《实变函数与泛函分析基础》目录简介
实变函数与泛函分析概要 第一册
实变函数与泛函分析概要第一册实变函数是研究函数随实现变量变化时行为的变化情况的概念。
它是一类非线性函数,通常以下标x来标识实变函数,以y来表示其值。
实变函数的性质有很多。
如它的值可以是数字,也可以是任意实数;实变函数连续性是其最基本的性质,某一点的变化不会影响函数的整体趋势;它还具有无穷的导数,可以从其定义域内任意点进行研究;此外,它还可以从它的定义域内构建出一个函数,从而研究它的一般性质。
实变函数在数学中有着重要的应用,可以用它们解决许多数学问题,这类问题解决要求把多元函数的解析解表示出来,而实变函数就可以实现这一要求。
此外,实变函数还可以帮助我们研究多元函数的性质,从而找出它们的变化规律,如函数的极值、极点等。
泛函分析是通过计算函数的极限和分,求解数学问题的方法。
泛函分析不同于物理学上的力学,而是以实变函数作为基础,用数学语言描述和求解问题。
它是研究函数在多个极限和分情况下变化的技术,也可以将其理解为实变函数的一般性质的研究方法。
泛函分析的重点应用是求解某一类多变量函数的平坦区域。
它可以不仅研究函数的一般性质,而且用实变函数求解具体问题,如极限情况下的最大值或最小值,把多变量函数搞清楚,研究函数在极限情况下的变化,以及数学积分的概念。
由于实变函数和泛函分析的应用,数学中的很多问题都得到了有效的解决。
它们使曲线方程、无穷级数和积分类型的问题得到有效解决,求解连续函数的最值、极值点和极点等问题也得到解决。
它们可以精确计算连续函数的实数值,为数学理论提供有力支持,从而进一步开拓了数学研究的新领域,使数学理论更完善,得到了巨大的发展。
综上所述,实变函数与泛函分析是数学中重要的研究方法,也是解决数学问题的有效工具。
它们在数学理论发展中发挥着重要的作用,为数学的发展做出了巨大贡献。
深圳大学数学与计算科学学院
主要内容
1. 内积空间 2. 泛函延拓定理 3. Hilbert 空间的规范正交系 4. 共轭算子
教学要求
(1) 掌握 Banach 空间的定义与基本例子(n 维欧氏空间 Rn、连续函数空间 C(A)、有 界数列空间 l∞ 、 p 次 收敛数列空间 lp、 p 方可积函数空间 Lp 等都是 Banach 空间) ;知道非 Banach 空间是存在的:C[a,b]在 Lp 范数下不是 Banach 空间; (2) 掌握内积与内积空间的定义与基本例子;熟练掌握内积的正定性、首元线性性与 共轭对称性;掌握内积诱导范数的思想;熟练掌握内积诱导范数的基本性质、和 的范数恒等式;掌握内积满足 Schwarz 不等式并且是二元连续函数的事实;掌握 内积空间的特征:范数满足平行四边形法则; (3) 掌握 Hilbert 空间的定义与基本例子;知道在同构的意义下,可分的 Hilbert 空间 只有 Rn 与 l2; (4) 掌握正交向量的定义;知道正交向量满足勾股定理,而且在实内积空间中,勾股 定理是两个向量正交的充分必要条件;了解极小化向量定理与正交分解定理(投 影定理) ; (5) 了解正交系、规范(标准)正交系、完全规范正交系或规范(标准)正交基的概 念与基本例子;掌握 Gram-Schmidt 正交化过程;知道每个非零的可分 Hilbert 空 间 X 必存在规范(标准)正交基; (6) 了解 Fourier 系数、Fourier 级数的定义; 了解最佳逼近定理; 知道 Bessel 不等式、 Parseval 恒等式;知道向量可以展成 Fourier 级数的条件; (7) 掌握 Banach 空间基本定理之 Hahn-Banach 定理;掌握 Hilbert 空间之 Riesz 表示 定理。 注:根据各课程的具体情况编写,但必须写明各章教学目的、教学要求、主要内容。
实变函数与泛函分析基础ppt课件
证明:不妨设f单调增,对任意a∈R
令Ia inf{ x | f (x) a}
由f单调增知下面的集合为可测集
E { [ f a]
E [ I a ,) 当I a {x| f ( x)a} E ( I a ,) 当I a {x| f ( x)a}
a
1
/ I a x1 x2
10
⒊可测函数的等价描述
定理1:设f(x)是可测集E上的广义实函数,则 f(x)在E上可测
16
⑵可测函数类关于四则运算封闭
即:若f(x),g(x)是E上的可测函数,
则f(x)+g(x) , f(x) -g(x) , f(x)g(x) , f(x)/g(x)
仍为E上的可测函数。
a-g(x) r f(x)
证明:先证: a
R, E[
f
ga]
E[ f
可测,
a g ]
猜想:E[ f ag] rQ(E[ f r] E[agr] )。
可测集E上的连续函数f(x)定为可测函数
证明:任取x∈E[f>a], 则f(x)>a,由连续性假设知,
对 f (x) a, x 0, 使得f (O(x,x ) E) O( f (x), ) (a,)
即O( x,x ) E E[ f a]
令G O xE[ f a] ( x,x )
1 , n
)
E[ f
为可测集。
]
12
注:重要方法:将集合分解为某些集合
的并、交、差等,从而利用已知条件。
如:用分解法证明:
f , g均为E上可测函数,则E[ f g]为E上可测集。
事实上,E[
f
g]
(
rQ
E[
实变函数论泛函分析课件
02 实变函数的定义与性质
实变函数的定义
01
02
03
定义域
实变函数的定义域是实数 集的一个子集,可以是有 限或无限的。
值域
实变函数的值域是实数集 的一个子集,可以是有限 或无限的。
函数表达式
实变函数可以表示为从定 义域到值域的映射关系, 通常用符号 f(x) 表示。
实变函数的性质
单调性
如果对于任意 x1<x2,都有 f(x1)≤f(x2),则称 f(x) 在其定义
微积分的应用
介绍微积分在各个领域的应用,如物理学、工程学、经济学等。
微积分的进一步发展
介绍微积分的进一步发展,如变分法、最优控制等。
04 泛函分析的基本概念
泛函的定义与性质
定义
泛函是将函数空间的每一个元素作为自变量,其值是实数或 复数的函数。
性质
泛函是定义在函数空间上的,它具有连续性、可加性、线性 等性质。
么该空间是自完备的。
共鸣定理
在赋范线性空间中,如果存在 一个与所有单位球相交的集合,
那么该空间是自完备的。
开映射定理
如果X和Y是赋范线性空间,T 是X到Y的开映射,那么T是满
射。
闭图像定理
如果X和Y是赋范线性空间,T 是X到Y的连续线性映射,那
么T的像集是闭的。
05 泛函分析的应用领域
微分方程的求解
分析中的某些问题。
应用领域
实变函数论和泛函分析 在许多应用领域都有交 叉,如 质
线性性质
对于任意实数k和函数f,g,有 $k(f+g)=(kf)+(kg)$, $(kf)+(kg)=(k+k)(f)$。
连续性质
如果f_n(x)是函数空间中的收敛序列, 那么$f_n(x)$的极限函数也是连续的。
实变函数与泛函分析-实变与泛函_ch3
3.1 距离空间的定义及例子 University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
3.3 距离空间的完备性和稠密性
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
高等教育出版社样书目录(数学类)
同济大学 10.1 2001 年 2 版
重温微积分
齐民生 39.6 2004 年 1 版
第 2 版 微积分(上)
同济大学 24.9 2003 年 2 版
第 2 版 微积分(下)
同济大学 23.1 2003 年 2 版
微积分学习辅导与习题选解
同济大学 28.4 2004 年 1 版
第 2 版 微积分学简明教程(上)
余家荣 17.9
出版时间 2001 年 3 版 2001 年 3 版 2004 年 1 版 2003 年 1 版 2003 年 1 版 2003 年 4 版 2003 年 4 版 2003 年 2 版 2003 年 2 版 2004 年 1 版 2004 年 2 版 2004 年 2 版 2003 年 1 版 2004 年 1 版 2004 年 1 版 2003 年 3 版 1999 年 4 版 2002 年 2 版 2003 年 2 版 2004 年 1 版 2000 年 1 版 2000 年 1 版 2004 年 1 版 2004 年 2 版 2004 年 2 版 2003 年 2 版 2004 年 1 版 2003 年 3 版
高等教育出版社样书目录(数学类)
版别
教材名 称
编著者 单价 出版时间
第4版 第3版
概率论与数理统计教程 概率论与数理统计教程学习辅导与习题 选解
概率论与数理统计
沈恒范 沈恒范 盛骤
20.6 2003 年 4 版 17.6 2003 年 1 版 19.3 2001 年 3 版
概率论与数理统计习题全解指南
第 2 版 数学史概论
李文林 21.0 2002 年 2 版
大学文科高等数学(第一册)
姚孟臣 11.9 1997 年 1 版
实变函数论与泛函分析第二版
实变函数论与泛函分析第二版
《实变函数论与泛函分析(上,下)》第二版是由姜启源著作的教材,
主要介绍了实变函数论和泛函分析的基本理论和应用。
全书分为上、下两卷,总共包含了1200页以上的内容。
上卷主要介绍了实变函数论的基础知识和基本理论。
首先介绍了实数
系和数列的基本概念,然后讨论了实函数的连续性、可测性、可积性等性质。
接着介绍了数值序列与函数列的收敛性,包括点态收敛和一致收敛的
概念,并探讨了这些性质的一些重要性质和应用。
此外,还介绍了一些特
殊函数,如幂函数、指数函数、对数函数等,并讨论了它们的性质和应用。
下卷主要介绍了泛函分析的基本理论和应用。
首先介绍了线性空间和
范数空间的概念,然后讨论了向量空间的线性映射和线性算子的性质。
接
着介绍了拓扑空间和度量空间的概念,并探讨了拓扑和度量的性质及其应用。
此外,还介绍了连续线性算子的性质和紧算子的性质,并讨论了它们
的应用。
全书的特点是理论深入、严密,但又通俗易懂,适合作为高等数学专
业本科生和研究生的教材或参考书使用。
此外,全书还提供了大量的习题
和例题,以及详细的解答和参考答案,方便读者巩固所学知识和拓宽应用
能力。
总之,《实变函数论与泛函分析(上,下)》第二版是一本综合性较强
的教材,涵盖了实变函数论和泛函分析的基本理论和应用,并且具有严谨
性和通俗易懂性的特点。
无论是学习实变函数论和泛函分析的基础知识,
还是拓宽应用能力都具有较高的参考价值。
实变函数与泛函分析基础完整版
bi
ai
bi ai
f(x), 当xF,
g(x)f(ai)
f(bbi)i afi(ai( ) xai),当x(ai,bi),ai,bi有限 ,,
f(ai), 当x(ai,bi),bi , f(bi), 当x(ai,bi),ai .
则g(x)满足要求,且在R上连续.(参见课本p91)
0 ,及 E i , 每 E i中 作 个 的 F i , m ( 闭 E i 使 F i) n 子 ( i 1 ,2 , 集 ,n
当x∈Ei时,f(x)=ci,所以f(x)在Fi上连续,而Fi为两
两不交闭集,故f(x)在 n 上连续,显然F为闭集,
且有
F
i 1
Fi
m ( i n 1 E i i n 1 F i) m ( i n 1 ( E i F i) )i n 1 m ( E i F i) i n 1 n
kj
若 fk:Ek R为连续f函 (x)数 fk(x), :xE 令 k,f则 (x): k 1Ek R上的连
事实上x0, k 1, 由 Ek, 于 x0为开 (k 1, 集 Ek)c的内点,
kk0
kk0
20,使U 得 (x0,: 2) (k 1, Ek)c,即 U(x: 0,2) k 1, Ek。
注2:鲁津定理的逆定理成立。
设f(x)为E上几乎处处有限的实函数,若 0,闭F 集 E,
使得 m(E-F)<ε且f(x)在F上连续,则f(x)在E上为可 测函数。
证明: 1n,则闭集 Fn F,使得m: (EFn)1n, f(x)在Fn上连续(可测函数
k
,必有
实变函数与泛函分析全册精品完整课件
University of science & Technology of China
五大论:
集合论-着重介绍 Cantor 关于集合的势论的知识.
测度论-讲解 Lebesgue 测度的思想与方法.
积分论-讲解 L 积分的定义、性质、极限定理和 L 可积函数空间,积分与微分的关系.
空间论-主要讲述无穷维赋范空间和内积空间,以 及与共轭空间有关的知识. 算子论-主要讲述三大基本定理(共鸣定理、开映 射定理、闭图像定理),共轭算子以及算子谱理
论.
University of science & Technology of China
教学目的
使学生掌握 L 测度与 L 积分的基本理论、基本思想 与方法,为今后进一步使用现代分析普遍应用的这 一基本工具打下基础。
使学生掌握有关空间和算子的基本理论和思想方法 . 认识和理解现代数学中公理化、抽象与具体、理 论和应用密切联系的特点并加以应用.
前言
课程的重要性 课程讲授的主要内容 教学目的 难易程度 考核方式
University of science & Technology of China
《实变函数与泛函分析》的重要性 在20世纪初期产生并发展起来的学科,是整 个分析数学中最年轻的学科之一 从“经典理论”向“现代理论”转折的关口 是联系各门课程的纽带
通过与其他学科的联系,加强学生对于数学思想方 法的内在联系和一致性的认识,从整体上提高学生 的数学素养
University of science & Technology of China
课程难度与考核方式
内容抽象,难度较大 平时表现分+考试分数, 比例 认真学习则无须担心考核
实变函数与泛函分析概要
实变函数与泛函分析概要第一章 集合 基本要求:1、 理解集合的包含、子集、相等的概念和包含的性质。
2、 掌握集合的并集、交集、差集、余集的概念及其运算性质。
3、 会求已知集合的并、交、差、余集。
4、 了解对等的概念及性质。
5、 掌握可数集合的概念和性质。
6、 会判断己知集合是否是可数集。
7、 理解基数、不可数集合不可数集合不可数集合、、连续基数连续基数的概念。
8、了解半序集和Zorn 引理。
第二章 点集 基本要求基本要求:1、 理解n 维欧氏空间中的邻域、区间、开区间、闭区间、体积的概念。
2、 掌握内点、聚点的概念、理解外点、界点、孤立点的概念。
掌握聚点的性质。
3、 掌握开核、导集、闭区间的概念及其性质。
4、 会求己知集合的开集和导集。
5、 掌握开核、闭集、完备集的概念及其性质,掌握一批例子。
6、 会判断一个集合是非是开(闭)集,完备集。
7、 了解Peano 曲线概念。
主要知识点主要知识点::一、基本结论:1、 聚点性质§2 中T 1聚点原则:P 0是E 的聚点⇔ P 0的任一邻域内,至少含有一个属于E 而异于P 0的点⇔存在E 中互异的点列{P n },使P n →P 0 (n →∞) 2、 开集、导集、闭集的性质§2 中T2、T3T2:设A ⊂B ,则Aɓ⊂Bɓ, A⊂ B,-A⊂-B。
T3:(A ∪B )′=A ′∪ B ′.3、 开(闭)集性质(§3中T1、2、3、4、5)T1:对任何E ⊂R ⁿ,ö是开集,E ´和―E都是闭集。
(ö称为开核,―E称为闭包的理由也在于此)T2:(开集与闭集的对偶性)设E 是开集,则CE 是闭集;设E 是闭集,则CE 是开集。
T3:任意多个开集之和仍是开集,有限多个开集之交仍是开集。
T4:任意多个闭集之交仍是闭集,有限个闭集之和仍是闭集。
T5:(Heine-Borel 有限覆盖定理)设F 是一个有界闭集,ℳ是一开集族{U i }i єI 它覆盖了F (即F с ∪iєIU i ),则ℳ中一定存在有限多个开集U 1,U 2…U m ,它们同样覆盖了F (即F ⊂m∪ U i )(i єI )4、 开(闭)集类、完备集类。
实变函数论与泛函分析第四版
实变函数论与泛函分析第四版
《实变函数论与泛函分析第四版》是一本深受读者青睐的重要数学著作,由美国知名数学家肖恩米尔顿编写,于2004年出版。
本书内容全面,讲述了实变函数论的各种概念、理论与实例。
书中讨论了函数的可微性,以及它们的微分与积分,也讲述了拉格朗日泛函分析的核心概念。
书中首先介绍了实变函数论的基本概念,如函数、可微函数、复数和庞加莱空间。
接着,作者详细讲述了实变函数的微分,例如反对称性、链式法则、李雅普诺夫定理,以及微积分的概念,例如微分不等式、变分法和李雅普诺夫定理。
此外,本书还涉及泛函分析的概念,例如函数的L-形和H-形性质、函数的极值、凸性和凹性。
此外,书中还介绍了几何分析的重要概念,例如参数方程、分岔点和坐标系统。
最后,作者还讨论了一些数学家特有的技术,如分析技术、半空间和特征值分析等。
总之,《实变函数论与泛函分析第四版》是一本比较全面的数学读物,内容深入浅出,既适合有数学背景的学生,也适合普通读者,可以作为教材或参考书。
此外,本书还帮助读者更好地理解数学的原理和方法,提高其运用数学的能力。
- 1 -。
实变函数与泛函分析课件
巴拿赫空间的性质
巴拿赫空间与连续线性映射
连续线性映射
连续线性映射的定义
连续线性映射的性质
线性算子的谱理论
03 空间上的算子与变换
有界线性算子
有界线性算子的定义:在某空 间上有界且线性
重要性质:有界线性算子可以 扩展为全空间上的有界线性算
子
谱定理:有界线性算子的谱分 解定理
空间上的算子与变换部分的习题与解答
01
02
总结词:空间上的算子 与变换部分主要涉及线 性算子、有界算子、 紧 算子等不同类型的算子 的定义、性质和计算方 法,以及空间上的变换 和约化定理的应用。
详细描述
03
04
05
1. 线性算子的定义和性 2. 有界算子和紧算子的 质,包括线性算子的有 定义和性质,以及在各 界性、紧性、谱性质等, 种空间中的存在性和构 以及在各种空间(例如, 造方法。 Hilbert空间、Banach 空间等)中的应用。
映射与变换
序关系
介绍映射的概念及基本性质,如一一映射、 满射、单射等。
讨论集合中的序关系,如偏序、全序、反 对称序等,以及相关的概念如最大元、最 小元、上界、下界等。
实数函数
01
函数的定义
介绍函数的概念及基本性质,如定 义域、值域、单调性等。
函数的极限
介绍函数极限的定义、性质及其计 算方法。
03
02
03
线性空间
01
数乘性质
02
中间元素性质
03
正交性
内积空间与Hilbert空间
内积空间的定义
1
内积空间的定义
2
正交性
3
内积空间与Hilbert空间
实变函数与泛函分析基础
实变函数和函数分析的基础是高等教育出版社2003年出版的一本书。
作者是程启祥。
本书重点介绍了实变函数和泛函分析的思想和方法,并在每章的导言部分作了一些说明。
此外,为了帮助学生克服做实变函数的困难,本书增加了一些实例并作了评述。
本书第一版出版于1983年,在高等师范院校和其他院校得到了广泛的应用。
进入21世纪以后,高等教育发生了许多变化。
根据多年来对该书的使用情况和数学的现代发展,作者进行了全面的修订。
实变量函数是修正的重点,在函数分析中只做了少量的修改。
总体而言,原书的基本框架保持不变,这次修改的原则是: 首先,保持原书简洁易学,删去jordan 测度和peano 曲线等分支,减少过度形式化。
本书共11章,包括: 集合、点集、测度理论、可测函数、积分理论、微分与不定积分,以及度量空间与barnach 空间、线性泛函与线性算子、hilbert 空间、barnach 空间与线性算子谱等基本定理。
实变函数与泛函分析
实变函数的定义
实变函数是定义在实 数集上的函数,其值
域也是实数集。
实变函数具有连续性、 可微性、可积性等性
质。
实变函数的定义域可 以是有限区间、无限 区间或者整个实数轴。
实变函数的值域可以 是有限区间、无限区 间或者整个实数轴。
实变函数的性质
实变函数是一类特殊的数学函数,具 有连续性、可微性和可积性等性质。
实变函数的连续性
实变函数的连续性与极限存 在性有关
实变函数在定义域内是连续 的
实变函数的连续性是函数的 一种基本性质
实变函数的连续性与可微性 密切相关
03 实变函数的应用
实变函数在数学物理方程中的应用
实变函数在求解偏微分方程中的应用 在解决波动方程、热传导方程等数学物理方程中的作用 实变函数在数值分析中的重要地位 实变函数在解决物理问题中的应用实例
求解中。
添加标题
05 泛函分析的应用
泛函分析在微分方程中的应用
微分方程的求解:通过泛函分析中的变分法,求解微分方程的近似解。 稳定性分析:利用泛函分析中的算子谱理论,研究微分方程解的稳定性。 近似方法:利用泛函分析中的逼近理论,构造微分方程的近似解。 数值计算:通过泛函分析中的数值分析方法,对微分方程进行数值模拟和计算。
添加标题
随机积分与微分 方程:在概率论 中,随机积分与 微分方程是非常 重要的研究方向, 而泛函分析中的 积分和微分理论 为此提供了重要
的数学基础。
添加标题
泛函分析在量子力学中的应用
描述了量子力学中的波函数和 概率幅
提供了量子力学中算子的表示 和分类方法
揭示了量子力学中的一些重要 定理和原理,如不确定性原理 和量子纠缠
研究对象:实变函数研究的是具体的、有限的、离散的数学对象,而泛函分析则研究 的是抽象的、无限的、连续的数学对象。
实变函数与泛函分析概要1
实变函数与泛函分析概要1本文以《实变函数与泛函分析概要1》为标题,主要探讨实变函数和泛函分析的概念、特点、应用等内容。
实变函数是一种重要的数学函数。
它概括了几何、算术、数论以及空间几何学等概念,在解析几何学中用于表示各种几何图形,在复分析学中用于表示曲线和曲面,在变分微积分中用于表示特殊函数。
它通过对实数的操作,可以用来解决很多数学问题。
泛函分析是一种广泛使用的数学理论。
它的理论体系由具体的数学方法和表达式学所组成,可以用来研究实变函数、动力系统、微分方程等问题。
它运用假设,建立抽象的概念,从而提出逻辑和数学问题,最终形成一个理论体系,这些理论可以帮助我们解决实际问题。
实变函数与泛函分析有着千丝万缕的联系,两者结合可以更好地推动理论研究和实际应用。
首先,实变函数用来解决数学问题,而泛函分析则用来研究实变函数。
实变函数可以用来表示几何图形,而泛函分析可以用来证明这些几何图形的存在性以及它们在数学中的正确性。
此外,泛函分析可以为实变函数提供更为全面的研究,从而解决更多的问题,它也可以帮助我们了解动力系统、微分方程等问题。
另外,实变函数与泛函分析在工程领域也有重要的应用。
在机械设计的过程中,需要使用实变函数来描述几何形状,可以使用泛函分析来求解这些几何形状的参数,使机械设计更完善。
在自动控制系统中,需要使用泛函分析来分析系统的性能,并利用实变函数来描述系统的状态,使系统更可靠。
从上面的分析可以看出,实变函数与泛函分析在理论研究和实际应用上都有着十分重要的作用。
他们结合可以更好地解决实际问题,使得数学研究取得更大进展。
综上所述,实变函数与泛函分析是一种重要的数学方法,它们可以帮助我们解决数学问题,也可以在工程领域发挥重要作用。
这两种方法结合可以有效提高我们的研究工作,为社会发展做出积极贡献。
实变函数与泛函分析第1讲
三、集合与元素的关系
如果 是集合 的元素,则说 属于 ,记作 ,或说A含有a.
如果 不是集 的元素,则说 不属于 ,记作 ,或说A不含有a.
四、集合与集合的关系
1.包含:
是 的子集
若 且 ,就称A是 的真子集,规定空集是任何集的子集.
2.相等
材的第一章.不过,对于实变函数论来说,集论知识.
一、集合的概念及其表示
集合也称作集,是数学中所谓原始概念之一,即不能用别的概念加以定义,它像几
何学中的“点”、“直线"那样,只能用一组公理去刻画.就目前来说,我们只要求掌握以下朴素的说法:
“在一定范围内的个体事物的全体,当将它们看作一个整体时,我们把这个整体称
由 个元素 所组成的集合,可表示为
由全体自然数所组成的集合称为自然数集,可表示为 .
不含任何元素的集合称为空集,记作 .
2.描述法
当集 是具有某性质 的元素之全体时,我们用下面的形式表示 :
方程 的解x的全体组成的数集是
注:有时我们也把集 具有性质 改写成 具有性质 .例如,设
是定义在集合 上的一实函数, 是一个实数,我们把集 写成
第一章 集合§1集合的表示
由德国数学家Cantor所创立的集合论,是现代数学中一个独立的分支,按其本性
而言,集合论是整个现代数学的逻辑基础;而就其发展历史而言,则与近代分析(包括
实变函数论)的发展密切相关,实变函数通常是第一门大量运用集合论知识的大学数学
课程.因此,在现代数学教育中,对集合论知识的较系统的介绍,通常构成实变函数教
为一个集合,其中每个个体事物叫做该集合的元素.”
一个集合的元素必须彼此互异,而且哪些事物是给定集合的元素必须明确.以集合
实变函数与泛函分析基础(第三版)-----第三章_复习指导
主要内容本章介绍了勒贝格可测集和勒贝格测度的性质. 外测度和内测度是比较直观的两个概念,内外测度一致的有界集就是勒贝格可测集. 但是,这样引入的可测概念不便于进一步讨论. 我们通过外测度和卡拉皆屋铎利条件来等价地定义可测集(即定义3.2.3),为此,首先讨论了外测度的性质(定理3.1.1). 注意到外测度仅满足次可列可加(而非可列可加)性,这是它和测度最根本的区别.我们设想某个点集上可以定义测度,该测度自然应该等于这个集合的外测度,即测度应是外测度在某集类上的限制. 这就容易理解卡拉皆屋铎利条件由来,因为这个条件无非是一种可加性的要求.本章详细地讨论了勒贝格测度的性质. 其中,最基本的是测度满足在空集上取值为零,非负,可列可加这三条性质. 由此出发,可以导出测度具有的一系列其它性质,如有限可加,单调,次可列可加以及关于单调集列极限的测度等有关结论.本章还详细地讨论了勒贝格可测集类. 这是一个对集合的代数运算和极限运算封闭的集类. 我们看到勒贝格可测集可以分别用开集、闭集、型集和型集逼近.正是由于勒贝格可测集,勒贝格可测集类,勒贝格测度具有一系列良好而又非常重要的性质,才使得它们能够在勒贝格积分理论中起着基本的、有效的作用. 本章中,我们没有介绍勒贝格不可测集的例子. 因为构造这样的例子要借助于策墨罗选择公理,其不可测性的证明还依赖于勒贝格测度的平移不变性. 限于本书的篇幅而把它略去. 读者只须知道:任何具有正测度的集合一定含有不可测子集.复习题一、判断题1、对任意nE R ⊆,*m E 都存在。
(√ )2、对任意n E R ⊆,mE 都存在。
(× )3、设nE R ⊆,则*m E 可能小于零。
(× )4、设A B ⊆,则**m A m B ≤。
(√ ) 5、设A B ⊆,则**m A m B <。
(× ) 6、**11()n nn n m S m S∞∞===∑U 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《实变函数与泛函分析基础》目录简介内容简介
本次修订是在第二版的基础上进行的,作者根据多年来的使用情况以及数学的近代发展,做了部分但是重要的修改。
《实变函数与泛函分析基础(第3版)》共11章:实变函数部分包括集合、点集、测度论、可测函数、积分论、微分与不定积分;泛函分析则主要涉及赋范空间、有界线性算子、泛函、内积空间、泛函延拓、一致有界性以及线性算子的谱分析理论等内容。
这次修订继续保持简明易学的风格,力图摆脱纯形式推演的论述方式,着重介绍实变函数与泛函分析的基本思想方法,尽量将枯燥的数学学术形态呈现为学生易于接受的教育形态;同时,补充了一些现代化的内容,如“分形”的介绍。
《实变函数与泛函分析基础(第3版)》可作为高等院校数学类专业学生的教学用书,也可作为自学参考书。
目录
第一篇实变函数
第一章集合
1 集合的表示
2 集合的运算
3 对等与基数
4 可数集合
5 不可数集合
第一章习题
第二章点集
1 度量空间,n维欧氏空间
2 聚点,内点,界点
3 开集,闭集,完备集
4 直线上的开集、闭集及完备集的构造
5 康托尔三分集
第二章习题
第三章测度论
1 外测度
2 可测集
3 可测集类
4 不可测集
第三章习题
第四章可测函数
1 可测函数及其性质
2 叶果洛夫定理
3 可测函数的构造
4 依测度收敛
第四章习题
第五章积分论
1 黎曼积分的局限性,勒贝格积分简介
2 非负简单函数的勒贝格积分
3 非负可测函数的勒贝格积分
4 一般可测函数的勒贝格积分
5 黎曼积分和勒贝格积分
6 勒贝格积分的几何意义·富比尼定理
第五章习题
第六章微分与不定积分
1 维它利定理
2 单调函数的可微性
3 有界变差函数
4 不定积分
5 勒贝格积分的分部积分和变量替换
6 斯蒂尔切斯积分
7 L-S测度与积分
第六章习题
第二篇泛函分析
第七章度量空间和赋范线性空间
1 度量空间的进一步例子
2 度量空间中的极限,稠密集,可分空间
3 连续映射
4 柯西点列和完备度量空间
5 度量空间的完备化
6 压缩映射原理及其应用
7 线性空间
8 赋范线性空间和巴拿赫空间
第七章习题
第八章有界线性算子和连续线性泛函
1 有界线性算子和连续线性泛函
2 有界线性算子空间和共轭空间
3 广义函数
第八章习题
第九章内积空间和希尔伯特(Hilbert)空间
1 内积空间的基本概念
2 投影定理
3 希尔伯特空间中的规范正交系
4 希尔伯特空间上的连续线性泛函
5 自伴算子、酉算子和正常算子
第九章习题
第十章巴拿赫空间中的基本定理
1 泛函延拓定理
2 C[a,b]的共轭空间
3 共轭算子
4 纲定理和一致有界性定理
5 强收敛、弱收敛和一致收敛
6 逆算子定理
7 闭图像定理
第十章习题
第十一章线性算子的谱
1 谱的概念
2 有界线性算子谱的基本性质
3 紧集和全连续算子
4 自伴全连续算子的谱论
5 具对称核的积分方程
第十一章习题
附录一内测度,L测度的另一定义附录二半序集和佐恩引理
附录三实变函数增补例题
参考书目。