人教版函数的单调性PPT课件
合集下载
人教版高中数学选择性必修第二册5.3.1函数的单调性【课件】
′ = − <
所以,函数 = − 在 ∈ (, ) 上单调递减,如图(2)所示.
合作探究
例1 利用导数判断下列函数的单调性:
(3) =
解:
−
(3)因为
= − , ∈ (−∞, ) ∪ +∞
所以
′
= >
新知讲解
观察图象可以发现:
(1)从起跳到最高点,运动员的重心处于上升状态,离水面的高度h随时
间t的增加而增加,即h(t) 单调递增. 相应地, = ′ >
(2)从最高点到入水,运动员的重心处于下降状态,离水面的高度h随时
间t的增加而减少,即h(t) 单调递减. 相应地, = ′ < .
3
所以, f(x)在(−∞,-1)和(2,+∞)上都单调
递增,在(-1,2)上单调递减,如图5.3-6所示.
合作探究
规律方法:一般情况下,通过如下步骤判断函数 y=f(x)的单调性:
第1步,确定函数的定义域;
第2步,求出导数 ′ 的零点;
第3步,用 ′ 的零点将 f(x)的定义域划分为若干个区间,列表给出 ′
1
所以,函数 = 1 − 在区间 −∞, 0 和(0, +∞)上单调递增,如图(3)所示.
合作探究
例2 已知导函数′ 的下列信息:
当1<x<4时,′ > ;
当x<1, 或x>4时,′ <
当x=1,或 x=4时,′ = .
试画出函数f(x)图象的大致形状.
′ = + = + >
人教版高中数学课件:正弦函数性质(单调性与奇偶性)新人教版
3 2
2
O -1
2
3 2
2
u
y=sinu y=- |sinu|
, k ], k Z
即: 增区间为 减区间为
x [k x [k 3
u [k
u [k , k
2
], k Z
, k , k
4
], k Z
4
y为增函数 y为减函数
o
-1
2
3
4
5
6
x
正弦、余弦函数的奇偶性、单调性
正弦、余弦函数的奇偶性
y
1 -4 -3 -2 -
o
-1
2
3
4
5
6
x
sin(-x)= - sinx (xR)
y=sinx (xR) 是奇函数 定义域关于原点对称
cos(-x)= cosx (xR)
y
1 -4 -3 -2 -
3 4 3 4
,k Z ,k Z
为减区间。 为增区间。
当
2k
x 3
4
2k
2
6k
正弦、余弦函数的奇偶性、单调性
(5) y = -| sin(x+ )| 解: 令x+ =u , 则 y= -|sinu| 大致图象如下:
4
4
y 1
y=|sinu|
2
2
y=cosx (xR) 是偶函数
o
-1
2
3
4
5
6
x
5.3.1函数的单调性课件(人教版)
练习巩固
解 (1)函数定义域为R,f'(x)=4-x2.
令f'(x)>0,即4-x2>0,解得-2<x<2;
令f'(x)<0,即4-x2<0,解得x<-2或x>2.
故函数的单调递增区间是(-2,2),单调递减区间是(-∞,-2)和(2,+∞).
(2)函数定义域为R,f'(x)=ex-1.
令f'(x)>0,即ex-1>0,解得x>0;
______;
第2步:求出导数f ′(x)的____
零点 ;
零点 将f (x)的定义域划分为若干个区间,列表
第3步:用f ′(x)的____
给出f ′(x)在各区间上的正负
____,由此得出函数y=f (x)在定义域内的单
调性.
新知探究
归纳总结
用解不等式法求单调区间的步骤
1确定函数 fx的定义域;
当 k≤0 时,kx-1<0,
∴f ′(x)<0,则 f (x)在(0,+∞)上单调递减.
新知探究
kx-1
1
当 k>0 时,由 f ′(x)<0,得 x <0,解得 0<x<k;
kx-1
1
由 f ′(x)>0,得 x >0,解得 x> k.
∴当 k>0 时,f
1
(x)的单调递减区间为0,k ,
∴f(x)在(0,1)内单调递减,在(+∞)内单调递增.
综上所述,当a≥0时,f(x)在(0,1)内单调递减,在(1,+∞)内单调递增.
练习巩固
方法技巧解析式中含参数的函数的单调区间的求法
(1)求解析式中含参数的函数的单调区间一般需要分类讨论:若函数的导函
数学:3.3《函数的单调性与导数》课件(新人教版A选修1-1)
上面是否可得下面一般性的结论:
1.回顾一下函数单调性的定义,利用导数的几何 意义,研究单调性的定义与其导数正负的关 系? 在某个区间(a,b)内, ①如果f’(x)>0, 那么函数y=f(x)在这个区间内单调 递增. ②如果f’(x)<0, 那么函数y=f(x)在这个区间内单调 递减.
1.如果在某个区间内恒有f’(x)=0,那么函数f(x) 有什么特性?
本题用到一个重要的转化:
m≥f(x)恒成立 m f (x)max m f (x)恒成立 m f (x )min
练习2 若f (x)在(0, 1]上是增函数,求a的取值范围。
已知函数f (x)= 2ax - x 3,x (0, 1],a 0,
解:f (x)=2ax - x3在( 0, 1]上是增函数, f '(x)=2a - 3x 0在( 0, 1]上恒成立, 3 2 即:a x 在(0, 1]上恒成立, 2 3 2 3 而g( x ) x 在(0, 1]上的最大值为 , 2 2 3 a 。 3 2 [ , )
练习: 已知 x 1 ,求证: x ln( x 1)
提示:运用导数判断单调性,
根据函数的单调性比较函数值大小
单调性的定义
一般地,设函数y=f(x)的定义域为I,如果对 于定义域 I 内的某个区间 D 内的任意两个自变量 x1 , x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x) 在区间D上是增函数.
对于函数y=f(x)在某个区间上单调递增或 单调递减的性质,叫做f(x)在这个区间上的 单调性,这个区间叫做f(x)的单调区间。
解: (3) 因为
, 所以
因此, 函数
在
人教版必修1函数的单调性教学设计课件.ppt
在区间(-∞,0] 上任取两个实数 x1, x2 ,得到 函数值 f (x1) x12 , f (x2 ) x22 ,当 x1 x2 时, 有__f_(_x1_)___f _(x_2_)_
概念生成——单调性的定义
一般地,设函数 f (x) 的定义域为 : I 如果对于定义域 I 内某个区间 D 上的任意
记忆牢固程度进行了研究.他经过测试,得到了有趣
的数据:
艾宾浩斯的记忆遗忘曲线
y 记忆的数量(百分数)
100
80
60 40
20
o
1
2
3 天数 t
问题:观察下图中各个函数的图像,你能说说 它们分别反映了相应函数的哪些变化规律吗?
概念生成——“形”的观察
y 4 3 2 1 -2 -1 O 1 2 x
概念生成——“形”的观察
例1下图是定义在区间[-5,5]上的函数 y f (x) , 根据图象说出函数的单调区间,以及在每一个单 调区间上,它是增函数还是减函数?
概念生成——“数”的抽象
探究一: 根据函数的定义,当一个函数在某一 区间上是单调递增(或递减)时,相应的,自变 量的值与对应的函数值的变化规律是怎样的?
•若函数在定义域的某个区间D上函数值随着自变量的 _增__大__而__增__大__,则函数在D上是增函数; •若函数在定义域的某个区间D上函数值随着自变量的 _增__大__而__减__小__,则函数在D上是减函数.
x1
f
x2 时,都有 (x) 在区间 D
上是减函数.
如果函数 y f (x) 在区间 D上是增函数或减 函数,那么就说函数 y f (x) 在这一区间具有
(严格的)单调性,区间 D叫做 y f (x) 的单 调区间.
概念生成——单调性的定义
一般地,设函数 f (x) 的定义域为 : I 如果对于定义域 I 内某个区间 D 上的任意
记忆牢固程度进行了研究.他经过测试,得到了有趣
的数据:
艾宾浩斯的记忆遗忘曲线
y 记忆的数量(百分数)
100
80
60 40
20
o
1
2
3 天数 t
问题:观察下图中各个函数的图像,你能说说 它们分别反映了相应函数的哪些变化规律吗?
概念生成——“形”的观察
y 4 3 2 1 -2 -1 O 1 2 x
概念生成——“形”的观察
例1下图是定义在区间[-5,5]上的函数 y f (x) , 根据图象说出函数的单调区间,以及在每一个单 调区间上,它是增函数还是减函数?
概念生成——“数”的抽象
探究一: 根据函数的定义,当一个函数在某一 区间上是单调递增(或递减)时,相应的,自变 量的值与对应的函数值的变化规律是怎样的?
•若函数在定义域的某个区间D上函数值随着自变量的 _增__大__而__增__大__,则函数在D上是增函数; •若函数在定义域的某个区间D上函数值随着自变量的 _增__大__而__减__小__,则函数在D上是减函数.
x1
f
x2 时,都有 (x) 在区间 D
上是减函数.
如果函数 y f (x) 在区间 D上是增函数或减 函数,那么就说函数 y f (x) 在这一区间具有
(严格的)单调性,区间 D叫做 y f (x) 的单 调区间.
5.3.1函数的单调性课件(人教版)
0.5(x 3)2 1 (x 3)
1
( x 3)
2
(x) sin x
( x )
2
2
1
(3 x ) 2
0.5(x 3)2 1 (x 3)
0.5(x 3)2 1 (x 3)
1
(1 x 3)
x(ln | x | 1) (0 x 1)
(x) 0
(x 0)
x(ln | x | 1) (1 x 0)
3.函数y f (x) 的图像如图所示,试画出函数y f (x) 图像的大致形状
二、函数的极值与最大(小)值
观察图像,发现,当t a 时, 高台跳水运动员距水面的高度最大
h(a) 0
在t a 附近 当t a 时,函数h(t) 单调递增,h(t) 0 当t a 时,函数h(t) 单调递减,h(t) 0 在t a 附近,函数值先增后减 当t 在a 的附近从小到大经过a 时
1. 函数f (x) 在区间 D 上单调递减 f (x) 0
2. 函数f (x) 在区间D 上单调递减 f (x) 0
x ln | x | (x 0)
f (x) 0
(x 0)
g(x) x sin x
探究与发现
函数f (x) 在无穷多个孤立点处的导数等于 0 f (x) 0恒成立 函数f (x) 在定义域内单调递增
函数f (x) 的图像也是下降的,
函数f (x) 在x x1 附近单调递减
一般地,函数f (x) 的导函数为f (x) 在区间(a,b) 上,如果f (x) 0 那么函数y f (x) 在区间(a,b) 上单调递增 在区间(a,b) 上,如果f (x) 0 那么函数y f (x) 在区间(a,b) 上单调递减 在区间(a,b) 上,如果f (x) 0
人教版高一数学必修一1.3函数的基本性质(单调性)(共25张PPT)
择决定命运,环境造就人生!
明朝未及,我只有过好每一个今天,唯一的今天。
昨日的明天是今天。明天的昨日是今天。为什么要计较于过去呢(先别急着纠正我的错误,你确实可以在评判过去中学到许多)。但是我发现有的人过分地瞻前顾后了。为 何不想想“现在”呢?为何不及时行乐呢?如果你的回答是“不”,那么是时候该重新考虑一下了。成功的最大障碍是惧怕失败。这些句子都教育我们:不要惧怕失败。如 果你失败了他不会坐下来说:“靠,我真失败,我放弃。”并且不是一个婴儿会如此做,他们都会反反复复,一次一次地尝试。如果一条路走不通,那就走走其他途径,不 断尝试。惧怕失败仅仅是社会导致的一种品质,没有人生来害怕失败,记住这一点。宁愿做事而犯错,也不要为了不犯错而什么都不做。不一定要等到时机完全成熟才动手。 开头也许艰难,但是随着时间的流逝,你会渐渐熟悉你的事业。世上往往没有完美的时机,所以当你觉得做某事还不是时候,先做起来再说吧。喜欢追梦的人,切记不要被 梦想主宰;善于谋划的人,切记空想达不到目标;拥有实干精神的人,切记选对方向比努力做事重要。太阳不会因为你的失意,明天不再升起;月亮不会因为你的抱怨,今 晚不再降落。蒙住自己的眼睛,不等于世界就漆黑一团;蒙住别人的眼睛,不等于光明就属于自己!鱼搅不浑大海,雾压不倒高山,雷声叫不倒山岗,扇子驱不散大雾。鹿 的脖子再长,总高不过它的脑袋。人的脚指头再长,也长不过他பைடு நூலகம்脚板。人的行动再快也快不过思想!以前认为水不可能倒流,那是还没有找到发明抽水机的方法;现在认 为太阳不可能从西边出来,这是还没住到太阳从西边出来的星球上。这个世界只有想不到的,没有做不到的!不是井里没有水,而是挖的不够深;不是成功来的慢,而是放 弃速度快。得到一件东西需要智慧,放弃一样东西则需要勇气!终而复始,日月是也。死而复生,四时是也。奇正相生,循环无端,涨跌相生,循环无端,涨跌相生,循环 无穷。机遇孕育着挑战,挑战中孕育着机遇,这是千古验证了的定律!种子放在水泥地板上会被晒死,种子放在水里会被淹死,种子放到肥沃的土壤里就生根发芽结果。选
明朝未及,我只有过好每一个今天,唯一的今天。
昨日的明天是今天。明天的昨日是今天。为什么要计较于过去呢(先别急着纠正我的错误,你确实可以在评判过去中学到许多)。但是我发现有的人过分地瞻前顾后了。为 何不想想“现在”呢?为何不及时行乐呢?如果你的回答是“不”,那么是时候该重新考虑一下了。成功的最大障碍是惧怕失败。这些句子都教育我们:不要惧怕失败。如 果你失败了他不会坐下来说:“靠,我真失败,我放弃。”并且不是一个婴儿会如此做,他们都会反反复复,一次一次地尝试。如果一条路走不通,那就走走其他途径,不 断尝试。惧怕失败仅仅是社会导致的一种品质,没有人生来害怕失败,记住这一点。宁愿做事而犯错,也不要为了不犯错而什么都不做。不一定要等到时机完全成熟才动手。 开头也许艰难,但是随着时间的流逝,你会渐渐熟悉你的事业。世上往往没有完美的时机,所以当你觉得做某事还不是时候,先做起来再说吧。喜欢追梦的人,切记不要被 梦想主宰;善于谋划的人,切记空想达不到目标;拥有实干精神的人,切记选对方向比努力做事重要。太阳不会因为你的失意,明天不再升起;月亮不会因为你的抱怨,今 晚不再降落。蒙住自己的眼睛,不等于世界就漆黑一团;蒙住别人的眼睛,不等于光明就属于自己!鱼搅不浑大海,雾压不倒高山,雷声叫不倒山岗,扇子驱不散大雾。鹿 的脖子再长,总高不过它的脑袋。人的脚指头再长,也长不过他பைடு நூலகம்脚板。人的行动再快也快不过思想!以前认为水不可能倒流,那是还没有找到发明抽水机的方法;现在认 为太阳不可能从西边出来,这是还没住到太阳从西边出来的星球上。这个世界只有想不到的,没有做不到的!不是井里没有水,而是挖的不够深;不是成功来的慢,而是放 弃速度快。得到一件东西需要智慧,放弃一样东西则需要勇气!终而复始,日月是也。死而复生,四时是也。奇正相生,循环无端,涨跌相生,循环无端,涨跌相生,循环 无穷。机遇孕育着挑战,挑战中孕育着机遇,这是千古验证了的定律!种子放在水泥地板上会被晒死,种子放在水里会被淹死,种子放到肥沃的土壤里就生根发芽结果。选
3.2.1函数的性质-单调性课件(人教版)
(1 ) < (2 ),那么就称函数() 有(1 ) > (2 ),那么就称函数
在区间上单调递增.
()在区间上单调递减.
就叫做函数 () 的单调递增区间, 就叫做函数 () 的单调递增区间,
简称增区间.
简称减区间.
(2)用定义法证明函数的单调性
(1)取值;
课堂例题
例1 根据定义,研究函数() = + ( ≠ 0)的单调性。
追问1:由初中知识可知,一次函数图象的上升还是下降取决于谁?
追问2:根据单调性的定义,判断单调性的关键是比较 (1 )和(2 ) 的大小?
那如何比较(��1 )和(2 )的大小呢?
分析:根据函数单调性的定义,需要考察当1<2时,(1)<(2)还是
章节:第三章 函数的概念与性质
标题:3.2函数的基本性质 (1)
单调性
目
录
1.教学目标
2.新课讲授
3.新课小结
4.作业巩固
环节1:教学目标分解
教学目标
1.理解增函数、减函数的概念及函数单调性的定义;会根
据单调定义证明函数单调性; 理解函数的最大(小)值
及其几何意义;
2.学会运用函数图象理解和研究函数的性质.
(1)>(2).根据实数大小关系的基本事实,只要考察(1)-(2)与0
的大小关系.
解:函数()=+( ≠ 0)的定义域是,∀1,2 ∈ ,且1<2,
则(1)-(2)=(1+)-(2+)=(1-2).
由1<2,得1-2<0.所以
(2)任意取1 ,2 ∈ (−∞, 0],
当1 <2 时,有(1 ) < (2 ).
函数() = ||在区间(−∞, 0]上是单调递增的.
在区间上单调递增.
()在区间上单调递减.
就叫做函数 () 的单调递增区间, 就叫做函数 () 的单调递增区间,
简称增区间.
简称减区间.
(2)用定义法证明函数的单调性
(1)取值;
课堂例题
例1 根据定义,研究函数() = + ( ≠ 0)的单调性。
追问1:由初中知识可知,一次函数图象的上升还是下降取决于谁?
追问2:根据单调性的定义,判断单调性的关键是比较 (1 )和(2 ) 的大小?
那如何比较(��1 )和(2 )的大小呢?
分析:根据函数单调性的定义,需要考察当1<2时,(1)<(2)还是
章节:第三章 函数的概念与性质
标题:3.2函数的基本性质 (1)
单调性
目
录
1.教学目标
2.新课讲授
3.新课小结
4.作业巩固
环节1:教学目标分解
教学目标
1.理解增函数、减函数的概念及函数单调性的定义;会根
据单调定义证明函数单调性; 理解函数的最大(小)值
及其几何意义;
2.学会运用函数图象理解和研究函数的性质.
(1)>(2).根据实数大小关系的基本事实,只要考察(1)-(2)与0
的大小关系.
解:函数()=+( ≠ 0)的定义域是,∀1,2 ∈ ,且1<2,
则(1)-(2)=(1+)-(2+)=(1-2).
由1<2,得1-2<0.所以
(2)任意取1 ,2 ∈ (−∞, 0],
当1 <2 时,有(1 ) < (2 ).
函数() = ||在区间(−∞, 0]上是单调递增的.
《函数的单调性》示范公开课教学PPT课件【高中数学人教版】
(2)它在定义域I上的单调性是怎样的?证明你的结论.
答案:图象略.
(1)(-∞,0)∪(0,+∞).
(2)当k>0时,y= k 在区间(-∞,0)和(0,+∞)上单调递减; x
当k<0时,y= k 在区间(-∞,0)和(0,+∞)上单调递增. x
目标检测
44.画出反比例函数y=
k x
的图象.
(1)这个函数的定义域I是什么?
新知探究
追问5 函数f(x)=|x|,f(x)=-x2各有怎样的单调性?
f(x)=|x|在区间(-∞,0]上单调递减, 在区间[0,+∞)上单调递增; f(x)=-x2在区间(-∞,0]上单调递增, 在区间[0,+∞)上是单调递减.
新知探究
问题4 如何用符号语言准确刻画函数值随自变量的增大而增大 (减小)呢?
证明:由x1,x2∈(1,+∞),得x1>1,x2>1,
所以x1x2>1,x1x2-1>0.
由x1<x2,得x1-x2<0,
于是(x1-x2)(
x1x2 1 x1 x2
)<0,即y1<y2.
所以,函数y=x+ 1 在区间(1,+∞)上的单调递增. x
新知探究
追问 你能用单调性定义探究y=x+ 1 在整个定义域内的单调性吗? x
图1
图2
图3
图1的特点是:从左至右始终保持上升;
图2与图3的特点是:从左至右有升也有降.
新知探究
★资源名称: 【数学探究】函数值的变化情况 ★使用说明:本资源通过操作展示动画,使学生观察函数值随着自变量值的变化而变化的情 况.通过交互式动画的方式,运用了本资源,可以吸引学生的学习兴趣,增加教学效果,提高教 学效率. 注:此图片为动画缩略图,如需使用资源,请于资源库调用
人教版高中数学必修1《函数的单调性》PPT课件
k(x1 x2 ).
解:函数 f (x) kx b (k 0)的定义域是R.
x1, x2 R,且 x1 x2,则 f (x1) f (x2 ) kx1 b (kx2 b)
k(x1 x2 ). 由 x1 x2,得 x1 x2 0.所以
①当k 0时,k(x1 x2 ) 0.
只要 x1 x2,就有 f (x1) f (x2 ).
追问 3:这里对 x1,x2有什么要求?只取(,0]上的某些数对 是否可以?你能举例说明吗?
追问 3:这里对 x1,x2有什么要求?只取(,0]上的某些数对 是否可以?你能举例说明吗?
所有的 x1 x2,有 f (x1) f (x2 ).
你能由例 1、例 2 的证明过程,归纳一下用单调性定义研究或证 明一个函数在区间 D上的单调性的基本步骤吗?
证明函数在区间 D 上的单调性的基本步骤:
证明函数在区间 D 上的单调性的基本步骤: 第一步,在区间 D上任取两个自变量的值 x1,x2 D,并规定 x1 x2;
证明函数在区间 D 上的单调性的基本步骤: 第一步,在区间 D上任取两个自变量的值 x1,x2 D,并规定 x1 x2;
V
于一定量的气体,当其体积V 减小时,压强 p将增大,试对此用函数
的单调性证明.
例 2 物理学中的玻意耳定律 p k (k 为正常数)告诉我们,对
V
于一定量的气体,当其体积V 减小时,压强 p将增大,试对此用函数 的单调性证明.
思考:“体积V 减小时,压强 p增大”的含义?
例 2 物理学中的玻意耳定律 p k (k 为正常数)告诉我们,对
解:函数 f (x) kx b (k 0)的定义域是R.
x1, x2 R,且 x1 x2,则 f (x1) f (x2 ) kx1 b (kx2 b)
解:函数 f (x) kx b (k 0)的定义域是R.
x1, x2 R,且 x1 x2,则 f (x1) f (x2 ) kx1 b (kx2 b)
k(x1 x2 ). 由 x1 x2,得 x1 x2 0.所以
①当k 0时,k(x1 x2 ) 0.
只要 x1 x2,就有 f (x1) f (x2 ).
追问 3:这里对 x1,x2有什么要求?只取(,0]上的某些数对 是否可以?你能举例说明吗?
追问 3:这里对 x1,x2有什么要求?只取(,0]上的某些数对 是否可以?你能举例说明吗?
所有的 x1 x2,有 f (x1) f (x2 ).
你能由例 1、例 2 的证明过程,归纳一下用单调性定义研究或证 明一个函数在区间 D上的单调性的基本步骤吗?
证明函数在区间 D 上的单调性的基本步骤:
证明函数在区间 D 上的单调性的基本步骤: 第一步,在区间 D上任取两个自变量的值 x1,x2 D,并规定 x1 x2;
证明函数在区间 D 上的单调性的基本步骤: 第一步,在区间 D上任取两个自变量的值 x1,x2 D,并规定 x1 x2;
V
于一定量的气体,当其体积V 减小时,压强 p将增大,试对此用函数
的单调性证明.
例 2 物理学中的玻意耳定律 p k (k 为正常数)告诉我们,对
V
于一定量的气体,当其体积V 减小时,压强 p将增大,试对此用函数 的单调性证明.
思考:“体积V 减小时,压强 p增大”的含义?
例 2 物理学中的玻意耳定律 p k (k 为正常数)告诉我们,对
解:函数 f (x) kx b (k 0)的定义域是R.
x1, x2 R,且 x1 x2,则 f (x1) f (x2 ) kx1 b (kx2 b)
人教版选修2-2第一章函数的单调性与导数2(共20张PPT)教育课件
所 以 f( x ) 的 单 调 减 区 间 为 ( 2 a , 0 )
例求1参:数求的参取数值范的围范围 若函数f(x) ax3 - x2 x - 5在(-,+)上单调递增, 求a的取值范围
a1 3
求参数
已知函数(f x) 2ax
1
,x (0,1],若(f x)在
x2
x (0,1]上是增函数,求a的取值范围.
解:由已知得
f
'(x)
2a
2 x3
因为函数在(0,1]上单调递增
f '(x)>0,即a - 2 在x (0,1]上恒成立
而g(x)
1
x3
在(0,1]上单调递增,
x3
g(x)max g(1)=-1 a〉- 1
已知函数( f x) 2ax 1 ,x (0,1],若( f x)在 x2
x (0,1]上是增函数,求a的取值范围.
练习2
已知函数f(x)=2ax - x3,x (0,1],a 0,
若f(x)在(0,1]上是增函数,求a的取值范围。
[
3 2
,)
已知函数f(x)=ax³+3x²-x+1在R上是减函数, 求a的取值范围。
; 陌陌红包群 / 陌陌红包群 ;
y
y f (x)
y
y f (x)
y
y f '(x)
o 1 2x o 1 2x
o
2x
(A)
(B)
y y f (x)
y y f (x)
2
o1
x o 12
x
(C)
(D)
函 数 yxcosxsinx在 下 面 哪 个 区 间 内 是 增 函 数 (B )
例求1参:数求的参取数值范的围范围 若函数f(x) ax3 - x2 x - 5在(-,+)上单调递增, 求a的取值范围
a1 3
求参数
已知函数(f x) 2ax
1
,x (0,1],若(f x)在
x2
x (0,1]上是增函数,求a的取值范围.
解:由已知得
f
'(x)
2a
2 x3
因为函数在(0,1]上单调递增
f '(x)>0,即a - 2 在x (0,1]上恒成立
而g(x)
1
x3
在(0,1]上单调递增,
x3
g(x)max g(1)=-1 a〉- 1
已知函数( f x) 2ax 1 ,x (0,1],若( f x)在 x2
x (0,1]上是增函数,求a的取值范围.
练习2
已知函数f(x)=2ax - x3,x (0,1],a 0,
若f(x)在(0,1]上是增函数,求a的取值范围。
[
3 2
,)
已知函数f(x)=ax³+3x²-x+1在R上是减函数, 求a的取值范围。
; 陌陌红包群 / 陌陌红包群 ;
y
y f (x)
y
y f (x)
y
y f '(x)
o 1 2x o 1 2x
o
2x
(A)
(B)
y y f (x)
y y f (x)
2
o1
x o 12
x
(C)
(D)
函 数 yxcosxsinx在 下 面 哪 个 区 间 内 是 增 函 数 (B )
第五章5.3.1函数的单调性课件(人教版)
课堂小结
1.知识清单: (1)函数的单调性与其导数的关系. (2)利用导数判断函数的单调性. (3)利用导数求函数的单调区间. (4)由导数的信息画函数的大致图象. 2.方法归纳:方程思想、分类讨论. 3.常见误区:忽略定义域的限制.
随堂演练
1.设函数f(x)的图象如图所示,则导函数f′(x)的图象可能为
f′(x)=6x-2x,令 f′(x)=0,解得 x1= 33,x2=- 33(舍去),
用x1分割定义域,得下表:
x
0,
3
3
3 3
33,+∞
f′(x) -
0
+
f(x)
单调递减
f
3
3
单调递增
∴函数
f(x)的单调递减区间为0,
33,单调递增区间为
33,+∞.
(2)f(x)=2x3+3x2-36x+1.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2.(多选)如图是函数y=f(x)的导函数f′(x)的图象,则下列判断正确的是 A.在区间(-2,1)上,f(x)单调递增
√B.在(1,2)上,f(x)单调递增 √C.在(4,5)上,f(x)单调递增
D.在(-3,-2)上,f(x)单调递增
(3)f(x)=x-ex(x>0).
解 因为f(x)=x-ex,x∈(0,+∞), 所以f′(x)=1-ex<0, 所以f(x)=x-ex在(0,+∞)上单调递减.
反思感悟 利用导数判断函数单调性的步骤:确定函数的定义域; 求导数f′(x);确定f′(x)在定义域内的符号,在此过程中,需要对导 函数进行通分、因式分解等变形;得出结论.
解 当x<0或x>7时,f′(x)>0,可知函数f(x)在区间(-∞,0)和(7,+∞) 上都是单调递增的; 当0<x<7时,f′(x)<0,可知函数f(x)在区间(0,7)上单调递减; 当x=0或x=7时,f′(x)=0, 这两个点比较特殊,我们称它们为“临界点”. 故如图,
5.3.1函数的单调性(第一课时)课件(人教版)
利用导数判断含参函数的单调性
例
2:函数
f
(
x
)
1 = ax
2-(
a+1)
x
+lnx
,a>0,试讨论函数
f(
x
)
的单调性.
2
解:函数的定义域为(0,+∞),
1 ax2-(a+1)x+1 (ax-1)(x-1)
f′(x)=ax-(a+1)+ =
=
,
x
x
x
1
1
1
1,
①当 0<a<1 时, >1,∴x∈(0,1)和( ,+∞)时,f′(x)>0;x∈ a 时,f′(x)<0,
a
a
1
1
0,
,1
∴函数 f(x)在 a 和(1,+∞)上单调递增,在 a 上单调递减,
利用导数判断含参函数的单调性
综上所述,
1
1
,+∞
1,
当 0<a<1 时,函数 f(x)在(0,1)和 a
上单调递增,在 a 上单调递减;
当 a=1 时,函数 f(x)在(0,+∞)上单调递增;
1
1
0,
,1
当 a>1 时,函数 f(x)在 a 和(1,+∞)上单调递增,在 a 上单调递减.
RART 02
函数的单调性与导数
函数的单调性
思考:视察下面一些函数的图象,探讨函数的单调性与导数的正负的关系.
y y=x
O
x
(1)
y
y=x2
O
x
(2)
y
y=x3
O
x
y y=x-1
O
x
(3)
河北省保定市容城中学高一数学下册第二章《函数的单调性与最值》课件(人教版)
第4讲 函数的单调性与最值
考纲要求
考纲研读
利用函数单调性、图象等方法求
1.会求一些简单函数的值域. 一些简单函数的值域或最值;或
2.理解函数的单调性、最大值、以最值为载体求参数的范围,并
最小值及其几何意义.
能解决实际生活中的一些优化
问题.
1.函数的单调性的定义 设函数 y=f(x)的定义域为 A,区间 I⊆A,如果对于区间 I 内 的任意两个值 x1,x2,当 x1<x2 时,都有__f(_x_1)_<_f_(x_2_)_,那么就说 y =f(x)在区间 I 上是单调增函数,I 称为 y=f(x)的___单__调__增__区__间___; 如果对于区间 I 内的任意两个值x1,x2,当x1<x2 时,都有_f(_x_1)_>_f_(x_2_), 那么就说 y = f(x) 在区间 I 上 是单调减函数 ,I 称 为 y = f(x) 的 _单__调__减__区__间___.
【互动探究】 3.求下列函数的值域:
(1)y=35x-+42x; (2)y=-x2+x+2; (3)y=3xx22+-21. 解:(1)y=35x-+42x=14×152-x+4x8 =14×34x5--54x+23=-34+452-34x. ∴值域为yy≠-34 .
(2)y=-x2+x+2=-x-122+94. ∴值域是-∞,94. (3)由 y=3xx22+-21可知,x∈R 且(3-y)x2=2y+1, 当 y=3 时,显然不成立. ∴y≠3,得:x2=23y-+y1.∵x2≥0,∴23y-+y1≥0. 解得:-12≤y<3.∴函数值域为 y∈-12,3.
任意 x∈A,有__f_(_x)_≤_f_(_x0_)___恒成立,那么称 f(x0)为 y=f(x)的最大 值;如果存在定值 x0∈A,使得对于任意 x∈A,有__f(_x_)≥_f_(_x_0)___恒 成立,那么称 f(x0)为 y=f(x)的最小值.
考纲要求
考纲研读
利用函数单调性、图象等方法求
1.会求一些简单函数的值域. 一些简单函数的值域或最值;或
2.理解函数的单调性、最大值、以最值为载体求参数的范围,并
最小值及其几何意义.
能解决实际生活中的一些优化
问题.
1.函数的单调性的定义 设函数 y=f(x)的定义域为 A,区间 I⊆A,如果对于区间 I 内 的任意两个值 x1,x2,当 x1<x2 时,都有__f(_x_1)_<_f_(x_2_)_,那么就说 y =f(x)在区间 I 上是单调增函数,I 称为 y=f(x)的___单__调__增__区__间___; 如果对于区间 I 内的任意两个值x1,x2,当x1<x2 时,都有_f(_x_1)_>_f_(x_2_), 那么就说 y = f(x) 在区间 I 上 是单调减函数 ,I 称 为 y = f(x) 的 _单__调__减__区__间___.
【互动探究】 3.求下列函数的值域:
(1)y=35x-+42x; (2)y=-x2+x+2; (3)y=3xx22+-21. 解:(1)y=35x-+42x=14×152-x+4x8 =14×34x5--54x+23=-34+452-34x. ∴值域为yy≠-34 .
(2)y=-x2+x+2=-x-122+94. ∴值域是-∞,94. (3)由 y=3xx22+-21可知,x∈R 且(3-y)x2=2y+1, 当 y=3 时,显然不成立. ∴y≠3,得:x2=23y-+y1.∵x2≥0,∴23y-+y1≥0. 解得:-12≤y<3.∴函数值域为 y∈-12,3.
任意 x∈A,有__f_(_x)_≤_f_(_x0_)___恒成立,那么称 f(x0)为 y=f(x)的最大 值;如果存在定值 x0∈A,使得对于任意 x∈A,有__f(_x_)≥_f_(_x_0)___恒 成立,那么称 f(x0)为 y=f(x)的最小值.
高中数学必修一(人教版)《3.2.1 第一课时 函数的单调性》课件
(1)已知f(x)的定义域为[a,b]且为增函数,若f(m)>f(n),则m,n满足什么
关系?
a≤m≤b, 提示:a≤n≤b,
m>n
⇔f(m)>f(n).
(2)影响二次函数 y=ax2+bx+c(a≠0)的单调性的因素有哪些? 提示:a 的正负及-2ba的大小.
【学透用活】 [典例3] (1)已知函数f(x)=-x2-2(a+1)x+3. ①若函数f(x)在区间(-∞,3]上是增函数,则实数a的取值范围是________; ②若函数f(x)的单调递增区间是(-∞,3],则实数a的值为________. (2) 若 函数 f(x) = x2 + ax + b 在 区间 [1,2] 上不 单 调 , 则 实 数 a 的取 值 范 围为 ________.
答案:(-∞,1),(1,+∞)
2.将本例中“y=-x2+2|x|+3”改为“y=|-x2+2x+3|”,如何求解? 解:函数y=|-x2+2x+3|的图象如图所示.
由图象可知其单调递增区间为[-1,1],[3,+∞);单调递减区间为 (-∞,-1),(1,3).
题型三 函数单调性的应用
[探究发现]
(3)若f(x)是R上的减函数,则f(-3)>f(2).
()
(4)若函数f(x)在区间(1,2]和(2,3)上均单调递增,则函数f(x)在区间(1,3)上也单
调递增.
()
答案:(1)× (2)× (3)√ (4)×
2.函数y=f(x)的图象如图所示,其增区间是 A.[-4,4] B.[-4,-3]∪[1,4] C.[-3,1] D.[-3,4] 解析:由图可知,函数y=f(x)的单调递增区间为[-3,1],选C. 答案:C
[方法技巧] 1.图象法求函数单调区间的步骤 (1)作图:作出函数的图象. (2)结论:上升图象对应单调递增区间,下降图象对应单调递减区间. 2.常见函数的单调区间 (1)y=ax+b,a>0 时,单调递增区间为(-∞,+∞);a<0 时,单调递减区 间为(-∞,+∞). (2)y=ax,a>0 时,单调递减区间为(-∞,0)和(0,+∞);a<0 时,单调递 增区间为(-∞,0)和(0,+∞). (3)y=a(x-m)2+n,a>0 时,单调递减区间为(-∞,m],单调递增区间为 (m,+∞);a<0 时,单调递增区间为(-∞,m],单调递减区间为(m,+∞).
人教版数学必修一.1《函数的单调性》说课PPT课件
教学难点 (1)函数单调性的知识形成; (2)利用函数图象、单调性的定义判断 和证明函数的单调性.
人教版数学必修一.1《函数的单调性 》说课P PT课件
人教版数学必修一.1《函数的单调性 》说课P PT课件
二、教法分析与学法指导
本节课是一节较为抽象的数学概念课,因 此,教法上要注意:
1、通过学生熟悉的实际生活问题引入课题, 为概念学习创设情境,拉近数学与现实的距离, 激发学生求知欲,调动学生主体参与的积极 性.
在概念的掌握上缺少系统性、严谨性 教学方法 ,在教学中须加强根据以上分析本节
课教学方法以在多媒体辅助下的启发 学法指导 式教学为主 。
《函数的单调性》教学说明
对学生来说,函数的单调性早已有 地位作用 所知,然而没有给出过定义,只是从
直观上接触过这一性质.学生对此有 教学目标 一定的感性认识,对概念的理解有一
问题情景 学生活动 建构数学 数学应用
情景: 下面是某一天温度的变化图象:
T( OC )
5 4 3 2
问
题
说出气温在哪些时段内是升 高的,怎样用数学语言刻画“随
时间的增大气温逐步升高”这一
特征。
1
14
24
o 3 6 9 12 15 18 21 -1
t (小时)
-2
观察图形并回答右边的问题
《函数的单调性》教教学学说程明序
定好处,但另一方面学生也会觉得是 重点难点 已经学过的知识,感觉乏味.因此,
在设计教案时,加强了对概念的分析 教学方法 ,希望能够使学生认识到看似简单的
定义中有不少值得去推敲、去琢磨的 学法指导 东西,其中甚至包含着辩证法的原理.
《函数的单调性》教教学学说程明序
问题情景 学生活动 建构数学 数学应用
人教版数学必修一.1《函数的单调性 》说课P PT课件
人教版数学必修一.1《函数的单调性 》说课P PT课件
二、教法分析与学法指导
本节课是一节较为抽象的数学概念课,因 此,教法上要注意:
1、通过学生熟悉的实际生活问题引入课题, 为概念学习创设情境,拉近数学与现实的距离, 激发学生求知欲,调动学生主体参与的积极 性.
在概念的掌握上缺少系统性、严谨性 教学方法 ,在教学中须加强根据以上分析本节
课教学方法以在多媒体辅助下的启发 学法指导 式教学为主 。
《函数的单调性》教学说明
对学生来说,函数的单调性早已有 地位作用 所知,然而没有给出过定义,只是从
直观上接触过这一性质.学生对此有 教学目标 一定的感性认识,对概念的理解有一
问题情景 学生活动 建构数学 数学应用
情景: 下面是某一天温度的变化图象:
T( OC )
5 4 3 2
问
题
说出气温在哪些时段内是升 高的,怎样用数学语言刻画“随
时间的增大气温逐步升高”这一
特征。
1
14
24
o 3 6 9 12 15 18 21 -1
t (小时)
-2
观察图形并回答右边的问题
《函数的单调性》教教学学说程明序
定好处,但另一方面学生也会觉得是 重点难点 已经学过的知识,感觉乏味.因此,
在设计教案时,加强了对概念的分析 教学方法 ,希望能够使学生认识到看似简单的
定义中有不少值得去推敲、去琢磨的 学法指导 东西,其中甚至包含着辩证法的原理.
《函数的单调性》教教学学说程明序
问题情景 学生活动 建构数学 数学应用
人教版高中数学必修第一册3.2 函数的单调性 课时5 函数的单调性【课件】
−( − ) +, < ≤ ,
作出函数的图象如图.由图象可得:函数在区间(-3,-1)和(0,1)上单调递增,
在区间(-1,0)和(1,3)上单调递减.所以函数的单调递增区间为(-3,-1)和
(0,1);单调递减区间为(-1,0)和(1,3).
【方法规律】
图象法求函数单调区间的步骤
x1<x2⇔f(x1)>f(x2).
(2) 有关函数单调性应用的问题的求解,其通用的方法是利用转化思想解题,其思维
流程如下:
课堂反思
1.通过本节课的学习,你学到了哪些知识?
2.你认为本节课的重点和难点是什么?
随堂演练
1.下列四个函数中,在(0,+∞)上单调递增的是(
A. f(x)=3-x
C. f(x)=2x
(3) 已知函数y=f(x)在定义域(-1,1)上是减函数,且f(1-a)<f(2a-1),则实数a的取值范围为
________.
思路点拨
画出二次函数的草图,结合图象分析,根据函数单调性的图象特征,建立
关于参数a的方程、不等式或不等式组,通过解方程、不等式或不等式组求出参数a
的值或取值范围.
【解】(1) f(x)=-x2-2(a+1)x+3=-(x+a+1)2+(a+1)2+3.得函数单调递增区
−
)
( − ) −
)=(x1-x2)+
=
(x1x2-4).由
x1,x2∈(2,+∞),得x1>2,x2>2,所以x1x2>4,x1x2-4>0.又由x1<x2,得
作出函数的图象如图.由图象可得:函数在区间(-3,-1)和(0,1)上单调递增,
在区间(-1,0)和(1,3)上单调递减.所以函数的单调递增区间为(-3,-1)和
(0,1);单调递减区间为(-1,0)和(1,3).
【方法规律】
图象法求函数单调区间的步骤
x1<x2⇔f(x1)>f(x2).
(2) 有关函数单调性应用的问题的求解,其通用的方法是利用转化思想解题,其思维
流程如下:
课堂反思
1.通过本节课的学习,你学到了哪些知识?
2.你认为本节课的重点和难点是什么?
随堂演练
1.下列四个函数中,在(0,+∞)上单调递增的是(
A. f(x)=3-x
C. f(x)=2x
(3) 已知函数y=f(x)在定义域(-1,1)上是减函数,且f(1-a)<f(2a-1),则实数a的取值范围为
________.
思路点拨
画出二次函数的草图,结合图象分析,根据函数单调性的图象特征,建立
关于参数a的方程、不等式或不等式组,通过解方程、不等式或不等式组求出参数a
的值或取值范围.
【解】(1) f(x)=-x2-2(a+1)x+3=-(x+a+1)2+(a+1)2+3.得函数单调递增区
−
)
( − ) −
)=(x1-x2)+
=
(x1x2-4).由
x1,x2∈(2,+∞),得x1>2,x2>2,所以x1x2>4,x1x2-4>0.又由x1<x2,得
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x 1 O0
.
x
12
y
y x2
f ( x1)
x1O
.
x
13
y
y x2
f ( x1)
O x1
.
x
14
y
y x2
f ( x1)
x
O x1
.
15
y
y x2
f ( x1) x
O x1
.
16
y
y x2
f ( x1) x
O x1
.
17
y
y x2
f ( x1)
x
O
x1
.
18
实例引入
观察下图中的函数图象,你能说说它们分别反 映了相应函数的哪些变化规律吗?
.
37
如何用x与f(x)来描述上升的图象?
y
y=f(x)
在给定区间上任取x1, x2
f(x1)
f(x2) x1<x2 f(x1)<f(x2) 函数f (x)在给定
O x1 x2 x 区间上为增函数.
如何用x与f(x)来描述下降的图象?
y y=f(x)
在给定区间上任取x1, x2
f(x1) f(x2)
.
3
某市耕地面积统计表
面积(万公顷)
33.96 34 32
30
32.32
30.78 29.80
28
1985 1990 1994 1997 年份
.
4
y
y=x+1
1
-1 O x
.
5
y
y=x+1
1
-1 O x
yy
2 2y=-2x+2
11 x
O
x
.
6
y
y=x+1
1
-1 O x
y y y=-x2+2x
.
20
实例引入
画出下列函数的图象,观察其变化规律:
(2)f(x)=x2.
①在区间 ___(_-_∞__,_0上) , 随着x的增大,f(x)的值随着 ______减__小.
②在区间 ____[_0__,_ +上∞,) 随着x的增大,f(x)的值随着 ______增__大.
.
21
函数的单调性
从上面的观察分析,能得出什么结论?
O x1 x2 x
.
36
如何用x与f(x)来描述上升的图象?
y
y=f(x)
在给定区间上任取x1, x2
f(x1)
f(x2) x1<x2 f(x1)<f(x2) 函数f (x)在给定
O x1 x2 x 区间上为增函数.
如何用x与f(x)来描述下降的图象? y y=f(x)
f(x1) f(x2)
O x1 x2 x
f(x1) f(x2) x1<x2 f(x1)<f(x2)
O x1 x2 x
.
31
如何用x与f(x)来描述上升的图象? y y=f(x) f(x1) f(x2)
O x1 x2 x
.
32
如何用x与f(x)来描述上升的图象?
y
y=f(x)
在给定区间上任取x1, x2
f(x1) f(x2)
O x1 x2 x
O x1 x2 x 区间上为增函数.
.
35
如何用x与f(x)来描述上升的图象?
y
y=f(x)
在给定区间上任取x1, x2
f(x1)
f(x2) x1<x2 f(x1)<f(x2) 函数f (x)在给定
O x1 x2 x 区间上为增函数.
如何用x与f(x)来描述下降的图象? y y=f(x)
f(x1) f(x2)
从上面的观察分析可以看出:不同的函数, 其图象的变化趋势不同,同一函数在不同区间上 变化趋势也不同,函数图象的这种变化规律就是 函数性质的反映,这就是我们所要研究的函数的 一个重要性质——函数的单调性.
.
22
如何用x与f(x)来描述上升的图象? y
O
x
.
23
如何用x与f(x)来描述上升的图象? y
O x1 x2 x
.
39
如何用x与f(x)来描述上升的图象?
y
y=f(x)
在给定区间上任取x1, x2
f(x1)
f(x2) x1<x2 f(x1)<f(x2) 函数f (x)在给定
O x1 x2 x 区间上为增函数.
O
12 x
yy
2 2y=-2x+2
11 x
O
x
.
7
y
y=x+1
1
-1 O x
y y y=-x2+2x
O
12 x
yy
2 2y=-Leabharlann x+211 xOx
y y1 x
Ox
.
8
y
y x2
O
.
x
9
y f ( x1)
x1 O
y x2
x
.
10
y
y x2
f ( x1) x
x1 O
.
11
y
y x2
f ( x1)
O x1 x2 x
.
28
如何用x与f(x)来描述上升的图象? y y=f(x)
f(x1) f(x2) x1<x2
O x1 x2 x
.
29
如何用x与f(x)来描述上升的图象? y y=f(x)
f(x1) f(x2) x1<x2 f(x1)<f(x2)
O x1 x2 x
.
30
如何用x与f(x)来描述上升的图象? y y=f(x)
O x1 x2 x
.
38
如何用x与f(x)来描述上升的图象?
y
y=f(x)
在给定区间上任取x1, x2
f(x1)
f(x2) x1<x2 f(x1)<f(x2) 函数f (x)在给定
O x1 x2 x 区间上为增函数.
如何用x与f(x)来描述下降的图象?
y y=f(x) f(x1) f(x2)
在给定区间上任取x1, x2 x1<x2 f(x1)>f(x2)
O
x
.
24
如何用x与f(x)来描述上升的图象? y
O
x
.
25
如何用x与f(x)来描述上升的图象? y
x1<x2 O x1 x2 x
.
26
如何用x与f(x)来描述上升的图象? y y=f(x)
x1<x2 O x1 x2 x
.
27
如何用x与f(x)来描述上升的图象? y y=f(x)
f(x1) f(x2) x1<x2
1.3.1 函数的单调性
.
1
某市年生产总值统计表
生产总值 (亿元)
30
33.60
20
19.71
10 4.67 7.56
1985 1990 1994 1997 年份
.
2
某市日平均出生人数统计表
人数(人)
450 423 359
350
250
209
176 150
1985 1990 19941997 年份
.
33
如何用x与f(x)来描述上升的图象?
y
y=f(x)
在给定区间上任取x1, x2
f(x1) f(x2) x1<x2 f(x1)<f(x2)
O x1 x2 x
.
34
如何用x与f(x)来描述上升的图象?
y
y=f(x)
在给定区间上任取x1, x2
f(x1)
f(x2) x1<x2 f(x1)<f(x2) 函数f (x)在给定
①随x的增大,y的值有什么变化? ②能否看出函数的最大、最小值? ③函数图象是否具有某种对称性?
.
19
实例引入
画出下列函数的图象,观察其变化规律: (1)f(x)=x;
①从左至右图象上升还 是下降? ___上_升___
②在区间 ___(_-_∞__,_ +上∞,) 随着x的增大,f(x)的值随着 ______增__大.
.
x
12
y
y x2
f ( x1)
x1O
.
x
13
y
y x2
f ( x1)
O x1
.
x
14
y
y x2
f ( x1)
x
O x1
.
15
y
y x2
f ( x1) x
O x1
.
16
y
y x2
f ( x1) x
O x1
.
17
y
y x2
f ( x1)
x
O
x1
.
18
实例引入
观察下图中的函数图象,你能说说它们分别反 映了相应函数的哪些变化规律吗?
.
37
如何用x与f(x)来描述上升的图象?
y
y=f(x)
在给定区间上任取x1, x2
f(x1)
f(x2) x1<x2 f(x1)<f(x2) 函数f (x)在给定
O x1 x2 x 区间上为增函数.
如何用x与f(x)来描述下降的图象?
y y=f(x)
在给定区间上任取x1, x2
f(x1) f(x2)
.
3
某市耕地面积统计表
面积(万公顷)
33.96 34 32
30
32.32
30.78 29.80
28
1985 1990 1994 1997 年份
.
4
y
y=x+1
1
-1 O x
.
5
y
y=x+1
1
-1 O x
yy
2 2y=-2x+2
11 x
O
x
.
6
y
y=x+1
1
-1 O x
y y y=-x2+2x
.
20
实例引入
画出下列函数的图象,观察其变化规律:
(2)f(x)=x2.
①在区间 ___(_-_∞__,_0上) , 随着x的增大,f(x)的值随着 ______减__小.
②在区间 ____[_0__,_ +上∞,) 随着x的增大,f(x)的值随着 ______增__大.
.
21
函数的单调性
从上面的观察分析,能得出什么结论?
O x1 x2 x
.
36
如何用x与f(x)来描述上升的图象?
y
y=f(x)
在给定区间上任取x1, x2
f(x1)
f(x2) x1<x2 f(x1)<f(x2) 函数f (x)在给定
O x1 x2 x 区间上为增函数.
如何用x与f(x)来描述下降的图象? y y=f(x)
f(x1) f(x2)
O x1 x2 x
f(x1) f(x2) x1<x2 f(x1)<f(x2)
O x1 x2 x
.
31
如何用x与f(x)来描述上升的图象? y y=f(x) f(x1) f(x2)
O x1 x2 x
.
32
如何用x与f(x)来描述上升的图象?
y
y=f(x)
在给定区间上任取x1, x2
f(x1) f(x2)
O x1 x2 x
O x1 x2 x 区间上为增函数.
.
35
如何用x与f(x)来描述上升的图象?
y
y=f(x)
在给定区间上任取x1, x2
f(x1)
f(x2) x1<x2 f(x1)<f(x2) 函数f (x)在给定
O x1 x2 x 区间上为增函数.
如何用x与f(x)来描述下降的图象? y y=f(x)
f(x1) f(x2)
从上面的观察分析可以看出:不同的函数, 其图象的变化趋势不同,同一函数在不同区间上 变化趋势也不同,函数图象的这种变化规律就是 函数性质的反映,这就是我们所要研究的函数的 一个重要性质——函数的单调性.
.
22
如何用x与f(x)来描述上升的图象? y
O
x
.
23
如何用x与f(x)来描述上升的图象? y
O x1 x2 x
.
39
如何用x与f(x)来描述上升的图象?
y
y=f(x)
在给定区间上任取x1, x2
f(x1)
f(x2) x1<x2 f(x1)<f(x2) 函数f (x)在给定
O x1 x2 x 区间上为增函数.
O
12 x
yy
2 2y=-2x+2
11 x
O
x
.
7
y
y=x+1
1
-1 O x
y y y=-x2+2x
O
12 x
yy
2 2y=-Leabharlann x+211 xOx
y y1 x
Ox
.
8
y
y x2
O
.
x
9
y f ( x1)
x1 O
y x2
x
.
10
y
y x2
f ( x1) x
x1 O
.
11
y
y x2
f ( x1)
O x1 x2 x
.
28
如何用x与f(x)来描述上升的图象? y y=f(x)
f(x1) f(x2) x1<x2
O x1 x2 x
.
29
如何用x与f(x)来描述上升的图象? y y=f(x)
f(x1) f(x2) x1<x2 f(x1)<f(x2)
O x1 x2 x
.
30
如何用x与f(x)来描述上升的图象? y y=f(x)
O x1 x2 x
.
38
如何用x与f(x)来描述上升的图象?
y
y=f(x)
在给定区间上任取x1, x2
f(x1)
f(x2) x1<x2 f(x1)<f(x2) 函数f (x)在给定
O x1 x2 x 区间上为增函数.
如何用x与f(x)来描述下降的图象?
y y=f(x) f(x1) f(x2)
在给定区间上任取x1, x2 x1<x2 f(x1)>f(x2)
O
x
.
24
如何用x与f(x)来描述上升的图象? y
O
x
.
25
如何用x与f(x)来描述上升的图象? y
x1<x2 O x1 x2 x
.
26
如何用x与f(x)来描述上升的图象? y y=f(x)
x1<x2 O x1 x2 x
.
27
如何用x与f(x)来描述上升的图象? y y=f(x)
f(x1) f(x2) x1<x2
1.3.1 函数的单调性
.
1
某市年生产总值统计表
生产总值 (亿元)
30
33.60
20
19.71
10 4.67 7.56
1985 1990 1994 1997 年份
.
2
某市日平均出生人数统计表
人数(人)
450 423 359
350
250
209
176 150
1985 1990 19941997 年份
.
33
如何用x与f(x)来描述上升的图象?
y
y=f(x)
在给定区间上任取x1, x2
f(x1) f(x2) x1<x2 f(x1)<f(x2)
O x1 x2 x
.
34
如何用x与f(x)来描述上升的图象?
y
y=f(x)
在给定区间上任取x1, x2
f(x1)
f(x2) x1<x2 f(x1)<f(x2) 函数f (x)在给定
①随x的增大,y的值有什么变化? ②能否看出函数的最大、最小值? ③函数图象是否具有某种对称性?
.
19
实例引入
画出下列函数的图象,观察其变化规律: (1)f(x)=x;
①从左至右图象上升还 是下降? ___上_升___
②在区间 ___(_-_∞__,_ +上∞,) 随着x的增大,f(x)的值随着 ______增__大.