《结构动力学》PPT课件
合集下载
结构动力学课件PPT
my cy ky FP (t)
§2-5 广义单自由度体系:刚体集合
➢刚体的集合(弹性变形局限于局部弹性 元件中)
➢分布弹性(弹性变形在整个结构或某些 元件上连续形成)
➢只要可假定只有单一形式的位移,使得 结构按照单自由度体系运动,就可以按 照单自由度体系进行分析。
E2-1
x
p( x,t
)
=p
)
3
B'
M I1
E'
D'
F' G'
A
D
E
B
F
G
C
fD1
fI1
fS1
f D2
f I2
f S2
a
2a
a aa a
Z(t )
f S1
k1(EE')
3 4
k1Z (t )
f D1
d c1( dt
DD')
1 4
c1Z (t )
fS2
k1(GG')
1 3
k2
Z
(t
)
fD2 c2Z (t)
f
I1
m1
1 2
Z(t)
3. 有限单元法
—— 将有限元法的思想用于解决结构的动力计算问题。
要点:
▪ 先把结构划分成适当(任意)数量的单元;
▪ 对每个单元施行广义坐标法,通常取单元的节点位移作 为广义坐标;
▪ 对每个广义坐标取相应的位移函数 (插值函数);
▪ 由此提供了一种有效的、标准 化的、用一系列离散坐标 表示无限自由度的结构体系。
建立体系运动方程的方法
▪ 直接平衡法,又称动静法,将动力学问题转化为任一时刻 的静力学问题:根据达朗贝尔原理,把惯性力作为附加的 虚拟力,并考虑阻尼力、弹性力和作用在结构上的外荷载, 使体系处于动力平衡条件,按照静力学中建立平衡方程的 思路,直接写出运动方程。
第12章结构动力学 ppt课件
§14-1 概 述
一、结构动力计算的特点 动力荷载作用下,结构将发生振动,各种量值均随时间而变化。
1、内容: (1)研究动力荷载作用下,结构的内力、位移等计算原理和计算方法。 求出它们的最大值并作为结构设计的依据。
(2)研究单自由度及多自由度的自由振动、强迫振动。 2、静荷载和动荷载 (1)静荷载:荷载的大小和方向不随时间变化(如梁板自重)。 (2)动荷载:荷载的大小和方向随时间变化,需要考虑惯性力。 3、特点 (1)必须考虑惯性力。 (2)内力与荷载不能构成静平衡。必须考据惯性力。依达朗伯原理, 加惯性力后,将动力问题转化为静力问题。
动力自由度的确定方法:加附加链杆约束质点位移,最少链杆数即为自 由度
图刚架上有四个集中质点,但只需要加三根链杆 便可限制全部质点的位置。如图e。
自由度=3 或
图示梁,其分布质量集度为m,可看作有无穷多 个mdx的集中质量,是无限自由度结构。
自由度的数目与结构是否静定或超静定无关
§14-2 结构振动的自由度
2、运动方程的解:
方程
y2y0
为一常系数线性齐次微分方程,其通解为
y (t) A 1 co t s A 2sitn
A1和A2为任意常数,可有初始条件来确定。
振动的初始条件为 t 0 时 y y , 0 , y y 0
式中y0—初位移, y0—初速度。则有Fra bibliotekA1y0,A2
y0
可得
yy0cots y0si nt
第十四章 结构动力学
§14-1 概 述 §14-2 结构振动的自由度 §14-3 单自由度结构的自由振动 §14-4 单自由度结构在简谐荷载作用下的强迫振动 §14-5 单自由度结构在任意荷载作用下的强迫振动 §14-6 多自由度结构的自由振动 §14-7 多自由度结构在简谐荷载作用下的强迫振动 §14-8 振型分解法 §14-9 无限自由度结构的振动 §14-10 计算频率的近似法
结构动力学(课用ppt)
11/14/2011
25
注意! 注意!
振动体系的自由度数与计算假定有关,而与集中质量的数目和 超静定次数无关,如下图所示的体系。
11/14/2011
26
2、广义坐标法
广义坐标:能决定体系几何位置的彼此独立的量,称为该体系的广义坐标
变形曲线可用三角级数的和来表示:
n πx = u ( x, t ) = bn sin L n =1
11/14/2011
18
(4)一般任意荷载 荷载的幅值变化复杂、难以用解析函数解析表示的荷 载。 由环境振动引起的地脉动、地震引起的地震动, 以及脉动风引起的结构表面的风压时程等。
11/14/2011
19
1.5 结构动力分析中的自由度
一. 自由度的定义 结构动力学和静力学的一个本质区别:考虑惯性力的影响 结构产生动力反应的内因(本质因素):惯性力 惯性力的产生是由结构的质量引起的 动力自由度(数目):在动力计算中,一个体系的动力自由度是指为了确定 运动过程中任一时刻全部质体位置所需的独立的几何参数数目。 独立参数也称为体系的广义坐标,可以是位移、转角或其它广义量。
11/14/2011 29
11/14/2011
30
11/14/2011
5
结构动力问题的基本特征: 1、动力问题随时间而变化,必须建立反应时程中感兴趣的全部时间点 上的一系列解。 2、与静力问题相比,由于动力反应中结构的位移随时间迅速变化,从 而产生惯性力,惯性力对结构的反应又产生重要影响。
11/14/2011
6
动力反应的特点: 在动荷载作用下,结构的动力反应(动内力、动位移等) 都随时间变化,它的除与动荷载的变化规律有关外,还与结 构的固有特性(自振频率、振型和阻尼)有关。 不同的结构,如果它们具有相同的阻尼、频率和振型,则 在相同的荷载下具有相同的反应。可见,结构的固有特性能 确定动荷载下的反应,故称之为结构的动力特性。
哈尔滨工业大学结构动力学PPT课件
x0 x0 , x0 x0 xt c1n cosnt c2n sinnt
c1 x0 n , c2 x0
第36页/共42页
x
t
x0
n
sin nt
x0
cos nt
令
x0 cos n
, x0 sin
则可化为
其中:
xt sinnt
2
x02
x0
n
tg x0n arctg x0n
T1
1 2
l 0
d
l
2
x2
1 2
(1 3
l)x2
1 m1 23
x2TΒιβλιοθήκη T1Tm1 2
m1 3
m
x2
1 2
meq x2
又因为: 弹簧的势能与弹簧质量无关, 则
V 1 kx2 2
由能量法,可得
meq x kx 0 弹性元件质量不能忽略时,利用等
效质量,将质量折算到质量块上, 弹性元件仍看作无质量的。
• 18世纪线性振动理论成熟期。
第11页/共42页
• 19世纪非线性振动理论,各种工程实际结构振动的近似 求解方法。
• 20世纪50年代初由于航空航天工程的发展,原本确定性 理论无法解释包含随机变化的工程问题,发展了随机振 动理论。
• 20世纪后期计算机技术的飞速发展,数值计算方法和理 论成为主要研究方法之一。
第7页/共42页
三、结构动力学研究的内容
结构动力学就是研究结构系统在激励力作用下产生的响 应规律的科学,研究激励力、结构和响应三者关系的科 学。
现代结构动力学主要研究以下三个方面的内容 第一类问题:响应分析(结构动力计算)
输入 (动力荷载)
武汉大学结构动力学课件
1.2工程中常见的动力荷载
1.简谐周期荷载 具有偏心质量的m的电机以角速度 (rad / s) 匀速转动,其惯性力的竖
向和水平分量为: P x ( t) m r2 c o st, P y ( t) m r2 s int
2.冲击荷载 气锤打桩、发射火箭的反推力等。作用时间 很短,P m a x 很大,如图1-3。
注意:1)自振频率与初始条件无关。 2)振幅与初始条件及自振频率有关。 3)刚度大,频率大;质量大频率小。
例1.如图2-2,求水平振动的自振频率。
解:此为并联体系
r11
12EI H13
212EI H23
f2 21
rm 1121
12EI24EI mH13 mH23
例2.如图2-3,求自振频率。
r( i) 11 m
( i) 2
弹 性 体 系 串 联 时 , 11 ( 11 i) , T2m 112m ( ( 11 i) ) T2
习题:
1 ) 求 自 振 频 率 ( 扭 转 向 )
2)求自振频率
3 ) 求 自 振 周 期 ( 水 平 向 )
静力荷载是动力荷载的一种特殊形式,它是缓慢加到结构上的荷载, 它的大小、方向、作用点是随时间不变或缓慢变化。
在静力荷载的作用下,结构各质点没有加速度或加速度很小, 加速度产生的惯性力与静力荷载本身相比可略去不计。
动力荷载与静力荷载的概念是相对的, 它与结构的动力特性(自振频率)有关, 如图1-1所示荷载,当 t 0 10秒时,对于柔 性结 构(如自振周期 T 5 秒)为动荷载, 对于刚性结构(如 T0.05秒)为静力荷载。
2)结构体系周围介质对振动的阻力(水、 空气) 3)节点、支座、连接产生的摩擦力。 4)基础、地基振动耗散的能量,主要是土 壤的内摩擦力耗散的能量。
第十章结构动力学1 56页PPT文档
5.与其它课程之间的关系
结构动力学以结构力学和数学为基础。 要求熟练掌握已学过的结构力学知识和数学知识(微分方程的求解)。
结构动力学作为结构抗震、抗风设计计算的基础。
2019/9/6
结构力学
§10-2 体系的动力自由度
1.动力自由度的定义
动力问题的基本特征是需要考虑惯性力,根据达朗贝尔(D‘Alembert Jean Le Rond)原理,惯性力与质量和加速度有关,这就要求分析质量分布和质量位 移,所以,动力学一般将质量位移作为基本未知量。
世界上采用被动式TMD的其它代表性建筑有:加拿大多伦多 的CN Tower、日本大阪的Crystal Tower、澳洲悉尼的 Centerpoint Tower、美国纽约的Citicorp Center、日本的明石 海峡大桥 Akashi Kaikyo Bridge ,等等。
§10-1 概述
结构振动控制的工程应用实例
冲击和突加载荷: 其特点是荷载的大小在极短的时间内有较大的变化。冲 击波或爆炸是冲击载荷的典型来源;吊车制动力对厂房的水平作用是典型 的突加荷载。
随机载荷:其时间历程不能用确定的时间函数而只能用统计信息描述。风 荷载和荷载均属此类。对于随机荷载,需要根据大量的统计资料制定出相 应的荷载时间历程(荷载谱)。
第10章 结构动力学
Structural dynamics
§10-1 概述 §10-2 体系的动力自由度 §10-3 单自由度体系运动方程的建立 §10-4 单自由度体系的自由振动 §10-5 单自由度体系的强迫振动 §10-6 多自由度体系的自由振动 §10-7 振型的正交型 §10-8 多自由度体系的强迫振动 §10-9 无限自由度体系的自由振动 §10-10 自振频率的近似计算
结构动力学以结构力学和数学为基础。 要求熟练掌握已学过的结构力学知识和数学知识(微分方程的求解)。
结构动力学作为结构抗震、抗风设计计算的基础。
2019/9/6
结构力学
§10-2 体系的动力自由度
1.动力自由度的定义
动力问题的基本特征是需要考虑惯性力,根据达朗贝尔(D‘Alembert Jean Le Rond)原理,惯性力与质量和加速度有关,这就要求分析质量分布和质量位 移,所以,动力学一般将质量位移作为基本未知量。
世界上采用被动式TMD的其它代表性建筑有:加拿大多伦多 的CN Tower、日本大阪的Crystal Tower、澳洲悉尼的 Centerpoint Tower、美国纽约的Citicorp Center、日本的明石 海峡大桥 Akashi Kaikyo Bridge ,等等。
§10-1 概述
结构振动控制的工程应用实例
冲击和突加载荷: 其特点是荷载的大小在极短的时间内有较大的变化。冲 击波或爆炸是冲击载荷的典型来源;吊车制动力对厂房的水平作用是典型 的突加荷载。
随机载荷:其时间历程不能用确定的时间函数而只能用统计信息描述。风 荷载和荷载均属此类。对于随机荷载,需要根据大量的统计资料制定出相 应的荷载时间历程(荷载谱)。
第10章 结构动力学
Structural dynamics
§10-1 概述 §10-2 体系的动力自由度 §10-3 单自由度体系运动方程的建立 §10-4 单自由度体系的自由振动 §10-5 单自由度体系的强迫振动 §10-6 多自由度体系的自由振动 §10-7 振型的正交型 §10-8 多自由度体系的强迫振动 §10-9 无限自由度体系的自由振动 §10-10 自振频率的近似计算
结构动力学2PPT课件
可见质量 mi 的惯性力幅值为
Ii mi Ai 2 (i 1,2,n)
3.动内力幅值计算
位移、惯性力、动荷载频率相同,对于无阻尼体系三者同时达到幅值。故,可 将荷载幅值和惯性力幅值加在结构上,按静力学方法体系的最大动内力和最大 动位移。
例1 试求图示体系质量的最大动位移,并绘制结构的最大动力弯矩图。已知=
3
EI 。 m l3
A m1 m
l2
EI
q sin t
B
C m2 2m EI
l2
l2
2021/5/25
第10页/共32页
10
解 本例静定结构,选择柔度法求解。
1 A m1 m
l2
EI
q sin t
B
C m2 2m EI
l/2
l2
l2
M1图
M图21源自l/4M图
P
q
ql2/8
用图乘法求得,11
l3 8E
小到大排列,称为频率谱。
➢将求得的 1 2 回代入(2),由于系数行列式等于零,n个方程是相关的,只
能由其中的n-1个方程解得各自由度动位移之间的比值。可见,体系按某一频
率振动的形状是不变的,称之为振型。
✓ 振型向量 Ai A1i A2i
Ani T
✓ 振型向量常用表述方法一:令某自由度位移为1,例 Ai 1 2i
k 是对称矩阵,k k T
M 也是对称矩阵,同理,有 A jT M Ai AiT M A j
(3)-(4),有
i2
2 j
AiT M A j 0
因为 i j ,所以 AiT M A j 0 i j
振型第一正交性:多自由度体系任意两个不同振型关于质量矩阵正交。
Ii mi Ai 2 (i 1,2,n)
3.动内力幅值计算
位移、惯性力、动荷载频率相同,对于无阻尼体系三者同时达到幅值。故,可 将荷载幅值和惯性力幅值加在结构上,按静力学方法体系的最大动内力和最大 动位移。
例1 试求图示体系质量的最大动位移,并绘制结构的最大动力弯矩图。已知=
3
EI 。 m l3
A m1 m
l2
EI
q sin t
B
C m2 2m EI
l2
l2
2021/5/25
第10页/共32页
10
解 本例静定结构,选择柔度法求解。
1 A m1 m
l2
EI
q sin t
B
C m2 2m EI
l/2
l2
l2
M1图
M图21源自l/4M图
P
q
ql2/8
用图乘法求得,11
l3 8E
小到大排列,称为频率谱。
➢将求得的 1 2 回代入(2),由于系数行列式等于零,n个方程是相关的,只
能由其中的n-1个方程解得各自由度动位移之间的比值。可见,体系按某一频
率振动的形状是不变的,称之为振型。
✓ 振型向量 Ai A1i A2i
Ani T
✓ 振型向量常用表述方法一:令某自由度位移为1,例 Ai 1 2i
k 是对称矩阵,k k T
M 也是对称矩阵,同理,有 A jT M Ai AiT M A j
(3)-(4),有
i2
2 j
AiT M A j 0
因为 i j ,所以 AiT M A j 0 i j
振型第一正交性:多自由度体系任意两个不同振型关于质量矩阵正交。
结构动力学(课用ppt)
10/28/2015 29
10/28/2015
30
10/28/2015
18
(4)一般任意荷载 荷载的幅值变化复杂、难以用解析函数解析表示的荷 载。 由环境振动引起的地脉动、地震引起的地震动, 以及脉动风引起的结构表面的风压时程等。
10/28/2015
19
1.5 结构动力分析中的自由度
一. 自由度的定义
结构动力学和静力学的一个本质区别:考虑惯性力的影响
结构产生动力反应的内因(本质因素):惯性力 惯性力的产生是由结构的质量引起的 动力自由度(数目):在动力计算中,一个体系的动力自由度是指为了确定 运动过程中任一时刻全部质体位置所需的独立的几何参数数目。
独立参数也称为体系的广义坐标,可以是位移、转角或其它广义量。
10/28/2015
20
二. 自由度的简化 实际结构都是无限自由度体系,这不仅导致分析困难,而且从工程 角度也没必要。常用简化方法有:
张亚辉 林家浩 编著, 结构动力学基础,大连理工大学出版社,2007. 刘晶波等编著,结构动力学,机械工业出版社,2005. 张子明等编著,结构动力学,河海大学出版社,2001.
10/28/2015
3
第一章 绪论
1.1 动力问题的基本特征 1.2 结构动力分析的目的
1.3 结构动力学研究的内容
1.4 动力荷载类型
注意!
振动体系的自由度数与计算假定有关,而与集中质量的数目和 超静定次数无关,如下图所示的体系。
10/28/2015
26
2、广义坐标法
广义坐标:能决定体系几何位置的彼此独立的量,称为该体系的广义坐标
变形曲线可用三角级数的和来表示:
nx nx u( x, t ) bn sin bn (t ) sin L L n 1 n 1
10/28/2015
30
10/28/2015
18
(4)一般任意荷载 荷载的幅值变化复杂、难以用解析函数解析表示的荷 载。 由环境振动引起的地脉动、地震引起的地震动, 以及脉动风引起的结构表面的风压时程等。
10/28/2015
19
1.5 结构动力分析中的自由度
一. 自由度的定义
结构动力学和静力学的一个本质区别:考虑惯性力的影响
结构产生动力反应的内因(本质因素):惯性力 惯性力的产生是由结构的质量引起的 动力自由度(数目):在动力计算中,一个体系的动力自由度是指为了确定 运动过程中任一时刻全部质体位置所需的独立的几何参数数目。
独立参数也称为体系的广义坐标,可以是位移、转角或其它广义量。
10/28/2015
20
二. 自由度的简化 实际结构都是无限自由度体系,这不仅导致分析困难,而且从工程 角度也没必要。常用简化方法有:
张亚辉 林家浩 编著, 结构动力学基础,大连理工大学出版社,2007. 刘晶波等编著,结构动力学,机械工业出版社,2005. 张子明等编著,结构动力学,河海大学出版社,2001.
10/28/2015
3
第一章 绪论
1.1 动力问题的基本特征 1.2 结构动力分析的目的
1.3 结构动力学研究的内容
1.4 动力荷载类型
注意!
振动体系的自由度数与计算假定有关,而与集中质量的数目和 超静定次数无关,如下图所示的体系。
10/28/2015
26
2、广义坐标法
广义坐标:能决定体系几何位置的彼此独立的量,称为该体系的广义坐标
变形曲线可用三角级数的和来表示:
nx nx u( x, t ) bn sin bn (t ) sin L L n 1 n 1
结构动力学 ppt课件
i (0) i (l ) 0
--基函数(或形状函数) 课件 i ( x)PPT
9
ai ---广义坐标
3) 有限元法 和静力问题一样,可通过将实 际结构离散化为有限个单元的集合, 将无限自由度问题化为有限自由度 来解决。
m
三. 自由度的确定
集中质量法:独立质量位移数即为自由度数; 广义坐标法:广义坐标个数即为自由度个数; 有限元法:独立结点位移数即为自由度数;
第三类问题:荷载识别。
PPT课件
5
第四类问题:控制问题
输入 (动力荷载) 结构 (系统) 控制系统 (装置、能量) 输出 (动力反应)
本课程主要介绍结构的反应分析 任务 讨论结构在动力荷载作用下反应的分析的方法。寻找 结构固有动力特性、动力荷载和结构反应三者间的相互关 系,即结构在动力荷载作用下的反应规律,为结构的动力 可靠性(安全、舒适)设计提供依据。
PPT课件
10
例. 自由度的确定
1) 平面上的一个质点 3) 计轴向变形时 W=2 不计轴向变形时 W=1 W=2 为减少动力自由度,梁与 刚架一般可不计轴向变形。
y2
y1
W=2
2)Βιβλιοθήκη 弹性支座不减少动力自由度PPT课件
11
4)
y1
W=1
5) W=2
6)
EI
W=1
PPT课件
12
§1.4
体系的运动方程
形式上的平衡方程,实质上的运动方程
PPT课件
13
一、柔度法
P(t )
l
EI
m m (t ) y y(t )
=1
11
(t )] 11[ P(t ) m y
结构力学课件—结构动力学
中南大学
退出
返回
17:04
§14-1 概述
二、动力荷载的分类
1. 周期荷载
结构力学
周期荷载—— 随时间周期地变化的荷载。其中最简单、最重要的是 简谐荷载(按弦或余弦函数规律变化)。 F
r
m
F (t) F t
θ t
o
简谐荷载
l/ 2
l/ 2
非简谐性周期荷载
F (t)
例:打桩时落锤撞击所产生的荷载。
o
退出
返回
17:04
§14-3 单自由度结构的自由振动
结构力学
(2)柔度法。即列位移方程。当质点m振动时,把惯性力看作静力荷载作用在体 系的质量上,则在其作用下结构在质点处的位移y应当为:
y F111 my11
即
my k11 y 0
同刚度法所得方程
此二阶线性常系数齐次微分方程的通解为:
振动微分方程的建立方法:
(1)刚度法。即列动力平衡方程。设质点m在振动的任一时刻位移为y,取质点 m为隔离体,不考虑质点运动时受到的阻力,则作用于质点m上 的力有: (a) 弹簧恢复力
Fc k11 y
(b) 惯性力
该力有将质点拉回静力平衡位置的趋势,负号表示其方 向恒与位移y的方向相反,即永远指向静力平衡位置。
产生自由振动的原因:结构在振动初始时刻受到干扰。 初始干扰的形式: (1)结构具有初始位移 m (2)结构具有初始速度 Δ st 静平衡位置 (3)上述二者同时存在
yd
结构力学
自由振动:结构在振动进程中不受外部干扰力作用的振动形式。
k11
m
FS (t )
yd
W
FI ( t )
1. 不考虑阻尼时的自由振动
结构力学——结构动力学PPT课件
由静止状态考虑一个瞬时冲量的影响。dS FE( )d
FE(t)
dS=FE()d
mdy
dy( ) FE ( )d
m
d
t
dy( ) FE ( ) (d )2
2m
0
瞬时激振作用效果就在于使质点在τ时
t
刻产生一个初速度,而初位移为零。质
点作以此初始条件引起的自由振动。
dy(t) dy0 sin(t )
y 0
2
A0
A1
A2
arctan
y0
y 0
A0 ——振幅(amplitude of vibration)
——初始相位角。
总动力位移
第4页/共65页
4 / 67
第三节 单自由体系自由振动
1、无阻尼的自由振动 ( = 0 )
T
2
f1 T
称周期(振动一次所需的时间) 称工程频率(单位时间内振动次数)
23 / 67
第三节 单自由体系自由振动
3、确定体系阻尼比的方法
y
Ae
y
t
s
i
n
(dt
)
发现
1/
衰减性振动;
Ae t
2/ 非周期性振动; 3/ 质点两次通过平衡位
o
t
置的时间间隔相等
2
Td d 准周期
第24页/共65页
24 / 67
第三节 单自由体系自由振动
3、确定体系阻尼比的方法 ① 阻尼对自振频率的影响.
第31页/共65页
31 / 67
第四节 单自由体系受迫振动
1、单自由体系受迫振动的一般解
整个加载过程可以考虑成是由一系列瞬时冲量对同一时
结构动力学课件
矩阵M和K两边相乘的是同一个振型向量φi时, 它们的乘 积等于一个数:
Mi Mi
Mi 称为广义质量. Ki 称为广义刚度.
i Ki Ki
T
返回目录
自测题
一、判断题
1. 动力荷载对结构的影响不仅随时间而变化,而 且使结构产生不容忽视的惯性力。( √ ) 2. 动力位移总是要比静力位移大一些。( ╳ ) 3. 多自由度体系, 刚度系数与柔度系数的关系是: kij=1/δij 。 ( ╳) 4. 图示体系作动力计算时,若不计轴向变形影响则为 m 单自由度体系。( ╳ )
F F
t 1
自测题
三、考研题选解
1. 在动力计算中,图a、b所示体系的动力自由度分 别为:( A )(4分)(西南交通大学1997年)
A. 1,4
(a)
B. 2,3
(b)
C. 2,2
(c)
D.3,4
(d) (d)
(a)
(b)
(c)
提示:用附加链杆法分析,附加链杆分别如图 c、d, 有几个附加链杆,就有几个自由度。
4. 建立运动方程的方法
基本方法是惯性力法,即在体系的各运动质点上加入惯性力并认 为各质点处于瞬时的平衡状态,采用静力学方法列出运动方程。 y ,速 注意,通常取静平衡位置为位移 y的坐标原点,位移 度 、加速度 y 的正方向取为一致。 y
(1)刚度法
FI (t ) Fc (t ) Fe (t ) Fp (t ) 0 (t ) cy (t ) k11 y(t ) Fp (t ) m y
X (1) X (2) X X (n)
1 X (2) X (1) X ( n ) X ( 1 )
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
q(
x)Y
(
x)dx
2
0l q(x)Y (x)dx
0l m[Y (x)]2 dxmiYi2
例12 试求等截面简支梁的第一频率。
4
EI m
1)假设位移形状函数为抛物线
x
l
Y (x) x(l x)
满足边界条件且与第 一振型相近
y
2
2EIl ml5 / 60
2
120EI ml4
高频率误差较大。故 Rayleigh法主要用于求ω1的近似解。 3、相应于第一频率所设的振型曲线,应当是结构比较容易出现的变形 形式。曲率小,拐点少。
4、通常可取结构在某个静荷载q(x)(如自重)作用下的弹性曲线作
为Y(x)的近似表达式。此时应变能可用相应荷载q(x)所作的功来代
替,即
U
1 2
0l
1
h0
x
3
12 l
单位长度的质量: m h0 x
l
x l
设位移形状函数: Y (x)a(1 x )2 l
满足边界条件:Y (l) 0,Y (l) 0
2
5Eh02
2l 4
,
1.581h0 l2
E
与精确解
1.534h0 l2
E
相比误差为3%
2 0l EI[Y (x)]2 dx
1
§10-6 近似法求自振频率
2
1、能量法求第一频率——Rayleigh法
根据能量守恒定律,当不考虑阻尼自由振动时,振动体系在任何时刻的动能T 和应 变能U 之和应等于常数。 ※根据简谐振动的特点可知:在体系通过静力平衡位置的瞬间,速度最大(动能具有 最大值),动位移为零(应变能为零);当体系达到最大振幅的瞬间(变形能最大), 速度为零(动能为零)。对这两个特定时刻,根据能量守恒定律得:
6
为了使假设的振型尽可能的接近真实振型,尽可能减小假设振型对体系所 附加的约束, Ritz 提出了改进方法:
1、假设多个近似振型 2、将它们进行线性组合
1,2 n 都满足前述两个条件。 Y(x) a1 1 a2 2 an n
(a1、a2、·········、an是待定常数)
代入频 率方程:
[k] 2[m] 0lBiblioteka mij 0 mi jdx
k11 4EIl,
m11
ml 5
5
4EIl 2
ml5 5
0 2
20EI ml4
,
1
1
4.472 l
2
EI m
其精确解:
1
3.516 l2
EI m
与精确解相比,误差为27%。
9
例:用Rayleigh—Ritz法求等截面悬臂梁的最初几个频率。
解: Y a11 a22 a1x2 a2 x3
取两项
1 x2 12; 2 x3 2 6x
精确解:m1
3.516 EI l 2
EI m
x
l2
22.03 l2
EI m
代入:
kij
l
0 EIi jdx,
l
mij 0 mi jdx
Umax=Tmax
ω
※求Umax ,Tmax 位移幅值 设: y(x,t) Y (x)sin(t )
v y. Y (x) cos(t )
如TUm梁amxU上12ax0l还12m1212有(0l0l2xEE集)0lvIIm中[2Yd(x质x(x2)xY量2y)122]2m(2xdid2)x,dcxxos212(※Ysii为求tn2集2频(2中)率0l0lmtm质[Y(0l量x0El()0)lEIxmY0lm[)EIY2]i处(2[I[xYY[d(Y)的xxd()x(位x](2xx)d移]))m2]x]22幅diYddxi值x2x 。
10.95 EI
l2 m
2)假设均布荷载q作用下的挠度曲线作为Y(x)
Y (x) q x(l 3 2lx 2 x3 ) 24EI
2
0l qY( 0l mY 2
x)dx (x)dx
q m
x
2l 5 120EI
q 24EI
2
31 630
l
9
9.87 EI
l2 m
3)假设 Y (x)asin
第一振型的精确解。
l
2
4EIa2 2l3
4EI
ma2l 2
ml4
29.0l80lE62m9I6[[YY
E(xI )]2 精确dx (mx)]2 d解x
例 求楔形悬臂梁的自振频率。 设梁截面宽度为 1,高度为 h=h0x/l。
5
h0
解:
截面惯性矩: I
越准。
8
例:用Rayleigh—Ritz 法求等截面悬臂梁的最初几个频率。
解:悬臂梁的位移边界条件为:
Y=0 Y’=0 (在左端)
设:Y a11 a22 a1x2 a2 x3
m EI
x l
只取第一项 1 x2 1 2
l
代入: kij 0 EIi jdx,
0l m[Y (x)]2 dx
Rayleigh 法所得频率的近似解总是比精确解偏高。其原因是假设了一振型曲线 代替实际振型曲线,迫使梁按照这种假设的形状振动,相当于给梁加上了某种 约束,增大了梁的刚度,致使频率偏高。当所设振型越接近于真实,则相当于 对体系施加的约束越小,求得的频率越接近于真实,即偏高量越小。
3、确定待定常数的准则是:获得最佳的线性组合,这样的Y(x)代入频 率计算公式中得到的ω2 的值虽仍比精确解偏高,但对所有的a1,a2,…,an 的可能组合,确实获得了最小的ω2值。
所选的a1,a2,…,an使 ω2 获得最小值的条件是
2 0, (i 1,2,, n)
ai
这是以a1,a2,…,an为未知量的n个奇次线性代数方程。令其系数行列式 等于零,得到频率方程,可以解出原体系最低 n 阶频率来。阶次越低往往
3
※假设位移幅值函数Y(x)必须注意以下几点:
1、必须满足运动边界条件: (铰支端:Y=0;固定端:Y=0,Y´=0)
尽量满足弯矩边界条件,以减小误差。剪力边界条件可不计。
2、所设位移幅值函数应与实际振型形状大致接近;如正好与第 n 主振 型相似,则可求的ωn的准确解。但主振型通常是未知的,只能假定一近 似的振型曲线,得到频率的近似值。由于假定高频率的振型困难,计算