用FFT对信号进行频谱分析报告

合集下载

实验二用FFT对信号进行频谱分析

实验二用FFT对信号进行频谱分析

实验二用FFT对信号进行频谱分析简介:频谱分析是信号处理中常用的一种方法,通过将信号变换到频域,可以得到信号的频谱特征。

其中,快速傅里叶变换(FFT)是一种高效的计算频域的方法。

在这个实验中,我们将学习如何使用FFT对信号进行频谱分析。

实验步骤:1.准备工作:a. 安装MATLAB或者Octave等软件,并了解如何运行这些软件。

2.载入信号:a. 在MATLAB或Octave中,使用内置函数加载信号文件,将信号读入到内存中。

b.查看信号的基本信息,例如采样频率、时长等。

3.FFT变换:a. 使用MATLAB或Octave的fft函数将信号由时域变换到频域。

b.设置合适的参数,例如变换的点数、窗口函数等。

可以尝试不同的参数,观察其对结果的影响。

4.频谱绘制:a. 使用MATLAB或Octave的plot函数将变换后的频率数据进行绘制。

b.可以绘制幅度谱(频率的能量分布)或相位谱(频率的相位分布),也可以同时绘制两个谱。

5.频谱分析:a.根据绘制出的频谱,可以观察信号的频率特征。

例如,可以识别出信号中的主要频率分量。

b.可以进一步计算信号的能量、均值、方差等统计量,了解信号的功率特征。

c.可以对不同的信号进行对比分析,了解它们在频域上的差异。

实验结果和讨论:1.绘制出的频谱图可以清晰地显示信号的频率分量,可以识别出信号中的主要频率。

2.通过对不同信号的对比分析,可以发现它们在频域上的差异,例如不同乐器的音调特征。

3.可以进一步分析频谱的统计特征,例如信号的能量、平均幅度、峰值频率等。

4.在进行FFT变换时,参数的选择对结果有一定的影响,可以进行参数的调优,获得更准确的频谱分析结果。

结论:本实验通过使用FFT对信号进行频谱分析,可以获得信号在频域上的特征。

通过观察频谱图和统计特征,可以进一步了解信号的频率分布、能量特征等信息。

这对信号处理、音频分析等领域具有很大的应用价值。

在实际应用中,可以根据不同的需求,选择合适的参数和方法,对不同的信号进行频谱分析。

实验二FFT实现信号频谱分析

实验二FFT实现信号频谱分析

0
2
4
6
4
2
0
-2
-4
-6
-4
-20246四、试验环节
4. 试验内容2旳程序运营成果如下图所示:
60
30
40
20
20
10
0
0
-10 -5
0
5
10
-40 -20
0
20 40
30
80
60 20
40 10
20
0
-40 -20
0
20 40
0
-40 -20
0
20 40
四、试验环节
|X(k)| x(n)
5. 试验内容 3旳程序运营成果如下图所示:
fft 计算迅速离散傅立叶变换
fftshift
ifft
调整fft函数旳输出顺序,将零频 位置移到频谱旳中心
计算离散傅立叶反变换
fft函数:调用方式如下
y=fft(x):计算信号x旳迅速傅立叶变换y。当x旳长度为 2旳幂时,用基2算法,不然采用较慢旳分裂基算法。
y=fft(x,n):计算n点FFT。当length(x)>n时,截断x,不 然补零。
【例2-11】产生一种正弦信号频率为60Hz,并用fft函数 计算并绘出其幅度谱。
fftshift函数:调用方式如下 y=fftshift(x):假如x为向量,fftshift(x)直接将x旳左右两 部分互换;假如x为矩阵(多通道信号),将x旳左上、右 下和右上、左下四个部分两两互换。 【例2-12】产生一种正弦信号频率为60Hz,采样率为1000Hz, 用fftshift将其零频位置搬到频谱中心。
以上就是按时间抽取旳迅速傅立叶变换

实验三用FFT对信号进行频谱分析和MATLAB程序

实验三用FFT对信号进行频谱分析和MATLAB程序

实验三用FFT对信号进行频谱分析和MATLAB程序实验三中使用FFT对信号进行频谱分析的目的是通过将时域信号转换为频域信号,来获取信号的频谱信息。

MATLAB提供了方便易用的函数来实现FFT。

首先,我们需要了解FFT的原理。

FFT(快速傅里叶变换)是一种快速计算离散傅里叶变换(DFT)的算法,用于将离散的时间域信号转换为连续的频域信号。

FFT算法的主要思想是将问题划分为多个规模较小的子问题,并利用DFT的对称性质进行递归计算。

FFT算法能够帮助我们高效地进行频谱分析。

下面是一个使用MATLAB进行频谱分析的示例程序:```matlab%生成一个10秒钟的正弦波信号,频率为1Hz,采样率为100Hzfs = 100; % 采样率t = 0:1/fs:10-1/fs; % 时间范围f=1;%正弦波频率x = sin(2*pi*f*t);%进行FFT计算N = length(x); % 信号长度X = fft(x); % FFT计算magX = abs(X)/N; % 幅值谱frequencies = (0:N-1)*(fs/N); % 频率范围%绘制频谱图figure;plot(frequencies, magX);xlabel('频率(Hz)');ylabel('振幅');title('信号频谱');```上述代码生成了一个10秒钟的正弦波信号,频率为1 Hz,采样率为100 Hz。

通过调用MATLAB的fft函数计算信号的FFT,然后计算每个频率分量的幅值谱,并绘制出信号频谱图。

在频谱图中,横轴表示频率,纵轴表示振幅。

该实验需要注意以下几点:1.信号的采样率要与信号中最高频率成一定比例,以避免采样率不足导致的伪频谱。

2.FFT计算结果是一个复数数组,我们一般只关注其幅值谱。

3.频率范围是0到采样率之间的频率。

实验三的报告可以包含以下内容:1.实验目的和背景介绍。

FFT实践及频谱分析实践报告

FFT实践及频谱分析实践报告

FFT实验一.内容1. 用Matlab产生正弦波,矩形波,以及白信号,并显示各自时域波形图;2. 进行FFT变换,显示各自频谱图,其中采样率,频率、数据长度自选;3. 做出上述三种信号的均方根图谱,以及对数均方根图谱;4. 用IFFT傅里叶反变换恢复信号,并显示恢复的正弦信号时域波形图;5.滤波器的设计。

(一).编写程序1.正弦波fs=100;%设定采样频率N=128;n=0:N-1;t=n/fs;f0=10;%设定正弦信号频率%生成正弦信号x=sin(2*pi*f0*t);figure(1);subplot(231);plot(t,x);%做正弦信号的时域波形xlabel('t');ylabel('y');title('正弦信号y=2*pi*10t时域波形');grid;%进行FFT变换并做频谱图y=fft(x,N);%进行fft变换mag=abs(y);%求幅值f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换figure(1);subplot(232);plot(f,mag);%做频谱图axis([0,100,0,80]);xlabel('频率(HZ)’);ylabel('幅值’);title('正弦信号y=2*pi*10t幅频谱图N=128’);grid;%求均方根谱sq=abs(y);figure(1);subplot(233);plot(f,sq);xlabel('频率(HZ)’);ylabel('均方根谱’);title('正弦信号y=2*pi*10t均方根谱’);grid;%求功率谱power=sq.^2;figure(1);subplot(234);plot(f,power);xlabel('频率(HZ)’);ylabel('功率谱’);title('正弦信号y=2*pi*10t功率谱’);grid;%求对数谱ln=log(sq);figure(1);subplot(235);plot(f,sq);xlabel('频率(HZ)’);ylabel('对数谱’);title('正弦信号y=2*pi*10t对数谱’);grid;%用IFFT恢复原始信号xifft=ifft(y);magx=real(xifft);ti=[0:length(xifft)-1]/fs;figure(1);subplot(236);plot(ti,magx);xlabel('t’);ylabel('y’);title('通过IFFT转换的正弦信号波形’);grid;2.矩形波fs=10;%设定采样频率t=-5:0.1:5;x=rectpuls(t,2);x=x(1:99);figure(2);subplot(231);plot(t(1:99),x);%作矩形波的时域波形xlabel('t');ylabel('y');title('矩形波时域波形');grid;%进行FFT变换并做频谱图y=fft(x);%进行fft变换mag=abs(y);%求幅值f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换figure(2);subplot(232);plot(f,mag);%做频谱图xlabel('频率(HZ)');ylabel('幅值');title('矩形波幅频谱图'); grid;%求均方根谱sq=abs(y);figure(2);subplot(233);plot(f,sq);xlabel('频率(HZ)');ylabel('均方根谱');title('矩形波均方根谱'); grid;%求功率根谱power=sq.^2;figure(2);subplot(234);plot(f,power);xlabel('频率(HZ)');ylabel('功率谱');title('矩形波功率谱'); grid;%求对数谱ln=log(sq);figure(2);subplot(235);plot(f,ln);xlabel('频率(HZ)');ylabel('对数谱');title('矩形波对数谱'); grid;%用IFFT恢复原始信号xifft=ifft(y);magx=real(xifft);ti=[0:length(xifft)-1]/fs; figure(2);plot(ti,magx);xlabel('t');ylabel('y');title('通过IFFT转换的矩形波波形');grid;3.白噪声fs=10;%设定采样频率t=-5:0.1:5;x=zeros(1,100);x(50)=100000;figure(3);subplot(231);plot(t(1:100),x);%作白噪声的时域波形xlabel('t');ylabel('y');title('白噪声时域波形');grid;%进行FFT变换并做频谱图y=fft(x);%进行fft变换mag=abs(y);%求幅值f=(0:length(y)-1)'*fs/length(y);%进行对象的频率转换figure(3);subplot(232);plot(f,mag);%做频谱图xlabel('频率(HZ)');ylabel('幅值');title('白噪声幅频谱图');grid;%求均方根谱sq=abs(y);figure(3);subplot(233);plot(f,sq);xlabel('频率(HZ)');ylabel('均方根谱');title('白噪声均方根谱');grid;%求功率谱power=sq.^2;figure(3);plot(f,power);xlabel('频率(HZ)');ylabel('功率谱');title('白噪声功率谱');grid;%求对数谱ln=log(sq);figure(3);subplot(235);plot(f,ln);xlabel('频率(HZ)');ylabel('对数谱');title('白噪声对数谱');grid;%用IFFT恢复原始信号xifft=ifft(y);magx=real(xifft);ti=[0:length(xifft)-1]/fs;figure(3);subplot(236);plot(ti,magx);xlabel('t');ylabel('y');title('通过IFFT转换的白噪声波形'); grid;4.巴特沃斯高通数字滤波器Fs=5000;wp=2000*2/Fs;ws=1500*2/Fs;Rp=1;Rs=20;Nn=128;[N,Wn]=buttord(wp,ws,Rp,Rs);[b,a]=butter(N,Wn,'high');freqz(b,a,Nn,Fs)(二).程序执行后得到的图像①正弦波②矩形波③白噪声④巴特沃斯高通滤波器四.结论1. FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。

实验四 用 FFT 对信号作频谱分析

实验四 用 FFT 对信号作频谱分析

实验四程序代码及实验结果图: (1)对以下序列进行谱分析。

⎪⎩⎪⎨⎧≤≤-≤≤-=⎪⎩⎪⎨⎧≤≤-≤≤+==其它nn n n n n x 其它n n n n n n x n R n x ,074,330,4)(,074,830,1)()()(3241选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。

分别打印其幅频特性曲线。

并进行对比、分析和讨论。

实验程序代码及结果如下:%------------产生激励序列------------% x1n = ones(1,4); %产生序列向量x1(n)=R4(n) M=8;xa=1:(M/2); xb=(M/2):-1:1;x2n=[xa,xb]; %产生长度为8的三角波序列x2(n) x3n=[xb,xa]; %产生长度为8的倒三角波序列x3(n)n1 = 0:length(x1n)-1; %分别求出序列长度 n2 = 0:M-1; n3 = 0:M-1;n8k= 0:2/8:2-2/8; %产生数字归一化频率 n16k= 0:2/16:2-2/16; n32k= 0:2/32:2-2/32;%------------fft 做频谱分析------------% X1k8=fft(x1n,8); %x1n 的8点DFT X1k16=fft(x1n,16); %x1n 的16点DFT X1k32=fft(x1n,32); %x1n 的32点DFTX2k8=fft(x2n,8); %x2n 的8点DFT X2k16=fft(x2n,16); %x2n 的16点DFT X2k32=fft(x2n,32); %x2n 的32点DFTX3k8=fft(x3n,8); %x3n 的8点DFT X3k16=fft(x3n,16); %x3n 的16点DFT X3k32=fft(x3n,32); %x3n 的32点DFT%------------绘制x1n 的8/16/32点DFT------------% subplot(3,4,1);stem(n1,x1n); %绘制时域采样波形图title('x1(n)的时域波形图'); %标题xlabel('n'); %横坐标名称ylabel('时域幅度值'); %纵坐标名称subplot(3,4,2);stem(n8k,abs(X1k8)); %绘制8点DFT的幅频特性图title('x1(n)的8点DFT]'); %标题xlabel('ω/π');%横坐标名称ylabel('幅度'); %纵坐标名称subplot(3,4,3);stem(n16k,abs(X1k16)); %绘制16点DFT的幅频特性图title('x1(n)的16点DFT'); %标题xlabel('ω/π');%横坐标名称ylabel('幅度'); %纵坐标名称subplot(3,4,4);stem(n32k,abs(X1k32)); %绘制32点DFT的幅频特性图title('x1(n)的32点DFT'); %标题xlabel('ω/π');%横坐标名称ylabel('幅度'); %纵坐标名称%------------绘制x2n的8/16/32点DFT------------%subplot(3,4,5);stem(n2,x2n); %绘制时域采样波形图title('x2(n)的时域波形图'); %标题xlabel('n'); %横坐标名称ylabel('时域幅度值'); %纵坐标名称subplot(3,4,6);stem(n8k,abs(X2k8)); %绘制8点DFT的幅频特性图title('x2(n)的8点DFT]'); %标题xlabel('ω/π');%横坐标名称ylabel('幅度'); %纵坐标名称subplot(3,4,7);stem(n16k,abs(X2k16)); %绘制16点DFT的幅频特性图title('x2(n)的16点DFT'); %标题xlabel('ω/π');%横坐标名称ylabel('幅度'); %纵坐标名称subplot(3,4,8);stem(n32k,abs(X2k32)); %绘制32点DFT的幅频特性图title('x2(n)的32点DFT'); %标题xlabel('ω/π');%横坐标名称ylabel('幅度'); %纵坐标名称%------------绘制x3n的8/16/32点DFT------------%subplot(3,4,9);stem(n3,x3n); %绘制时域采样波形图title('x3(n)的时域波形图'); %标题xlabel('n'); %横坐标名称ylabel('时域幅度值'); %纵坐标名称subplot(3,4,10);stem(n8k,abs(X3k8)); %绘制8点DFT的幅频特性图title('x3(n)的8点DFT]'); %标题xlabel('ω/π');%横坐标名称ylabel('幅度'); %纵坐标名称subplot(3,4,11);stem(n16k,abs(X3k16)); %绘制16点DFT的幅频特性图title('x3(n)的16点DFT'); %标题xlabel('ω/π');%横坐标名称ylabel('幅度'); %纵坐标名称subplot(3,4,12);stem(n32k,abs(X3k32)); %绘制32点DFT的幅频特性图title('x3(n)的32点DFT'); %标题xlabel('ω/π');%横坐标名称ylabel('幅度'); %纵坐标名称2、对以下周期序列进行谱分析。

实验二_应用FFT对信号进行频谱分析

实验二_应用FFT对信号进行频谱分析

1. 三、实验内容和结果:高斯序列的时域和频域特性:高斯序列的时域表达式:2(),015()0,n p q a e n x n -⎧⎪≤≤=⎨⎪⎩其它固定参数p=8,改变参数q 的值, 记录时域和频域的特性如下图。

图 1i. 结论: 从时域图中可以看到, q 参数反应的是高斯序列能量的集中程度: q 越小, 能量越集中, 序列偏离中心衰减得越快, 外观上更陡峭。

同时, 随着q 的增大, 时域序列总的能量是在增大的。

频域上, 对应的, 随着q 的增加, 由于时域序列偏离中心的衰减的缓慢, 则高频分量也就逐渐减, 带宽变小: 时域上总的能量增大, 故也可以看到低频成分的幅度都增大。

固定参数q, 改变参数p, 记录时域和频域的特性如下图 2.图 22. 结论: p 是高斯序列的对称中心, p 的变化在时域表现为序列位置的变化。

由于选取的矩形窗函数一定, p 值过大时, 会带来高斯序列的截断。

并且随着p 的增大, 截断的越来越多。

对应地, 看频域上的变化: 截断的越多, 高频的成分也在增多, 以至发生谱间干扰, 泄露现象变得严重。

从图中可以看到, 在p=13时, 已经有混叠存在。

当p=14时, 混叠进一步加大, 泄露变得更明显。

衰减正弦序列的时域和幅频特性:sin(2),015()0,n b e fn n x n απ-⎧≤≤=⎨⎩其它改变参数f, 记录时域和幅频特性如下图3.图 33. 结论: 随着f 的增大, 时域上可以看到, 序列的变化明显快多了。

从幅度谱上看, 序列的高频分量逐渐增多, 低频分量逐渐减小, 以至于发生严重的频谱混叠。

当f 增大到一定的程度, 从图中可以看到, f=0.4375和f=0.5625时的幅度谱是非常相似的, 此时已经很难看出其幅度谱的区别。

三角序列的时域表达式和对应的时域和幅频特性如图 4:c 1,03()8,470,n n x n n n n +≤≤⎧⎪=-≤≤⎨⎪⎩其它图 4结论: 随着fft 取点数的增多, 能够看到的幅度谱的频率分量变得丰富, 得到的是高密度更高的谱, 也就是减轻了栅栏效应。

用FFT对信号作频谱分析

用FFT对信号作频谱分析

实验二用FFT对信号作频谱分析一、实验目的(1)学习使用FFT对模拟信号和时域离散信号进行频谱分析的方法(2)了解可能出现的分析误差及其原因,以便正确应用FFT二、实验内容:(1)根据参考资料使用FFT进行谐波分析;利用函数生成一组数据,用以模拟电力现场的测量数据,使用FFT对其进行频谱分析;程序:clearfs=1000;t=0:1/fs:0.6;f1=100;f2=300;x1=sin(2*pi*f1*t); %正弦信号x1x2=sin(2*pi*f2*t); %正弦信号x2x=x1+x2;l=length(x);xx=x+randn(1,l); %叠加随机噪声信号figure(1)subplot(7,1,1)plot(x1);subplot(7,1,2)plot(x2);subplot(7,1,3)plot(x);subplot(7,1,4)plot(xx);number=512;y=fft(x,number); %对x取512点的快速傅里叶变换n=0:length(y)-1;f=fs*n/length(y);subplot(7,1,5)plot(f,abs(y));yy=fft(xx,number); %对xx取512点的快速傅里叶变换subplot(7,1,6)plot(f,abs(yy));pyy=y.*conj(y)/number; %y的能量subplot(7,1,7)plot(f,abs(pyy));实验结果见附图1(2)使用操作系统自带的录音机,录制各种声音,保存成.wav文件;将该声音文件读入(采样保存到)某矩阵中,对该采样信号使用FFT进行频谱分析,比较各种语音信号所包含的频谱成分及频率范围。

程序:number=512;fs=1000;x=wavread('你自己的音频名,如a.wav');%读取音频文件y=fft(x,number); %对x取512点的傅里叶变换n=0:length(y)-1;f=fs*n/length(y);subplot(2,1,1)plot(f,abs(y));pyy=y.*conj(y)/number; %y的能量subplot(2,1,2)plot(f,abs(pyy));实验结果见附图2三、实验结论由实验结果可以看出,实验得到了FFT对模拟信号和时域离散信号进行频谱分析的结果。

实验三用FFT对信号作频谱分析_实验报告

实验三用FFT对信号作频谱分析_实验报告

实验三用FFT对信号作频谱分析_实验报告一、实验目的1.学习使用FFT(快速傅里叶变换)对信号进行频谱分析;2.掌握频谱分析的基本原理和方法;3.熟悉使用MATLAB进行频谱分析的操作。

二、实验原理FFT是一种基于傅里叶变换的算法,可以将时域信号转换为频域信号,并将信号的频谱特征展示出来。

在频谱分析中,我们通过分析信号的频谱可以获得信号的频率、幅值等信息,从而对信号的性质和特征进行研究。

对于一个连续信号,我们可以通过采样的方式将其转换为离散信号,再利用FFT算法对离散信号进行频谱分析。

FFT算法可以将信号从时域转换到频域,得到离散的频谱,其中包含了信号的频率分量以及对应的幅值。

MATLAB中提供了fft函数,可以方便地对信号进行FFT分析。

通过对信号进行FFT操作,可以得到信号的频谱图,并从中提取出感兴趣的频率信息。

三、实验步骤1.准备工作:(2)建立新的MATLAB脚本文件。

2.生成信号:在脚本中,我们可以通过定义一个信号的频率、幅值和时间长度来生成一个信号的波形。

例如,我们可以生成一个频率为1000Hz,幅值为1的正弦波信号,并设置信号的时间长度为1秒。

3.对信号进行FFT分析:调用MATLAB中的fft函数,对信号进行FFT分析。

通过设置采样频率和FFT长度,可以得到信号的频谱。

其中,采样频率是指在单位时间内连续采样的次数,FFT长度是指离散信号的样本点数。

4.绘制频谱图:调用MATLAB中的plot函数,并设置x轴为频率,y轴为幅值,可以绘制出信号的频谱图。

频谱图上横坐标表示信号的频率,纵坐标表示信号的幅值,通过观察可以得到信号的频率分布情况。

四、实验结果在实验过程中,我们生成了一个频率为1000Hz,幅值为1的正弦波信号,并对其进行FFT分析。

通过绘制频谱图,我们发现信号在1000Hz处有最大幅值,说明信号主要由这一频率成分组成。

五、实验总结本实验通过使用FFT对信号进行频谱分析,我们可以方便地从信号的波形中提取出频率分量的信息,并绘制出频谱图进行观察。

用DFT(FFT)对连续信号进行频谱分析

用DFT(FFT)对连续信号进行频谱分析

电子信息工程系实验报告课程名称:数字信号处理Array实验项目名称:用DFT(FFT)对连续信号进行频谱分析实验时间:班级:通信姓名: xxp 学号:一、实验目的:1.掌握用DFT(FFT)对模拟信号进行谱分析的方法,理解可能出现的分析误差及其原因,以便在实际中正确应用FFT。

2.熟悉应用FFT实现两个序列的线性卷积的方法。

二、实验原理:1.用DFT(FFT)对连续信号进行频谱分析用DFT(FFT)对模拟信号做谱分析是一种近似的谱分析。

首先一般的模拟信号(周期信号除外)的频谱是连续谱,而用FFT做谱分析得到的是数字谱,因此应该取FFT的点数多一些,用它的包络作为模拟信号的近似谱。

另外,如果模拟信号不是严格的带限信号,会因为频谱混叠现象引起谱分析的误差,这种情况下可以预先将模拟信号进行预滤,或者尽量将采样频率取高一些。

最后要注意一般的模拟信号是无限长的,分析时要截断,截断的长度与对模拟信号进行频谱分析的分辨率有关。

如果要进行谱分析的模拟信号是周期信号,最好选择观测时间是信号周期的整数倍,如果不知道信号的周期,要尽量选择观测时间长一些,以减少截断效应的影响。

在运用DFT(FFT)对模拟信号进行谱分析的过程中主要可能产生以下三种误差:(1) 混叠现象对模拟信号进行谱分析时首先要对其采样,当采样速率不满足Nyquist定理时,就会发生频谱混叠,使得采样后的信号序列频谱不能真实的反映原模拟信号的频谱。

避免混叠现象的唯一方法是保证采样速率足够高,使频谱混叠现象不致出现,即在确定采样频率之前,必须对频谱的性质有所了解,在一般情况下,为了保证高于折叠频率的分量不会出现,在采样前,先用低通模拟滤波器对信号进行滤波。

(2) 截断效应实际中我们往往用截短的序列来近似很长的甚至是无限长的序列,这样可以使用较短的DFT来对信号进行频谱分析,这种截短等价于给原信号序列乘以一个矩形窗函数,也相当于在频域将信号的频谱和矩形窗函数的频谱卷积,所得的频谱是原序列频谱的扩展。

用FFT作谱分析实验报告

用FFT作谱分析实验报告

数字信号处理 实验报告FFT 的谱分解一、实验目的:1、在理论学习的基础上,通过本实验,加深对FFT 的理解,熟悉MATLAB 中的有关函数。

2、熟悉应用FFT 对典型信号进行频谱分析的方法。

熟悉FFT 算法原理和FFT 子程序的应用。

3、学习用FFT 对连续信号和时域离散信号进行谱分析的方法。

了解应用FFT 进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT 。

二、实验原理:1.快速傅立叶变换(FFT)算法长度为N 的序列)(n x 的离散傅立叶变换)(k X 为:∑-=-==101,....,0,)()(N n nkN N k W n x k XN 点的DFT 可以分解为两个N/2点的DFT ,每个N/2点的DFT 又可以分解为两个N/4点的DFT 。

依此类推,当N 为2的整数次幂时(M N 2=),由于每分解一次降低一阶幂次,所以通过M 次的分解,最后全部成为一系列2点DFT 运算。

以上就是按时间抽取的快速傅立叶变换(FFT)算法。

当需要进行变换的序列的长度不是2的整数次方的时候,为了使用以2为基的FFT ,可以用末尾补零的方法,使其长度延长至2的整数次方。

序列)(k X 的离散傅立叶反变换为x n NX k Wn N Nnk k N ()(),,....,==--=-∑10101离散傅立叶反变换与正变换的区别在于N W 变为1-N W ,并多了一个N 1的运算。

因为N W 和1-N W 对于推导按时间抽取的快速傅立叶变换算法并无实质性区别,因此可将FFT 和快速傅立叶反变换(IFFT )算法合并在同一个程序中。

2.利用FFT 进行频谱分析若信号本身是有限长的序列,计算序列的频谱就是直接对序列进行FFT 运算求得)(k X ,)(k X 就代表了序列在[]π2,0之间的频谱值。

幅度谱 )()()(22k X k X k X I R +=相位谱 )()(arctan)(k X k X k R I =ϕ 若信号是模拟信号,用FFT 进行谱分析时,首先必须对信号进行采样,使之变成离散信号,然后就可按照前面的方法用FFT 来对连续信号进行谱分析。

用FFT对信号作频谱分析实验报告

用FFT对信号作频谱分析实验报告

实验一报告、用FFT 对信号作频谱分析一、实验目的学习用FFT 对连续信号和时域离散信号进行频谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT 。

二、实验内容1.对以下序列进行频谱分析:()()()()4231038470n 4033470nx n R n n n x n nn n n x n n n =+≤≤⎧⎪=-≤≤⎨⎪⎩-≤≤⎧⎪=-≤≤⎨⎪⎩其它其它 选择FFT 的变换区间N 为8和16两种情况进行频谱分析。

分别打印其幅频特性曲线,并进行对比,分析和讨论。

2.对以下周期序列进行频谱分析:()()45cos4coscos48x n n x n n nπππ==+选择FFT 的变换区间N 为8和16两种情况分别对以上序列进行频谱分析。

分别打印其幅频特性曲线,并进行对比、分析和讨论。

3.对模拟信号进行频谱分析:()8cos8cos16cos20x t t t t πππ=++选择采样频率64s F Hz =,对变换区间N=16,32,64 三种情况进行频谱分析。

分别打印其幅频特性,并进行分析和讨论。

三、实验程序1.对非周期序列进行频谱分析代码:close all;clear all;x1n=[ones(1,4)];M=8;xa=1:(M/2);xb=(M/2):-1:1;x2n=[xa,xb];x3n=[xb,xa];X1k8=fft(x1n,8);X1k16=fft(x1n,16);X2k8=fft(x2n,8);X2k16=fft(x2n,16);X3k8=fft(x3n,8);X3k16=fft(x3n,16);subplot(3,2,1);mstem=(X1k8);title('(1a)8点DFT[x_1(n)]');subplot(3,2,2);mstem=(X1k16);title('(1b)16点DFT[x_1(n)]');subplot(3,2,3);mstem=(X2k8);title('(2a)8点DFT[x_2(n)]');subplot(3,2,4);mstem=(X2k16);title('(2b)16点DFT[x_2(n)]');subplot(3,2,5);mstem=(X3k8);title('(3a)8点DFT[x_3(n)]');subplot(3,2,6);mstem=(X3k16);title('(3b)16点DFT[x_3(n)]');2.对周期序列进行频谱分析代码:N=8;n=0:N-1;x4n=cos(pi*n/4);x5n=cos(pi*n/4)+cos(pi*n/8);X4k8=fft(x4n);X5k8=fft(x5n);N=16;n=0:N-1;x4n=cos(pi*n/4);x5n=cos(pi*n/4)+cos(pi*n/8);X4k16=fft(x4n);X5k16=fft(x5n);figure(2)subplot(2,2,1);mstem(X4k8);title('(4a)8点 DFT[x_4(n)]');subplot(2,2,2);mstem(X4k16);title('(4b)16点DFT[x_4(n)]');subplot(2,2,3);mstem(X5k8);title('(5a)8点DFT[x_5(n)]');subplot(2,2,4);mstem(X5k16);title('(5a)16点DFT[x_5(n)]') 3.模拟周期信号谱分析figure(3)Fs=64;T=1/Fs;N=16;n=0:N-1;x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T);X6k16=fft(x6nT);X6k16=fftshift(X6k16);Tp=N*T;F=1/Tp;k=-N/2:N/2-1;fk=k*F;subplot(3,1,1);stem(fk,abs(X6k16),'.');box ontitle('(6a)16µãDFT[x_6(nT)]');xlabel('f(Hz)');ylabel('·ù¶È');axis([-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k16))]);N=32;n=0:N-1; %FFTµÄ±ä»»Çø¼äN=32x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T);X6k32=fft(x6nT);X6k32=fftshift(X6k32);Tp=N*T;F=1/Tp;k=-N/2:N/2-1;fk=k*F;subplot(3,1,2);stem(fk,abs(X6k32),'.');box ontitle('(6b)32µãDFT[x_6(nT)]');xlabel('f(Hz)');ylabel('·ù¶È');axis([-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k32))]);N=64;n=0:N-1; %FFTµÄ±ä»»Çø¼äN=64x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T);X6k64=fft(x6nT);X6k64=fftshift(X6k64);Tp=N*T;F=1/Tp;k=-N/2:N/2-1;fk=k*F;subplot(3,1,3);stem(fk,abs(X6k64),'.');box ontitle('(6c)64µãDFT[x_6(nT)]');xlabel('f(Hz)');ylabel('·ù¶È');axis([-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k64))]);四、实验结果与分析分析:图(1a)和图(1b)说明X1(n)=R4(n)的8点和16点DFT分别是X1(n)的频谱函数的8点和16点采样;因X3(n)=X2((n-3))8R8(n),故X3(n)与X2(n)的8点DFT的模相等,如图(2a)和图(3a)所示。

应用FFT实现信号频谱分析(杭电)

应用FFT实现信号频谱分析(杭电)

信号、系统与信号处理实验Ⅱ实验报告实验名称:应用FFT 实现信号频谱分析一、实验目的1、能够熟练掌握快速离散傅里叶变换FFT 的原理及应用FFT 进行频谱分析的基本方法。

2、对离散傅里叶变换的主要性质及 FFT 在数字信号处理中的重要作用有进一步的了解。

二、实验内容与要求(2)编写一个调用 FFT 函数的通用程序,可计算下列三种序列的离散频谱。

指数序列: v1(n) = 0.9^n*u(n);周期为 N 的余弦序列:v2(n) = cos(2*pi*n/N) ,且 0≤ n≤ N-1 复合函数序列:v3(n) = 0.9sin(2*pi*n/N) + 0.6sin(2*pi*n*3/N)(3)计算实指数序列 v1(n) 的 N点离散频谱 V1(k), 记录 N为不同的 2 的幂次方时的V1(k) 值,并与理论值 V1(e^jwk ) 进行分析比较。

(4)计算周期为 N 的余弦序列 v2(n) 的 N 点 FFT、2N 点 FFT 及(N+2) 点 FFT,记录结果并作为分析说明。

(5) 已知信号x(t) =0.15sin(2*pi*f1*t)+sin(2*pi*f2*t)-0.1sin(2*pi*f3*t), 其中f1 = 1Hz, f2 =2Hz,f3= 3Hz, 取样频率为 32Hz。

编程实现:① 32 点 FFT,画出其幅度谱。

②64 点 FFT,画出其幅度谱,比较两者间的差异,思考实际频率与离散频谱图中横坐标 k 的对应关系。

三、实验程序与结果指数序列: v1(n) = 0.9^n*u(n);v1(n) 的 N 点离散频谱 V1(k), 记录 N 为不同的 2的幂次方时的 V1(k) 值,并与理论值 V1(e^jwk ) 进行分析比较。

clear allN=16;N1=16;N2=32;N3=64;n=0:N-1;xn=0.9.^n;XK1=fft(xn,N1);magXK1=abs(XK1);phaXK1=angle(XK1);XK2=fft(xn,N2); magXK2=abs(XK2); phaXK2=angle(XK2);XK3=fft(xn,N3); magXK3=abs(XK3); phaXK3=angle(XK3);subplot(4,1,1);plot(n,xn);xlabel('n');ylabel('x(n)');title('x(n) '); subplot(4,1,2);k=0:length(magXK1)-1; stem(k,magXK1);xlabel('k');ylabel('|X(k)|');title('X(k) N1 = 16'); subplot(4,1,3);k=0:length(magXK2)-1; stem(k,magXK2);xlabel('k');ylabel('|X(k)|');title('X(k) N2 = 32'); subplot(4,1,4);k=0:length(magXK3)-1; stem(k,magXK3);xlabel('k');ylabel('|X(k)|');title('X(k) N3 = 64');x(n)1)n(0.5x0 5 10 15nX(k) N1 = 1610|)k( 5X|0 5 10 15kX(k) N2 = 3210|)k( 5X|0 5 10 15 20 25 30 35kX(k) N3 = 6410|)k(5X|10 20 30 40 50 60 70k周期为 N 的余弦序列: v2(n) =cos(2*pi*n/N) ,且 0≤ n≤ N-1;计算周期为 N 的余弦序列 v2(n) 的 N 点 FFT、 2N 点 FFT 及 (N+2) 点 FFT,记录结果并作为分析说明。

应用快速傅里叶变换对信号进行频谱分析实验报告

应用快速傅里叶变换对信号进行频谱分析实验报告

应用快速傅里叶变换对信号进行频谱分析实验报告实验报告:应用快速傅里叶变换(FFT)对信号进行频谱分析摘要:本实验旨在通过应用快速傅里叶变换(FFT)对信号进行频谱分析,探索信号在频域中的特征及其应用。

实验中我们选择了一个特定的信号,并通过FFT将其转换成频谱图。

通过分析频谱图,我们可以了解到信号中的频域信息,并通过此信息进一步分析和研究信号的特性。

实验结果表明,应用FFT对信号进行频谱分析可以提供有关信号频域特性的重要信息。

一、实验目的:通过实验,我们的目标是:1.了解傅里叶变换的原理和概念;2.掌握快速傅里叶变换(FFT)的原理和实现方法;3.应用FFT对特定信号进行频谱分析,并分析信号在频域中的特点;4.了解频谱分析在信号处理中的应用。

二、实验器材:1.计算机;2.信号发生器;3.音频采集设备。

三、实验步骤:1.选择特定信号,可以是音频信号、振动信号等;2.通过信号发生器产生特定信号;3.通过音频采集设备将信号输入到计算机中,采集信号数据;4.利用计算机上的信号处理软件,应用FFT将信号转换为频谱图;5.分析频谱图,观察信号在频域中的特征。

四、实验结果与分析:我们选择了一个简单的音频信号作为实验对象。

通过实验,我们得到了该音频信号的频谱图。

通过观察该频谱图,我们可以看到信号的主要频率成分以及其强度。

在频谱图中,横轴表示频率,纵轴表示信号的强度。

频谱图显示了信号的频率分布情况。

通过观察频谱图,我们可以得到以下结论:1.该音频信号主要包含在低频和高频范围内,中频较少;2.低频和高频范围内的强度较高,中频范围内的强度较低;3.在低频和高频范围内都存在一些峰值,可能代表着信号的主要频率成分。

通过分析频谱图,我们可以了解到信号在频域中的特征。

在实际应用中,频谱分析可以用于不同领域,例如声音处理、图像处理等。

通过频谱分析,我们可以了解到信号的频域信息,从而更好地理解和处理信号。

五、实验总结:实验结果表明,应用快速傅里叶变换对信号进行频谱分析可以提供有关信号频域特性的重要信息。

应用FFT对信号进行频谱分析

应用FFT对信号进行频谱分析
X (e j ) 1 2m Xa( j ) T T
(2—6)
即序列的频谱是采样信号频谱的周期延拓。从上式可看出,只 要分析采样序列的频谱,就可以得到相应的连续信号的频谱。 在各种信号序列中,有限长序列在数字信号处理中占有很重要 的地位。无限长的序列往往可以用有限长序列来逼近。对于有限长 的序列我们可以用离散傅里叶变换(DFT) ,这一变换可以很好的反 映序列的频域特性,并且容易利用快速算法在计算机中实现当序列 长度是 N 时,我们定义离散傅里叶变换为
kn X (k ) DFT[ x(n)] WN n 0 N 1
(2—7)
其中 WNkn = e
j
2 N
,它的反变换定义为:
1 N 1 X (k )WNkn N k 0
x(n) IDFT[ X (k )]
(2—8)
根据以上两式,令 Z= Z= WNk X(z)
N 1 n 0
3、观察三角波序列和反三角波序列的时域和幅频特性
(1)用 8 点 FFT 分析信号 xc(n)和 xd(n)的幅频特性,观察两者的序 列形状和频谱曲线有什么异同?绘制两者的序列和幅频特性曲线
>> for i=1:4;%设置信号前 4 个点的数值 x(i)=i; end fori=5:8; x(i)=9-i; end close all; subplot(2,2,1);stem(x);title('xc[n]信号图形'); subplot(2,2,2);stem(abs(fft(x,16)));title('xc[n]信号的频谱') for i=1:4;%设置信号前 4 个点的数值 x(i)=5-i;

(2—3)
当 Z= e j 的时候,我们就得到了序列的傅里叶变换

实验三用FFT对信号作频谱分析_实验报告

实验三用FFT对信号作频谱分析_实验报告

实验三用FFT对信号作频谱分析_实验报告一、实验目的1.理解离散傅里叶变换(FFT)的原理和应用;2.学会使用FFT对信号进行频谱分析;3.掌握频谱分析的基本方法和实验操作。

二、实验原理离散傅里叶变换(FFT)是一种用来将时域信号转换为频域信号的数学工具。

其基本原理是将连续时间信号进行离散化,然后通过对离散信号进行傅里叶变换得到离散频域信号。

傅里叶变换(Fourier Transform)是一种将时域信号转换为频域信号的方法。

在信号处理中,经常需要对信号的频谱进行分析,以获取信号的频率分量信息。

傅里叶变换提供了一种数学方法,可以将时域信号转换为频域信号,实现频谱分析。

在频谱分析中,我们常常使用快速傅里叶变换(Fast Fourier Transform,FFT)算法进行离散信号的频谱计算。

FFT算法可以高效地计算出离散信号的频谱,由于计算复杂度低,广泛应用于信号处理和频谱分析的领域。

频谱分析的流程一般如下:1.采集或生成待分析的信号;2.对信号进行采样;3.对采样得到的信号进行窗函数处理,以改善频谱的分辨率和抑制信号泄漏;4.使用FFT算法对窗函数处理得到的信号进行傅里叶变换;5.对傅里叶变换得到的频谱进行幅度谱和相位谱分析;6.对频谱进行解释和分析。

三、实验内容实验所需材料和软件及设备:1.信号发生器或任意波形发生器;2.数字示波器;3.计算机。

实验步骤:1.连接信号发生器(或任意波形发生器)和示波器,通过信号发生器发送一个稳定的正弦波信号;2.调节信号频率、幅度和偏置,得到不同的信号;3.使用数字示波器对信号进行采样,得到离散时间信号;4.对采样得到的信号进行窗函数处理;5.对窗函数处理得到的信号进行FFT计算,得到频谱;6.使用软件将频谱进行幅度谱和相位谱的分析和显示。

四、实验结果与分析1.信号频谱分析结果如下图所示:(插入实验结果图)从频谱图中可以看出,信号主要集中在一些频率上,其他频率基本没有,表明信号主要由该频率成分组成。

实验二 应用 FFT 对信号进行频谱分析

实验二 应用 FFT 对信号进行频谱分析

实验二 应用 FFT 对信号进行频谱分析一、实验目的1、在理论学习的基础上,通过本次实验,加深对快速傅里叶变换的理解,熟悉 FFT 算法及其程序的编写。

2、熟悉应用 FFT 对典型信号进行频谱分析的方法。

3、了解应用 FFT 进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用 FFT 。

二、实验原理与方法一个连续信号 )(t x a 的频谱可以用它的傅立叶变换表示为⎰+∞∞-Ω-=Ωdt e t x j X t j a a )()( (2-1)如果对该信号进行理想采样,可以得到采样序列)()(nT x n x a = (2-2)同样可以对该序列进行z 变换,其中T 为采样周期∑+∞-∞=-=n n z n x z X )()( (2-3) 当 ωj ez =的时候,我们就得到了序列的傅立叶变换 ∑+∞-∞=-=n n j j e n x e X ωω)()( (2-4)其中ω称为数字频率,它和模拟域频率的关系为s f T Ω=Ω=ω(2-5)式中的s f 是采样频率。

上式说明数字频率是模拟频率对采样率s f 的归一化。

同模拟域的情况相似,数字频率代表了序列值变化的速率,而序列的傅立叶变换称为序列的频谱。

序列的傅立叶变换和对应的采样信号频谱具有下式的对应关系∑-=)2(1)(Tm j X T e X a j πωω (2-6) 即序列的频谱是采样信号频谱的周期延拓。

从式(2-6)可以看出,只要分析采样序列的频谱,就可以得到相应的连续信号的频谱。

注意:这里的信号必须是带限信号,采样也必须满足 Nyquist 定理。

在各种信号序列中,有限长序列在数字信号处理中占有很重要的地位。

无限长的序列也往往可以用有限长序列来逼近。

对于有限长的序列我们可以使用离散傅立叶变换(DFT ),这一变换可以很好地反应序列的频域特性,并且容易利用快速算法在计算机上实现当序列的长度是 N 时,我们定义离散傅立叶变换为:∑-===10)()]([)(N n kn NW n x n x DFT K X (2-7) 其中,N j N e W π2-=它的反变换定义为:∑-=-==10)(1)]([)(N k kn N W k X N k X IDFT n x (2-8) 根据式(2-3)和(2-7)令 k N W z -=,则有)]([)()(10n x DFT W n x z X N n kn N W z k N ==∑-==- (2-9)可以得到 k N k N j W z W e z X k X k N -===-,)()(2π是 z 平面单位圆上幅角为k Nπω2=的点,就是将单位圆进行 N 等分以后第 k 个点。

fft实验分析实验报告

fft实验分析实验报告

fft实验分析实验报告
实验报告主要包括实验目的、实验原理、实验步骤、实验结果分析和结论等内容。

以下是一个关于FFT实验分析的实验报告示例:
实验报告
实验目的:
1. 了解傅里叶变换(FFT)的基本原理和应用;
2. 学会使用FFT算法对信号进行频谱分析。

实验设备和材料:
1. 计算机;
2. 音频文件或实时采集的音频信号。

实验原理:
傅里叶变换是一种将时域信号转换为频域信号的数学变换方法,可以将信号表示为不同频率的复指数函数的叠加。

而FFT(快速傅里叶变换)是一种高效的傅里叶变换算法,可以快速计算信号的频谱。

实验步骤:
1. 准备音频文件或实时采集的音频信号;
2. 将音频信号输入计算机中的FFT算法进行处理,得到信号的频谱;
3. 对频谱进行可视化表示,如绘制频谱图;
4. 根据频谱图分析信号的频率分布和能量分布等特征。

实验结果分析:
通过实验,我们得到了音频信号的频谱图。

根据频谱图可以得到信号的频率分布情况,即哪些频率的分量相对强,哪些频率的分量相对弱。

频谱图还可以展示信号的能量分
布情况,能量较高的频率分量对应着声音的主要特征。

结论:
通过本次实验,我们学习了傅里叶变换(FFT)的基本原理和应用,并掌握了使用FFT 算法进行信号频谱分析的方法。

频谱分析是一种常用的信号处理方法,可以帮助我们
了解信号的频率特征和能量分布情况,对于音频、图像等领域的信号处理具有重要的
应用价值。

信号的频谱分析实验报告

信号的频谱分析实验报告

实验四 信号的频谱分析一.实验目的1.掌握利用FFT 分析连续周期,非周期信号的频谱,如周期,非周期方波,正弦信号等。

理解CFS ,CTFT 与DFT (FFT )的关系。

2.利用FFT 分析离散周期,非周期信号的频谱,如周期,非周期方波,正弦信号等。

理解DFS ,DTFT 与DFT (FFT )的关系,并讨论连续信号与离散信号频谱分析方法的异同。

二.实验要求1.编写程序完成任意信号数字谱分析算法;2.编写实验报告。

三.实验内容1.利用FFT ,分析并画出sin(100),cos(100)t t ππ频谱,改变采样间隔与截断长度,分析混叠与泄漏对单一频率成分信号频谱的影响。

(1)sin (100*pi*t )产生程序:close all;clc;clear;t=0:0.0025:0.5-0.0025;f=400*t;w0=100*pi;y=sin(w0*t);a=fft(y);b=abs(a)/200;d=angle(a)*180/pi; subplot(311);plot(t,y);title('y=sin(wt)'); xlabel('t');ylabel('y(t)'); subplot(312); stem(f,b);title('振幅'); xlabel('f');ylabel('y(t)'); subplot(313); stem(f,d);title('相位'); xlabel('t');ylabel('y(t)');混叠close all;clc;clear;t=0:0.0115:0.46-0.0115; f=(t/0.0115)*2;w0=100*pi;y=sin(w0*t);a=fft(y);b=abs(a)/40;d=angle(a)*180/pi; subplot(311);plot(t,y);title('y=sin(wt)'); xlabel('t');ylabel('y(t)'); subplot(312); stem(f,b); title('振幅'); xlabel('f'); ylabel('y(t)'); subplot(313); stem(f,d); title('相位'); xlabel('t'); ylabel('y(t)');泄漏close all; clc;clear;t=0:0.0025:0.5-0.0075; f=800*t;w0=100*pi;y=sin(w0*t);a=fft(y);b=abs(a)/198;d=angle(a)*180/pi; subplot(311);plot(t,y);title('y=sin(wt)'); xlabel('t');ylabel('y(t)');subplot(312);stem(f,b);title('振幅');xlabel('f');ylabel('y(t)');subplot(313);stem(f,d);title('相位');xlabel('t');ylabel('y(t)');(2)cos(100*pi*t); close all;clc;clear;t=0:0.0025:0.5-0.0025; f=800*t;w0=100*pi;y=cos(w0*t);a=fft(y);b=abs(a)/200;d=angle(a)*180/pi; subplot(311);plot(t,y);title('y=cos(wt)'); xlabel('t');ylabel('y(t)');grid on; hold on; subplot(312); stem(f,b); title('振幅'); xlabel('f'); ylabel('y(t)'); grid on; hold on; subplot(313); stem(f,d); title('相位'); xlabel('f'); ylabel('y(t)');混叠close all;clc;clear;t=0:0.0115:0.46-0.0115; f=(t/0.0115)*2;w0=100*pi;y=cos(w0*t);a=fft(y);b=abs(a)/40;d=angle(a)*180/pi; subplot(311);plot(t,y);title('y=cos(wt)'); xlabel('t');ylabel('y(t)');subplot(312);stem(f,b);title('振幅');xlabel('f');ylabel('y(t)');subplot(313);stem(f,d);title('相位');ylabel('y(t)');泄漏close all;clc;clear;t=0:0.0025:0.5-0.0075; f=800*t;w0=100*pi;y=cos(w0*t);a=fft(y);b=abs(a)/198;d=angle(a)*180/pi; subplot(311);plot(t,y);title('y=cos(wt)');ylabel('y(t)');subplot(312);stem(f,b);title('振幅');xlabel('f');ylabel('y(t)');subplot(313);stem(f,d);title('相位');xlabel('t');ylabel('y(t)');2.利用FFT,分析并对比方波以及半波对称的正负方波的频谱,改变采样间隔与截断长度,分析混叠与泄漏对信号频谱的影响。

fft谱分析实验报告

fft谱分析实验报告

FFT谱分析实验报告1. 引言谱分析是一种常见的信号处理技术,用于将一个信号分解为不同频率的成分。

FFT(快速傅里叶变换)是一种高效的算法,用于计算离散傅里叶变换,广泛应用于谱分析中。

本实验旨在探究FFT在信号处理中的应用,并通过实验验证其有效性。

2. 实验目的本实验旨在: - 理解FFT算法的原理和实现方法; - 学习如何使用FFT对信号进行频谱分析; - 验证FFT算法的准确性和有效性。

3. 实验步骤3.1 准备实验材料和工具为了进行谱分析实验,我们需要准备以下材料和工具: - 信号源(例如音频文件、信号发生器等) - 电脑(用于运行信号处理软件) - 信号处理软件(例如MATLAB、Python等)3.2 选择信号源在本实验中,我们选择了一个音频文件作为信号源。

音频文件包含了不同频率的声音信号,适合用于谱分析。

3.3 导入信号源使用信号处理软件,将选择的音频文件导入到程序中。

3.4 实施FFT算法根据FFT算法的原理,我们可以使用信号处理软件实施FFT算法。

以下是实施FFT算法的步骤: 1. 对导入的音频信号进行采样。

2. 将采样后的信号进行傅里叶变换,得到信号的频域表示。

3. 可选地,对频域表示进行滤波或其他信号处理操作。

4. 将处理后的信号进行逆傅里叶变换,得到恢复后的信号。

3.5 分析结果通过实施FFT算法,我们得到了信号的频域表示。

可以通过绘制频谱图来直观地观察信号的频率成分。

频谱图通常以频率为横轴,幅度为纵轴。

通过观察频谱图,我们可以分析信号中存在的频率成分及其强度。

3.6 结果验证为了验证FFT算法的有效性,我们可以选择一些已知频率的信号作为测试样本。

通过对测试样本进行FFT分析,并与已知频率进行比较,可以评估FFT算法的准确性。

4. 结果与讨论通过实验,我们成功使用FFT算法对音频信号进行了谱分析。

通过观察频谱图,我们可以清楚地看到信号中存在的频率成分。

在结果验证部分,我们与已知频率进行了比较,结果表明FFT算法具有较高的准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P的求法:在中,i写成二进制数右移位,就成为 颠倒位序得式(5)吕,前面的γ个等式,每个等式均对应一组数据进 行计算,每组数据都有N/2对结点,根据式(9),每对结点只需作1次 乘法和2次加法,因此,每组数据只需N/2次乘法和N次加法,因而完成 γ组数据的计算共需Nγ/2次乘法和Nγ次加法。
四、问题分析
一、问题重述
X(t)=sin(2πf1t)+sin(2πf2t)+sin(2πf3t) 其中f1=2Hz,f2=2.02Hz,f3=2.07Hz。试确定参数fx,N和相应模拟信号 x(t)的长度T。 其中f1=2Hz,f2=2.02Hz,f3=2.07Hz,试确定参数fs,N和相应模拟信号的长 度T,最终用MATLAB程序应用FFT实现信号频谱特性的分析,并绘制其频 谱图。 用DFT进行频率参数分析时,DFT参数的选择如下: 1)若已知信号的最高频率fc,为防止频率混叠,选定抽样频率fs,满足 fsfc,再根据实际需求,选择频率分辨率 2)一旦选定就可以确定计算DFT所需要点数N, N=fs/, 当频率分辨率越小时,DFT能实现的信号频率分辨率越高,这当然是我 们期望的,但愈小,计算DFT所需的点数N就愈大,计算复杂度就要高, 3)抽样频率fs和DFT所需点数N确定后,就可以确定所需相应模拟信号 的长度T, T=N/fS=N Ts Ts为信号的采样间隔。
(6)
式中 (7) 根据式(6),第L个数组中每个 的计算只依赖于上一个数组的两个数据这两个数据的标号相差,即,而 且这两个数据只用于计算第L个数组中标号的数据(等号右端为二进制 数)。当分别取0和1时,分别有。因此,用上一组的两个数据计算所 得的两个新数据仍可储存在原来位置,计算过程中只需要N个存储器。 将与称为第L个数组中的对偶结点对。计算每个对偶结点对只需一次乘 法,事实上由式(6)可得 式中: ;别为式(7)中取0,1时对应的P值。因,于是对偶结点的有 如下关系: ,因此式(6)可表示为
Байду номын сангаас
五、实验结果
已知模拟信号,根据表达式利用plot函数画出其频谱图,结果如 下:
6、 遇到的问题及解决方法
在整个课程设计过程中,由于之前对数字信号处理课程只是一种理 论知识的认知并不是很深刻,而本次课程设计主要是针对以前的理论知 识的一种更深刻的理解和应用,在实际操作的过程中刚开始一直无法获 取到图形,后来发现是在编程的时候对一些参数的取值不太恰当,对信 号进行谱分析的重要问题是频谱分辨率和分析误差。频谱分辨率直接和 FFT的变换区间N有关,因为FFT能够实现的频率分辨率是2л/N≤。可
Abstract
Fast Fourier Transform (FFT), is a discrete fast Fourier transform algorithm, which is based on the Discrete Fourier Transform of odd and even, false, false, and other characteristics of the Discrete Fourier Transform algorithms improvements obtained. Its Fourier transform theory has not found a new, but in the computer system or the application of digital systems Discrete Fourier Transform can be said to be a big step into. Fourier transform theory and methods in the "mathematical equation" and "linear systems analysis" and "signal processing, simulation," and many other areas have a wide range of applications, as the computer can only handle a limited length of the sequence of discrete, so true On the computer's operation is a discrete Fourier transform. Fourier Although all aspects of computing in the calculation has an important role, but its calculation was too complicated, a lot of computing system for calculating the burden is too large
for some Less power consumption, the slow speed of operation of its system at arm's length, however, have the fast Fourier transform, Fourier transform greatly simplifying the making, not in power at the expense of the conditions to increase the speed of computing systems, and enhance the system The comprehensive ability to improve the speed of operation, the Fast Fourier Transform in the production and life have a very important role in learning to master all have great significance. Key words: Fast Fourier Transform; Signal spectrum analysis Discrete Fourier Transform 引言: 1965年,库利(J.W.Cooley)和图基(J.W.Tukey)在《计算数 学》杂志上发表了“机器计算傅立叶级数的一种算法”的文章,这是一 篇关于计算DFT的一种快速有效的计算方法的文章。它的思路建立在对 DFT运算内在规律的认识之上。这篇文章的发表使DFT的计算量大大减 少,并导致了许多计算方法的发现。这些算法统称为快速傅立叶变换 (Fast Fourier Transform),简称FFT,1984年,法国的杜哈梅尔 (P.Dohamel)和霍尔曼(H.Hollmann)提出的分裂基快速算法[2][6] 使运算效率进一步提高。FFT即为快速傅氏变换,是离散傅氏变换的快 速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立 叶变换的算法进行改进获得的。它对傅氏变换的理论并没有新的发现, 但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说 是进了一大步。随着科学的进步,FFT算法的重要意义已经远远超过傅 里叶分析本身的应用。FFT算法之所以快速,其根本原因在于原始变化 矩阵的多余行,此特性也适用于傅里叶变换外的其他一些正交变换,例 如,快速沃尔什变换、数论变换等等。在FFT的影响下,人们对于广义 的快速正交变换进行了深入研究,使各种快速变换在数字信号处理中占 据了重要地位。因此说FFT对数字信号处理技术的发展起了重大推动作 用。
和J.W.Tukey发现了DFT的一种快速算法,经其他学者进一步改进, 很快 形成了一套高效运算方法,这就是现在通用的快速傅里叶变换, 简称 FFT( The Fast Fourier Transform)。快速傅里叶变换的实质是利用式 (1)中的权函数的对称性和周期性,把N点DFT进行一系列分解和组合,使 整个DFT的计算过程变成一系列叠代运算过程,使DFT的运算量大大简化, 为DFT及数字信号的实时处理和应用创造了良好的条件。 快速傅里叶变换算法如下: 由(1)式可知,对每一个n,计算X(n)须作N次复数乘法及N-1次复数加 法,要完成这组变换共需次乘法及N(N-1)次复数加法。但以下介绍的快 速傅里叶变换的算法,可大大减少运算次数,提高工作效率。 当时,n和k可用二进制数表示: 又记 ,则(1)式可改写为 (2) 式中: (3) 因为所以(2)可改成 (4) (5) 则式(5)即为式(4)的分解形式。将初始数据代入式(5)的第一个 等式,可得每一组计算数据,一般将痗L-1组计算数据代入式(5)的第 L个等式,计算后可得第L组计算数据(L=1,2,…,γ),计算公式 也可表示为 =
三、实验原理
数字信号的傅里叶变换,通常采用离散傅里叶变换(DFT)方法。DFT 存在的不足是计算量太大,很难进行实时处理。计算一个N 点的DFT ,一 般需要次复数乘法和N(N-1)次复数加法运算.因此,当N较大或要求对信 号进行实时处理时,往往难以实现所需的运算速度。1965年,J.W.Cooly
2、 课程设计目的
1.熟悉MATLAB的使用方法,其中包括了解简单函数、了解原理和掌握操 作方法; 2.熟悉课程设计的过程及正是论文的写法。 3.通过实验加深对FFT的理解; 4.熟悉应用FFT对典型信号进行频谱分析的方法。 5.增强在通信原理仿真方面的动手能力与自学能力; 6.完成之后,再遇到类似的问题时,学会对所面对的问题进行系统的分 析,并能从多个方面进行比较。
本题主要要求应用FFT对典型信号进行频谱分析,最后使用MATLAB 程序实现信号频域特性的分析。编写程序时,首先得先计算和确定一些 参数的取值,根据已知题,确定最高频率fc=f3,根据实际需求,选择 f3=5fc,然后确定采样点数N,对信号进行谱分析的重要问题是频谱分辨 率和分析误差。频谱分辨率直接和FFT的变换区间N有关,因为FFT能够 实现的频率分辨率是2π/N,因此要求2π/N小于等于。可以根据此式选 择FFT的变换区间N。误差主要来自于用FFT作频谱分析时,得到的是离 散谱,而信号(周期信号除外)是连续谱,只有当N较大时,离散谱的 包络才能逼近连续谱,因此N要适当选择大一些。同时N需为,n为整 数,最后使用MATLAB信息处理工具箱中的函数fft(x,n),提供复数 幅值的函数及plot函数画出相应的频谱图。
相关文档
最新文档