天文学导论课件,北师大版

合集下载

天文学导论第1讲天体的视运动ppt

天文学导论第1讲天体的视运动ppt
金星凌日:2004年6月8日
日偏食,最常见
日全食奇景:钻石环
接近日全食的時候,由於月球的邊 緣丁點的凹凸不平,部分太陽光線 會在凹位漏了出來,形成不連續的 光點。在日全食前的一刻﹐我們只 能見到太陽的極小部分﹐如下圖所 示 ﹐ 這 個 現 象 稱 為 鑽 石 環 (贝利珠)
日全食時,天昏地暗,宛如暮色朧 合四野,天上你可看見亮星和行星, 太陽表面由於被月球完全掩蓋,原 本非常暗淡的日冕這時清晰可見。 一般來說,日全食過程約維持兩分 鐘左右,接著鑽石環復現,日全食 結束
Corona 日冕
日全食奇景
Prominences 日珥
日环食
▪ 由于地球和月球的距离并不固定,所以在地球 看来,月球的角大小也会发生变化。有时,月 球虽处于能造成日“全”食的位置,但由于月 球的角大小不足以掩盖整个太阳,便出现如戒 指班的日环食
由于潮汐摩擦作用,月球正 渐渐远离地球,数万年后, 月球的视直径会变得很小, 届时地球上便再也不能看到 日全食了
面(昏星) ▪ 由于靠太阳很近,只能在日出前或黄昏后看到 ▪ 金星:天空中第三颗最亮的天体
晨星:日出前的金星 昏星:日落后的金星
金星:晨星和昏星
外行星的运动
▪ 火星、木星、土星、天王星和海王星 ▪ 绕日公转,但轨道在地球轨道之外 ▪ 在天球上相对于背景星的运动,基本上是由西
向东移动,称为顺行
▪ 由于地球公转速度较快,外行星有时被地球 “超过”,这时在地球上看来,它们在天球上 的运动完全倒转,变成自东向西,称为逆行
日食 Solar Eclipse
▪ 月球在黄道面且严格新月(初一),月球的影 子投到地球上
▪ 三类日食:
Total solar eclipses 日全食 Partial solar eclipses 日偏食 Annular solar eclipses 日环食

天文学基础介绍PPT课件

天文学基础介绍PPT课件

孔雀座(Pavo)中距离为75万光年的棒旋 星系NGC6872与它北面邻居星系 IC4970(NGC6872中心上方)相互作用。 欧洲南方天文台(European Southern Observatory)的甚大望远镜(Very Large Telescope,VLT)拍摄。
49
肉眼能见的最近的河外星系: 大麦哲伦云
普通天文学
绪论
1
outline
• 天文学的基本概念 • 天文学的研究方法和特点 • 宇宙概观
2
一、天文学的基本概念
• 什么是天文学? • 天文学的研究对象
3
1什么是天文学?
天文学是人类认识宇宙的一门自然科学; 是自然科学中的基础学科之一;
4
2天文学的研究对象
研究对象是宇宙空间中的天体和其他宇宙物 质。
天文动 力学
定性理论
天体力学
形状和自 转理论
历书天 文学
数值方法
56
天体物理学
太阳物理 太阳系物理学
恒星物理学 恒星天文学 星系天文学 高能天体物理学 分子天文学
天体物理学
等离子体天体物理 相对论天体物理学
宇宙学 天体演化学 射电天文学 空间天文学 宇宙化学
57
五、研究天文学的意义
科学意义 实际意义 哲学意义
15
天文学的观测工具
• 光学望远镜
16
Hale Waihona Puke 7• 哈勃太空望远镜18
• 射电望远镜
19
20
21
• 空间探测器
Explorer 1-5 , 1958:1-8
Pioneer 3 & 4 1958:12; 1959:3
22
个人一小步,人类一大步

天文学导论课件,北师大版

天文学导论课件,北师大版

2、天文学研究对象与方法
行星层次:八个行星,矮行星、 太阳系小天体 恒星层次:太阳及其它恒星 星系层次:银河系、河外星系、星系群、 星系团 宇宙整体: 可观测的宇宙
36
• 天文学是研究宇宙的科学。 • 宇宙:四方上下曰宇,往古来今曰宙。 —— 《淮南子》 • 宇宙包含了所有的空间、时间、物质和能量。
6
考核方式: • 作业、小论文、课堂讨论,等等,占学期总成 绩40% • 期末考试:书面闭卷笔试, 占学期总成绩60%
7
第一章 绪论
1、天文学的发展历史 2、天文学的研究对象与方法 3、天文学和物理学的关系
8
Inscription over Kant's tomb Two things fill the mind with ever-increasing awe - the starry heavens above me and the moral law within me.
45
• 北京时间2006年8月24日晚上9点20分,第26 届国际天文学联合会大会投票,部分通过新 的行星定义,冥王星被排除在行星行列之 外,太阳系行星数量将由九颗减为八颗。
46
决议5A: IAU决定我们太阳系内的行星和其他天体按照下列方式划 分为3个明确的类别: (1)一颗行星1是一个天体,它满足(a)围绕太阳运转,(b) 有足够大的质量来克服固体应力以达到流体静力平衡的(近 于圆球)形状,同时(c)扫清了所在轨道上的其他天体。 (2)一颗矮行星是一个天体,它满足(a)围绕太阳运转,(b) 有足够大的质量来克服固体应力以达到流体静力平衡的(近 于圆球)形状2 ,(c)没有扫清所在轨道上的其他天体,同时 (d)不是一颗卫星。 (3)其他围绕太阳运转的天体3 ,卫星除外,统称为“太阳 系小天体”。

天文学导论PPTL06巨行星

天文学导论PPTL06巨行星

▪ 巨行星(和地球)困住高能带电粒子形成巨大 的磁层。木星磁层最大,其半径达木星半径的 100倍之多
▪ 太阳风压力压缩磁层,改变磁层的大小与形状
行星磁场偏折 太阳风,产生 瞬现余迹
木星磁层是太 阳系最大的永 恒“天体”
▪ 被行星磁场捕获的带电粒子集中于辐射带。木 星有很强的辐射带
▪ 巨行星的磁层不仅有来自太阳风的质子和电子 ,也有来自行星大气及其卫星的钠、硫、氧、 氮和碳等元素,成为辐射带的一部分
▪ 氢和氦的总量~1-2地球质量,大部分位于表层 大气
▪ 基于密度,称天王星和海王星为冰态巨行星比 气态巨行星更贴切。构成它们主体的水可能以 深海形பைடு நூலகம்存在
5、巨行星的强磁场
▪ 行星磁场源自其内部导电液体的运动
▪ 导电液体: • 木星和土星:金属氢 • 天王星和海王星:卤水海洋
木星磁轴相对自转轴倾 斜10度,偏离中心~1/10 木星半径。总磁场~地球 的20,000倍,但云顶磁 场仅是地球表面的15倍 ,~4.3高斯
3、巨行星的云
▪ 木星多姿多彩,大约有12条不同颜色的平行云 带。暗的叫带,亮的叫区。许多不同颜色、不 同形状的云遍布其中
▪ 木星最显著的一个特征是位于木星南半球的大 红斑,卵形,长25000千米,宽12000千米
▪ 自从300多年前被发现以来,大红斑的大小、 形状、颜色和运动在不可预期地变化
▪ 许多小云被卷入大红斑的涡旋(或被弹出)
▪ Chapter 11 Planetary Adornments—Moons and Rings
1、巨行星(类木行星)
▪ 木星、土星、天王星和海王星被称为巨行星, 与类地行星很不相同
▪ 它们的体积庞大,密度很低,主要由氢、氦和 水组成,而不是由岩石和金属构成

天文学导论课件北师大

天文学导论课件北师大
• 研究表明太阳在约50亿年前到达主 序,现仍处于主序阶段。
54
太阳中微子问题
• 中微子是一种不带电、质量极小的亚原子粒 子,它几乎不与任何物质发生相互作用;
• 太阳内部H核聚变释放能量的5%被中微子携带 向外传输,每秒大约有1015个中微子穿过我们 的身体 ;
• 目前接收到的太阳的辐射(光子)实际上产生 于~105-107年前的太阳内部,而中微子则是在
47
质子-质子链与碳氮氧循环核反应率的比较
T17 T4
48
恒星如何维持稳定的核燃烧?
• 恒星内部的核反应速率对 温度十分敏感, ε∝T4 (PP), T17 (CNO)
• 恒星是稳定的气体球,其 内部任意一点必须维持流 体静力学平衡。 (向内的)重力 ó(向 外的)压力差 T ↑→ε ↑→ P ↑→R↑ →T↓
15
太阳元素 的发现
• 1868年8月18日,法国天文学家詹逊观测 日全食时,发现日珥的一条橙黄色明线 (D3),不能和已知的地球上任何元素 的谱线相对应。命名为氦,曾称“ 太阳 元素”。
27年后,一位名叫雷姆塞的英国化学家终 于在地球上也找到了氦。
16
核心区 辐射区 对流区 光球 色球 过渡区 日冕
太阳常数: 单位时间垂直射入地球大气外单位面积上
的能量。 地面测量归算出大气外的值为: 1.95cal/(cm2·min)。
7
• 近40年来,卫星测定太阳总辐照及其变化,以 太阳(总)辐照取代太阳常数。 太阳总辐照:太阳垂直照射在离它1AU处每平方 米面积上的总辐射流。 平均值:1365~1369W/m2
第六章:离我们最近的恒星—太阳
1. 太阳的概况 2. 太阳的观测 3. 太阳的内部结构与能源 4. 太阳活动 5. 太阳和其他恒星的关系及日地关系 6. 太阳系起源与演化

天文学导论7

天文学导论7

11
• 单线(单谱)分光双星(仅可观测到主星 光谱)
12
(3)食双星(eclipsing binaries)
• 两子星相互交食造成亮度变化的双星 食变星 • 按光变曲线的形状: 大陵型,渐台型和大熊W型。 椭球双星(椭球变星): 不出现掩食,亮度有周期变化。 食双星和椭球双星又统称为测光双星。
13
37
Jets from SS 433
Soft X-ray imag仙座第二颗亮星
34
X射线双星
X射线双星 (X-ray binaries) • 由致密星(中子星或黑洞) 与正常恒星组成的双星系统。 • 致密星通过吸积伴星物质产 生X射线辐射。
35
• 奇异天体SS433:X射线爆
36
SS 433
• • • • • 吸积产生喷流 轨道周期:13 days 喷流速度:0.26 c 喷流进动周期:164days 致密星: 中子星?黑洞?
15
对于三类双星,都可以由观测数据推算出 轨道要素: • 目视双星←伴星对主星的相对位置; • 分光双星←视向速度曲线; • 食双星←光变曲线。
16
3.万有引力定理和恒星质量的测定
• 利用Kepler第三定律和Newton万有引力定律:
a G = 2 (M1 + M 2 ) 2 P 4π
其中:a, P 为双星的轨道半长径和周期。 以太阳-地球系统为参照 P:回归年 a : 天文单位 M: M⊙ 忽略地球质量
10
(2)分光双星(spectroscopic binaries)
• 通过子星轨道运动引起的谱线的Doppler位移确 定其双星性质 双线(双谱)、单线(单谱)分光双星 光谱双星:观测不到谱线位移(由于两子星间距 远,速度小,或双星轨道面法线与视线的交角很 小),但观测到的光谱明显地由两个光谱组成。

【天文学导论课件@北师大】maichongxing

【天文学导论课件@北师大】maichongxing

一场辩论
• 何丙郁:Vitas of Astronomy “客星出天关之东南可数寸,嘉祐元年三年及没” “客星晨出东方,守天关,至是没” 彗星?客星? 守-徘徊,寸-距离,非长度 位置-?观测方向 苏州石刻星图
又一个诺贝尔奖金
• 1993年 Taylar,Hulse 脉冲双星 • 1974年 Arcebo 300米天线 40 Pulsar timing PSR1913+16 天鹰座
两个中子星 >1.4M⊙ 没有光学对应体 一个Pulsar,一个? 公转8小时 有引力辐射 证明了广义相对论
T ~ 0 .5 %
从神秘的脉冲星谈起
北京师范大学天文系 何香涛
一. 理论家的预言 二. 意外的发现 三. 脉冲星是快速旋转的中子星 四. 最重要的一颗脉冲星─蟹状星云脉冲星 五. 从蟹状星云追溯到天关客星 六. 一场辩论 七. 又一个诺贝尔奖金
理论家的预言
• 1932年,Cavendish实验室发现中子 • 朗道预言存在中子星 • 哥本哈根学派 N.波尔,海森堡,泡利……
意外的发现-Pulsar
• 研究太阳风的闪烁现象 1967年7月投入工作 8月发现 11月重复观测 ~5000米记录 1968.2.24 Nature 1颗 4.14 Nature 4颗 PSR 1919+21 T=1.33730119227 秒 ~10-11秒
脉冲星是快速旋转的中子星
• 光变的原因: 双星绕转 1 脉动 T 自转 白矮星 ~106 g/cm3 中子星 ~1014 g/cm3 灯塔模型
最重要的一颗脉冲星 —蟹状星云脉冲星
• 恒星的演化
星云

星云
蟹状星云 Pulsar PSR0531+21 T=0.03309756505419 秒(~10-4秒) 射电,光学,X,

【天文学导论课件@北师大】3

【天文学导论课件@北师大】3
冥王星: 6.3867天 248年
三、行星的环带
1、光环的组成:由无数大小不等 的冰块、岩石块、尘埃颗粒组成。 2、光环的运动:为保持稳定,沿行星本身的赤道面 高速旋转,否则会被行星的巨大引力拉过去。 3、共性:1、洛希极限内;2、赤道面附近;3、总质量远小于 行星及大卫星的质量;4、由分离的质点组成。 木星:既薄又暗、由尘埃及大小不等的石块组成。 土星: 成千上万条像密纹唱片一样,由碎冰块、 石块、尘埃颗粒组成。 天王星:有11条光环、间隔很大、由石块、尘埃、 冰块组成。 海王星:有5条光环、有的完整、有的残缺。
偏心率 倾角 公转周期 会合周期 轨道运动 (日) (日) 平均速度(km/s) 0.2056 7°.0 87.97 115.88 47.87 0.0068 3°.4 224.70 583.92 35.02 0.0167 0° 365.27 29.79 0.0934 1°.9 686.98 779.93 24.13 0.0483 1°.3 4332.71 398.88 13.06 0.0560 2°.5 10759.50 378.09 9.66 0.0461 0°.8 30685.00 369.66 6.80 0.0097 1°.8 60190.00 367.49 5.44 0.2482 17°.1 90800.00 366.73 4.74
满足三判据的天体 定义为“行星” 一、绕日运行 二、近似球体 三、轨道清空
满足三判据之二 定义为 “矮行星”
一、绕日运行 二、近似球体
仅满足三判据之一 即 绕日运行 的天体 均分类为 “太阳系小天体”
§3.2 、 行 星
一、分类: 类地行星 石质行星 :水 金 地 火 体积小、密度大、中心有铁镍核、 金属含量高、自转慢、卫星少。 巨行星 气态巨星:木 土 天 海 体积大、密度小、主要由H 、He组 成、无固体表面的流体行星、自转快、 卫星多。

北京大学 天文学导论 第一章到第五章 恒星的基本概念及恒星的测量

北京大学 天文学导论 第一章到第五章 恒星的基本概念及恒星的测量

第一章到第五章恒星的基本概念及恒星的测量
1.织女星的视向速度等于-14km/s ,自行是每年0".348,视差为0".124 。

求织女星相对与太阳的总空间速度。

2.一颗长周期变星的热星等变化一个星等,它的最高温度为4500K,如果它的变化仅仅是由于温度的变化,问它的最低温度是多少?如果热星等变化一个星等仅仅是由于半径的变化引起的,而温度保持不变,那它的半径变化是多少?
3.在仙女座星系中一颗恒星绝对星等M=5m(距离为690kpc), 这颗星作为超新星爆发亮度增加了109 倍,问它的视星等是多少?
4.除了太阳外,离我们最近的恒星是半人马座的比邻星,它的目视星等为10.7星等,该星距离我们的周年视差л= 0.76″,求距离摸数和它的绝对星等。

5.有三个天体,已测出它们的周年视差分别为(a)0.001″(b)0.02″(c) 0.4″求这三个天体的距离各是多少?
6.角宿星的视差是0.013" 求它的距离有多远?如果一个观测者站在海王星的一个卫星之上,观测角宿星,问角宿星的视差是多少?
7.一颗星距离太阳有20pc ;它的自行运动为0.5"/年问它的切向速度是多少?如果恒星的光谱线红移0.01% ,计算它相对太阳的视向速度是多少?它的空间运动速度是多少?8.A和B 两星的光度分别是0.5和4.5 倍的太阳光度,它们有同样的视亮度,那一个更远?远多少?。

天文学基本知识(课堂PPT)

天文学基本知识(课堂PPT)
仙女座大星云是否在银河系之外? 没有结论。
1923年哈勃证实仙女座的距离为90 万光年,远在银河系之外
确认是河外星系
.
37
冬季星空 猎户座
有三颗亮星,好比猎人的腰带 主星α参宿四,红超巨星 大犬座 天狼星,全天最亮的恒星 双星系统,伴星是第一颗白矮星
.
38
金牛座 昴星团有七颗主要亮星
蟹状星云和它的脉冲星 1054年超新星爆发的遗迹
2,天球是以地球为中心,但这仅仅 是一种方法,用起来方便
.
51
.
52
3,太阳和太阳系的行星在天球上的视运动
4,恒星也在运动(自行),短时期不 会明显看出恒星在天球上的相对位 置发生变化
可以认为恒星固定在天球上
.
53
• 天体位置:观测者和天体的联线 与天球的交点
• 视运动:天体在天球球面上的运动
• 地平圈与天赤道垂直 所有天体的周日平行圈都与地平圈垂直
• 没有永远不会落到地平线以下的星 也没有永不升起的星星
• 南天和北天的天体都可以观测
.
64
在其它纬度地区:
既有拱极星 也有永不升起的星 还有有升有落的星
由赤纬与当地地理纬度决定
.
65
2.5 恒星距离和视差测距法
测量距离的重要性
我们肉眼只能知道恒星在天球上的投影的 位置,不知道恒星的距离就不能确定恒星空 间的真实分布、运动速度、辐射的真实强度。
.
39
.
40
看星图
星图种类繁多 星图上的南北方向和普通地图相反
使用地图時,平放在地上, 使用星图時,須要把星图,高举过头,抬头 看星空
.
41
星空运转的规律
1,地球自转导致整个星空从东向西围绕我们 运转一周,恒星每小时自西向东运行 15 度,4分钟1度;

【天文学导论课件@北师大】2

【天文学导论课件@北师大】2

§2.4、现代时间服务
时间计量工作的三项内容 测时、守时、授时 测时:测定恒星的瞬时位置,经过归算获 得准确时刻(圭表、日晷、中星仪等)
守时
用守时工具把所测时间持续下去.是整个时间工 作中最关键的一环,它的任务是产生和保持高精度 的准确时间 . (滴漏、沙漏、计时香、天文钟、 石英钟、原子钟)
多级漏壶
2、平太阳时
定义:以平太阳的周日视运动为依据建立的时 间系统 时间单位:平太阳日—平太阳连续两次上中天 的时间间隔 起始点:下中天 平太阳时以平太阳的时角度量 m = tm + 12h
春分点 赤道 黄道
四、时差
真太阳的时角 与平太阳的时角之差。
时差: η= t ⊙ – t m 时差的零点与极大值: 一年中η四次为零 四次为极大值
0h
M
s0 M(1+1/365.2422) s So是当日世界时为零时所对应的恒星时。 Mo是当日或前一日恒星时为零时所对应的世界时。
2、任意经度区的时刻的换算
(S=s-λ; M=m-λ; M=Th-Nh) 1)已知区时化地方恒星时:
S=So+M(1+1/365.2422)
s=So+(Th-Nh)(1+1/365.2422)+λ
时刻:事物运动中,某一状态发生的瞬间。 间隔:事物某一运动过程所经历的时间。
2000
2001
2002
2003
2004
3、基本原则
选择某一运动规律已掌 握,运动状态可观测到的 具体事物。 选取该事物的某一运动 过程为时间的基本单位。 选取该事物的某一运动 状态为时间计量的起算点。
先民日出而作,日入而息, 太阳是天然的钟表。
2、世界时与区时
世界时:(S、M⊙、M) 以本初子午线为标准的地方时为世界 时 (λ= 0h )

L07_stars

L07_stars
颜色
1.3 恒星的颜色
▪ 如峰值在红光 位置,则恒星
看起来是红色 的
恒星的颜色由其表面温度决定
1.4 恒星的温度和大小
▪ 恒星表面温度和真实大小可由辐射特征得出 ▪ 维恩定律:测量恒星颜色恒星表面温度T
T 2900 pe ak
( in m,T in K)
▪ 斯-玻(S-B)定律:确定恒星半径
L 4R2T 4
光度 Luminosity
▪ 光度(L)是恒星表面每秒所发出的辐射(总 功率),表征恒星的固有特征
▪ 距离和亮度已知,可得光度:
Luminosity 4d 2 Brightness
▪ 恒星光度相差悬殊:106-10-4太阳光度 ▪ 低光度(质量)恒星比高光度恒星多得多
▪ 光谱的峰值位 置显示恒星的
▪ 已知地球到太阳平均距离为1AU,三角法给出 d = 1/p,d为恒星的距离;p为恒星视差 (以角 秒表示)
▪ p=1角秒所对应的距离定义为1秒差距
• 1pc = 3.26光年 = 3.08 x 1016 米
▪ 最近的恒星半人马座比邻星(a –Cen)的p = 0.753”, 则其距离d = 1/(0.753) = 1.33 pc, 或 (1.33 x 3.26) = 4.3 光年
L 4d 2 Brightness
1.5 恒星的化学成分
▪ 谱线用来测定恒星大气的化学成分(和其它特 征)
▪ 恒星内部产生连续的黑体谱 ▪ 当辐射通过恒星大气时,原子吸收特定波长的
光子而产生恒星光谱中的吸收线 ▪ 发射线:热外层大气中受激发原子退激发 ▪ 结论:恒星(大气)主要由氢和氦组成
2。恒星的光谱分类
▪ 恒星越远,其视差越小
• 邻近(约200光年以内)恒星的距离由恒星视差来 量度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F∝r
-2
40
2)维恩位移定律(Wien定律) 黑体辐射最强处的波长λmax与温度之 间的关系为:
maxT 0.290cm K
①随着温度的升高,所有的波长都发出更多的辐射; ②黑体辐射的峰值对应的波长向短波方向移动。
高温黑体主要辐射短波 低温黑体主要辐射长波
41
黑体辐射:峰值波长由温度决定
58
59
3个温度的概念:
• 色温度 在某一波长范围内,将测得的辐射体的辐射能 量分布曲线与黑体的辐射分布曲线相比较,如 果辐射体的辐射分布与温度为Tc的黑体相近, 则称Tc为辐射体在该波长范围内的色温度。 测量方法:多色测光法,分光光度测量
随λ分布的辐射曲线 色温度)
60

(原理:测出各波长辐射
多普勒效应
24
25
谱线位移
• Doppler谱线位移 (Doppler shift) 由于辐射源在观测者 视线方向上的运动而 造成接收到的电磁辐 射波长或频率的变化。 远离(接近)观测者 辐射源发出的电磁辐 射波长变长(短), 称为谱线红移(蓝 移)。
26
谱线测红移
视向速度会改变光谱中谱线的位置
50
uvby窄带测光系统
51
Wavelength bands and effective wavelengths of UBVRI and uvby filters
Magnitude U B V R I u v b y Band width (Å) 660 940 880 1380 1490 300 190 180 230 Effective Wavelength (Å) 3600 4400 5500 7000 8800 3500 4110 4670 5470

2
“有史以来最聪明的照片”, 1927年10月第五次索尔维会议与会者 的合影。从左至右分别是:(第三排)皮卡尔德、亨里奥特、埃 伦费斯特、赫尔岑、顿德尔、薛定谔、维夏菲尔特、泡利、海森 堡、福勒、布里渊;(第二排)德拜、努森、布拉格、克雷默、 狄拉克、康普顿、德布罗意、玻恩、玻尔;(第一排)朗缪尔、 普朗克、居里夫人、洛伦兹、爱因斯坦、朗之万、古耶、威尔逊、 3 理查森
42
例如: 不同温度上 的各种天体 的辐射
气体 云
年轻恒 星
太 阳
星团
43
同一天体的不同波段的辐射来自不同(温 度)的区域和物理过程。
44
例1: 太阳
光学 紫外
X射线
射电
45
例 2: 银河系
46
例3: 漩涡星系 M81
光学
中红外
远红外
X射线
紫外
射电
47
4.多色测光系统和色指数
1)多色测光系统 (multicolor photometric systems) 天体的色指数,色温度,巴尔末跳跃,绝对 星等,谱线等值宽度,等等
22
太阳的化学组成
元素 Hydrogen Helium Oxygen Carbon Nitrogen Iron Silicon Magnesium Neon 质量丰度 73.5% 24.8% 0.788% 0.326% 0.118% 0.162% 0.09% 0.06% 0.16%
23
2)确定天体的视向速度Vr
27
恒星远离我们:谱线都向波长长的方向
移动,即谱线向红端位移。
恒星接近我们:谱线都向波长短的方向
移动,即谱线向紫端或蓝端位移;
28
谱线位移

0
z

Vr z 0 c
λ0 :静止时的原波长,c :光速, Δλ=λ-λ0。 远离:Δλ> 0,Vr 取正,红移, z>0为红移量; 接近:Δλ< 0, Vr取负,紫移, z <0为紫(蓝)移量。
§3.2 恒星的光谱和赫罗图
1.氢原子光谱及其线系 2.恒星观测光谱的分析 3.黑体辐射和维恩位移定律 4.多色测光系统和色指数 5.恒星的光谱分类 6.赫罗图
1
1.氢原子光谱及其线系
1)原子的结构和能级:
汤姆逊:发现电子 卢瑟福:经典原子结构模型(1911年) 玻尔:原子结构理论(1913年), “波粒二象性”。 氢原子 近代量子力学原子结构模型
不同温度恒星的特征谱线强度
66
对某一特定元素: 温度电子能级分布 特征谱线强度
3
如对H原子,在~104K时电子 大量布居于第一激发态。 23的跃迁产生在可见光波 段强烈的Balmer线。
5urvey)测光系统
name u' g' r' i' z'
λ
FWHM
3543 567 4770 1387 6231 1373 7625 1526 9134 950
53
BATC多色测光系统
54
2)色指数(color index) 在不同波段测量得到的星等之差(短 波段星等减去长波段星等) 如: U-B, B-V等。
发射线的产生
11
吸收线的产生过程
12
连续光谱和发射线
13
连续光谱和吸收线
14
不同元素的原子具有不同的结构,因而 有不同的特征谱线。
15
2.恒星观测光谱的分析
确定恒星的化学组成和物理性质 难点:不同的光谱的复杂变化 →恒星的化学组成和不同的物理量。 温度、大小、质量、密度、视向速度、距离、 恒星的自转、磁场以及组成恒星的化学元素等。 光谱分析在天体物理中占据着非常重要的地位
16
1)确定恒星的化学组成
定性分析和定量分析 (1)定性分析:确认恒星大气中的化学元素, 谱线的证认,即测定谱线的波长。
17
• 谱线与恒星的化学成分 不同元素的原子具有不同的结构,因而有不 同的特征谱线。
18
结果:
证认出元素周期表中90%左右的天然元素, 一些恒星谱线至今未证认出来。
问题: 如果某些元素的谱线在恒星光谱中不出现?
48
UBV宽带测光系统
U (ultraviolet filter) -紫外波段星等 B (blue filter) -蓝光波段星等 V (visual filter) -可见光波段星等
49
UBVRI宽带测光系统
R (red filter) –红光波段星等 I (infrared filter) –红外波段星等
多色测光法: 对除O,B型星以外的绝大多数恒星,光学波 段可用维恩公式,则有:
7200 Tc C 0.64
• 而对UBV三色测光系统,有:
7090 Tc ( B V ) 0.71
• 对温度4000─10000K的恒星,更好近似为:
8540 Tc ( B V ) 0.865
63
5.恒星的光谱分类
1)恒星光谱 (spectrum): 典型的恒星光谱由连续谱和吸收线构成。
64
2)恒星光谱的形成 • 恒星的连续谱来自相对较热、致密的恒 星内部。 • 吸收线来自较冷、稀薄的恒星大气。
65
3)恒星的温度与光谱 • 恒星的特征谱线强度提供了恒星的表面温度 的信息。
例如, A型星的H线最 强,温度比A型星低或 高的恒星, H线都相 对较弱。
55
恒星的温度和颜色
• 恒星的颜色反映了恒星的表 面温度的高低。 • 温度越高(低),颜色越蓝 (红)。
Betelgeuse
Rigel
56
• 由于天体的颜色和辐射谱的形状取决于 表面温度的高低,色指数的大小反映了 天体的温度。
57
恒星的颜色和温度
COLOR INDEX FB/FV 1.3 1.0 0.55 0.21 B–V – 0.28 0.0 0.65 1.7 SURFACE TEMPERATURE (K) 30,000 10,000 6,000 3,000
n1= 5
1875 1282 1094 4050 2630 7460
364.7
821
1460
2280
7
1 1 R n n 2 n 1
• 氢原子光谱
8
9
恒星形成区M17中的热气体辐射谱
太阳光谱
10
• 当电子从高能态跃迁到低能态,原子释放光 子,产生发射线;反之产生吸收线。 • 吸收或发射的光子能量为 h En 2 En1

37
• 普朗克(Planck)定律 温度为T 的黑体在单位面积、单位时间、单位频率 内、向单位立体角发射的能量为:
2h 3 1 B (T ) 2 h / kT 1 c e
B (T )
2hc 2
1
5 ehc / k T 1
一些温度黑体的辐射谱
38
普朗克公式可改写为:
B (T )
29
对于z值大的情况,根据狭义相对 论,z与vr的关系要用洛伦兹公式:
vr (1 z ) 1 2 c (1 z ) 1
2
30
• 恒星光谱线大多有系统的位移, 通过谱线测定,可求出Δλ值, 从而计算出恒星的视向速度的大小和方向。 河外星系:只有红移而没有紫移,远离而去, 距离越远,红移越大,速度越大, 著名的哈勃定律, 宇宙学研究中非常重要的定律, 宇宙大爆炸理论的有利证据之一。
5 ec2 / T 1
c1
1
其中: c 2hc 2 1.191 105 erg cm 2 s 1 1
c2 ch 1.439cm K k
•特定条件下,普朗克公式的近似: 1)维恩公式( T c2 ):B

c1
5
e

c2
T
温度T较低; 高温下波长较短
2)瑞利—金斯公式( T c2 ):
19
相关文档
最新文档