幂级数敛散性的判别方法.∑∞=0n nn xa 的收敛域:此级数的全体收敛点的集合.显然: D x ∈0(收敛域),即幂级数总在0x x =点处收敛.例如: ∑∞=0n nx , ∑∞=-0!)1(n nn x 均为幂级数.显然:∑∞=0n nx的收敛域)1,1(-=D ,其发散域),1[]1,(+∞--∞=Y G .且和函数,11)(0xx x S n n -==∑∞= 1||<x .此结论可当公式使用. 2.级数的收敛域 把级数∑∞=0n nn xa 的各项取绝对值得正项级数nnn a x∞=∑,记 1lim n n na l a +→∞=,则 11lim n n n n n a x l x a x ++→∞=;于是由比值判别法知 (1)若1,(0)l x l <≠,即1x R l <=,∑∞=0n nn x a 绝对收敛.(2) 若1l x >,即1x R l >=,∑∞=0n nn x a 发散.(3) 若1l x =,即1x R l ==,比值法失效,∑∞=0n nn x a 敛散另行判定.(4)若0l =,即01l x =<,此时对任意x ,∑∞=0n nn xa 收敛.上述分析显示级数∑∞=0n nn xa 在一个以原点为中心,从R -到R 的区间内绝对收敛,区间(,)R R -称为幂级数的收敛区间,1R l=为收敛半径. 若级数∑∞=0n nn xa 仅在点0x =收敛,则规定0R =,级数的收敛域为0x =例如 级数20!12!!nn n n xx x n x ∞==+++++∑L L由于 11lim lim lim 1(0)(1)!nn n n n n nx un x x u n x +-→∞→∞→∞==>≠-n !, ∴ 级数收敛域为 0x =或 {0};独点集.若∑∞=0n nn xa 对任意x 都收敛,则R =+∞,级数的收敛域为(,)-∞+∞.当0R <<+∞时,要讨论级数在x R =±处的敛散性才能确定收敛域.此时收敛域可能是下列区间之一:),,(R R -),,[R R -],,(R R -].,[R R - 3.【阿贝尔定理】(补充)设∑∞=0n n n x a 的收敛域为D ,则 (1)若D x ∈0且00x ≠, 则对||||0x x <∀,∑∞=0n nn xa 收敛且绝对收敛.(2) 若D x ∉0, 则 对||||0x x >∀,有D x ∉即级数∑∞=0n nn xa 发散.证明: (1) D x ∈0⇒∑∞=0n nn xa 收敛,由∑∞=00n n n xa 收⇒00()nn a x n →→∞0>∃===>M 0||(0nn a x M M ≤>的常数) ||||0x x <===>0000||||n nn nn n x x a x a x M x x ≤=⋅≤,因10<x x , 从而 00nn x M x ∞=∑收敛,⇒正项级数∑∞=0||n nn x a 收敛⇒∑∞=0n nn x a 收敛⇒D x ∈即对||||0x x <∀,∑∞=0n n n x a 收敛且绝对收敛.(2) D x ∉0,假若有D x ∈1满足||||01x x >)1(由==>∑∞=0n nn xa 收敛⇒D x ∈0矛盾. 所以||||0x x >∀,有∑∞=0n n n x a 发散,即D x ∉.注意:(1) 若D x ∈0, 则 00(||,||)x x D -⊂(收敛域), )0(0≠x ; (2) 若D x ∉0, 则 00(,||)(||,)x x G -∞-+∞⊂U (发散域).4.【定理7.13】若幂级数∑∞=0n n n x a 系数满足条件 1limn n na l a +→∞=或 lim ||n n n a l →∞=(l 为常数或∞),则(1) 当0l <<+∞时, 则1R l=; (2) 当0l =时, 则R =+∞. (3)当l =+∞时, 则0R =. 常用公式: 1lim+∞→=n n n a a R ,1lim n n n R a →∞=.例如: 幂级数∑∞=0n nx的收敛半径1=R ,1x =±时,级数发散,故其敛区与敛域均为(1,1)-.例1 求幂级数11(1)nn n x n ∞-=-∑的收敛半径与收敛域.解 (1) 级数的通项为 11(1)n n a n-=- 1lim +∞→=n n n a a R 11lim =+=∞→n n n .(2) 当1=x 时, 级数为∑∞=-1)1(n nn 收敛;当1-=x 时, 级数为∑∞=11n n发散.故收敛区间(敛区)是()1,1-,收敛域为]1,1(-(敛域).例2(1) 求幂级数∑∞=0!n nn x 的收敛半径与收敛域.解: 1!n a n =⇒1lim +∞→=n n n a a R +∞=+=+=∞→∞→)1(lim !)!1(limn n n n n ,故 收敛区间和收敛域均是 ),(+∞-∞. (2) 求幂级数∑∞=0!n nxn 的收敛半径.解: !na n =⇒1lim+∞→=n nn a a R 011lim )!1(!lim =+=+=∞→∞→n n n n n . 练习:求幂级数110(1)n n n x ∞--=-∑的收敛半径与收敛域.提示:1lim11nn n a R R a →∞+==⇒=,又1x =时级数发散.收敛域()1,1-.例3 (1)求幂级数213(1)n nn n x n∞-=⋅-∑的收敛半径与收敛域.(缺项级数) 提示:12(1)112(1)3lim lim 1(1)3n n n n n n n n n nu x nu n x +++-→∞→∞-=⋅+- 223lim 31n n x x n →∞==+ 当21313x x <⇒<时级数收敛;当21313x x >⇒>时级数发散.当 13x =±时,原级数是111(1)n n n ∞-=-∑,收敛的交错级数.所以 收敛半径13R =,收敛区间11(,)33-,收敛域11[,]33-. 注意:缺项级数可以直接用比值法求收敛半径.(2)求幂级数1211(1)21n n n x n --∞=--∑的收敛域.解:21221212121limlim lim 2121n n n n n n nu x n n x x u n x n ++-→∞→∞→∞--=⋅=⋅=++ 由211x x <<即时级数收敛,由由211x x >>即时级数发散.得 1R =当1x =时,1121n ∞∑n -n=1(-)-收敛,当1x =-时,121n ∞∑n n=1(-)-收敛,所以 收敛域为 [1,1]-.例4求幂级数1(21)nn x n ∞=+∑的收敛半径与收敛域.(中心不在原点的级数)解 令21t x =+,幂级数变形为1nn t n∞=∑,1111lim lim lim 11112n t t x n n n n a n n R R R a n n→∞→∞→∞++====⇒=⇒=+11122t x <⇒+<时级数绝对收敛,11122t x >⇒+>时级数发散,11,0t x x =⇒=-=,当1x =-时原级数为11(1)n n n ∞=-∑收敛,当0x =时,11n n∞=∑发散,故 原级数收敛半径12R =,收敛域为[1,0]-.注意:一般幂级数求收敛半径时作变量代换.提问:(1)(02.3) 设幂级数∑∞=1n nn x a 与∑∞=1n n n x b 的收敛半径分别为35与31,则幂级数∑∞=122n n nn x b a 的收敛半径为(A ) (A) 5 (B)35 (C) 31 (D) 51答案 53lim1=+→∞nn n a a ,3lim1=+→∞nn n b b 1R ⇒=519159lim 222121=⋅=⋅++→∞n nn n n a b b a(2) (90.5) 求级数∑∞=-12)3(n nn x 的收敛域. 解 令3t x =-,级数21n n t n∞=∑,由1)1(lim lim 221=+=→∞+→∞n n a a n n n n 知1t R =, 因此当131<-<-x 即42<<x 时级数收敛.当2=x 时,原级数为∑∞=-12)1(n nn 收敛,当4=x 时,原级数为∑∞=121n n 收敛. 所以收敛域为]4,2[.(3) (92.3) 级数21(2)4nnn x n ∞=-⋅∑的收敛域为)4,0(. 答 令(2)nt x =- 对于14n n n t n ∞=⋅∑,由1141lim lim (1)44n n n n n n a n a n ++→∞→∞⋅==+⋅, 于是收敛半径4t R =,则4)2(42<-<-x ,即40<<x 内收敛. 当0=x 和4=x 时,原级数都为∑∞=11n n 发散,所以收敛域为)4,0(. 三、幂级数以及和函数的运算性质 1.设nn n n n n a xb x ∞∞==∑∑和的收敛半径分别为a b R R 和1)加减法:∑∑∑∞=∞=∞=±=±0)(n n n nn nnn nnx b ax b x a ,()c c R R x ,-∈.其中: },min{b a c R R R =. 2)乘法:0()nnnnnnni jn n n n i j na xb xc x a b x∞∞∞∞====+=⋅==∑∑∑∑∑,()c c R R x ,-∈. 其中: },min{b a c R R R =, ∑=-=nk kn k n ba c 0,Λ,2,1=n .3)除法:∑∑∑∞=∞=∞==00n n n n nn n nnx c xb xa ,()c c R R x ,-∈.其中: c R 待定, 而n c 由系列表达式∑=-=nk kn k n cb a 0,Λ,2,1=n 确定.此处, +∞==b a R R , 但1=c R . 2.幂级数∑∞=0n nn xa 的和函数()S x 在其收敛区间(,)R R -内是连续. 3.幂级数∑∞=0n nn xa 的和函数()S x 在其收敛区间(,)R R -内可积,且有逐项积分公式10()1xx nn n n n n a S x dx a t dt x n ∞∞+====+∑∑⎰⎰,R R x ='<||.(积分前后的收敛半径不变). 例:ΛΛ+++++=-n x x x x2111, 1||<x .逐项积分时在1x =处无 意义. 4.幂级数∑∞=0n nn xa 的和函数()S x 在其收敛区间上可微,且在收敛区间上101()n n n n n n S x a x na x ∞∞-=='⎛⎫'== ⎪⎝⎭∑∑, R R x ='<||.说明:求导与积分前后两级数的收敛半径不变,但收敛域有可能改变. 公式11n n x x∞==-∑收敛域为1x < 例5 求幂级数∑∞=+01n n n x 的和函数)(x S ,并求0(1)1nn n ∞=-+∑.解:(1) 1lim +∞→=n n n a a R 112lim =++=∞→n n n .当1-=x 时,级数为∑∞=+-11)1(n n n 收 敛;当1=x 时, 级数为∑∞=+111n n 发散. 故原级数收敛域是)1,1[-.(2) 当1||0<<x 时, 有∑∑∞=∞=+-=='⎪⎪⎭⎫ ⎝⎛+='001111])([n nn n x x n x x xS . 于是 )1ln(11])([)(00x dt tdt t tS x xS x x --=-='=⎰⎰,由于(0)1S =且幂级数在其收敛域上连续,1ln(1), 10,01;()1, 0.x x x S x xx ⎧---≤<<<⎪=⎨⎪=⎩或 取 1x =-代入和函数可得 2ln )1(1)1(0=-=+-∑∞=S n n n. (2)求幂级数1211123n n n nxx x nx ∞--==+++++∑L L 的和函数)(x S ,并求级数12n n n ∞=∑及级数123n n n∞=∑的和.解 1)11limlim 1n n n n a n a nρ+→∞→∞+===,所以1R =. 当1x =时,1n n ∞=∑发散,当1x =-时,1(1)nn n ∞=-⋅∑发散.所以 级数敛域为(1,1)-. 2)设11(),(1,1)n n S x nxx ∞-==∈-∑,则1111()1,(1,1)11xx n n n n xS t dt ntdt x x x x∞∞-=====-=∈---∑∑⎰⎰201()()(),(1,1)1(1)x d x S x S t dt x dx x x '===∈---⎰为所求和函数.3)令12x =,则有 12111()12(1)2n n n ∞-==-∑,所以122n n n∞==∑.4)令13x =,则有 12111()13(1)3n n n ∞-==-∑,所以12332n n n ∞==∑.练习:(1)求幂级数1nn x n ∞=∑的和函数)(x S :[)敛域-1,1()S x =-ln(1-x)(2) (99.3)∑∞=-=11_______)21(n n n . 因为121111()()()(1)11(1)n nn n x S x nx x x x x ∞∞-=='''====-=---∑∑, 令12x =,则有∑∞=-==114)21()21(n n S n ,所以答案为4.例6 (00.6) 设,,2,1,0,d cos sin 40Λ==⎰n x x x I nn π求∑∞=0n n I 的和.解 由40140)(sin 11dsin sin ππ++==⎰n n n x n x x I 1)22(11++=n n ,得∑∑∞=+∞=+=010)22(11n n n n n I ,令∑∞=++=0111)(n n x n x S , 则其收敛半径1=R ,在)1,1(-内x x x S n n-=='∑∞=11)(0,于是 x t tx S x --=-=⎰1ln d 11)(0,令22=x ,则221ln )22(11)22(01--=+=∑∞=+n n n S , 从而∑⎰∑∞=∞=+=-==04)22ln(2211lnd cos sin n n n n x x x I π.例7 (03.9) 求幂级数∑∞=<-+12)1(2)1(1n nnx n x 的和函数)(x f 及其极值. 解 依题意)(x f 211(1)(1)2nnn x x n ∞==+-<∑ ,1)(1)1()(212112x x x x x x f n n n n n +-=-=-='∑∑∞=∞=- 上式两边从0到x 积分,得)1ln(21)d(11121d 1)0()(202202x t t t t t f x f x x +-=++-=+-=-⎰⎰, 由1)0(=f 得)1(),1ln(211)(2<+-=x x x f .令0)(='x f ,求得唯一驻点0=x ,由于,01)0(,)1(1)(222<-=''+--=''f x x x f 可见)(x f 在0=x 处取得极大值,且极大值为1)0(=f .例8(05.9) 求幂级数n n x n 21)1121(-+∑∞=在区间)1,1(-内的和函数)(x S . 解 设∑∑∞=∞==+=122121)(,12)(n n n nx x S n x x S , 则 )1,1(),()()(21-∈-=x x S x S x S , 由于∑∞=--=12222,1)(n nx x x x S ),1,1(,1))((12221-∈-=='∑∞=x xx xx xS n n因此 ,11ln 21d 1)(0221x x x t t t x xS x-++-=-=⎰ 又由于,0)0(1=S 所以 ⎪⎩⎪⎨⎧=<<-++-=.00,,10 ,11ln 211)(1x x xx x x S 故 ⎪⎩⎪⎨⎧=<<---+=-=.00, ,10 ,1111ln 21)()()(221x x x x xx x S x S x S练习:求下列级数的收敛区间,并求和函数:(1)Λ+-+-753753x x x x 解 该级数为∑∞=----112112)1(n n n x n ,由 22121211212lim 1212lim limx n n x n x n x u u n n n n nn n =+-=-+=→∞-+→∞+→∞,知当12<x 时幂级数绝对收敛. 当1-=x 时,幂级数∑∞=--112)1(n n n 收敛;当1=x 时,幂级数∑∞=---1112)1(n n n 收敛,所以原幂级数的收敛域为]1,1[-.设=)(x S ∑∞=----112112)1(n n n x n ,则当)1,1(-∈x 时有 =')(x S 21121221112111)()1()12)1((x x x x n n n n n n n n n +=-=-='--∑∑∑∞=-∞=--∞=--, 所以 =)(x S ⎰=+x x t t 02arctan d 11. (2)Λ++++7538642x x x x解 该幂级数为∑∞=-1122n n nx,由22121211lim 2)22(lim lim x n n x nx x n u u n n n n nn n =+=+=→∞-+→∞+→∞, 知当12<x 时幂级数绝对收敛. 当1-=x 时,幂级数∑∞=-1)2(n n 发散;当1=x 时,幂级数∑∞=12n n 发散,所以原幂级数的收敛区间为)1,1(-. 设=)(x S ∑∞=-1122n n nx,则当)1,1(-∈x 时,有22221212)1(2)1()()()(x xx x x x x S n nn n-='-='='=∑∑∞=∞=. 小结:1.注意收敛区间与收敛域的联系与区别.2.利用幂级数的性质求幂级数的和函数时,求导或求积分时前后的收敛区间不变.3.利用幂级数的和函数可以求常数项级数的和;求出和函数后, 取x 的特值代入和函数即得所求. 4.对缺项幂级数在求收敛半径时应设辅助变量转化为常规形幂级数或直接用正项级数的比值判别法求收敛区间.课后记:存在问题:1.对缺项幂级数以及通项为0()nn a x x -的幂级数求收敛半径以及收敛域 问题多.2.求幂级数的和函数,不知从何下手.不能灵活运用幂级数的性质以及四 个常用公式灵活变形找()S x 的表达式.3.不能灵活运用和函数求常数项级数的和.。
微积分中的幂级数展开
微积分中的幂级数展开幂级数展开是微积分中的重要概念之一,它是将一个函数表示成一系列幂函数的和的形式,是微积分中对函数进行近似和研究的基础。
本文将从幂级数的基本概念和定义开始,进一步探讨幂级数展开的应用和实际意义。
一、\hspace{0.5em}幂级数的基本概念和定义幂级数是指由函数$f(x)$的幂次组成的无穷级数:$$f(x)=\sum_{n=0}^{\infty}a_nx^n=a_0+a_1x+a_2x^2+...+a_nx^n +...$$其中$a_n$称为幂级数$f(x)$的系数,也就是说,幂级数展开的核心就在于求解幂级数的系数。
对于幂级数的收敛性,我们需要使用柯西收敛原理。
具体地,如果序列$\{a_n\}$满足:$$\limsup\sqrt[n]{|a_n|}<1$$则幂级数的收敛半径为$R=\dfrac{1}{\limsup\sqrt[n]{|a_n|}}$。
幂级数在其收敛半径内的收敛性由黑格尔定理(或阿贝尔定理)给出:如果幂级数$f(x)$的收敛半径$R>0$,那么$f(x)$在$(-R,R)$内一致收敛;如果幂级数$f(x)$在某个点$x_0\neq 0$处发散,那么幂级数在所有点$x$处均发散。
二、\hspace{0.5em}幂级数展开的应用幂级数展开在数学中有着广泛的应用,下面将介绍一些具体的例子。
1.泰勒级数泰勒级数是指将一个函数$f(x)$在某一点$x=a$处展开的幂级数:$$f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(a)}{n!}(x-a)^n$$其中$f^{(n)}(a)$表示$f(x)$在点$x=a$处的$n$阶导数。
泰勒级数可以用于求解函数的近似值,以及函数的性质和应用。
例如,我们可以通过泰勒级数在$x=0$处展开$\sin x$和$\cos x$,得到:$$\sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+...$$$$\cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+...$$2.幂级数解微分方程通过对微分方程进行幂级数变换,我们可以得到幂级数解,并且可以在一定程度上揭示微分方程的一些性质和规律。
幂级数的知识点总结
幂级数的知识点总结一、幂级数的定义与基本概念1. 幂级数定义幂级数是指形如 $\sum_{n=0}^{\infty} a_nx^n$ 的级数,其中 $a_n$ 是常数,$x$ 是变量。
我们将 $a_nx^n$ 称为幂级数的通项。
当 $x=0$ 时,幂级数收敛,此时幂级数的值为 $a_0$。
当 $x\neq0$ 时,幂级数可能发散,也可能收敛。
2. 幂级数的收敛半径幂级数的收敛半径是指所有幂级数都收敛的 $x$ 范围。
收敛半径 $R$ 的计算公式为\[R = \lim_{n\to\infty} \frac{|a_n|}{|a_{n+1}|}\]当 $R=0$ 时,幂级数只在 $x=0$ 处收敛;当 $R=\infty$ 时,幂级数在整个实数范围都收敛;当 $0<R<\infty$ 时,幂级数在 $(-R,R)$ 范围内收敛。
3. 幂级数的收敛域幂级数的收敛域是指其收敛的 $x$ 区间范围。
我们可以通过比较 $|x|<R$ 和 $|x|=R$ 以及$|x|>R$ 的情况来判断幂级数的收敛域。
二、幂级数的性质1. 幂级数的加法性与乘法性若 $\sum_{n=0}^{\infty} a_nx^n$ 和 $\sum_{n=0}^{\infty} b_nx^n$ 是两个幂级数,由于级数的加法与乘法遵循线性性质,因此这两个幂级数的和与乘积仍然是幂级数,它们的收敛性与原幂级数相同。
2. 幂级数的导数与积分幂级数在其收敛域内可以进行导数与积分运算,这是因为这些运算不会改变收敛性质。
具体来说,对于 $\sum_{n=0}^{\infty} a_nx^n$,它的导数等于 $\sum_{n=1}^{\infty}na_nx^{n-1}$,它的不定积分等于 $\sum_{n=0}^{\infty} \frac{a_n}{n+1}x^{n+1}+C$。
三、幂级数的收敛性与收敛域判断1. 幂级数的收敛性判定判断幂级数 $\sum_{n=0}^{\infty} a_nx^n$ 的收敛性时,我们可以使用比值判别法、根式定理、韦达定理等方法。
微积分之幂级数
1 x
2
1
时级数发散,
2
t1 x
1, x 0 ,当 x
1 时原级数为
( 1)n 1 收敛,
n1
n
1
1
当 x 0 时,
发散,故 原级数收敛半径 R ,收敛域为 [ 1,0] .
n 1n
2
注意 : 一般幂级数求收敛半径时作变量代换 .
提问:(1)(02.3) 设幂级数
an xn 与 bnxn 的收敛半径分别为
一、函数项级数的概念
1.【 定义 】设 u1 (x), u2 ( x), , un (x),
是定义在区间 I 上的函数 , 则
un( x) u1(x) u2 (x)
n1
un( x)
称为定义在区间 I 上的 ( 函数项 ) 无穷级数 .
2. 收敛域
(1) 收敛点 x0 I —— 常数项级数
u n (x0) 收敛;
M0
n
)
| an x0 | M ( M
n
x
x
M
,因
1,
x0
x0
从而
nቤተ መጻሕፍቲ ባይዱ
M x 收敛 ,
n0
x0
正项级数 | an x |n 收敛
n0
0 的常数)
an x n 收敛
n0
x D 即对 | x | | x0 | , a nxn 收敛且绝对收敛 .
n0
由(1)
(2) x0 D , 假若有 x1 D 满足 | x1 | | x0 |
anx n 收敛且绝对收敛 .
n0
(2) 若 x0 D , 则 对 | x | | x0 |, 有 x D 即级数 an xn 发散 .
微积分之幂级数
注意:对于级数1nn u∞=∑,当1nn u∞=∑收敛时,1nn u∞=∑绝对收敛.例 证121(1)(21)n n n -∞=--∑绝对收敛:令12(1)(21)n n u n --=-,则 222211111,(21)[(1)]n n u n n n n n ∞===≤-+-∑收敛⇒1n n u ∞=∑收敛故 原级数绝对收敛.§7.5 幂级数教学目的:弄清幂级数的相关概念;掌握幂级数收敛半径、收敛区间、 收敛域定义与求法;掌握幂级数的性质,能灵活正确运用性质 求幂级数的和函数.重难点:掌握幂级数收敛半径、收敛区间、收敛域概念与求法;掌握幂 级数的性质,能灵活正确运用性质求幂级数的和函数,以及常 数项级数的和. 教学方法:启发式讲授 教学过程:一、函数项级数的概念1.【定义】设 ),(,),(),(21x u x u x u n 是定义在区间I 上的函数,则++++=∑∞=)()()()(211x u x u x u x u nn n称为定义在区间I 上的(函数项)无穷级数. 2.收敛域(1) 收敛点I x ∈0—— 常数项级数 ∑∞=10)(n nx u 收敛;(2) 发散点I x ∈0——常数项级数∑∞=1)(n nx u 发散;(3) 收敛域D —— 函数项级数∑∞=1)(n nx u的所有收敛点形成的集合D ;(4) 发散域G ——∑∞=1)(n nx u的发散点的全体构成的集合G .3.和函数)(x S —— ∑∞==1)()(n n x u x S , D x ∈.若函数项级数∑∞=1)(n nx u在收敛域内每一点都对应于)(x S 的一个函数值,则称)(x S 为函数项级数∑∞=1)(n nx u的和函数.4.余项)(x r n —— )()()(x S x S x r n n -=, ∑==nk kn x ux S 1)()(, D x ∈.注: ①只有在收敛域D 上, )(x r n 才有意义; ② 0)(lim =∞→x r n n , D x ∈.二、幂级数及其收敛半径和收敛域 1.【定义】形如nn nx x a )(0∑∞=-的函数项级数称为0()x x -的幂级数.(也称为一般幂级数),其中 012,,,.,n a a a a 为常数,称为幂级数的系数.当00=x 时,∑∞=0n nn xa 称为x 的幂级数(也称为标准幂级数), 其中常数n a (0,1,2,n =)称为幂级数的系数.结论:对于级数nn nx x a )(0∑∞=-,作代换0t x x =-可以将一般幂级数化为标准幂级数n nn a t∞=∑,所以我们只研究标准幂级数敛散性的判别方法.∑∞=0n nn xa 的收敛域:此级数的全体收敛点的集合.显然: D x ∈0(收敛域),即幂级数总在0x x =点处收敛.例如: ∑∞=0n nx , ∑∞=-0!)1(n nn x 均为幂级数.显然:∑∞=0n nx的收敛域)1,1(-=D ,其发散域),1[]1,(+∞--∞= G .且和函数,11)(0xx x S n n -==∑∞= 1||<x .此结论可当公式使用. 2.级数的收敛域 把级数∑∞=0n nn xa 的各项取绝对值得正项级数nnn a x∞=∑,记 1lim n n na l a +→∞=,则 11lim n n n n n a x l x a x ++→∞=;于是由比值判别法知 (1)若1,(0)l x l <≠,即1x R l <=,∑∞=0n nn x a 绝对收敛.(2) 若1l x >,即1x R l >=,∑∞=0n nn x a 发散.(3) 若1l x =,即1x R l ==,比值法失效,∑∞=0n nn x a 敛散另行判定.(4)若0l =,即01l x =<,此时对任意x ,∑∞=0n nn xa 收敛.上述分析显示级数∑∞=0n nn xa 在一个以原点为中心,从R -到R 的区间内绝对收敛,区间(,)R R -称为幂级数的收敛区间,1R l=为收敛半径. 若级数∑∞=0n nn xa 仅在点0x =收敛,则规定0R =,级数的收敛域为0x =例如 级数20!12!!nn n n xx x n x ∞==+++++∑由于 11lim lim lim 1(0)(1)!nn n n n n nx u n x x u n x +-→∞→∞→∞==>≠-n !, ∴ 级数收敛域为 0x =或 {0};独点集.若∑∞=0n nn xa 对任意x 都收敛,则R =+∞,级数的收敛域为(,)-∞+∞.当0R <<+∞时,要讨论级数在x R =±处的敛散性才能确定收敛域.此时收敛域可能是下列区间之一:),,(R R -),,[R R -],,(R R -].,[R R - 3.【阿贝尔定理】(补充)设∑∞=0n nn xa 的收敛域为D ,则(1)若D x ∈0且00x ≠, 则对||||0x x <∀,∑∞=0n nn xa 收敛且绝对收敛.(2) 若D x ∉0, 则 对||||0x x >∀,有D x ∉即级数∑∞=0n nn xa 发散.证明: (1) D x ∈0⇒∑∞=0n n n xa 收敛,由∑∞=00n n n xa 收⇒00()nn a x n →→∞0>∃===>M 0||(0nn a x M M ≤>的常数) ||||0x x <===>0000||||n nn nn n x x a x a x M x x ≤=⋅≤,因10<x x , 从而 00nn x M x ∞=∑收敛,⇒正项级数∑∞=0||n nn x a 收敛⇒∑∞=0n nn x a 收敛⇒D x ∈即对||||0x x <∀,∑∞=0n n n x a 收敛且绝对收敛.(2) D x ∉0,假若有D x ∈1满足||||01x x >)1(由==>∑∞=0n nn xa 收敛⇒D x ∈0矛盾. 所以||||0x x >∀,有∑∞=0n n n x a 发散,即D x ∉.注意:(1) 若D x ∈0, 则 00(||,||)x x D -⊂(收敛域), )0(0≠x ; (2) 若D x ∉0, 则 00(,||)(||,)x x G -∞-+∞⊂(发散域).4.【定理7.13】若幂级数∑∞=0n n n x a 系数满足条件 1limn n na l a +→∞=或lim ||n n n a l →∞=(l 为常数或∞),则(1) 当0l <<+∞时, 则1R l=; (2) 当0l =时, 则R =+∞. (3)当l =+∞时, 则0R =. 常用公式: 1lim+∞→=n n n a a R ,1lim n n n R a →∞=.例如: 幂级数∑∞=0n nx的收敛半径1=R ,1x =±时,级数发散,故其敛区与敛域均为(1,1)-.例1 求幂级数11(1)nn n x n ∞-=-∑的收敛半径与收敛域.解 (1) 级数的通项为 11(1)n n a n-=- 1lim +∞→=n n n a a R 11lim =+=∞→n n n .(2) 当1=x 时, 级数为∑∞=-1)1(n nn 收敛;当1-=x 时, 级数为∑∞=11n n发散.故收敛区间(敛区)是()1,1-,收敛域为]1,1(-(敛域).例2(1) 求幂级数∑∞=0!n nn x 的收敛半径与收敛域.解: 1!n a n =⇒1lim +∞→=n n n a a R +∞=+=+=∞→∞→)1(lim !)!1(limn n n n n , 故 收敛区间和收敛域均是 ),(+∞-∞.(2) 求幂级数∑∞=0!n nxn 的收敛半径.解: !na n =⇒1lim+∞→=n nn a a R 011lim )!1(!lim =+=+=∞→∞→n n n n n . 练习:求幂级数110(1)n n n x ∞--=-∑的收敛半径与收敛域.提示:1lim11nn n a R R a →∞+==⇒=,又1x =时级数发散.收敛域()1,1-.例3 (1)求幂级数213(1)n nn n x n∞-=⋅-∑的收敛半径与收敛域.(缺项级数) 提示:12(1)112(1)3lim lim 1(1)3n n n n n n n n n nu x nu n x +++-→∞→∞-=⋅+- 223lim 31n n x x n →∞==+ 当21313x x <⇒<时级数收敛;当21313x x >⇒>时级数发散.当 13x =±时,原级数是111(1)n n n ∞-=-∑,收敛的交错级数.所以 收敛半径13R =,收敛区间11(,)33-,收敛域11[,]33-. 注意:缺项级数可以直接用比值法求收敛半径.(2)求幂级数1211(1)21n n n x n --∞=--∑的收敛域.解:21221212121lim lim lim 2121n n n n n n nu x n n x x u n x n ++-→∞→∞→∞--=⋅=⋅=++由211x x <<即时级数收敛,由由211x x >>即时级数发散. 得 1R =当1x =时,1121n ∞∑n -n=1(-)-收敛,当1x =-时,121n ∞∑n n=1(-)-收敛,所以 收敛域为 [1,1]-.例4求幂级数1(21)nn x n ∞=+∑的收敛半径与收敛域.(中心不在原点的级数)解 令21t x =+,幂级数变形为1nn t n∞=∑,1111lim lim lim 11112n t t x n n n n a n n R R R a n n→∞→∞→∞++====⇒=⇒=+11122t x <⇒+<时级数绝对收敛,11122t x >⇒+>时级数发散,11,0t x x =⇒=-=,当1x =-时原级数为11(1)n n n ∞=-∑收敛,当0x =时,11n n∞=∑发散,故 原级数收敛半径12R =,收敛域为[1,0]-.注意:一般幂级数求收敛半径时作变量代换.提问:(1)(02.3) 设幂级数∑∞=1n nn x a 与∑∞=1n n n x b 的收敛半径分别为35与31,则幂级数∑∞=122n n nn x b a 的收敛半径为(A ) (A) 5 (B)35 (C) 31 (D) 51答案 53lim1=+→∞nn n a a ,3lim1=+→∞nn n b b 1R ⇒=519159lim 222121=⋅=⋅++→∞n nn n n a b b a (2) (90.5) 求级数∑∞=-12)3(n nn x 的收敛域. 解 令3t x =-,级数21n n t n∞=∑,由1)1(lim lim 221=+=→∞+→∞n n a a n n n n 知1t R =, 因此当131<-<-x 即42<<x 时级数收敛.当2=x 时,原级数为∑∞=-12)1(n nn 收敛,当4=x 时,原级数为∑∞=121n n收敛. 所以收敛域为]4,2[.(3) (92.3) 级数21(2)4nnn x n ∞=-⋅∑的收敛域为)4,0(. 答 令(2)nt x =- 对于14n n n t n ∞=⋅∑,由1141lim lim (1)44n n n n n n a n a n ++→∞→∞⋅==+⋅, 于是收敛半径4t R =,则4)2(42<-<-x ,即40<<x 内收敛. 当0=x 和4=x 时,原级数都为∑∞=11n n 发散,所以收敛域为)4,0(. 三、幂级数以及和函数的运算性质 1.设nn n n n n a xb x ∞∞==∑∑和的收敛半径分别为a b R R 和1)加减法:∑∑∑∞=∞=∞=±=±0)(n n n nn nnn nnx b ax b x a ,()c c R R x ,-∈.其中: },min{b a c R R R =. 2)乘法:0()nnnnnnni jn n n n i j na xb xc x a b x∞∞∞∞====+=⋅==∑∑∑∑∑,()c c R R x ,-∈. 其中: },min{b a c R R R =, ∑=-=nk kn k n ba c 0, ,2,1=n .3)除法:∑∑∑∞=∞=∞==0n n n n nn n nnx c xb xa ,()c c R R x ,-∈.其中: c R 待定, 而n c 由系列表达式∑=-=nk kn k n cb a 0, ,2,1=n 确定.此处, +∞==b a R R , 但1=c R .2.幂级数∑∞=0n nn xa 的和函数()S x 在其收敛区间(,)R R -内是连续. 3.幂级数∑∞=0n nn xa 的和函数()S x 在其收敛区间(,)R R -内可积,且有逐项积分公式10()1xx nn n n n n a S x dx a t dt x n ∞∞+====+∑∑⎰⎰,R R x ='<||.(积分前后的收敛半径不变). 例:+++++=-n x x x x2111, 1||<x .逐项积分时在1x =处无 意义. 4.幂级数∑∞=0n nn xa 的和函数()S x 在其收敛区间上可微,且在收敛区间上101()n n n n n n S x a x na x ∞∞-=='⎛⎫'== ⎪⎝⎭∑∑, R R x ='<||.说明:求导与积分前后两级数的收敛半径不变,但收敛域有可能改变. 公式11n n x x∞==-∑收敛域为1x < 例5 求幂级数∑∞=+01n n n x 的和函数)(x S ,并求0(1)1nn n ∞=-+∑.解:(1) 1lim +∞→=n n n a a R 112lim =++=∞→n n n .当1-=x 时,级数为∑∞=+-11)1(n n n 收 敛;当1=x 时, 级数为∑∞=+111n n 发散. 故原级数收敛域是)1,1[-.(2) 当1||0<<x 时, 有∑∑∞=∞=+-=='⎪⎪⎭⎫ ⎝⎛+='001111])([n nn n x x n x x xS . 于是 )1ln(11])([)(00x dt tdt t tS x xS x x --=-='=⎰⎰,由于(0)1S =且幂级数在其收敛域上连续,1ln(1), 10,01;()1, 0.x x x S x xx ⎧---≤<<<⎪=⎨⎪=⎩或 取 1x =-代入和函数可得 2ln )1(1)1(0=-=+-∑∞=S n n n. (2)求幂级数1211123n n n nxx x nx ∞--==+++++∑的和函数)(x S ,并求级数12n n n ∞=∑及级数123n n n∞=∑的和.解 1)11limlim 1n n n na n a n ρ+→∞→∞+===,所以1R =. 当1x =时,1n n ∞=∑发散,当1x =-时,1(1)nn n ∞=-⋅∑发散.所以 级数敛域为(1,1)-. 2)设11(),(1,1)n n S x nxx ∞-==∈-∑,则100111()1,(1,1)11xx n n n n xS t dt ntdt x x x x ∞∞-=====-=∈---∑∑⎰⎰201()()(),(1,1)1(1)x d x S x S t dt x dx x x '===∈---⎰为所求和函数.3)令12x =,则有 12111()12(1)2n n n ∞-==-∑,所以122n n n∞==∑.4)令13x =,则有 12111()13(1)3n n n ∞-==-∑,所以12332n n n ∞==∑.练习:(1)求幂级数1nn x n ∞=∑的和函数)(x S :[)敛域-1,1()S x =-ln(1-x)(2) (99.3)∑∞=-=11_______)21(n n n .因为121111()()()(1)11(1)n n n n x S x nxx x x x ∞∞-=='''====-=---∑∑, 令12x =,则有∑∞=-==114)21()21(n n S n ,所以答案为4.例6 (00.6) 设,,2,1,0,d cos sin 40==⎰n x x x I nn π求∑∞=0n n I 的和.解 由40140)(sin 11dsin sin ππ++==⎰n n n x n x x I 1)22(11++=n n ,得∑∑∞=+∞=+=010)22(11n n n n n I ,令∑∞=++=0111)(n n x n x S , 则其收敛半径1=R ,在)1,1(-内x x x S n n-=='∑∞=11)(0,于是 x t tx S x --=-=⎰1ln d 11)(0,令22=x ,则221ln )22(11)22(01--=+=∑∞=+n n n S , 从而∑⎰∑∞=∞=+=-==040)22ln(2211lnd cos sin n n n n x x x I π.例7 (03.9) 求幂级数∑∞=<-+12)1(2)1(1n nnx n x 的和函数)(x f 及其极值. 解 依题意)(x f 211(1)(1)2nnn x x n ∞==+-<∑,1)(1)1()(212112x x x x xx f n n n n n+-=-=-='∑∑∞=∞=- 上式两边从0到x 积分,得)1ln(21)d(11121d 1)0()(202202x t t t t t f x f x x+-=++-=+-=-⎰⎰, 由1)0(=f 得)1(),1ln(211)(2<+-=x x x f .令0)(='x f ,求得唯一驻点0=x ,由于,01)0(,)1(1)(222<-=''+--=''f x x x f 可见)(x f 在0=x 处取得极大值,且极大值为1)0(=f .例8(05.9) 求幂级数n n x n 21)1121(-+∑∞=在区间)1,1(-内的和函数)(x S .解 设∑∑∞=∞==+=122121)(,12)(n n n nx x S n x x S , 则 )1,1(),()()(21-∈-=x x S x S x S , 由于∑∞=--=12222,1)(n nx x x x S ),1,1(,1))((12221-∈-=='∑∞=x x x xx xS n n因此 ,11ln 21d 1)(0221x x x t t t x xS x-++-=-=⎰ 又由于,0)0(1=S 所以 ⎪⎩⎪⎨⎧=<<-++-=.0 0,,10 ,11ln 211)(1xx xx x x S 故 ⎪⎩⎪⎨⎧=<<---+=-=.00, ,10 ,1111ln21)()()(221x x x x xx x S x S x S练习:求下列级数的收敛区间,并求和函数:(1) +-+-753753x x x x解 该级数为∑∞=----112112)1(n n n x n ,由 22121211212lim 1212lim limx n n x n x n x u u n n n n nn n =+-=-+=→∞-+→∞+→∞,知当12<x 时幂级数绝对收敛. 当1-=x 时,幂级数∑∞=--112)1(n n n 收敛;当1=x 时,幂级数∑∞=---1112)1(n n n 收敛,所以原幂级数的收敛域为]1,1[-.设=)(x S ∑∞=----112112)1(n n n x n ,则当)1,1(-∈x 时有 =')(x S 21121221112111)()1()12)1((x x x x n n n n n n n n n +=-=-='--∑∑∑∞=-∞=--∞=--, 所以 =)(x S ⎰=+x x t t 02arctan d 11.(2) ++++7538642x x x x解 该幂级数为∑∞=-1122n n nx,由22121211lim 2)22(lim lim x n n x nx x n u u n n n n nn n =+=+=→∞-+→∞+→∞, 知当12<x 时幂级数绝对收敛. 当1-=x 时,幂级数∑∞=-1)2(n n 发散;当1=x 时,幂级数∑∞=12n n 发散,所以原幂级数的收敛区间为)1,1(-. 设=)(x S ∑∞=-1122n n nx,则当)1,1(-∈x 时,有22221212)1(2)1()()()(x xx x x x x S n nn n-='-='='=∑∑∞=∞=. 小结:1.注意收敛区间与收敛域的联系与区别.2.利用幂级数的性质求幂级数的和函数时,求导或求积分时前后的收敛区间不变.3.利用幂级数的和函数可以求常数项级数的和;求出和函数后, 取x 的特值代入和函数即得所求. 4.对缺项幂级数在求收敛半径时应设辅助变量转化为常规形幂级数或直接用正项级数的比值判别法求收敛区间.课后记:存在问题:1.对缺项幂级数以及通项为0()nn a x x 的幂级数求收敛半径以及收敛域 问题多.2.求幂级数的和函数,不知从何下手.不能灵活运用幂级数的性质以及四 个常用公式灵活变形找()S x 的表达式.3.不能灵活运用和函数求常数项级数的和.。
幂级数经典课件
u1(x) + u2 (x)+ ···+ un (x)+ ···
称为函数项级数, 记为 un (x) 。 n 1
(8-3)
在函数项级数(8-3)中,若令x取定义域中某一确定值x0,
则得到一个数项级数
u1(x0) + u2 (x0)+ ···+ un (x0)+ ··· 若该数项级数收敛, 则称点x0为函数项级数(8-3)的一个 收敛点; 反之,则称点x0为函数项级数(8-3)的发散点。 收敛点的全体构成的集合,称为函数项级数的收敛域。
在这里,有两个问题需要我们去解决:
(1) 在式(8-7)中,系数 a0, a1, a2, ···, an, ···如何确定? (2) f (x)满足什么条件才能展开为x的幂级数?
先解决问题(1): 不妨假设(8-7)式成立,那么根据幂级数的逐项求导法,
对式(8-7)依次求出各阶导数:
f (x) a1 2a2x 3a3x2 nanxn1
克劳林级数,在收敛区间内是否一定收敛于函数本身呢?
因此,还要解决问题(2),研究f(x)满足什么条件才能展开 为x的幂级数, 或着说麦克劳林级数满足什么条件才能收 敛于f (x)。
例7 求幂级数 (n 1)xn 的和函数。 n0
解: 所给幂级数的收敛半径R=1,收敛区间为(-1,1)。
注意到 (n 1)xn (xn1) ,
而
(n
1) x n
(xn1)
xn1
n0
n0
n0
在收敛区间(-1,1)内,
和
an(x
微积分之幂级数
注意:对于级数u n ,当 u n 收敛时,U n 绝对收敛故原级数绝对收敛§ 7.5 幕级数教学目的:弄清幕级数的相关概念;掌握幕级数收敛半径、收敛区间、 收敛域定义与求法;掌握幕级数的性质,能灵活正确运用性质 求幕级数的和函数重难点:掌握幕级数收敛半径、收敛区间、收敛域概念与求法;掌握幕 级数的性质,能灵活正确运用性质求幕级数的和函数,以及常 数项级数的和.教学方法:启发式讲授 教学过程:一、函数项级数的概念 1 .【定义】设 u 1 (x), u 2 (x),, u n (x),U n (X ) 5(X )U 2(X )U n (X )n 1称为定义在区间I 上的(函数项)无穷级数. 2.收敛域 (1) 收敛点X o I --- 常数项级数U n (X o )收敛;n 1(2) 发散点X oI ――常数项级数U n (X o )发散;n 1(3) 收敛域D ----- 函数项级数 u n (X)的所有收敛点形成的集合D ;U n——U_2绝对收敛:令(2n 1)2U n (1)n1 (2n 1)2,则1 1(2n 1)2 [n (n 1)]21 1冷,冷收敛n n 1 nU n ;收敛是定义在区间I 上的函数,则例如:(X 1)n均为幕级数n!n 13•和函数S(x) ―― S(x) u n(x) , x D.n 1若函数项级数u n(x)在收敛域内每一点都对应于S(x)的一个函数值,n 1则称S(x)为函数项级数u n(x)的和函数.n 1n4•余项「n(X)―― g(X)S(x) S n(X), S n(X)U^X), X D .k 1注:①只有在收敛域D 上, r n(x)才有意义;② limr n(x) 0, x D.n二、幕级数及其收敛半径和收敛域1.【定义】形如a n(x X o)n的函数项级数称为(X X o)的幕级数.(也n 0称为一般幕级数),其中a o,a「a2丄.a.丄为常数,称为幕级数的系数.当x o 0时,a n X n称为x的幕级数(也称为标准幕级数),其中n 0常数a n ( n 0,1,2丄)称为幕级数的系数.结论:对于级数a n(X X0)n,作代换t X X0可以将一般幕级数化n 0为标准幕级数a n t n,所以我们只研究标准幕级数敛散性的判别方法.n 0a n x n的收敛域:此级数的全体收敛点的集合.n 0显然:x0 D (收敛域),即幕级数总在x x0点处收敛.⑷发散域G U n(X)的发散点的全体构成的集合G .显然:x n 的收敛域D ( 1,1),其发散域G ( , 1] [1,).n 0且和函数S(x) x n —, |x| 1•此结论可当公式使用•n 01 X2.级数的收敛域上述分析显示级数a n x n 在一个以原点为中心,从R 到R 的区间内n 01绝对收敛,区间(R,R)称为幕级数的 收敛区间,R 为收敛半径.l若级数a n x n 仅在点x 0收敛,则规定Rn 0把级数a n x n 的各项取绝对值得正项级数n 0na n X ,n 0记limnlimnn 1 a n 1X na n X于是由比值判别法知1 (1)若 lx 1,(l0),即 X 1lR , a n x n绝对收敛. n 0⑵若lx 1,即X ⑶若lx 1,即X1 l1 lR , a n X n 发散.n 0R ,比值法失效, a n x n 敛散另行判定n 0(4)若 I 0,即 lx0 1,此时对任意X ,a n X n 收敛.n 00,级数的收敛域为x 0l ,则例如级数n!x nn 01 x 2!x2 L n!x n由于lim |U^U n limnn!lim n xn•••级数收敛域为(n 1)!x0或{0};独点集.1(x 0),若a n X n 对任意x 都收敛,则R,级数的收敛域为(,).n 0当OR 时,要讨论级数在x R 处的敛散性才能确定收敛域 .此时收敛域可能是下列区间之一: (R, R ), [ R, R ), ( R, R], [ R, R].|x | *0〔,有x D 即级数a n X n 发散.n 0a n X n 收敛 X D 即对I X I I X 0 | , a n X n 收敛且绝对收敛n 0 n 0 由(1)⑵ X 0 D ,假若有X 1D 满足|x i | | X 01 a n x 0收敛n 0X 0 D 矛盾•所以|x| |x 01,有 a n X n 发散,即x D .n 0注意:(1)若 x 。
多元微积分课件94幂级数
2) 在收敛区间内幂级数的和函数连续; 3) 幂级数在收敛区间内可逐项求导和求积分.
思考与练习
1. 已知
处条件收敛 , 问该级数收敛
半径是多少 ? 答: 根据Abel 定理可知, 级数在 时发散 . 故收敛半径为
收敛 ,
机动 目录 上页 下页 返回 结束
2. 在幂级数
三、幂级数的运算
定理3. 设幂级数
及
的收敛半径分别为
R1, R2, 令 R min R1 , R2 , 则有 :
an xn (为常数)
n0
an xn bn xn (an bn ) xn ,
x R1 x R
n0
n0
n0
右端的收敛域可能更大
x
xn1 dx
x
xn1 dx
dx
n1 n n1 0
0 n1
01 x
ln(1 x)
故
S 1
2
机动 目录 上页 下页 返回 结束
例5.
的和函数 .
解: 由例2可知级数的收敛半径 R=+∞. 设
则 故有
S(x)
x n 1
n1(n 1)!
exS(x) 0
2
(n1)
[2n]! [ n ! ]2
x2n
lim
n
(
2
n
1)(2 n (n 1)2
2)
x2
4 x2
当4x2 1 当4x2 1
时级数收敛 故收敛半径为 R 1 .
时级数发散
2
机动 目录 上页 下页 返回 结束
数学幂级数知识点总结
数学幂级数知识点总结一、幂级数的基本概念1. 幂级数的定义幂级数是由形如$a_n z^n$($n$从0到$\infty$)的无穷多项式组成的级数。
其中$a_n$是级数的系数,$z$是自变量,$n$是正整数。
换句话说,级数的每一项都是$z$的幂函数。
2. 幂级数的收敛半径幂级数的收敛半径(又称为收敛域)是幂级数收敛到的最大半径,它可以通过求幂级数系数的极限来确定。
具体地说,如果极限 $\lim_{n \to \infty} \sqrt[n]{|a_n|}$ 存在,并且等于$R$,那么幂级数的收敛半径就是$R$。
收敛半径的值可以是0,也可以是正无穷大,也可以是一个实数。
3. 幂级数的收敛区间除了收敛半径外,幂级数还有一个收敛区间。
如果收敛半径是$R$,那么收敛区间就是令幂级数收敛的所有复数$z$的集合,这个集合可以是一个区间,也可以是一个线段,也可能是一个点。
4. 幂级数的性质幂级数有很多重要的性质,比如线性性质、微分和积分的性质、幂级数求导和求和的性质等,这些性质在分析和求解问题中非常有用。
二、幂级数的收敛性1. 幂级数的收敛域收敛域是指使幂级数收敛的所有自变量的集合。
根据幂级数的定义和收敛半径的概念,我们可以很容易地确定一个幂级数的收敛域。
2. 幂级数的收敛测试在实际应用中,我们常常需要判断一个幂级数是否收敛。
为了判断幂级数的收敛性,我们可以使用比较判别法、比值判别法、根值判别法、Raabe判别法等各种不同的方法。
3. 幂级数的绝对收敛性如果一个幂级数的每一项都是非负数,并且级数的收敛性不依赖于幂级数的项的排列顺序,那么这个幂级数就是绝对收敛的。
4. 幂级数的一致收敛性一致收敛是一种比较强的收敛性,它要求幂级数在其收敛域内的每一个点上都收敛,并且幂级数的收敛速度是一致的。
一致收敛的幂级数在求导、求和等操作中有着重要的应用。
三、幂级数的求和1. 幂级数的求和函数幂级数的和函数是指将收敛域内的每一个复数$z$代入幂级数中得到的函数。
微积分10-4幂级数
xn ( 3) ; n 1 n!
1 a n 1 lim 0, R , lim n n 1 n a n
收敛域( , ) .
9
例2.
解: 令 级数变为
的收敛域.
1 a n 1 2n n 1 lim lim 2 n1 ( n 1) lim n1 2 1 n 2 ( n 1) n a n n
解
考虑级数 n( n 1)x , 收敛区间(-1,1),
n
则 s( x ) n( n 1) x n x( x n1 )
2x x2 , x( ) 3 1 x (1 x )
n1 n1
n 1
n( n 1) 1 故 s( ) 8. n 2 2 n1
注: 逐项积分时, 运算前后端点处的敛散性不变.
例 5 求级数
(1)
n 1
n 1
x 的和函数与收敛域. n
n
解:先求收敛半径
收敛半径 R 1
an 1 n lim lim 1 n a n n 1 n
xn 设和函数 s( x ) ( 1)n1 , n n 1
n a n x n 1 , x ( R , R ) S ( x ) a n x
n n 0
n 1
x 0
S ( x ) d x an
n 0
x 0
an x n1 , x dx n 0 n 1
n
x ( R , R )
19
n 2
, 它们的收敛半径都是1,
幂级数课件
a n x n bn x n cn x n .
n 0 n 0
n 0
x R, R
(其中 cn an bn )
(2) 乘法
( a n x ) ( bn x ) cn x . x R, R
n n
n
定义域就是级数的收敛域精品文档定理141abel定理如果级数处收敛则它在满足不等式几何说明收敛区域发散区域发散区域精品文档由定理141知道精品文档定义
第十四章
幂 级 数
引言
前面介绍了一般的函数项级数,重点 是函数项级数收敛、一致收敛的判定方法以 及一致收敛函数项级数的性质.从今天开始, 我们将陆续向大家介绍两类特殊的常用的函 数项级数,一类是“幂级数”(代数多项式 的推广);另一类是“Fourier级数”(三 角多项式的推广,三角级数的特例,在物理 中有广的应用).
x x 当 1时, 等比级数 M 收敛, x0 x0 n 0
n
a n x n 收敛, 即级数 a n x n收敛;
n 0 n 0
( 2) 假设当x x0时发散,
而有一点x1 适合 x1 x0 使级数收敛,
由(1)结论 则级数当 x x 0 时应收敛,
这与所设矛盾.
n 0
解
令( 2 x 3) y 得 ( 1) n y n
2
n 0
当 y 1时,级数收敛; 当 y 1时,级数发散;
所以,当 1 2 x 3 1, 2 x 1时, 原级数收敛;
所求收敛域为 2, 1.
例4 求 ( 1)
n 1
幂级数-PPT
由阿贝尔定理知: 收敛范围为一单位圆域 z 1,
在此圆域内, 级数绝对收敛, 收敛半径为1, 且有 1 1 z z2 zn .
1 z
26
例2 求下列幂级数的收敛半径:
zn
(1) n1 n3
(并讨论在收敛圆周上的情形)
(2) (z 1)n (并讨论 z 0 , 2 时的情形)
zn 收敛,
n1
和函数 S(z) zn 1 zn 1 1 ,
n1
z n0
z 1 z
所以
I
c(1z
1
1
z
)dz
c1z
dz
c1
1
z
dz
2i 0 2i.
36
五、小结与思考
这节课我们学习了幂级数得概念和阿贝尔定 理等内容,应掌握幂级数收敛半径得求法和幂级 数得运算性质、
37
思考题
级数逐项求导得到, 即 f (z) ncn(z a)n1.
n1
23
(3) f (z) 在收敛圆内可以逐项积分,
即 f (z)dz cn (z a)ndz, c z a R.
c
n0 c
或
z
f ( )d
cn (z a)n1.
a
n0 n 1
简言之: 在收敛圆内, 幂级数得和函数解析;
18
课堂练习 试求幂级数
zn
n1 n p
( p为正整数) 的收敛半径.
答案
因为
cn
1, np
lim cn1
n cn
lim( n ) p n n 1
lim
n
(1
1 1)p
1.
n
所以 R 1 1.
幂级数解法
幂级数解法幂级数解法是求解微分方程的一种技术,它可用于求解普通微分方程的无穷多解,也可用于求解常微分方程的特解,以及线性微分方程的非独立解。
因此,在研究微分方程的求解过程中,对“幂级数解法”的研究具有重要的实际意义。
一、幂级数的概念幂级数是由不同幂次的可积函数的和所组成的级数,可以表示为: $$sum_{k=0}^{infty}a_{k}x^{k}$$其中,$a_{k}$叫做幂级数的系数,$x$叫做幂级数的变量,$k$叫做幂级数的项次,$infty$叫做幂级数的项数。
幂级数不仅可用于数学上的应用,也可用于物理学上的应用,像振动波、涡旋波、周期性复原函数等物理概念都可以用幂级数来表示。
二、幂级数解法的内容1.入一类特殊的线性微分方程:$$y^{(n)}+p_{n-1}(x)y^{(n-1)}+cdots+p_{1}(x)y+p_{0}(x)y=Q(x)$$式中,$y^{(n)}$表示微分方程的最高次导数,$p_{n-1}(x)$,$cdots$,$p_{1}(x)$,$p_{0}(x)$表示微分方程的n-1次,$cdots$,1次,0次项的系数函数,$Q(x)$表示微分方程右端项的函数。
2.先检查保守性,判断微分方程是否具有定常解。
微分方程具有定常解的充要条件是$p_{n-1}(x)=p_{n-2}(x)=cdots=p_{2}(x)=0$,此时微分方程可以化简为:$$y^{(n)}+p_{1}(x)y+p_{0}(x)y=Q(x)$$无论$p_{1}(x)$、$p_{0}(x)$是否全等于0,都可以说明它具有定常解。
3.后利用相关定理,在特定条件下构造一个“幂级数解”,其形式为:$$y=sum_{k=0}^{infty}c_{k}x^k$$其中$c_{k}$是待求的系数,由解法的特殊条件所确定。
4.所得“幂级数解”代入微分方程,并根据其定义,求出$c_{0}$,$c_{1}$,$c_{2}$,$cdots$,$c_{n-1}$的值,即求出微分方程的解的系数。
微积分幂级数
n2
lim an1 lim 2 n 2 n an n n 1
R 1, 2
当 x 1 1 ,即x (0,1)时, 级数收敛, 22
当x 0时,
级数为
1,
n1 n
发散
当x 1时,
级数为
(1)n ,
n1 n
收敛
故收敛域为(0,1].
例 3
lim
n
an1 x n1 an xn
0,
级数| an xn | 收敛,
n0
从而级数 an xn绝对收敛. 收敛半径 R ;
n0
(3) 如果 , x 0,
, lim
n
an1 x n1 an xn
级数 an xn必发散.
n0
收敛半径 R 0.
定理证毕.
例2 求下列幂级数的收敛域:
(1) (1)n xn ;
n0
当x0 0时, an xn , 其中an 为幂级数系数.
n0
2.收敛性:
例如级数 xn 1 x x2 xn ,
n0
当 x 1时, 收敛; 当 x 1时, 发散;
收敛域(1,1); 发散域(,1][1,);
定理 1 (Abel 定理)
如果级数 an x n 在 x x0 ( x0 0)处收敛,则
几何说明
收敛区域
o
• • •• • • ••• • •
发散区域 R
R 发散区域 x
推论
如果幂级数 an x n 不是仅在x 0 一点收敛,也
n0
不是在整个数轴上都收敛,则必有一个完全确定
的正数 R 存在,它具有下列性质:
当 x R时,幂级数绝对收敛;
当 x R时,幂级数发散;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)n ,
收敛
n1 n
故收敛域为 (0,1].
7
例5.
求
n1
x22nn1的收敛域.
解
n1
x 2n1 2n
x 2
x3 22
x5 23
缺少偶数幂项,
直接应用达朗贝尔判别法,
lim
n
un1( x) un ( x)
lim
n
x 2n1 2n1
x 2n1 2n
1 2
x 2,
当 1 x2 1 ,即 | x | 2 时, 2
1
1 (
x
)
3 3 x
,
| x| 3
3
xn
1
,| x | 1
n0
1 x
| x |1 3
12
例8. xn 1 x x2 =?
n0 n 1
23
解
xn
x0
1
x n1
n0 n 1
x n0 n 1
= 1 x tndt 1 x t ndt,
x0 n0
x0 n0
x 1
第四节 幂级数(三个定理)
一、幂级数的敛散性
幂级数: an( x x0 )n, 特例: an xn
n0
n0
an xn在x0收敛: an x0n收敛.
n0
n0
名词补充:幂级数系数,收敛点与发散点, 收敛域与发散域
和函数S x : an x0n S( x)
n0
例: xn
1
| x | 1 .
R为收敛半径: an xn | x | R收敛, an xn | x | R发散
n1
n1
定理2(d‘Alembert或Cauchy判别法).
收敛半径 R lim
an
或 lim
1
.
n an+1 n n an
请自己查阅证明
3
证明
lim
n
an1 x n1 an xn
lim n
an1 an
x
1 |x|, R
n1 3
3
15
例11.
(1)n =? n1 (2n 1)3n
解
Sx
n1
(1)n x2n (2n 1)
原式=S
1 3
S( x) x (1)n x2n1
x
(1)n
x t 2n2dt
n1
2n 1
n1
0
x 1
x
x 0
1
1 t
2
dt
xarctan x
n0
n0
n0
9
二、和函数的性质(证略)
定理3. 在以R为收敛半径的收敛域内,
S x an xn可逐项微积分,具体有: n0
S( x) ( an x n )
n0
(an x n )
n0
nan x n1 ,
n1
x S(x)dx
0
n0
x 0
an
x
n
dx
an xn1 ,
n0 n 1
1
x
1
dt
x 0 1t
1 ln x 1 x
1 ln 1 x .
x
x 0 xn 1.
n0 n 1
S(x)
1 x
ln(1
x)
,
1 x 0或0 x1
1 ,
x0
13
例9.
n2xn ?.
n0
解 由公式得:R 1,记和函数为S x,则
S x n[(n 1) 1] xn x n(n 1)xn1 x nx n1
n0
1 x
1
定理1 (Abel定理)
证明
an x1n收敛 x : x x1 , an xn绝对收敛;
n0
n0
an x2n发散 x : x2 x , an xn发散.
n0
an xn
an x1n
xn x1n
n0
n
an x1n
x x1
an x1n
n0
收敛
lim
n
an x1n
0
M
0, n充分大时,
an
x1n
M
x
x1
x x1
q 1,
n
an xn Mqn,正项级数 Mqn收敛
n1
n
an xn绝对收敛. n1
后半句应当是逆否命题,无需证明。 证毕
o
• •• • •
x x2 x1 x
• • ••
x
x1 x2 x
xቤተ መጻሕፍቲ ባይዱ
2
几何说明 发散区域
收敛区域
R
R 发散区域 x
o
• • •• • • ••• • •
由d‘Alembert判别法
x R an x n收敛,x R an xn发散,
n0
n0
收敛半径R lim an a n
n1
注:1
,
1
0
0
4
求下列幂级数的收敛半径和收敛域.
例1
x n
np
n0
,
R lim an n an1
(n 1) p
lim
n
np
1,
若 p 1 , 收敛域为[1, 1] ;
10
例6
由 xn
1
x 1
n0
1 x
1 推出的结论.
(1)两端求导:
n1
nx n1
1 (1 x)2
x 1
2
(2)两端求导:
n(n 1) xn2
n2
2 (1 x)3
x 1
3
(1)两端积分:
1 xn1 n0 n 1
ln(1 x)
1 x 1
4
(1)中x 换- x:
6
例4
(1)n 2n ( x 1 )n .
n1
n2
解 R lim an lim 2n n an1 n n
2n1 lim n 1 1 , n 1 n 2 n 2
即 x 1 1 收敛, x (0,1) 收敛, 22
当 x 0时, 级数为
1 , 发散
n1 n
当 x 1时,
级数为
若0 p 1 , 收敛域为[1, 1) ; 若 p 0 , 收敛域为(1, 1) .
5
xn
例2 n0 n !
1 解 lim
n (n 1) !
1 n!
lim 1 0, n n 1
R , 即收敛域为(,) .
例3
n! xn
n0
解 R lim n! 0 , 仅在 x 0 处收敛. n (n 1)!
( x)n 1 x 1
n0
1 x
5
(5)中x 换 x2:
(1)n x 2n
n0
1 1 x2
x 1
6 ,
(6)两端积分: (1)n x2n1 arctan x x 1 n0 2n 1
7 .
11
例7.
n0
(1)n 3n
xn
解
(1)n 3n
n0
xn
(
n0
x )n 3
级数收敛;
8
当 1 x2 1,即 | x | 2
2 时,
级数
n1
x22nn1收敛.
当 1 x2 1 ,即 | x | 2 时, 2
级数发散;
当x
2 时, 级数为
1
,
n1 2
级数发散,
所以原级数的收敛域为 ( 2, 2).
注: an xn的收敛半径为R an x2n, an x2n+1的收敛半径为 R .
n1
n1
n1
x
n2
xn x
n1
xn
x
xn
x
x
n
n2
n1
2x (1 x)3
x (1 x)2
x 1
14
例10.
n0
n
2 3
n
?.
解
S( x) nxn
n1
x nx n1
n1
x
xn
n1
x x
1 x
x (1 x)2
,
|
x|1
n( 2 )n S( 2 ) 6 .