简单的线性规划常见题型总结
例谈线性规划的常见题型及其解法
![例谈线性规划的常见题型及其解法](https://img.taocdn.com/s3/m/c263314859fafab069dc5022aaea998fcc2240f2.png)
线性规划是高考数学必考的内容,侧重于考查同学们的数学建模、数学运算、数学分析等能力.线性规划问题的类型有很多,在本文中笔者总结了几类常见的线性规划题型及其解法,以帮助同学们加深对线性规划题型及其解法的了解.类型一:求目标函数的最值求目标函数的最值是线性规划中的一类常见题型,主要有两种形式:(1)求线性目标函数的最值;(2)求非线性目标函数的最值.无论是哪一种,解题的基本思路都是:(1)画出约束条件所确定的平面区域;(2)将目标函数变形为斜截式直线方程、两点间的距离、直线的斜率等;(3)在可行域内寻找取得最优解的对应点的位置;(4)解方程组求出对应点的坐标(即最优解),代入目标函数,即可求出最值.例1.已知x、y满足以下约束条件ìíîïï2x+y-2≥0,x-2y+4≥0,3x-y -3≤0,则z=x2+y2的最大值和最小值分别是_____.解:作出如图1所示的可行域,将z=x2+y2可以看作点()x,y到原点的距离的平方,由图可知,在可行域内点A到原点的距离的平方最大,即||AO2=13,直线2x+y-2=0到原点的距离的平方最小,为d2=æèççöø÷÷||0-222+122=45,所以z=x2+y2的最大值和最小值分别是13和45.在求目标函数的最值时,同学们要注意将目标函数进行适当的变形,深入挖掘其几何意义,将其看作直线的斜率、截距、两点间的距离等,然后在可行域内寻找取得最值的点.类型二:求可行域的面积求可行域的面积的关键在于根据约束条件画出正确的图形,然后将可行域拆分、补充为规则的几何图形,如三角形、平行四边形、矩形等,再利用三角形、平行四边形、矩形等的面积公式进行求解.例2.已知不等式组ìíîïï2x+y-6≥0,x+y-3≤0,y≤2,则该不等式表示的平面区域的面积为_____.解:根据所给的不等式组作出可行域,如图2所示,由图2可知△ABC的面积即为所求.显然S△ABC=S梯形OMBC-S梯形OMAC,S梯形OMBC=12×()2+3×2=5,S梯形OMAC=12×()1+3×2=4,所以S△ABC=S梯形OMBC-S梯形OMAC=5-4=1.本题中的可行域为三角形,而该三角形的面积很难直接求得,于是将其看作梯形OMAB的一部分,将梯形OMAB的面积减去梯形OMAC的面积,便可得到三角形ABC的面积.类型三:求参数的取值或者范围很多线性规划问题中含有参数,要求其参数的取值或范围,首先要确定可行域,然后结合题意寻找符号条件的最优解,建立相对应的关系式,便可求得参数的取值或者范围.例3.已知x、y满足以下约束条件ìíîïïx+y≥5,x-y+5≤0,x≤3,使z=x+ay()a>0取得最小值的最优解有无数个,则a的值为_____.解:根据约束条件作出可行域,如图3所示,作出直线l:x+ay=0,要使目标函数z=x+ay()a>0取得最小值的最优解有无数个,可将直线l向右上方平移,使之与直线x+y=5重合,故a=1.通常含有参数的目标函数图象是不确定的,因此正确绘制出可行域十分关键,只有对问题中的所给条件进行正确的分析,才能快速找到正确的解题思路.通过对上述三类题型的分析,同学们可以发现线性规划问题都比较简单,按照基本的解题步骤:画图—变形目标函数—寻找最优解对应的点—求值便能得到答案.同学们在解答线性规划问题时还需重点关注特殊点、直线,这些特殊的点、位置常常是取得最优解的点或者位置.(作者单位:江苏省江阴市第一中学)承小华图1图2图3方法集锦45。
线性规划的常见题型
![线性规划的常见题型](https://img.taocdn.com/s3/m/9104ff0ba216147917112851.png)
线性规划的常见题型一、基础能力【一】已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的取值范围为( )A .[7,23]B .[8,23]C .[7,8]D .[7,25]【二】变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,(1)设z =y2x -1,求z 的最小值;(2)设z =x 2+y 2,求z 的取值范围;(3)设z =x 2+y 2+6x -4y +13,求z 的取值范围.技能掌握1.求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义.2.常见的目标函数有: (1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb 的最值,间接求出z 的最值.(2)距离型:形一:如z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离;形二:z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离的平方.(3)斜率型:形如z =y x ,z =ay -b cx -d ,z =ycx -d ,z =ay -b x ,此类目标函数常转化为点(x ,y )与定点所在直线的斜率.二、题型分解题型一:求线性目标函数的最值1.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .22.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2≥0,x -y +3≥0,2x +y -3≤0,则目标函数z =x +6y 的最大值为( )A .3B .4C .18D .403.若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域,则2x -y 的最小值为( ) A .-6 B .-2 C .0D .2题型二:求非线性目标的最值4.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM斜率的最小值为( )A .2B .1C .-13D .-125.已知实数x ,y 满足⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y ,则z =2x +y -1x -1的取值范围 . 6.设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≤2y -x ≤2,y ≥1,则x 2+y 2的取值范围是( )A .[1,2]B .[1,4]C .[2,2]D .[2,4]7.设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为________.8.设不等式组⎩⎪⎨⎪⎧x ≥1,x -2y +3≥0,y ≥x所表示的平面区域是Ω1,平面区域Ω2与Ω1关于直线3x -4y -9=0对称.对于Ω1中的任意点A 与Ω2中的任意点B ,|AB |的最小值等于( )A .285B .4C .125D .2题型三:求线性规划中的参数9.若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是A .73B .37C .43D .3410.若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为( )A .2B .-2C .12D .-1211.x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为A .12或-1B .2或12C .2或1D .2或-112.在约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤s ,y +2x ≤4.下,当3≤s ≤5时,目标函数z =3x +2y 的最大值的取值范围是( )A .[6,15]B .[7,15]C .[6,8]D .[7,8]13.设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x 3a +y 4a ≤1,若z =x +2y +3x +1的最小值为32,则a 的值为________.题型四:线性规划的实际应用14.A,B两种规格的产品需要在甲、乙两台机器上各自加工一道工序才能成为成品.已知A产品需要在甲机器上加工3小时,在乙机器上加工1小时;B产品需要在甲机器上加工1小时,在乙机器上加工3小时.在一个工作日内,甲机器至多只能使用11小时,乙机器至多只能使用9小时.A产品每件利润300元,B产品每件利润400元,则这两台机器在一个工作日内创造的最大利润是________元.15.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)试用每天生产的卫兵个数x与骑兵个数y表示每天的利润w(元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?三、练习巩固一、选择题1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7)B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)2.若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3,则z =x -y 的最小值是( )A .-3B .0C .32D .33.已知O 为坐标原点,A (1,2),点P 的坐标(x ,y )满足约束条件⎩⎪⎨⎪⎧x +|y |≤1,x ≥0,则z =OA →·OP →的最大值为( )A .-2B .-1C .1D .24.已知实数x ,y 满足:⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1的取值范围是( )A .⎣⎡⎦⎤53,5B .[0,5]C .⎣⎡⎭⎫53,5D .⎣⎡⎭⎫-53,5 5.如果点(1,b )在两条平行直线6x -8y +1=0和3x -4y +5=0之间,则b 应取的整数值为( ) A .2 B .1 C .3D .06.已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x +y 的取值范围是( )A .(1-3,2)B .(0,2)C .(3-1,2)D .(0,1+3)7.在平面直角坐标系xOy 中,P 为不等式组⎩⎪⎨⎪⎧y ≤1,x +y -2≥0,x -y -1≤0,所表示的平面区域上一动点,则直线OP 斜率的最大值为( )A .2B .13C .12D .18.在平面直角坐标系xOy 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }的面积为( )A .2B .1C .12D .149.设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -2≤0,x -y ≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为4,则ab的取值范围是( )A .(0,4)B .(0,4]C .[4,+∞)D .(4,+∞)10.设动点P (x ,y )在区域Ω:⎩⎪⎨⎪⎧x ≥0,y ≥x ,x +y ≤4上,过点P 任作直线l ,设直线l 与区域Ω的公共部分为线段AB ,则以AB 为直径的圆的面积的最大值为( )A .πB .2πC .3πD .4π11.变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥-1,x -y ≥2,3x +y ≤14,若使z =ax +y 取得最大值的最优解有无穷多个,则实数a 的取值集合是( )A .{-3,0}B .{3,-1}C .{0,1}D .{-3,0,1}12.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =( )A .-5B .3C .-5或3D .5或-313.若a ≥0,b ≥0,且当⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1时,恒有ax +by ≤1,则由点P (a ,b )所确定的平面区域的面积是( )A .12B .π4C .1D .π214.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2.求得m 的取值范围是( )A .⎝⎛⎭⎫-∞,43B .⎝⎛⎭⎫-∞,13 C .⎝⎛⎭⎫-∞,-23D .⎝⎛⎭⎫-∞,-53 15.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x 的图象上存在区域D 上的点,则a 的取值范围是 ( )A .(1,3]B .[2,3]C .(1,2]D .[3,+∞)16.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .4917.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧y ≥0,y ≤x ,y ≤k (x -1)-1表示一个三角形区域,则实数k 的取值范围是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)D .(-∞,-1)∪(1,+∞)18.已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则z =2x +y 的最大值为( )A .4B .6C .8D .1019.当变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥x x +3y ≤4x ≥m 时,z =x -3y 的最大值为8,则实数m 的值是( )A .-4B .-3C .-2D .-120.已知O 为坐标原点,A ,B 两点的坐标均满足不等式组⎩⎪⎨⎪⎧x -3y +1≤0,x +y -3≤0,x -1≥0,则tan ∠AOB 的最大值等于( )A .94B .47C .34D .12二、填空题21.不等式组 ⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为________.22.若实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1,则x +y 的取值范围是________.23.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为____.24.已知实数x ,y 满足⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,则w =x 2+y 2-4x -4y +8的最小值为________.25.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x +3y -6≤0,x +y -2≥0,y ≥0所表示的区域上一动点,则|OM |的最小值是________.26.某企业生产甲、乙两种产品,已知生产每吨甲产品要用水3吨、煤2吨;生产每吨乙产品要用水1吨、煤3吨.销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元,若该企业在一个生产周期内消耗水不超过13吨,煤不超过18吨,则该企业可获得的最大利润是______万元.27.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:________亩. 28.若A 为不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x ≤2表示的平面区域,则当a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为________.29.当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.30.已知动点P (x ,y )在正六边形的阴影部分(含边界)内运动,如图,正六边形的边长为2,若使目标函数z =kx +y (k >0)取得最大值的最优解有无穷多个,则k 的值为________.31.设m >1,在约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1下,目标函数z =x +my 的最大值小于2,则m 的取值范围 .32.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,若目标函数z =x -y 的最小值的取值范围是[-2,-1],则目标函数的最大值的取值范围是________.33.给定区域D :⎩⎪⎨⎪⎧x +4y ≥4,x +y ≤4,x ≥0.令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D 上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.34.已知向量a =(x +z,3),b =(2,y -z ),且a ⊥b .若x ,y 满足不等式|x |+|y |≤1,则z 的取值范围为__________.35.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +4y -13≤02y -x +1≥0x +y -4≥0且有无穷多个点(x ,y )使目标函数z =x +my 取得最小值,则m =________.。
线性规划例题和知识点总结
![线性规划例题和知识点总结](https://img.taocdn.com/s3/m/7c5b1117c950ad02de80d4d8d15abe23492f0306.png)
线性规划例题和知识点总结线性规划是运筹学中研究较早、发展较快、应用广泛且方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。
下面通过一些例题来帮助大家更好地理解线性规划,并对相关知识点进行总结。
一、线性规划的基本概念线性规划问题是在一组线性约束条件下,求一个线性目标函数的最大值或最小值问题。
线性约束条件通常是由一组线性等式或不等式组成。
例如:$2x +3y ≤ 12$,$x y ≥ 1$等。
目标函数一般表示为$Z = ax + by$的形式,其中$a$、$b$为常数,$x$、$y$为决策变量。
可行解是满足所有约束条件的解,可行域是所有可行解构成的集合。
最优解则是使目标函数达到最大值或最小值的可行解。
二、线性规划的例题例 1:某工厂生产甲、乙两种产品,已知生产甲产品 1 件需消耗 A原料 3 千克、B 原料 2 千克;生产乙产品 1 件需消耗 A 原料 2 千克、B 原料 4 千克。
A 原料有 12 千克,B 原料有 16 千克。
甲产品每件利润为 5 元,乙产品每件利润为 8 元,问该工厂应如何安排生产,才能使利润最大?设生产甲产品$x$件,生产乙产品$y$件。
则约束条件为:$\begin{cases}3x +2y ≤ 12 \\ 2x +4y ≤ 16 \\x ≥ 0, y ≥0\end{cases}$目标函数为$Z = 5x + 8y$画出可行域,通过解方程组找到可行域的顶点坐标,分别代入目标函数计算,可得当$x = 2$,$y = 3$时,利润最大为$34$元。
例 2:某运输公司有两种货车,每辆大型货车可载货 8 吨,每辆小型货车可载货 5 吨。
现要运输 60 吨货物,且大型货车的使用成本为每次 100 元,小型货车的使用成本为每次 60 元,问如何安排车辆才能使运输成本最低?设使用大型货车$x$辆,小型货车$y$辆。
约束条件为:$\begin{cases}8x +5y ≥ 60 \\x ≥ 0, y ≥ 0\end{cases}$目标函数为$Z = 100x + 60y$画出可行域,计算顶点坐标代入目标函数,可知当$x = 5$,$y =4$时,成本最低为$740$元。
线性规划例题和知识点总结
![线性规划例题和知识点总结](https://img.taocdn.com/s3/m/04f8657a0622192e453610661ed9ad51f11d541d.png)
线性规划例题和知识点总结线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。
在实际生活中,有很多问题都可以通过线性规划来解决,比如资源分配、生产计划、运输调度等。
下面我们通过一些具体的例题来深入理解线性规划,并对相关知识点进行总结。
一、线性规划的基本概念线性规划问题是在一组线性约束条件下,求一个线性目标函数的最大值或最小值。
线性规划的数学模型通常可以表示为:目标函数:$Z = c_1x_1 + c_2x_2 +\cdots + c_nx_n$约束条件:$\begin{cases}a_{11}x_1 + a_{12}x_2 +\cdots +a_{1n}x_n \leq b_1 \\ a_{21}x_1 + a_{22}x_2 +\cdots +a_{2n}x_n \leq b_2 \\\cdots \\ a_{m1}x_1 + a_{m2}x_2 +\cdots + a_{mn}x_n \leq b_m \\ x_1, x_2, \cdots, x_n \geq0\end{cases}$其中,$x_1, x_2, \cdots, x_n$是决策变量,$c_1, c_2, \cdots, c_n$是目标函数的系数,$a_{ij}$是约束条件的系数,$b_i$是约束条件的右端项。
二、线性规划的解题步骤1、建立数学模型:根据实际问题,确定决策变量、目标函数和约束条件。
2、画出可行域:将约束条件在直角坐标系中表示出来,得到可行域。
3、求出最优解:在可行域内,通过寻找目标函数的等值线与可行域边界的交点,求出最优解。
三、例题分析例 1:某工厂生产甲、乙两种产品,已知生产 1 单位甲产品需要消耗 A 资源 2 单位,B 资源 3 单位,可获利 5 万元;生产 1 单位乙产品需要消耗 A 资源 3 单位,B 资源 2 单位,可获利 4 万元。
现有 A 资源12 单位,B 资源 10 单位,问如何安排生产,才能使工厂获得最大利润?解:设生产甲产品$x_1$单位,生产乙产品$x_2$单位。
线性重点规划的12种题型
![线性重点规划的12种题型](https://img.taocdn.com/s3/m/97d103e84bfe04a1b0717fd5360cba1aa8118cf3.png)
线性规划旳12种题型线性规划是高考必考旳知识点,学生对这个知识点结识多数停留在简朴应用阶段,现将常用题型归纳如下:一、 考察不等式表达旳平面区域:例1、不等式0x y ->所示旳平面区域是( ) A. B. C. D.分析:法一:代入特殊点验证;法二:看系数旳符号,若x 系数为正数,则左小右大,选B练习1、不等式()20y x y +-≥在平面直角坐标系中表达旳区域(用阴影部分表达)是 ( )选C2、已知点()3,1-和()4,3--在直线320x y a -+=旳同侧,则a 旳取值范畴是__________.【答案】611a a ><-或二、 判断可行域形状例2、不等式组 (5)()0,03x y x y x -++≥⎧⎨≤≤⎩表达旳平面区域是( ) A.矩形 B.三角形 C.直角梯形 D.等腰梯形分析:画图可知为等腰梯形,选D练习2、已知约束条件400x k x y x y ≥⎧⎪+-≤⎨⎪-≤⎩表达面积为1旳直角三角形区域,则实数k 旳值为( )A.0B.1C.1或3D.3选B三、 最值型简朴线性规划例3、设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤+≥-041y y x y x ,则目旳函数y x z 42+=旳最大值为( )A .2B .4C .8D .11分析:1.画可行域,2画l 0:2x+4y=0,3平移到可行域旳最右侧拟定最优解旳位置,4联立求出最优解坐标,4代入目旳函数求最大值11选D练习3、若实数,x y 满足1000x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则23x y z +=旳最小值为 .答案:1四、最优解问题例4、如图所示旳坐标平面旳可行域(阴影部分且涉及边界)内,目旳函数ay x z -=2获得最大值旳最优解有无数个,则a 为( )A.-2B.2C.-6D.6分析:由于x 旳系数为正,因此目旳函数与BC 重叠时,取最大值,最优解有无数个 代入B 、C 旳坐标两式相等,求出a=-2。
线性规划常见题型及解法 均值不等式(含答案)
![线性规划常见题型及解法 均值不等式(含答案)](https://img.taocdn.com/s3/m/d220644eaf1ffc4ffe47ac38.png)
线性规划常见题型及解法一.基础知识:(一)二元一次不等式表示的区域二元一次不等式0>++C By Ax 表示直线0=++C By Ax 某一侧的所有点组成的区域,把直线画成虚线表示不包括边界, 0≥++C By Ax 所表示的区域应包括边界,故边界要画成实线.由于在直线0=++C By Ax 同一侧的所有点(x,y ),把它的坐标(x,y )代入C By Ax ++,所得的符号相同,所以只需在此直线的某一侧取一个特殊点(0,0y x ),从C By Ax ++00的正负即可判断0≥++C By Ax 表示直线哪一侧的平面区域。
通常代特殊点(0,0)。
(二)线性规划(1)不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.z =A x +B y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z =A x +B y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.(2)一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.(3)那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(11,y x )和(22,y x )分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.线性目标函数的最值常在可行域的顶点处取得;而求最优整数解必须首先要看它们是否在可行(4)用图解法解决简单的线性规划问题的基本步骤:1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设z =0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解.4.最后求得目标函数的最大值及最小值. (5) 利用线性规划研究实际问题的解题思路:首先,应准确建立数学模型,即根据题意找出约束条件,确定线性目标函数.然后,用图解法求得数学模型的解,即画出可行域,在可行域内求得使目标函数取得最值的解. 最后,还要根据实际意义将数学模型的解转化为实际问题的解,即结合实际情况求得最优解.线性规划是新教材中新增的内容之一,由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下常见题型。
高考线性规划题型归纳
![高考线性规划题型归纳](https://img.taocdn.com/s3/m/4578afa2ad51f01dc281f19f.png)
线性规划常见题型及解法一、已知线性约束条件,探求线性目标关系最值问题例1、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。
解析:如图1,画出可行域,得在直线2x-y=2与直线x-y=-1的交点A(3,4)处,目标函数z 最大值为18 点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。
数形结合是数学思想的重要手段之一。
习题1、若x 、y 满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y 的取值范围是 ( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将l 向右上方平移,过点A (2,0)时,有最小值2,过点B (2,2)时,有最大值6,故选A二、已知线性约束条件,探求非线性目标关系最值问题例2、已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值是 .解析:如图2,只要画出满足约束条件的可行域,而22x y +表示可行域内一点到原点的距离的平方。
由图易知A (1,2)是满足条件的最优解。
22x y +的最小值是为5。
点评:本题属非线性规划最优解问题。
求解关键是在挖掘目标关系几何意义的前提下,作出可行域,寻求最优解。
习题2、已知x 、y 满足以下约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x 2+y 2的最大值和最小值分别是( ) A 、13,1 B 、13,2C 、13,45D 、13,25解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离图2xy O2 2 x=2y =2 x + y =2BA 2x + y - 2= 0 = 5x – 2y + 4 = 03x – y – 3OyxA的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为45,选C 练习2、已知x ,y 满足⎪⎩⎪⎨⎧≥-+≥≥≤-+0320,1052y x y x y x ,则xy 的最大值为___________,最小值为____________.2,0三、设计线性规划,探求平面区域的面积问题例3、在平面直角坐标系中,不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域的面积是()(A)42 (B)4 (C) 22 (D)2解析:如图6,作出可行域,易知不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域是一个三角形。
(完整版)简单的线性规划问题(附答案).doc
![(完整版)简单的线性规划问题(附答案).doc](https://img.taocdn.com/s3/m/7c23b397b4daa58da0114abc.png)
简单的线性规划问题[ 学习目标 ] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念 .2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题.知识点一线性规划中的基本概念名称意义约束条件关于变量 x, y 的一次不等式 (组 )线性约束条件关于 x, y 的一次不等式 (组 )目标函数欲求最大值或最小值的关于变量x, y 的函数解析式线性目标函数关于变量 x,y 的一次解析式可行解满足线性约束条件的解(x, y)可行域由所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题知识点二线性规划问题1.目标函数的最值线性目标函数 z= ax+ by (b≠ 0)对应的斜截式直线方程是y=-a z,在 y 轴上的截距是z,bx+b b当 z 变化时,方程表示一组互相平行的直线.当 b>0,截距最大时, z 取得最大值,截距最小时,z 取得最小值;当 b<0,截距最大时, z 取得最小值,截距最小时,z 取得最大值.2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即,(1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界 )便是最优解.(3)求:解方程组求最优解,进而求出目标函数的最大值或最小值.(4)答:写出答案.知识点三简单线性规划问题的实际应用1.线性规划的实际问题的类型(1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大;(2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有:①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小?②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的 A、B、C 三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大?③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤(1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法.(2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解.(3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案.题型一求线性目标函数的最值例1 已知变量x, y 满足约束条件y≤ 2,x+ y≥ 1,x- y≤1,则 z= 3x+ y 的最大值为( )A . 12B .11C.3 D.- 1答案 B解析首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y=- 3x+z 经y=2,x= 3,过点 A 时, z 取得最大值.由? 此时z=3x+ y= 11.x-y= 1 y= 2,x+y- 2≤ 0,跟踪训练 1 (1)x,y 满足约束条件x- 2y- 2≤ 0,若z=y-ax取得最大值的最优解不唯一,...2x-y+ 2≥ 0,则实数 a 的值为 ()1 1A. 2或- 1 B .2 或 2C.2 或 1 D. 2 或- 1x-y+ 1≤ 0,(2)若变量 x,y 满足约束条件x+2y- 8≤ 0,则 z= 3x+ y 的最小值为 ________ .x≥0,答案(1)D (2)1解析(1) 如图,由 y=ax+ z 知 z 的几何意义是直线在y 轴上的截距,故当 a>0 时,要使z= y- ax 取得最大值的最优解不唯一,则a=2;当 a<0 时,要使 z= y- ax 取得最大值的最优解不唯一,则a=- 1.y=- 3x+ z 过点(2)由题意,作出约束条件组成的可行域如图所示,当目标函数z= 3x+ y,即(0,1)时 z 取最小值 1.题型二非线性目标函数的最值问题x- y-2≤ 0,例2 设实数 x, y 满足约束条件 x+ 2y- 4≥ 0,求2y- 3≤ 0,(1)x2+y2的最小值;y(2)x的最大值.解如图,画出不等式组表示的平面区域ABC,(1)令 u= x2+ y2,其几何意义是可行域ABC 内任一点 (x, y)与原点的距离的平方.x+2y- 4= 0,4,8 过原点向直线 x+ 2y- 4=0 作垂线 y= 2x,则垂足为y=2x 的解,即 5 5 ,x+ 2y- 4= 0, 3又由2y- 3=0,得 C 1,2 ,所以垂足在线段 AC 的延长线上,故可行域内的点到原点的距离的最小值为|OC|=1+3 2 213=2,13所以, x2+y2的最小值为4 .yABC 内任一点 (x, y)与原点相连的直线l 的斜率为 v,即 v (2)令 v=x,其几何意义是可行域y- 0=x-0.由图形可知,当直线l 经过可行域内点 C 时, v 最大,3由(1) 知 C 1,2,所以 v max=3 y 3,所以的最大值为.2 x 2x≥ 0,跟踪训练 2 已知 x, y 满足约束条件y≥ 0,则(x+3) 2+ y2的最小值为 ________.x+ y≥ 1,答案10解析画出可行域 ( 如图所示 ) . (x+ 3)2+ y2即点 A(- 3,0)与可行域内点(x, y)之间距离的平方.显然AC 长度最小,∴AC2= (0+ 3)2+ (1- 0)2= 10,即 (x+ 3)2+y2的最小值为 10.题型三线性规划的实际应用例 3某公司生产甲、乙两种桶装产品.已知生产甲产品 1 桶需耗 A 原料 1 千克、 B 原料 2 千克;生产乙产品 1 桶需耗 A 原料 2 千克、 B 原料 1 千克.每桶甲产品的利润是300 元,每桶乙产品的利润是400 元.公司在生产这两种产品的计划中,要求每天消耗A, B 原料都不超过 12 千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是多少?x+ 2y≤ 12,解设每天分别生产甲产品x 桶,乙产品 y 桶,相应的利润为2x+ y≤ 12,z 元,于是有x≥ 0, y≥ 0,x∈ N , y∈ N ,z= 300x+ 400y,在坐标平面内画出该不等式组表示的平面区域及直线300x+400y= 0,平移该直线,当平移到经过该平面区域内的点(4,4)时,相应直线在 y 轴上的截距达到最大,此时 z= 300x+ 400y 取得最大值,最大值是 z= 300× 4+ 400× 4= 2 800,即该公司可获得的最大利润是 2 800 元.反思与感悟线性规划解决实际问题的步骤:① 分析并根据已知数据列出表格;②确定线性约束条件;③ 确定线性目标函数;④画出可行域;⑤利用线性目标函数 (直线 )求出最优解;⑥ 实际问题需要整数解时,应适当调整,以确定最优解.跟踪训练 3 预算用 2 000 元购买单价为 50 元的桌子和 20 元的椅子,希望使桌子和椅子的总数尽可能的多,但椅子数不少于桌子数,且不多于桌子数的 1.5 倍,问桌子、椅子各买多少才行?解设桌子、椅子分别买x 张、 y 把,目标函数z= x+ y,把所给的条件表示成不等式组,即约束条件为50x+20y≤ 2 000,y≥ x,y≤ 1.5x,x≥ 0,x∈ N*,y≥0, y∈ N* .x=200,50x+ 20y=2 000,7由解得200 y= x,y=,7所以 A 点的坐标为 200,200 .7 750x + 20y =2 000,x = 25,由解得75y = 1.5x ,y = 2 ,所以 B 点的坐标为 7525, 2 .200 20075所以满足条件的可行域是以 A 7 ,7 , B 25, 2 , O(0,0) 为顶点的三角形区域 (如图 ).75由图形可知,目标函数 z =x + y 在可行域内的最优解为 B 25, 2 ,但注意到 x ∈ N * , y ∈ N * ,x = 25, 故取y = 37.故买桌子 25 张,椅子 37 把是最好的选择.x + y - 3≤ 0,1.若直线 y = 2x 上存在点 ( x , y)满足约束条件 x - 2y - 3≤0, 则实数 m 的最大值为 ()x ≥ m ,3A .- 1B . 1C.2D . 25x - 11y ≥- 22,2x + 3y ≥ 9, 2.某公司招收男职员x 名,女职员 y 名, x 和 y 需满足约束条件则 z2x ≤ 11,x ∈ N * , y ∈ N * ,= 10x + 10y 的最大值是 ( )A . 80B .85C .90D . 95y≤1,3.已知实数x,y 满足x≤1,则z=x2+y2的最小值为________.x+y≥ 1,一、选择题1.若点 (x, y)位于曲线 y= |x|与 y= 2 所围成的封闭区域,则 2x- y 的最小值为 ( ) A .- 6 B.- 2 C. 0 D. 2x≥ 1,2.设变量 x, y 满足约束条件x+ y- 4≤ 0,则目标函数 z= 3x- y 的最大值为 ()x- 3y+4≤ 0,4A .- 4 B. 0 C.3 D. 4x≥ 1,则 z=y-1的取值范围是 (3.实数 x, y 满足 y≥ 0,)x- y≥ 0,xA . [ - 1,0]B .( -∞, 0]C.[ -1,+∞ ) D. [ - 1,1)x- y≥ 0,4.若满足条件x+ y- 2≤ 0,的整点 (x, y)(整点是指横、纵坐标都是整数的点)恰有 9 个,y≥ a则整数 a 的值为 ()A .- 3 B.- 2C.- 1 D. 0x≥ 1,5.已知 x, y 满足x+ y≤ 4,目标函数z= 2x+ y 的最大值为7,最小值为1,则 b,c x+ by+ c≤ 0,的值分别为( )A .- 1,4B .- 1,- 3C.- 2,- 1 D.- 1,- 26.已知x,y 满足约束条件x+ y≥ 5,x- y+ 5≥0,x≤ 3,使 z= x+ ay(a> 0)取得最小值的最优解有无数个,则 a 的值为( )A .- 3 B. 3 C.- 1 D. 1二、填空题x≤ 2,7.若 x, y 满足约束条件y≤2,则 z= x+ 2y 的取值范围是 ________.x+ y≥2,8.已知- 1≤ x+y≤ 4 且 2≤ x-y≤ 3,则 z= 2x- 3y 的取值范围是________(答案用区间表示).0≤ x≤ 2,9.已知平面直角坐标系 xOy 上的区域 D 由不等式组y≤ 2,给定.若 M(x, y)为 Dx≤ 2y上的动点,点 A 的坐标为 (→ →2, 1),则 z= OM ·OA的最大值为 ________.10.满足 |x|+ |y|≤ 2 的点 (x,y)中整点 (横纵坐标都是整数)有 ________个.x- y+ 2≥ 0,11.设实数 x, y 满足不等式组2x- y- 5≤ 0,则 z= |x+ 2y- 4|的最大值为 ________.x+ y- 4≥ 0,三、解答题x- 4y≤- 3,12.已知x, y 满足约束条件3x+ 5y≤ 25,目标函数z= 2x- y,求z 的最大值和最小值.x≥ 1,x+ y- 11≥ 0,13.设不等式组3x- y+ 3≥0,表示的平面区域为 D.若指数函数y= a x的图象上存在区域5x- 3y+ 9≤0D 上的点,求 a 的取值范围.14.某家具厂有方木料90 m3,五合板600 m2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m3,五合板 2 m2,生产每个书橱需要方木料0.2 m3,五合板 1 m2,出售一张方桌可获利润80 元,出售一个书橱可获利润120 元.(1)如果只安排生产书桌,可获利润多少?(2)如果只安排生产书橱,可获利润多少?(3)怎样安排生产可使所得利润最大?当堂检测答案1. 答案B解析 如图,当 y = 2x 经过且只经过x + y - 3=0 和 x = m 的交点时, m 取到最大值,此时,即 (m,2m)在直线 x + y - 3= 0 上,则 m = 1.2. 答案 C解析 该不等式组表示的平面区域为如图所示的阴影部分.由于 x , y ∈ N * ,计算区域内与11 9 最近的点为 (5,4),故当 x =5, y = 4 时, z 取得最大值为90.2 ,213. 答案2解析实数 x ,y 满足的可行域如图中阴影部分所示,则 z 的最小值为原点到直线 AB 的距离的平方,故 z min = 12= 1.2 2课时精练答案一、选择题1.答案 A解析画出可行域,如图所示,解得A(- 2,2),设 z= 2x- y,把z= 2x- y 变形为 y= 2x- z,则直线经过点 A 时 z 取得最小值;所以 z min=2× (- 2)- 2=- 6,故选 A.2.答案 D解析作出可行域,如图所示.x+ y- 4=0,x=2,联立解得x- 3y+ 4= 0,y=2.当目标函数z= 3x- y 移到 (2,2)时, z= 3x- y 有最大值4.3.答案 D解析作出可行域,如图所示,y-1的几何意义是点 (x, y)与点 (0,1)连线 l 的斜率,当直线l 过 B(1,0) 时 k l最小,最小为- 1. x又直线 l 不能与直线x- y= 0 平行,∴ k l< 1.综上, k∈ [- 1,1).解析不等式组所表示的平面区域如图阴影部分所示,当 a=0 时,只有 4 个整点 (1,1),(0,0) ,(1,0),(2,0).当 a=- 1 时,正好增加 (- 1,- 1),(0,- 1),(1 ,- 1),(2,- 1),(3,- 1)5 个整点.故选C.5.答案 D解析由题意知,直线x+by+ c= 0 经过直线2x+ y= 7 与直线x+ y= 4 的交点,且经过直线2x+ y=1 和直线x= 1 的交点,即经过点(3,1)和点 (1,- 1),3+ b+ c= 0,b=- 1,∴解得1- b+ c= 0,c=- 2.6.答案 D解析如图,作出可行域,作直线l:x+ ay=0,要使目标函数z= x+ ay(a> 0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x+ y= 5 重合,故a= 1,选 D.二、填空题7.答案[2,6]解析如图,作出可行域,作直线 l :x+ 2y= 0,将 l 向右上方平移,过点 A(2,0)时,有最小值 2,过点 B(2,2)时,有最大值 6,故 z 的取值范围为[2,6] .解析作出不等式组-1≤ x+ y≤ 4,表示的可行域,如图中阴影部分所示.2≤ x- y≤ 3在可行域内平移直线 2x-3y= 0,当直线经过 x- y= 2 与 x+y= 4 的交点 A(3,1)时,目标函数有最小值z min=2× 3- 3× 1= 3;当直线经过 x+ y=- 1 与 x- y= 3 的交点 B(1,- 2) 时,目标函数有最大值z max=2× 1+ 3× 2 = 8.所以 z∈[3,8] .9.答案 4解析由线性约束条件0≤ x≤ 2,y≤ 2,画出可行域如图中阴影部分所示,目标函数→ →2x+ y,将其化为z=OM ·OA=x≤ 2yy=- 2x+ z,结合图形可知,目标函数的图象过点( 2, 2)时, z 最大,将点 ( 2, 2)代入 z = 2x+ y,得 z 的最大值为 4.10.答案13解析|x|+ |y|≤ 2 可化为x+ y≤ 2 x- y≤ 2x≥ 0, y≥0x≥ 0, y< 0 ,,-x+ y≤ 2 x<0, y≥ 0 ,-x- y≤ 2 x<0, y< 0 ,作出可行域为如图正方形内部(包括边界 ),容易得到整点个数为13 个.11.答案 21解析作出可行域 (如图 ),即△ABC 所围区域 (包括边界 ),其顶点为A(1,3), B(7,9),C(3,1)方法一∵可行域内的点都在直线x+ 2y- 4=0 上方,∴x+ 2y- 4> 0,则目标函数等价于 z= x+ 2y-4,易得当直线 z= x+2y- 4 在点 B(7,9)处,目标函数取得最大值z max= 21.方法二z= |x+ 2y-4|=|x+ 2y- 4|· 5,5令 P( x,y)为可行域内一动点,定直线x+2y- 4= 0,则z= 5d,其中 d 为 P(x, y)到直线 x+2y- 4= 0 的距离.由图可知,区域内的点 B 与直线的距离最大,故d的最大值为 |7+ 2× 9-4|= 21.5 5故目标函数z max= 21 · 5= 21.5三、解答题12.解z= 2x- y 可化为y= 2x- z, z 的几何意义是直线在y 轴上的截距的相反数,故当z 取得最大值和最小值时,应是直线在y 轴上分别取得最小和最大截距的时候.作一组与l0:2x- y=0 平行的直线系l,经上下平移,可得:当l 移动到l1,即经过点A(5,2) 时, z max= 2× 5 - 2= 8.当l 移动到 l 2,即过点 C(1,4.4) 时,z min= 2× 1-4.4=- 2.4.13.解先画出可行域,如图所示,y= a x必须过图中阴影部分或其边界.∵A(2,9) ,∴ 9= a2,∴a= 3.∵a> 1,∴ 1< a≤ 3.14.解由题意可画表格如下:方木料 (m3) 五合板 (m2) 利润 (元 ) 书桌 (张 ) 0.1 2 80书橱 (个 ) 0.2 1 120(1)设只生产书桌x 张,可获得利润z 元,0.1x≤ 90,x≤ 900,2x≤ 600,? x≤300,? 0≤ x≤ 300.则z= 80x,x≥0x≥ 0所以当 x= 300 时, z max= 80× 300= 24 000(元 ) ,即如果只安排生产书桌,最多可生产300 张书桌,获得利润24 000 元.(2)设只生产书橱y 个,可获得利润z 元,0.2y≤ 90,y≤ 450,1·y≤ 600,? y≤ 600,? 0≤ y≤ 450.则z= 120y,y≥ 0y≥ 0所以当 y= 450 时, z max= 120× 450= 54 000(元 ),即如果只安排生产书橱,最多可生产450 个书橱,获得利润54 000 元.(3)设生产书桌 x 张,书橱 y 个,利润总额为z 元,0.1x+ 0.2y≤ 90,x+ 2y≤ 900,2x+ y≤ 600,2x+ y≤ 600,则?x≥ 0,x≥ 0,y≥ 0 y≥ 0.z= 80x+120y.在平面直角坐标系内作出上面不等式组所表示的平面区域,即可行域(如图 ).作直线 l :80x+ 120y=0,即直线 l: 2x+ 3y=0.把直线 l 向右上方平移至 l1的位置时,直线经过可行域上的点M,此时 z= 80x+ 120y 取得最大值.x+ 2y= 900,由2x+ y= 600,解得,点M 的坐标为 (100,400) .所以当 x= 100,y= 400 时,z max= 80×100+ 120×400= 56 000(元 ).因此,生产书桌100 张、书橱400 个,可使所得利润最大.。
(完整word)线性规划题型总结,推荐文档
![(完整word)线性规划题型总结,推荐文档](https://img.taocdn.com/s3/m/987e7ecd84868762caaed548.png)
线性规划题型总结一、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x 【类型一:已知线性约束条件,探求线性目标关系最值问题】例1.求y x z 32+=的最大值.【类型二:已知线性约束条件,探求分式目标关系最值问题】例2.求112++=y x z 的取值范围.【类型三:已知线性约束条件,探求平方和目标关系最值问题】例3.求22)2(-+=y x z 的最值,以及此时对应点的坐标.【类型四:已知线性约束条件,探求区域面积与周长问题】例4.试求所围区域的面积与周长.【类型五:已知最优解,探求目标函数参数问题】例5.已知目标函数z ax y =+(其中0<a )仅在(3,4)取得最大值,求a 的取值范围.【类型六:已知最优解,探求约束条件参数问题】 例6.设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+≥-≤-122y x m y x y x ,目标函数y x z 32+=在(4,6)取得最大值,求m .二、线性规划的实际应用线性规划的实际应用题型大体有两类,一类是一项任务确定后,如何统一安排,做到以最少的人力物力完成任务;另一类是在人力物力一定的条件下,如何安排使得最大化的发挥效益.两类题型是同一个问题的两面,主要依据以下步骤:1.认真分析实际问题的数学背景,将对象间的生产关系列成表格;2.根据问题设未知量,并结合表格将生产关系写出约束条件;3.结合图形求出最优解.例1.配制A 、B 两种药剂,需要甲、乙两种原料,已知配一剂A 种药需甲料3 mg ,乙料5 mg ;配一剂B 种药需甲料5 mg ,乙料4 mg.今有甲料20 mg ,乙料25 mg ,若A 、B 两种药至少各配一剂,问共有多少种配制方法?例2. 某汽车公司有两家装配厂,生产甲、乙两种不同型号的汽车,若A 厂每小时可完成1辆甲型车和2辆乙型车;B 厂每小时可完成3辆甲型车和1辆乙型车.今欲制造40辆甲型车和20辆乙型车,问这两家工厂各工作几小时,才能使所费的总工作时数最少?针对练习一、选择题1.下列四个命题中真命题是( )A .经过点P (x o ,y o )的直线都可以用方程y -y o =k (x -x o )表示;B .经过任意两不同点P 1(x 1,y 1), P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示;C .不经过原点的直线都可以用方程1=+by a x 表示; D .经过定点A (0,b )的直线都可以用方程y =kx +b 表示2.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ).A 1=+b a .B 1=-b a .C 0=+b a .D 0=-b a3.下面给出四个点中,位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( ) A.(02), B.(20)-,C.(02)-, D.(20), 4.若变量x 、y 满足约束条件 1.0.20.y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则z =x-2y 的最大值为A.4B.3C.2D.15.在约束条件0024x y y x s y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下,当35s ≤≤时,目标函数32z x y =+最大值的变化范围是( ) A.[6,15] B. [7,15] C. [6,8] D. [7,8]6.在平面直角坐标系中,不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域的面积是()A. B.4C. D.27.某公司招收男职员x 名,女职员y 名,x 和y 须满足约束条件⎪⎩⎪⎨⎧≤≥+-≥-.112,932,22115x y x y x 则1010z x y =+的最大值是( )A.80B.85C. 90D.958.已知变量x y ,满足约束条件20170x y x x y -+⎧⎪⎨⎪+-⎩≤,≥,≤,则y x 的取值范围是( ).A ⎥⎦⎤⎢⎣⎡6,59 .B [)965⎛⎤-∞+∞ ⎥⎝⎦U ,, .C (][)36-∞+∞U ,, .D [36],二、填空题9.已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值是 ;10.若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x y a +=扫过A 中的那部分区域的面积为 ;11.已知变量x ,y 满足约束条件1422x y x y ≤+≤⎧⎨-≤-≤⎩。
线性规划基本题型
![线性规划基本题型](https://img.taocdn.com/s3/m/e66fdd73ec630b1c59eef8c75fbfc77da26997b2.png)
例5
(2023年北京-7)设不等式组
3x表x达y旳y平1面13
0 0
区(A域)(1为,D3,] 若(B指)数[2,函3数] y=(aCx旳) (1图,像2上] 存在(D区)[域35D,x上+旳∞3]点y,则9a旳0取值范围是
解:作出可行域如右图所示绿色
区域. 0<a<1 时 , x>0 时 , 0<ax<1 , y=ax
离旳平方旳最值问题.
题型三 求非线性目旳函数旳最值—斜率型
例3
x+y-6≥0, 已知实数 x,y 满足4x-3y+12≥0,
x≤4.
求xy的最大值与最小值.
【解】
x+y-6≥0, 作出不等式组4x-3y+12≥0,
x≤4
平面区域,如图所示.
表示的
(1)令 z=xy,则 y=zx.故求xy的最大值与最小值就是求 不等式组所表示的平面区域内的点与原点连线的斜率的 最大值与最小值,由图易知,kOC 最小,kOA 最大.
联立2x+x+2yy= =4500 ,得xy==2100 , ∴A(10,20). ∴z=3x+2y 的最大值为 z=3×10+2×20=70.
题型二 求非线性目旳函数旳最值—距离型
若目旳函数不是线性函数,我们可先将目旳函数变形找 到它旳几何意义,再利用解析几何知识求最值.
例2
x-y+2≥0 已知x+y-4≥0 ,求:
的交点(4,6)时,目标函数 z=ax+by(a>0,
b>0)取得最大值 12,即 4a+6b=12,即 2a+3b=6,而2a+3b=(2a+3b)2a+6 3b=163+(ba+ab)≥163+2= 265,故2a+3b的最小值为265.
检测:
高考数学线性规划常见题型及解法[1]
![高考数学线性规划常见题型及解法[1]](https://img.taocdn.com/s3/m/e12c850c001ca300a6c30c22590102020740f2d2.png)
高考数学线性规划常见题型与解法线性规划问题是高考的重点,也是常考题型,属于中等偏简单题,易得分,高考中要求会从实际问题中建立一格二元线性规划的模型,使实际问题得到解决。
现就常见题型与解决方法总结如下: 一、求线性目标函数的最值;例题:(2012年广东文5)已知变量,x y 满足条件1110x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则2z x y =+的最小值为 A.3 .1 C5 6解析:利用线性规划知识求解。
可行域如图阴影所示,先画出直线01:2l y x =-,平移直线0l ,当直线过点A 时,2z x y =+的值最小,得110,x x y =-⎧⎨--=⎩12,x y =-⎧⎨=-⎩min (1,2),12(2)5A z ∴--∴=-+⨯-=- 探究提高:本题主要考查线性规划求最值,同时考查学生的作图能力,数形结合思想与运算求解能力,难度适中。
二、求目标函数的取值范围;例题:(2012山东文6)设变量,x y 满足约束条件2224,41x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是解析:作出不等式组表示的区域,如图阴影部分所示,作直线30x y -=,并向上、向下平移,由图可得,当直线过点C 时,目标函数取得最大值,当直线过点A 是,目标函数取得最小值,由210,(2,0)240x y A x y ++=⎧⎨+-=⎩得;由4101,(,3)2402x y x y -+=⎧⎨+-=⎩得B 探究提高:本题设计有新意,作出可行域,寻求最优解条条件,取得目标函数的最大(小)值,进一步确定取值范围 三、求约束条件中参数的取值;例题:(2012福建文10)若直线2x y =上存在点(,)x y 满足条件-30-2-30,x y x y x m +≥⎧⎪≤⎨⎪≥⎩则实数m 的最大值为( )解析:在同一直角坐标系中函数2x y =的图像与30230x y x y +-≤⎧⎨--≤⎩,所表示的平面区域图阴影部分所示。
线性规划常见题型及解法
![线性规划常见题型及解法](https://img.taocdn.com/s3/m/50a4c76080eb6294dc886c6c.png)
线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。
、求线性目标函数的取值范围1、若x、y满足约束条件x 2y 2 ,则z x 2y的取值范围是x y 2A、[2,6]B、[2,5] C [3,6] D、( 3,5]解:如图,作出可行域,作直线I : x+2y = 0,将I向右上方平移,过点 A (2,0 )时,有最小值2,过点B (2,2 )时,有最大值6,故选A(注:象这样目标是线性的选填题,可以代边界交点检验即可)x + y =2、求可行域的面积2x y 6 02、不等式组x y 3 0表示的平面区域的面积为()y 2A、4B、1C、5D、无穷大解:如图,作出可行域,△ ABC的面积即为所求,由梯形OMBC勺面积减去梯形OMAC勺面积即可,选B三、求可行域中整点个数x y 2(x 0, y 0)3、满足|x| + |y| w 2的点(x, y)中整点(横纵坐标都是整数)有(A、9 个B 10 个C 13 个D、14 个解:凶 + |y| w 2 等价于x y 2(x 0, y 0)或x y 2(x 0, y 0)或x y 2(x 0, y 0)x=2 或x y 2(x 0, y 0),作出可行域如右图,是正方形内部(包括边界)容易得到整点个数为 13个,选D (注:根据对称性作图要容易些)四、求线性目标函数中参数的取值范围x y 54、已知x 、y 满足以下约束条件 x y 5,x 3使z x ay(a 0))取得最小值的最优解有无数个, 则a 的值为()A 、 一 3B 、 3C 、 一 1D 、 1解:如图,作出可行域,作直线I : x+ay = 0 ,要使目标函数z=x+ay(a>0) 取得最小值的最优解有无数个,则将I 向右上方平移后与直线x+y =5重合,故a=1 ,选D解:如图,作出可行域,I X 2y 2是点P ( x , y )值为点A ( 2,3 )到原点的距离的平方,即|A0| 2=13 ;最小值为原点4到直线2x + y — 2=0的距离的平方,即为一。
线性规划题及答案
![线性规划题及答案](https://img.taocdn.com/s3/m/7025f40abf1e650e52ea551810a6f524ccbfcb23.png)
线性规划题及答案引言概述:线性规划是一种数学优化方法,用于在一组线性约束条件下寻觅使目标函数取得最大(最小)值的变量值。
在实际生活和工作中,线性规划往往被用于资源分配、生产计划、运输问题等方面。
本文将介绍一些常见的线性规划题目,并给出相应的答案。
一、资源分配问题1.1 问题描述:某公司有两个生产部门A和B,每天生产产品X和Y。
部门A 每天生产产品X需要消耗3个单位的资源,生产产品Y需要消耗2个单位的资源;部门B每天生产产品X需要消耗2个单位的资源,生产产品Y需要消耗4个单位的资源。
公司每天有20个单位的资源可供分配,如何分配资源才干使得产出最大化?1.2 解答:设部门A每天生产产品X的数量为x,生产产品Y的数量为y;部门B每天生产产品X的数量为u,生产产品Y的数量为v。
根据题目描述,可以建立如下线性规划模型:Maximize Z = 3x + 2y + 2u + 4vSubject to:3x + 2y + 2u + 4v <= 20x, y, u, v >= 0通过线性规划求解器可以得到最优解。
二、生产计划问题2.1 问题描述:某工厂有两个生产车间,每天生产产品P和Q。
车间1每天生产产品P需要花费5个单位的时间,生产产品Q需要花费3个单位的时间;车间2每天生产产品P需要花费4个单位的时间,生产产品Q需要花费6个单位的时间。
工厂每天有40个单位的时间可供分配,如何安排生产计划才干使得产量最大化?2.2 解答:设车间1每天生产产品P的数量为x,生产产品Q的数量为y;车间2每天生产产品P的数量为u,生产产品Q的数量为v。
根据题目描述,可以建立如下线性规划模型:Maximize Z = 5x + 3y + 4u + 6vSubject to:5x + 3y + 4u + 6v <= 40x, y, u, v >= 0通过线性规划求解器可以得到最优解。
三、运输问题3.1 问题描述:某公司有两个仓库和三个销售点,每一个仓库有一定数量的产品可供销售点购买。
高中简单线性规划基础题型总结
![高中简单线性规划基础题型总结](https://img.taocdn.com/s3/m/e5c6caa6900ef12d2af90242a8956bec0975a5cc.png)
高中简单线性规划基础题型总结熊明军简单线性规划属于操作性知识,是高考必考知识点,历年不变,必有一选择或填空题。
下面结合例题,总结高中简单线性规划问题的基础题型,方便同学们快速掌握相关内容。
线性规划问题的基础题型,可根据目标函数的特点,将其分为三类: 类型一(直线):by ax z +=【理论】点到直线的距离。
【步骤】①作出可行域;②作出直线by ax +=0;③判断可行域顶点到直线by ax +=0的距离:()max max ,z y x P d ⇒⇒和()min min ,'z y x P d ⇒⇒【例题】已知y x ,满足不等式组⎪⎩⎪⎨⎧≤--≥-+≥+-0520402y x y x y x ,求y x z 2-=的最值。
【解析】分三步走:①作出可行域:②作出直线y x 20-=:③判断直线y x 20-=到可行域顶点C B A 、、间的距离:平移、目测或代点都能判断,得()()11231,3,max max =⨯-=⇒⇒=z B l B d d ;()()119279,7,min min -=⨯-=⇒⇒=z C l C d d 。
类型二(圆):()()22b y a x z -+-= 【理论】两点之间的距离。
【步骤】①作出可行域;②作出圆()()222b y a x d -+-=;③判断可行域上的点到圆心()b a ,的距离(即半径r ):()max max max ,z y x P d r ⇒⇒=和()min min min ,'z y x P d r ⇒⇒=【例题】已知y x ,满足不等式组⎪⎩⎪⎨⎧≤--≥-+≥+-0520402y x y x y x ,求()()2211-+-=y x z 的最值。
【解析】分三步走:①作出可行域:②作出圆()()22211-+-=y x d :r d =且半径r 由小到大逐渐作圆。
③判断圆心()1,1到可行域上点间的距离,也就是与可行域有交点的圆中半径r 的大小:目测或用圆规作圆都能判断,得()()()()10019179,7,22max max max =-+-=⇒⇒==z C D C d d r ;()()211411,2222min min min min =⎪⎪⎭⎫ ⎝⎛+-+==⇒==d z l D d d r AB . 类型三(斜率):m n x a b y m a m n x m a b y a n mx b ay z --⨯=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=--= 【理论】两点确定的直线的斜率。
线性规划题及答案
![线性规划题及答案](https://img.taocdn.com/s3/m/d806c9677275a417866fb84ae45c3b3567ecdd2b.png)
线性规划题及答案引言概述:线性规划是一种数学优化方法,用于在给定约束条件下寻找使目标函数最大或最小的变量值。
在实际生活和工作中,线性规划经常被应用于资源分配、生产计划、运输问题等方面。
本文将介绍一些常见的线性规划题目,并给出相应的答案。
一、资源分配问题1.1 约束条件:某公司有两种产品A和B,生产一单位产品A需要耗费2个单位的资源X和1个单位的资源Y,生产一单位产品B需要耗费1个单位的资源X和3个单位的资源Y。
公司每天可用资源X和资源Y分别为10个单位和12个单位。
假设产品A的利润为3万元,产品B的利润为4万元,问如何分配资源才能使公司利润最大化?1.2 目标函数:设生产产品A的单位数为x,生产产品B的单位数为y,则目标函数为Maximize 3x + 4y。
1.3 答案:通过线性规划计算,最优解为生产产品A 4个单位,生产产品B 2个单位,公司利润最大化为20万元。
二、生产计划问题2.1 约束条件:某工厂生产两种产品C和D,生产一单位产品C需耗费2个单位的资源M和3个单位的资源N,生产一单位产品D需耗费4个单位的资源M和2个单位的资源N。
工厂每天可用资源M和资源N分别为8个单位和10个单位。
产品C的利润为5万元,产品D的利润为6万元,问如何安排生产计划以最大化利润?2.2 目标函数:设生产产品C的单位数为x,生产产品D的单位数为y,则目标函数为Maximize 5x + 6y。
2.3 答案:经过线性规划计算,最佳生产计划为生产产品C 2个单位,生产产品D 2个单位,工厂利润最大化为22万元。
三、运输问题3.1 约束条件:某公司有三个仓库分别存储产品E、F和G,每个仓库的存储容量分别为100、150和200个单位。
产品E、F和G的单位运输成本分别为2元、3元和4元,需求量分别为80、120和150个单位。
问如何安排运输计划以最小化总成本?3.2 目标函数:设从仓库i运输产品j的单位数为xij,则目标函数为Minimize2x11 + 3x12 + 4x13 + 2x21 + 3x22 + 4x23 + 2x31 + 3x32 + 4x33。
简单的线性计划常见题型总结
![简单的线性计划常见题型总结](https://img.taocdn.com/s3/m/49bba7f2a216147916112860.png)
简单的线性计划常见题型第Ⅰ类 求线性目标函数的最值(z ax by =+截距型)例1.设x,y 知足约束条件⎪⎩⎪⎨⎧≥≤+-≤-1255334x y x y x ,求52z x y =+的最值解:可行域是如图所示中ABC ∆的区域,得A(5,2),B(1,1),C(1,522) 作出直线L 0:5x+10y=0,再将直线L 0平移, 当L 通过点B 时,y 轴截距最小,即z 达到最小值,得min 7z =. 当L 通过点A 时,y 轴截距最大,即z 达到最大值,得max 29z =,因此最大值是29,最小值是7小试牛刀:一、若x y ,知足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为二、设变量,x y 知足约束条件1,1,33,x y x y x y -≥-⎧⎪+≥⎨⎪-≤⎩则目标函数4z x y =+的最大值3、设变量x 、y 知足约束条件⎪⎩⎪⎨⎧-≥≥+≤632x y y x x y ,则目标函数y x z +=2的最小值为4、设,x y 知足24,1,22,x y x y x y +≥⎧⎪-≥⎨⎪-≤⎩则z x y =+的最值为第Ⅱ类 求可行域的面积关键是准确画出可行域,依照其形状来计算面积,大体方式是利用三角形面积,或切割为三角形例2.不等式组⎪⎩⎪⎨⎧≤≥+-≥-+2,02,02x y x y x 表示的平面区域的面积是 ( ) 2 (B)4 2 (D)2解:可行域是A,B(2,4),C(2,0)组成的三角形,易患面积为4小试牛刀:一、不等式组236,-0,0x y x y y +≤⎧⎪≥⎨⎪≥⎩ .表示的平面区域的面积为 。
2、若不等式组03434x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域被直线43y kx =+分为面积相等的两部份,则k 的值是3、在平面直角坐标系中,若不等式组101010x y x ax y +-≥⎧⎪-≤⎨⎪-+≥⎩(α为常数)所表示的平面区域内 的面积等于2,则a的值为第Ⅲ类 距离型目标函数目标函数形式为“22z x y =+,22z x y =+,22()()z x a y b =-+-”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单的线性规划常见题型
第Ⅰ类 求线性目标函数的最值(z ax by =+截距型)
例1.设x,y 满足约束条件⎪⎩
⎪⎨⎧≥≤+-≤-1255334x y x y x ,求52z x y =+的最值
解:可行域是如图所示中ABC ∆的区域,得A(5,2),B(1,1),C(1,5
22) 作出直线L 0:5x+10y=0,再将直线L 0平移, 当L 经过点B 时,y 轴截距最小,即z 达到最小值,得min 7z =.
当L 经过点A 时,y 轴截距最大,即z 达到最大值,得max 29z =,所以最大值是29,最小值是7
小试牛刀:1、若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩
,,,≥≥≤≤则2z x y =-的最大值为
2、设变量,x y 满足约束条件1,1,33,x y x y x y -≥-⎧⎪+≥⎨⎪-≤⎩则目标函数4z x y =+的最大值
3、设变量x 、y 满足约束条件⎪⎩
⎪⎨⎧-≥≥+≤632x y y x x y ,则目标函数y x z +=2的最小值为
4、设,x y 满足24,1,22,x y x y x y +≥⎧⎪-≥⎨⎪-≤⎩
则z x y =+的最值为________
第Ⅱ类 求可行域的面积
关键是准确画出可行域,根据其形状来计算面积,基本方法是利用三角形面
积,或切割为三角形
例2.不等式组⎪⎩
⎪⎨⎧≤≥+-≥-+2,02,02x y x y x 表示的平面区域的面积是 ( ) 2 (B)4 2 (D)2
解:可行域是A(0.2),B(2,4),C(2,0)构成的三角形,易得面积为4
小试牛刀:1、不等式组236,
-0,
0x y x y y +≤⎧⎪≥⎨⎪≥⎩ .表示的平面区域的面积为 。
2、若不等式组03434x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域被直线43y kx =+分为面积相等的两部分,则k 的值是
3、在平面直角坐标系中,若不等式组101010x y x ax y +-≥⎧⎪-≤⎨⎪-+≥⎩
(α为常数)所表示的平面区域内 的面积等于2,
则a 的值为
第Ⅲ类 距离型目标函数
目标函数形式为“22z x y =+,22z x y =+,22()()z x a y b =-+-”。
例3.已知点 P (x ,y )的坐标满足条件4,1,x y y x y +≤⎧⎪≥⎨⎪≥⎩
点O 为坐标原点,那么|PO |的最小值等于________,
最大值等于________.
小试牛刀:1、设x 、y 满足条件3
10x y y x y +⎧⎪-⎨⎪⎩
≤≤≥,则22(1)z x y =++的最小值 . 2.设D 是不等式组2102304
1
x y x y x y +≤⎧⎪+≥⎪⎨≤≤⎪⎪≥⎩表示的平面区域,则D 中的点(,)P x y 到直线10x y +=距离的最大值_.
3、若,M N 是1110
6
x y x y x y ≥⎧⎪≥⎪⎨-+≥⎪⎪+≤⎩表示的区域内的不同..两点,则||MN 的最大值是 。
4、如果点P 在平面区域⎪⎩
⎪⎨⎧≥-≤-+≥+-01202022y y x y x 上,点Q 在曲线的那么上||,1)2(22PQ y x =++最小值为
5、已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩
则22x y +的最小值是 .
第Ⅳ类 斜率型目标函数:
目标函数为11
,y y y x x x --型的,几何意义是可行域内的点与定点(0,
0),(11,x y )连线的斜率
例4.设实数x , y 满足的最大值是则x y y y x y x ,03204202⎪⎩
⎪⎨⎧≤->-+≤-- . 小试牛刀:1、 设,x y 满足约束条件04312x y x x y ≥⎧⎪≥⎨⎪+≤⎩,则231x y x +++取值范围是 2、设变量x 、y 满足约束条件⎪⎩
⎪⎨⎧-≥≥+≤632x y y x x y ,则1y x +最小值为 第Ⅴ类 参数问题
例5.设二元一次不等式组2190802140x y x y x y ⎧+-⎪-+⎨⎪+-⎩,
,
≥≥≤所表示的平面区域为M ,使函数(01)x
y a a a =>≠,的图象过区域M 的a 的取值范围是( ) A .[13], B
.[2 C .[29], D
. 1.已知实数x y ,满足121y y x x y m ⎧⎪-⎨⎪+⎩
≥,≤,≤.如果目标函数z x y =-的最小值为1-,则实数m 等于
2、若不等式组220x y x y y x y a
-0⎧⎪+⎪⎨⎪⎪+⎩≥,
≤,≥,
≤表示的平面区域是一个三角形,则a 的取值范围是 3、如果实数,x y 满足430
352501x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩
,目标函数z kx y =+的最大值为12,最小值为3,那么实数k 为__ 4、使函数()34y x
f x y x x y ≤⎧⎪=≥⎨⎪+≤⎩
的目标函数(0)z ax by ab =+≠,在2,2x y ==取得最大值的充要条件是
A ||a b ≤
B ||||a b ≤
C ||a b ≥
D ||||a b ≥
5、在约束条件⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥4
200x y s
y x y x 下,当53≤≤s 时,目标函数y x z 23+=的最大值的变化范围是
6、已知变量,x y 满足约束条件14,22x y x y ≤+≤-≤-≤,若目标函数z ax y =+(其中a >0)仅在点
(3,1)处取得最大值,则a 的取值范围为__________
第Ⅵ类 隐形线性规划问题
例 6.在平面直角坐标系xOy ,已知平面区域{(,)|1,A x y x y =+≤且0,0}x y ≥≥,则平面区域
{(,)|(,)}B x y x y x y A =+-∈的面积为( )A .2 B .1 C .12 D .14
解析:令12,002
u v u x u x y u v v x y u v y u v +⎧≤⎧=⎪=+⎧⎪⎪⇒∴+≥⎨⎨⎨=--⎩⎪⎪=-≥⎩⎪⎩,作出区域是等腰直角三角形,可求出面积11221=⨯⨯=s 小试牛刀:若0,0≥≥b a ,且当⎪⎩
⎪⎨⎧≤+≥≥1,0,
0y x y x 时,恒有1≤+by ax ,则以a ,b 为坐标点P (a ,b )所形
成的平面区域的面积等于____________。
第Ⅶ类 知识点交汇问题:与不等式,函数,向量等知识进行综合命题
例7.已知:点P 的坐标(x ,y )满足:430,3525,10.x y x y x -+≤⎧⎪+≤⎨⎪-≥⎩
及A (2,0),则|OP |·cos ∠AOP (O 为坐标原
点)的最大值是 .
解:||cos OP AOP ∠即为OP 在OA 上的投影长,由,,M y x y x )25(2553,034⇒⎩
⎨⎧=+=+-故所求最大值为5 小试牛刀:1、 ,x y 满足条件41x y y x x +≤⎧⎪≥⎨⎪≥⎩
,那么y x x y +的最大值等于_______,最小值等于____________. 2. 已知A (3,3),O 为原点,点||,002303),(OA y y x y x y x P ⎪⎪⎩
⎪⎪⎨⎧≥≥+-≤-的坐标满足的最大值是 ,此时点P 的坐标是
3、x ,y 满足⎪⎩
⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,目标函数z=ax+by (a>0,b>0)的最大值为12,则23a b +的最小值为。