结构化学课后习题及答案

合集下载

结构化学课后习题答案

结构化学课后习题答案

结构化学课后习题答案北师⼤结构化学课后习题第⼀章量⼦理论基础习题答案1 什么是物质波和它的统计解释?参考答案:象电⼦等实物粒⼦具有波动性被称作物质波。

物质波的波动性是和微粒⾏为的统计性联系在⼀起的。

对⼤量粒⼦⽽⾔,衍射强度(即波的强度)⼤的地⽅,粒⼦出现的数⽬就多,⽽衍射强度⼩的地⽅,粒⼦出现的数⽬就少。

对⼀个粒⼦⽽⾔,通过晶体到达底⽚的位置不能准确预测。

若将相同速度的粒⼦,在相同的条件下重复多次相同的实验,⼀定会在衍射强度⼤的地⽅出现的机会多,在衍射强度⼩的地⽅出现的机会少。

因此按照波恩物质波的统计解释,对于单个粒⼦,ψψ=ψ*2代表粒⼦的⼏率密度,在时刻t ,空间q 点附近体积元τd 内粒⼦的⼏率应为τd 2ψ;在整个空间找到⼀个粒⼦的⼏率应为 12=ψ?τd 。

表⽰波函数具有归⼀性。

2 如何理解合格波函数的基本条件?参考答案合格波函数的基本条件是单值,连续和平⽅可积。

由于波函数2ψ代表概率密度的物理意义,所以就要求描述微观粒⼦运动状态的波函数⾸先必须是单值的,因为只有当波函数ψ在空间每⼀点只有⼀个值时,才能保证概率密度的单值性;⾄于连续的要求是由于粒⼦运动状态要符合Schr?dinger ⽅程,该⽅程是⼆阶⽅程,就要求波函数具有连续性的特点;平⽅可积的是因为在整个空间中发现粒⼦的概率⼀定是100%,所以积分?τψψd *必为⼀个有限数。

3 如何理解态叠加原理?参考答案在经典理论中,⼀个波可由若⼲个波叠加组成。

这个合成的波含有原来若⼲波的各种成份(如各种不同的波长和频率)。

⽽在量⼦⼒学中,按波函数的统计解释,态叠加原理有更深刻的含义。

某⼀物理量Q 的对应不同本征值的本征态的叠加,使粒⼦部分地处于Q 1状态,部分地处于Q 2态,……。

各种态都有⾃⼰的权重(即成份)。

这就导致了在态叠加下测量结果的不确定性。

但量⼦⼒学可以计算出测量的平均值。

4 测不准原理的根源是什么?参考答案根源就在于微观粒⼦的波粒⼆象性。

结构化学课后答案第9章晶体的结构习题解答

结构化学课后答案第9章晶体的结构习题解答

第9章 晶体结构和性质习题解答【9.1】若平面周期性结构系按下列单位并置重复堆砌而成,试画出它们的点阵结构,并指出结构基元。

●●●●●●●●●●●●●●●●●●●●○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○解:用虚线画出点阵结构如下图,各结构基元中圈和黑点数如下表:1234567○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○●●●●●●●●●●●●●●●●●●●●图序号 1 2 3 4 5 6 7 结构基元数 1 1 1 1 1 1 1 黑点数 1 1 1 1 0 2 4 圈数1112313【评注】 从实际周期性结构中抽取出点阵的关键是理解点阵的含义,即抽取的点按连接其中任意两点的向量平移后必须能够复原。

如果不考虑格子单位的对称性,任何点阵均可划出素单位来,且素单位的形状并不是唯一的,但面积是确定不变的。

如果考虑到格子单位的对称形,必须选取正当单位,即在对称性尽量高的前提下,选取含点阵点数目尽量少的单位,也即保持格子形状不变的条件下,格子中点阵点数目要尽量少。

例如,对2号图像,如果原图是正方形,对应的正当格子单位应该与原图等价(并非现在的矩形素格子),此时结构基元包含两个黑点与两个圆圈。

【9.2】有一AB 型晶体,晶胞中A 和B 的坐标参数分别为(0,0,0)和(12,12,12)。

指明该晶体的空间点阵型式和结构基元。

解:晶胞中只有一个A 和一个B ,因此不论该晶体属于哪一个晶系,只能是简单点阵,结构基元为一个AB 。

【9.3】已知金刚石立方晶胞的晶胞参数a =356.7pm 。

请写出其中碳原子的分数坐标,并计算C —C 键的键长和晶胞密度。

解:金刚石立方晶胞中包含8个碳原子,其分数坐标为:(0,0,0),1(2,12,0),(12,0,1)2,(0,12,1)2,(14,14,1)4,3(4,34,1)4,(34,14,3)4,(14,34,3)4(0,0,0)与(14,14,14)两个原子间的距离即为C -C 键长,由两点间距离公式求得:C-C 356.7154.4pm r ====密度-13-10323-1812.0g mol 3.51 g cm (356.710cm)(6.022 10mol )A ZM D N V -⨯⋅==⋅⨯⨯⨯ 【9.4】立方晶系金属钨的粉末衍射线指标如下:110,200,211,220,310,222,321,400。

结构化学课后答案第2章习题原子的结构与性质

结构化学课后答案第2章习题原子的结构与性质

1.简要说明原子轨道量子数及它们的取值范围解:原子轨道有主量子数 n ,角量子数|,磁量子数m 与自旋量子数s ,对类氢原子(单电子原子)来2说,原子轨道能级只与主量子数n 相关E Z R 。

对多电子原子,能级除了与n 相关,还要考虑电子n间相互作用。

角量子数|决定轨道角动量大小,磁量子数 m 表示角动量在磁场方向(z 方向)分量的大小,自旋量子数s 则表示轨道自旋角动量大小。

1n 取值为 1、2、3••…;| = 0、1、2、••…、n - 1; m = 0、±1 ±2 ……±l 取值只有一。

22.在直角坐标系下,Li 2+的Schr?dinger 方程为 ______________________ 。

解:由于Li 2+属于单电子原子,在采取 “-O'近似假定后,体系的动能只包括电子的动能,则体系的动量z 分量的平均值为多少(2)由于 |M I "J l(l1), l 1=1, l 2=1, l 3=1,又,210 ,211和 31 1 都是归一化的,2 h 2 h C 2 ■ l2 l 2 1 ——C3 ■ l3 l 3 1 o 2 2 2 ------------ h 2 ------------ hc 2 11 1 ——c 3 11 1 ——2 2 2h 222故C i 2 M iC 2 M1c ; M 2 C 3 M 3 能算符:T?h 2 8 2m2;体系的势能算符:\?Ze 2 3e 2 故Li 2+的 Schr?dinger 方程为:h 22式中:22 ____x 2y 23.对氢原子,C 1210的。

那么波函数所描述状态的(4 0r3e 22r = ( x 2+ y 2+ z 2F 2z 2C 2211C 331 能量平均值为多少( 1,其中4 0r211和 31 1都是归一化2)角动量出现在 ..2h 2的概率是多少,角动解:由波函数C 1210C 2211C 3 31 1 得:n 1=2, h=1,m 1=0; n 2=2, b=1,m 2=1;出=3,l 3=1,m 3=-1;(1)由于2210, 211 和 31 1都是归一化的,且单电子原子E 13.6―(eV )故E■i C 1 E12 2 C 2 E2C 3 E32 C 11 2 113.6 =eV 22 cf 13.6 peV22113.6 ?eV13.6 2 4 C1c ; eV 13.99c j eV 2 ---------------- hC 1 ■. l1 l 1 12c : J1 1 1 — 2则角动量为、、2h2出现的概率为: 1h,m1=0,m2=1,m3=-1;又210, 211和311都是归一化的,故M z' CMih2c|m22 c 2 * 2G 0 C2 1 C32 h°3 m3h1 -22 2C2 C34.已知类氢离子He+的某一状态波函数为:321 222re-2r2a。

结构化学王军课后习题答案

结构化学王军课后习题答案

结构化学王军课后习题答案结构化学王军课后习题答案结构化学是一门研究物质的组成、结构和性质的学科。

它在化学领域中占有重要地位,对于理解和应用化学知识具有重要意义。

在学习结构化学的过程中,课后习题是巩固知识和提高能力的重要途径。

下面是对结构化学王军课后习题的一些答案和解析。

第一章:原子结构和化学键1. 什么是原子的电子云模型?答案:原子的电子云模型是指原子中电子的分布情况。

根据量子力学理论,电子不是固定在某个轨道上运动,而是存在于原子核周围的一片空间中,这片空间就是电子云。

2. 什么是共价键?答案:共价键是指通过共享电子对来连接两个原子的化学键。

共价键的形成需要两个原子都有未配对的电子,它们通过共享电子对来填补各自的电子壳,从而达到稳定的电子构型。

第二章:分子结构和分子间相互作用1. 什么是分子的立体构型?答案:分子的立体构型是指分子在空间中的排布方式。

它包括分子的空间取向、构型和手性等方面的特征。

2. 什么是分子间相互作用?答案:分子间相互作用是指分子之间由于电荷分布的不均匀而产生的相互吸引或排斥的力。

常见的分子间相互作用包括范德华力、氢键、离子键等。

第三章:有机化合物的结构与性质1. 什么是有机化合物?答案:有机化合物是指含有碳元素的化合物。

它们通常具有较为复杂的结构,并且在自然界中广泛存在,包括石油、天然气、植物和动物体内的化合物等。

2. 有机化合物的结构对其性质有何影响?答案:有机化合物的结构对其性质有着重要影响。

例如,有机化合物的分子量、分子形状、官能团的种类和位置等都会影响其物理性质(如熔点、沸点、溶解度等)和化学性质(如反应活性、稳定性等)。

第四章:无机化合物的结构与性质1. 什么是晶体结构?答案:晶体结构是指晶体中原子、离子或分子的排列方式。

晶体结构的研究对于理解无机化合物的性质和应用具有重要意义。

2. 无机化合物的结构如何影响其性质?答案:无机化合物的结构对其性质有着重要影响。

例如,晶体结构的对称性决定了无机化合物的光学、电学和磁学性质;晶体中的空隙和通道结构可以影响分子在其中的扩散和吸附行为。

结构化学第一章课后习题答案

结构化学第一章课后习题答案

6.626 ×10−34 = = 8.95 × 10−10 m p 7.40 × 10−25
13. 在电视机显像管中运动的电子,假定加速电压为 1000 V,电子运动速度的不确定量Δυ为υ的 10%,
判断电子的波动性对荧光屏上成像有无影响? 解:根据不确定关系: Δx Δpx ≥ h Δx • m • Δυ x ≥ h ∴Δx = h h = m Δυ x m υ x 10%
l
px = ∫
0
2 nπ x ˆx sin p l l
2 nπ x dx sin l l 2 nπ x sin dx = 0 l l
=∫
0
l
2 nπ x ih d sin (− ) 2π dx l l h2 d 2 4π 2 dx 2
ˆ x2 = − pˆ x源自2ψ n ( x) = − ph2 d 2 h2 d 2 = − ψ ( ) x n 4π 2 dx 2 4π 2 dx 2
n πy n πx nπz 8 sin x sin y sin z 3 a a a a
8 2π x πy πz sin sin sin 3 a a a a πy 2 πz 2 8 2π x 2 * ∫ψ 211 ( x, y, z )ψ 211 ( x, y, z)dτ = a3 ∫ (sin a ) ∫ (sin a ) ∫ (sin a ) 2π z ⎤ 8 ⎡ Δx a 4π ( x + Δx) a 4π x ⎤ ⎡ Δy a 2π ( y + Δy ) a 2π y ⎤ ⎡ Δz a 2π ( z + Δz ) a = 3⎢ − + − + − + sin sin sin sin sin sin ⎢ ⎥ ⎢ ⎥ a ⎥ 8π 4π 4π a ⎣ 2 8π a a ⎦ ⎣ 2 4π a a ⎦ ⎣ 2 4π a ⎦ 8 πx πy 2π z ψ 112 ( x, y, z ) = 3 sin sin sin a a a a πx 2 πy 2 8 2π z 2 * ∫ψ 112 ( x, y, z)ψ 112 ( x, y, z )dτ = a3 ∫ (sin a ) ∫ (sin a ) ∫ (sin a ) 4π z ⎤ 8 ⎡ Δx a 2π ( x + Δx) a 2π x ⎤ ⎡ Δy a 2π ( y + Δy ) a 2π y ⎤ ⎡ Δz a 4π ( z + Δz ) a = 3⎢ − + − + − + sin sin sin sin sin sin ⎢ ⎢ ⎥ a ⎥ π π π π 4π 2 4 4 2 8 8 a ⎣ 2 4π a a ⎥ a a a ⎦ ⎦⎣ ⎦⎣

江元生《结构化学》课后习题答案

江元生《结构化学》课后习题答案

第一章 量子理论1. 说明⎥⎦⎤⎢⎣⎡-=) (2cos ),(0t x a t x a νλπ及⎥⎦⎤⎢⎣⎡-=) (2sin ),(0t x a t x a νλπ都是波动方程22222),(1),(t t x a c x t x a ∂∂=∂∂的解。

提示:将),(t x a 代入方程式两端,经过运算后,视其是否相同。

解:利用三角函数的微分公式)cos()sin(ax a ax x=∂∂和)sin()cos(ax a ax x -=∂∂,将⎥⎦⎤⎢⎣⎡-=) (2c o s ),(0t x a t x a νλπ代入方程:⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡--∂∂=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-∂∂∂∂=⎥⎦⎤⎢⎣⎡-∂∂=) (2cos 2 ) (2sin 2 ) (2cos ) (2cos 2000022t x a t x x a t x x x a t x a x νλπλπνλπλπνλπνλπ左边 ()⎥⎦⎤⎢⎣⎡--=⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡-∂∂=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-∂∂∂∂=⎥⎦⎤⎢⎣⎡-∂∂=) (2cos 2 ) (2sin 2 ) (2cos ) (2cos 122020200222t x c a t x x c a t x t t c a t x a t c νλππννλππννλπνλπ右边 对于电磁波νλ=c ,所以⎥⎦⎤⎢⎣⎡-=) (2cos ),(0t x a t x a νλπ是波动方程的一个解。

对于⎥⎦⎤⎢⎣⎡-=) (2sin ),(0t x a t x a νλπ,可以通过类似的计算而加以证明:⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡-∂∂=) (2sin 2) (2sin 20022t x a t x a x νλπλπνλπ左边()⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-∂∂=) (2sin 2) (2sin 12200222t x c a t x a t c νλππννλπ右边2. 试根据Planck 黑体辐射公式,推证Stefan 定律:4 T I σ=,给出σ的表示式,并计算它的数值。

结构化学第一章习题答案

结构化学第一章习题答案

《结构化学》第一章习题答案1001 (D)1002 E =h ν p =h /λ1003,mvhp h ==λ 小1004 电子概率密度1005 1-241-9--34s kg m 10626.6s kg m 100.1106.626⋅⋅⨯=⋅⋅⨯⨯==-λhpT = m p 22 = 3123410109.92)10626.6(--⨯⨯⨯ J = 2.410×10-17 J1006 T = h ν- h ν0=λhc -λhcT = (1/2) mv 2v =)11(20λλ-m hc = 6.03×105 m ·s -11007 (1/2)mv 2= h ν - W 0 = hc /λ - W 0 = 2.06×10-19Jv = 6.73×105 m/s1008 λ = 1.226×10-9m/10000= 1.226×10-11 m1009 (B)1010 A,B 两步都是对的, A 中v 是自由粒子的运动速率, 它不等于实物波的传播速率u , C中用了λ= v /ν, 这就错了。

因为λ= u /ν。

又D 中E =h ν是粒子的总能量, E 中E =21mv 2仅为v <<c 时粒子的动能部分,两个能量是不等的。

所以 C, E 都错。

1011 ∆x ·∆p x ≥π2h微观物体的坐标和动量不能同时测准, 其不确定度的乘积不小于π2h 。

1013 ∆E =π2h/∆t = ∆(h ν) = h ∆ν∆ν = 1/(2π∆t ) = 1/(2π×10-9) = 1.59×108 s -1∆ν~ = ∆ν/c = 1.59×108 s -1/3×1010 cm ·s -1= 5.3×10-3 cm -11014 不对。

1015 (1) 单值的。

结构化学习题(含答案)

结构化学习题(含答案)

25.
立方势箱中的粒子,具有 E
12h 2 8ma 2
的状态量子数,nxnynz 是(
)
A.211 B.231 C.222 D.213
26. 一个在一维势箱中运动的粒子,其能量随着量子数 n 的增大( ),其能级差 En+1-En 随着势箱长度的增大( )
A.越来越小 B.越来越大 C.不变
27. 下列算符中不属于线性算符的是( )
6.
在边长为
a
的立方势箱中运动的粒子,其能级 E
3h 2 4ma 2
的简并度是______,
E 27h2 的简并度是_______。 8ma 2
7. 质 量 为 m 的 粒 子 被 局 限 在 边 长 为 a 的 立 方 箱 中 运 动 。 波 函 数 211(x,y,z)=
_________________________;当粒子处于状态211 时,概率密度最大处坐标是
第二章 原子的结构和性质
一. 填空题
1.
氢原子中电子的一个状态为:
1 81 2
Z a0
3
/
2
Zr a0
2
e
Zr 3a0
sin 2 sin 2 ,则
量子数 n 为____,l 为____,m 为____,轨道名称为____。
2. 氢原子的 3d z2 状态的能量为______eV。角动量为______,角动量在磁场方向的分
___________;若体系的能量为
7h2 4ma
2

其简并度是_______________。
二. 选择题
1. 若用电子束与中子束分别作衍射实验,得到大小相同的环纹,则说明二者( )
A. 动量相同

结构化学课后习题答案

结构化学课后习题答案

结构化学课后习题答案结构化化学课后习题答案一、化学键与分子结构1. 选择题a) 正确答案:D解析:选择题中,选项D提到了共价键的形成是通过电子的共享,符合共价键的定义。

b) 正确答案:B解析:选择题中,选项B提到了离子键的形成是通过电子的转移,符合离子键的定义。

c) 正确答案:C解析:选择题中,选项C提到了金属键的形成是通过金属原子之间的电子云重叠,符合金属键的定义。

d) 正确答案:A解析:选择题中,选项A提到了氢键的形成是通过氢原子与高电负性原子之间的吸引力,符合氢键的定义。

2. 填空题a) 正确答案:共价键解析:填空题中,根据问题描述,两个非金属原子之间的键称为共价键。

b) 正确答案:离子键解析:填空题中,根据问题描述,一个金属原子将电子转移到一个非金属原子上形成的键称为离子键。

c) 正确答案:金属键解析:填空题中,根据问题描述,金属原子之间的电子云重叠形成的键称为金属键。

d) 正确答案:氢键解析:填空题中,根据问题描述,氢原子与高电负性原子之间的吸引力形成的键称为氢键。

二、有机化学1. 选择题a) 正确答案:C解析:选择题中,选项C提到了烷烃是由碳和氢组成的,符合烷烃的定义。

b) 正确答案:D解析:选择题中,选项D提到了烯烃是由含有一个或多个双键的碳原子组成的,符合烯烃的定义。

c) 正确答案:B解析:选择题中,选项B提到了炔烃是由含有一个或多个三键的碳原子组成的,符合炔烃的定义。

d) 正确答案:A解析:选择题中,选项A提到了芳香烃是由芳香环结构组成的,符合芳香烃的定义。

2. 填空题a) 正确答案:醇解析:填空题中,根据问题描述,含有羟基(-OH)的有机化合物称为醇。

b) 正确答案:醚解析:填空题中,根据问题描述,含有氧原子连接两个碳原子的有机化合物称为醚。

c) 正确答案:酮解析:填空题中,根据问题描述,含有羰基(C=O)的有机化合物称为酮。

d) 正确答案:酯解析:填空题中,根据问题描述,含有羧基(-COO)的有机化合物称为酯。

结构化学章节习题(含答案!)

结构化学章节习题(含答案!)

第一章 量子力学基础一、单选题: 1、32/sinx l lπ为一维势箱的状态其能量是:( a ) 22229164:; :; :; :8888h h h hA B C D ml ml ml ml 2、Ψ321的节面有( b )个,其中( b )个球面。

A 、3 B 、2 C 、1 D 、03、立方箱中2246m lh E ≤的能量范围内,能级数和状态数为( b ). A.5,20 B.6,6 C.5,11 D.6,174、下列函数是算符d /dx的本征函数的是:( a );本征值为:( h )。

A 、e 2x B 、cosX C 、loge x D 、sinx 3 E 、3 F 、-1 G 、1 H 、2 5、下列算符为线性算符的是:( c )A 、sine xB 、C 、d 2/dx 2D 、cos2x6、已知一维谐振子的势能表达式为V = kx 2/2,则该体系的定态薛定谔方程应当为( c )。

A [-m 22 2∇+21kx 2]Ψ= E ΨB [m 22 2∇- 21kx 2]Ψ= E Ψ C [-m 22 22dx d +21kx 2]Ψ= E Ψ D [-m 22 -21kx 2]Ψ= E Ψ 7、下列函数中,22dx d ,dxd的共同本征函数是( bc )。

A cos kxB e –kxC e –ikxD e –kx2 8、粒子处于定态意味着:( c )A 、粒子处于概率最大的状态B 、粒子处于势能为0的状态C 、粒子的力学量平均值及概率密度分布都与时间无关系的状态.D 、粒子处于静止状态9、氢原子处于下列各状态 (1)ψ2px (2) ψ3dxz (3) ψ3pz (4) ψ3dz 2 (5)ψ322 ,问哪些状态既是M 2算符的本征函数,又是M z 算符的本征函数?( c )A. (1) (3)B. (2) (4)C. (3) (4) (5)D. (1) (2) (5) 10、+He 离子n=4的状态有( c )(A )4个 (B )8个 (C )16个 (D )20个 11、测不准关系的含义是指( d ) (A) 粒子太小,不能准确测定其坐标; (B)运动不快时,不能准确测定其动量(C) 粒子的坐标的动量都不能准确地测定; (D )不能同时准确地测定粒子的坐标与动量12、若用电子束与中子束分别作衍射实验,得到大小相同的环纹,则说明二者( b ) (A) 动量相同 (B) 动能相同 (C) 质量相同13、 为了写出一个经典力学量对应的量子力学算符,若坐标算符取作坐标本 身,动量算符应是(以一维运动为例) ( a )(A) mv (B) i x ∂∂ (C)222x ∂-∂14、若∫|ψ|2d τ=K ,利用下列哪个常数乘ψ可以使之归一化:( c )(A) K (B) K 2 (C) 1/K15、丁二烯等共轭分子中π电子的离域化可降低体系的能量,这与简单的一维势阱模型是一致的, 因为一维势阱中粒子的能量 ( b )(A) 反比于势阱长度平方 (B) 正比于势阱长度 (C) 正比于量子数16、对于厄米算符, 下面哪种说法是对的 ( b )(A) 厄米算符中必然不包含虚数 (B) 厄米算符的本征值必定是实数(C) 厄米算符的本征函数中必然不包含虚数17、对于算符Ĝ的非本征态Ψ ( c )(A) 不可能测量其本征值g . (B) 不可能测量其平均值<g >.(C) 本征值与平均值均可测量,且二者相等18、将几个非简并的本征函数进行线形组合,结果 ( b )(A) 再不是原算符的本征函数(B) 仍是原算符的本征函数,且本征值不变 (C) 仍是原算符的本征函数,但本征值改变19. 在光电效应实验中,光电子动能与入射光的哪种物理量呈线形关系:( B )A .波长B. 频率C. 振幅20. 在通常情况下,如果两个算符不可对易,意味着相应的两种物理量( A)A .不能同时精确测定B .可以同时精确测定C .只有量纲不同的两种物理量才不能同时精确测定 21. 电子德布罗意波长为(C )A .λ=E /h B. λ=c /ν C. λ=h /p 22. 将几个非简并的本征函数进行线形组合,结果( A ) A .再不是原算符的本征函数B .仍是原算符的本征函数,且本征值不变C .仍是原算符的本征函数,但本征值改变23. 根据能量-时间测不准关系式,粒子在某能级上存在的时间τ越短,该能级的不确定度程度ΔE (B )A .越小 B. 越大 C.与τ无关24. 实物微粒具有波粒二象性, 一个质量为m 速度为v 的粒子的德布罗意波长为:A .h/(mv)B. mv/hC. E/h25. 对于厄米算符, 下面哪种说法是对的 ( B )A .厄米算符中必然不包含虚数B .厄米算符的本征值必定是实数C .厄米算符的本征函数中必然不包含虚数 26. 对于算符Ĝ的非本征态Ψ (A ) A .不可能测得其本征值g. B .不可能测得其平均值<g>.C .本征值与平均值均可测得,且二者相等 27. 下列哪一组算符都是线性算符:( C )A . cos, sinB . x, logC . x d dx d dx,,22二 填空题1、能量为100eV 的自由电子的德布罗依波波长为( 122.5pm )2、函数:①xe ,②2x ,③x sin 中,是算符22dxd 的本征函数的是( 1,3 ),其本征值分别是( 1,—1;)3、Li 原子的哈密顿算符,在( 定核 )近似的基础上是:(()23213212232221223222123332ˆr e r e r e r e r e r e mH +++---∇+∇+∇-= )三 简答题1. 计算波长为600nm(红光),550nm(黄光),400nm(蓝光)和200nm(紫光)光子的 能量。

结构化学 课后习题答案(第六章到第十章) 郭用猷 张冬菊第二版

结构化学  课后习题答案(第六章到第十章)  郭用猷 张冬菊第二版

第六章 价键理论6.1将海特勒—伦敦处理2H 所得波函数()211ψψψ+=c S 归一化。

6.2试写出一个在045=θ,045=ϕ方向上的等性3sp 杂化轨道。

6.3已知sp 3杂化的3个轨道是123123xx y x ys s p p c s c p c p ψψψ=+==++试用正交归一化条件求123,,c c c .6.4若令一个杂化轨道指向z 轴的正方向,另外两个在xoz 平面内,求2sp 的三个杂化轨道。

6.5臭氧3O 为V 型分子,键角为08.116,试求中心O 原子的成键杂化轨道。

以对称轴C 2轴为对称轴,分子平面为XOZ 平面。

6.6 H 2O 中两个成键的sp 3杂化轨道的s 成分为0.20,求两个未成键的sp 3杂化轨道的s 成分和p 成分。

6.7实验测得乙烯(24C H )分子中07.121=∠CCH ,06.116=∠HCH ,分子处于xy 平面,C C =轴位于x 轴上。

试计算C 原子2sp 杂化轨道的系数。

6.8说明+4NH 、-4BF 、-24BeF 离子的立体构型和成键情况。

6.93AlCl 在气态时通常生成二聚体,试说明其成键情况和立体构型。

6.10实验测得氟代甲烷的键角为试计算上述三个分子中碳原子用于生成H C -键和F C -键的3sp 杂化轨道的s 成分。

6.11为什么22H N 有两种同分异构体,而22H C 只有一种? 6.12为什么存在+O H 3,+4NH 和6SF ,而不存在+5CH 和6OF ? 6.13为何4SiCl ,4GeCl 两种分子的沸点较低? 6.143NF 和3BF 的几何构型有何差异,说明理由。

6.154LiAlH 是离子型化合物[]-+4AlH Li ,熔融能导电,试说明[]-4AlH 成键情况和立体构型。

题解6.1将海特勒—伦敦处理2H 所得波函数()211ψψψ+=c S 归一化。

解: ()[][]122221212122112=++=+=⎰⎰⎰⎰⎰τψτψψτψτψψτψd d d c d c d S因为1ψ和2ψ都是归一化的,且1221S d ⎰=τψψ,所以有()1221221=+S c121221S c +=()2112221ψψψ++=S S6.2试写出一个在045=θ,045=ϕ方向上的等性3sp 杂化轨道。

北大结构化学习题与答案01

北大结构化学习题与答案01
(1)其能量随着量子数n的增大:------------------------ ( )
(A)越来越小(B)越来越大(C)不变
(2)其能级差En+1-En随着势箱长度的增大:-------------------( )
(A)越来越小(B)越来越大(C)不变
1041立方势箱中的粒子,具有E= 的状态的量子数。nxnynz是--------- ( )
1047质量为m的粒子被局限在边长为a的立方箱中运动。波函数 211(x,y,z)= _________________________;当粒子处于状态 211时,概率密度最大处坐标是_______________________;若体系的能量为 ,其简并度是_______________。
1048在边长为a的正方体箱中运动的粒子,其能级E= 的简并度是_____,E'= 的简并度是______________。
已知角动量算符 = z=-i 。
1035对一个质量为m、围绕半径为R运行的粒子,转动惯量I=mR2,动能为M2/2I,
2= 。Schrödinger方程 =E 变成 =E 。解此方程,并确定允许的能级。
1036电子自旋存在的实验根据是:--------------------------------------------------------------- ( )
1014 “根据测不准原理,任一微观粒子的动量都不能精确测定,因而只能求其平均值”。对否?
1015写出一个合格的波函数所应具有的条件。
1016 “波函数平方有物理意义,但波函数本身是没有物理意义的”。对否. --------------( )
1017一组正交、归一的波函数 1, 2, 3,…。正交性的数学表达式为 ,归一性的表达式为 。

结构化学第一章习题及答案

结构化学第一章习题及答案

结构化学第一章习题及答案结构化学第一章习题及答案结构化学是化学中的一个重要分支,它研究的是物质的分子结构以及分子间的相互作用。

在学习结构化学的过程中,习题是一个非常重要的学习工具。

通过解答习题,我们可以巩固所学的知识,培养分析问题和解决问题的能力。

下面是结构化学第一章的一些习题及其答案,希望对大家的学习有所帮助。

1. 什么是结构化学?答:结构化学是研究物质的分子结构以及分子间相互作用的化学分支。

它通过研究分子的结构,揭示物质的性质和反应机理,为化学的发展提供了重要的理论基础。

2. 什么是原子核?答:原子核是原子的中心部分,由质子和中子组成。

质子带正电荷,中子没有电荷,它们共同构成了原子核的基本组成部分。

3. 什么是原子?答:原子是物质的基本单位,由原子核和围绕核运动的电子组成。

原子中的质子和中子集中在原子核中,电子则分布在核外的电子壳层中。

4. 什么是分子?答:分子是由两个或更多原子通过化学键结合而成的粒子。

分子可以是同种元素的原子组成的,也可以是不同元素的原子组成的。

5. 什么是化学键?答:化学键是原子之间的相互作用力,它将原子结合在一起形成分子。

常见的化学键包括共价键、离子键和金属键等。

6. 什么是共价键?答:共价键是一种通过原子间电子的共享而形成的化学键。

共价键的形成需要原子之间的电子互相吸引力,使得它们能够共享电子,从而形成稳定的分子。

7. 什么是离子键?答:离子键是一种通过正负电荷之间的相互吸引力而形成的化学键。

在离子键中,正离子和负离子通过电荷吸引力结合在一起。

8. 什么是金属键?答:金属键是一种通过金属原子之间的电子互相流动而形成的化学键。

金属键的形成使得金属具有良好的导电性和热导性。

9. 什么是分子式?答:分子式是用元素符号表示分子中各种原子的种类和数量的化学式。

它可以简洁地表示分子的组成。

10. 什么是结构式?答:结构式是用化学键和原子间的关系表示分子结构的化学式。

它可以更详细地描述分子的结构。

结构化学课后习题及答案

结构化学课后习题及答案

01.量子力学基础知识【1.1】将锂在火焰上燃烧,放出红光,波长λ=670.8nm ,这是Li 原子由电子组态 (1s)2(2p)1→(1s)2(2s)1跃迁时产生的,试计算该红光的频率、波数以及以k J·mol -1为单位的能量。

解:811412.99810m s 4.46910s 670.8m cνλ−−×⋅===× 41711 1.49110cm 670.810cm νλ−−===××%3414123-1 -16.62610J s 4.46910 6.602310mol 178.4kJ mol A E h N sν−−==×⋅××××=⋅【1.2】 实验测定金属钠的光电效应数据如下:波长λ/nm 312.5 365.0 404.7 546.1 光电子最大动能E k /10-19J 3.41 2.56 1.95 0.75 作“动能-频率”,从图的斜率和截距计算出Plank 常数(h)值、钠的脱出功(W)和临阈频率(ν0)。

解:将各照射光波长换算成频率,并将各频率与对应的光电子的最大动能E k 列于下表:v λ/nm 312.5 365.0 404.7 546.1v /1014s -19.59 8.21 7.41 5.49E k /10-19J 3.41 2.56 1.95 0.75 由表中数据作图,示于图1.2中E k /10-19Jν/1014g-1图1.2 金属的kE ν−图由式 0k hv hv E =+推知0k kE E h v v v Δ==−Δ即Planck 常数等于图的斜率。

选取两合适点,将和v 值带入上式,即可求出h 。

例如: k E −v k E ()()19341412.708.50 1.0510 6.601060010J h J s s −−−×==×−×图中直线与横坐标的交点所代表的即金属的临界频率,由图可知,。

中国科学技术大学结构化学习题参考答案

中国科学技术大学结构化学习题参考答案

间恒为零。 取 xy 平 面

解之可得两个特解 7. (a)
(b) 在区间 8. 用 不 确 定 原 virial定理应成立。 9. 要求
整数,且
,得n为
12.
是的本 征函数, 所以动量 平方有确 粒子的 定值 几率为
-12
4. (a) 1.2 Å (b) 1.2×10 Å 5. 6. 势能算符 则圆周上的波函数不为零,其他区
作为用圆周面,则θ=90 °,r=a,Schröinger方程
理估算其电子的动能,对于Coulomb作用体系,

,利用单
值条件
10. 电 离能等 于轨



道能
量之负
2
值。
系 只有 一 个边 界 条件11. 2n 。
(即单值条件),无法
确定其通解的两个系 数 ,只 求 特解 就 可以。
了。
,当n=3

时有最大值

区间为
有限值,则k必
须是纯虚数,
此时本征值为
实数。
以忽略万有引力的贡献。
。完全可
13. 和具有相同的本征函数,本征值相差常数c。本题说明能量零点
的选取不影响体系的状态。



17. 0.32。
14.
15.

16. 0.°,135°
20.
21. ①
第 五章 多原子分 子
;(c)
3.
;(d) ;
; (e) 。
1. 。 2. 。


4. 相同。
; ,
, ,

11(略)。
5. 。 6.
7.
。 8. 四面体构型。

结构化学课后答案

结构化学课后答案

一、练习题1.立方势箱中的粒子,具有的状态量子数,是A. 211 B. 231 C. 222 D. 213。

(参考答案)解:(C)。

2.处于状态的一维势箱中的粒子,出现在处的概率是多少?A.B.C.D.E.题目提法不妥,以上四个答案都不对。

(参考答案)解:(E)。

3.计算能量为100eV光子、自由电子、质量为300g小球的波长。

( )(参考答案)解:光子波长自由电子300g小球。

4.根据测不准关系说明束缚在0到a范围内活动的一维势箱中粒子的零点能效应。

(参考答案)解:。

5.链状共轭分子在波长方向460nm处出现第一个强吸收峰,试按一维势箱模型估计该分子的长度。

(参考答案)解:6.设体系处于状态中,角动量和有无定值。

其值是多少?若无,求其平均值。

(参考答案)解:角动量角动量平均值7.函数是不是一维势箱中粒子的一种可能的状态?如果是,其能量有没有确定值?如有,其值是多少?如果没有确定值,其平均值是多少?(参考答案)解:可能存在状态,能量没有确定值,8.求下列体系基态的多重性。

(2s+1) (1)二维方势箱中的9个电子。

(2)二维势箱中的10个电子。

(3)三维方势箱中的11个电子。

(参考答案)解:(1)2,(2)3,(3)4。

9.在0-a间运动的一维势箱中粒子,证明它在区域内出现的几率。

当,几率P怎样变?(参考答案)解:10.在长度l的一维势箱中运动的粒子,处于量子数n的状态。

求 (1)在箱的左端1/4区域内找到粒子的几率?(2)n为何值,上述的几率最大?(3),此几率的极限是多少?(4)(3)中说明什么?(参考答案)解:11.一含K个碳原子的直链共轭烯烃,相邻两碳原子的距离为a,其中大π键上的电子可视为位于两端碳原子间的一维箱中运动。

取l=(K-1)a,若处于基组态中一个π电子跃迁到高能级,求伴随这一跃迁所吸收到光子的最长波长是多少?(参考答案)解:12.写出一个被束缚在半径为a的圆周上运动的质量为m的粒子的薛定锷方程,求其解。

结构化学课后题答案周公度第4版 2

结构化学课后题答案周公度第4版 2

【8.14】 铝为面心立方结构,密度为12.70g cm -⋅,试计算它的晶胞参数和原子半径。

用Cu Ka 射线摄取衍射图,33衍射线的衍射角是多少?解:铝为面心立方结构,因而一个晶胞中有4个原子。

由此可得铝的摩尔质量M 、晶胞参数a ,晶体密度D 及Avogadro 常数A N 之间的关系为:34/A D M a N =,所以,晶胞参数:1113332314426.982.70 6.02210A M g mola DN g cm mol ---⎛⎫⎛⎫⨯== ⎪ ⎪⨯⨯⎝⎭⎝⎭ 404.9pm =面心立方结构中晶胞参数a 与原子半径R的关系为a =,因此,铝的原子半径为:143.2R pm===根据Bragg 方程得:sin 2hkl d λθ=将立方晶系面间距hkl d ,晶胞参数a 和衍射指标hkl 间的关系代入,得:()12222154.2333sin 0.989422404.9pm apmθ⨯++===⨯81.7θ=︒【8.15】 金属纳为体心立方结构,429a pm =,计算:(a ) Na 的原子半径; (b ) 金属钠的理论密度; (a ) (110)的间距。

解:(a ) 金属钠为体心立方结构,原子在晶胞体对角线方向上互相接触,由此推得原子半径r和晶胞参数a 的关系为:r =代入数据得:429185.8r pm pm ==(b ) 每个晶胞中含两个钠原子,因此,金属钠的理论密度为:()133102312222.9942910 6.02210A M g mol D a N cm mol ---⨯==⨯⨯⨯30.967g cm -=(c )()()1101/2222303.4110a d pm===++【8.16】 金属钽为体心立方结构,330a pm =,试求: (a ) Ta 的原子半径;(b ) 金属钽的理论密度(Ta 的相对原子质量为181);(c)(110)面的间距(d)若用154pmλ=的X射线,衍射指标为220的衍射角θ的数值是多少?解:(a)钽原子的半径为:3301434r pm pm===(b)金属钽的理论密度为:()133102312218133010 6.02210AM g molDa N cm mol---⨯==⨯⨯⨯316.7g c m-=(c)(110)点阵面的间距为:()110233d pm===(d)根据Bragg()()()220220110110sin0.65981222d ddλλλθ=====⨯【2.19】写出下列原子能量最低的光谱支项的符号:(a)Si; (b)Mn; (c)Br; (d)Nb; (e)Ni 解:写出各原子的基组态和最外层电子排布(对全充满的电子层,电子的自旋互相抵消,各电子的轨道角动量矢量也相互抵消,不必考虑),根据Hund规则推出原子最低能态的自旋量子数S,角量子数L和总量子数J,进而写出最稳定的光谱支项。

结构化学课后习题答案

结构化学课后习题答案

结构化学课后习题答案结构化学是化学学科中的一个重要分支,它主要研究原子、分子以及晶体的结构和性质。

课后习题是帮助学生巩固和深化课堂知识的重要手段。

以下是一些结构化学课后习题的答案示例,请注意,这些答案仅为示例,具体习题的答案需要根据实际的习题内容来确定。

习题一:原子轨道的基本概念1. 描述s、p、d、f轨道的基本形状和特征。

- s轨道:球形,对称性高,只有一个轨道。

- p轨道:哑铃形,有两个主瓣,对称性较低,有三个轨道。

- d轨道:具有更复杂的形状,如四叶草形等,有五个轨道。

- f轨道:形状更为复杂,有七个轨道。

2. 解释原子轨道的量子数。

- 主量子数n:决定电子层,n越大,电子离原子核越远。

- 角量子数l:决定轨道形状,l的不同值对应不同的轨道类型。

- 磁量子数m:决定轨道在空间的取向。

- 自旋量子数s:描述电子自旋状态。

习题二:分子几何结构1. 描述价层电子对互斥理论(VSEPR)的基本原理。

- VSEPR理论基于电子对的排斥作用,认为电子对会尽可能地分布在原子周围,以减少排斥力,从而形成稳定的分子几何结构。

2. 根据VSEPR理论,预测CO2分子的几何形状。

- CO2分子中,碳原子有两个双键氧原子,没有孤对电子,根据VSEPR理论,分子呈线性结构。

习题三:晶体结构1. 解释晶体的布拉维格子和晶系。

- 布拉维格子:描述晶体中原子排列的几何结构,有简单立方、体心立方、面心立方等。

- 晶系:根据晶体的对称性,晶体可以分为立方晶系、四方晶系、六方晶系等。

2. 描述面心立方(FCC)晶体的特点。

- FCC晶体中,每个原子周围有12个相邻原子,形成紧密堆积结构,具有较高的对称性和密堆积度。

习题四:化学键1. 区分离子键、共价键和金属键。

- 离子键:由正负离子之间的静电吸引形成。

- 共价键:由原子间共享电子对形成,常见于非金属元素之间。

- 金属键:由金属原子与自由电子云之间的相互作用形成。

2. 描述氢键的特点及其在分子间作用中的影响。

结构化学习题、详解、答案

结构化学习题、详解、答案

第一章 量子力学基础题 解1.1. 给出黑体辐射频率分布函数),(T R ν的单位。

解: 黑体辐射的频率分布函数),(T R ν表示黑体辐射的频率分布,ννd ),(T R 表示在温度T 单位时间内由单位黑体表面积上所发射的频率在νννd ~+间的辐射能量。

121s m J s )(---⋅⋅=νR2m J )(-⋅=νRs m w s m sJm J 2-22⋅⋅=⋅⋅=⋅--式中w 是功率.1.2. 分别计算红光λ=600 nm 和X 射线λ=100 pm 的1个光子的能量、动量和质量。

解:λνc=,νh E =,λhp =,2ch m ν=(1) 波长1λ=600 nm 的红光,813419119310m s 6.62610J s 3.31310J 60010mE h ν----⨯⋅==⨯⋅⨯=⨯⨯ 12793411s m kg 10104.1m10600s J 10626.6----⋅⋅⨯=⨯⋅⨯==λhp 19361128123.31310J 3.68110kg (310m s )h m c ν---⨯===⨯⨯⋅ (2)X 射线2λ=100 pm8134152212310m s 6.62610J s 1.98810J 10010mE h ν----⨯⋅==⨯⋅⨯=⨯⨯ 124123422s m kg 10626.6m10100s J 10626.6----⋅⋅⨯=⨯⋅⨯==λhp 15322228121.98810J2.20910kg (310m s )h m c ν---⨯===⨯⨯⋅ 1.3. 计算波长λ=400nm 的光照射到金属铯上所产生的光电子的初速度。

已知铯的临阈波长为600nm解:根据W h T -=ν其中,201, 2e Tm W h υν== 2012e m h h υνν=-51 6.03010(m s )υ-====⨯⋅1.4. 氢原子光谱中巴尔麦系中波长最长的一条谱线的波数、波长和频率各是多少?波长最短的一条呢?解:氢原子光谱中巴尔麦系谱线的波数可表达为4, 3, )121(~~22=-=n n R ν 其中5-11.09710cm ,R=⨯ 称为Rydberg 常数。

北师大_结构化学课后习题答案

北师大_结构化学课后习题答案

北师大 结构化学 课后习题第一章 量子理论基础习题答案1 什么是物质波和它的统计解释?参考答案:象电子等实物粒子具有波动性被称作物质波。

物质波的波动性是和微粒行为的统计性联系在一起的。

对大量粒子而言,衍射强度(即波的强度)大的地方,粒子出现的数目就多,而衍射强度小的地方,粒子出现的数目就少。

对一个粒子而言,通过晶体到达底片的位置不能准确预测。

若将相同速度的粒子,在相同的条件下重复多次相同的实验,一定会在衍射强度大的地方出现的机会多,在衍射强度小的地方出现的机会少。

因此按照波恩物质波的统计解释,对于单个粒子,ψψ=ψ*2代表粒子的几率密度,在时刻t ,空间q 点附近体积元τd 内粒子的几率应为τd 2ψ;在整个空间找到一个粒子的几率应为12=ψ⎰τd 。

表示波函数具有归一性。

2 如何理解合格波函数的基本条件?参考答案合格波函数的基本条件是单值,连续和平方可积。

由于波函数2ψ代表概率密度的物理意义,所以就要求描述微观粒子运动状态的波函数首先必须是单值的,因为只有当波函数ψ在空间每一点只有一个值时,才能保证概率密度的单值性;至于连续的要求是由于粒子运动状态要符合Schrödinger 方程,该方程是二阶方程,就要求波函数具有连续性的特点;平方可积的是因为在整个空间中发现粒子的概率一定是100%,所以积分⎰τψψd *必为一个有限数。

3 如何理解态叠加原理?参考答案在经典理论中,一个波可由若干个波叠加组成。

这个合成的波含有原来若干波的各种成份(如各种不同的波长和频率)。

而在量子力学中,按波函数的统计解释,态叠加原理有更深刻的含义。

某一物理量Q 的对应不同本征值的本征态的叠加,使粒子部分地处于Q 1状态,部分地处于Q 2态,……。

各种态都有自己的权重(即成份)。

这就导致了在态叠加下测量结果的不确定性。

但量子力学可以计算出测量的平均值。

4 测不准原理的根源是什么?参考答案根源就在于微观粒子的波粒二象性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

01.量子力学基础知识【1.1】将锂在火焰上燃烧,放出红光,波长λ=670.8nm ,这是Li 原子由电子组态 (1s)2(2p)1→(1s)2(2s)1跃迁时产生的,试计算该红光的频率、波数以及以k J·mol -1为单位的能量。

解:811412.99810m s 4.46910s 670.8m cνλ−−×⋅===× 41711 1.49110cm 670.810cm νλ−−===××%3414123-1 -16.62610J s 4.46910 6.602310mol 178.4kJ mol A E h N sν−−==×⋅××××=⋅【1.2】 实验测定金属钠的光电效应数据如下:波长λ/nm 312.5 365.0 404.7 546.1 光电子最大动能E k /10-19J 3.41 2.56 1.95 0.75 作“动能-频率”,从图的斜率和截距计算出Plank 常数(h)值、钠的脱出功(W)和临阈频率(ν0)。

解:将各照射光波长换算成频率,并将各频率与对应的光电子的最大动能E k 列于下表:v λ/nm 312.5 365.0 404.7 546.1v /1014s -19.59 8.21 7.41 5.49E k /10-19J 3.41 2.56 1.95 0.75 由表中数据作图,示于图1.2中E k /10-19Jν/1014g-1图1.2 金属的kE ν−图由式 0k hv hv E =+推知0k kE E h v v v Δ==−Δ即Planck 常数等于图的斜率。

选取两合适点,将和v 值带入上式,即可求出h 。

例如: k E −v k E ()()19341412.708.50 1.0510 6.601060010J h J s s −−−×==×−×图中直线与横坐标的交点所代表的即金属的临界频率,由图可知,。

因此,金属钠的脱出功为:v 0v 1410 4.3610v s −=×341410196.6010 4.36102.8810W hv J s s J−−−==×××=×【1.3】金属钾的临阈频率为5.464×10-14s -1,如用它作为光电极的阴极当用波长为300nm 的紫外光照射该电池时,发射光电子的最大速度是多少?解:2012hv hv mv =+ ()1201812341419312 2.998102 6.62610 5.46410300109.10910h v v m m s J s s m kg υ−−−−−−⎡⎤=⎢⎥⎣⎦⎡⎤⎛⎞×××−×⎢⎥⎜⎟×⎝⎠⎢⎥=⎢⎥×⎢⎥⎣⎦134141231512 6.62610 4.529109.109108.1210J s s kg m s −−−−⎡⎤××××=⎢⎥×⎣⎦=×【1.4】计算下列粒子的德布罗意波的波长:(a ) 质量为10-10kg ,运动速度为0.01m·s -1的尘埃;(b ) 动能为0.1eV 的中子; (c ) 动能为300eV 的自由电子。

解:根据关系式:(1)34221016.62610J s 6.62610m 10kg 0.01m s h mv λ−−−−×⋅===××⋅34-11 (2) 9.40310m h p λ−====×3411(3) 7.0810mh p λ−−====×【1.5】用透射电子显微镜摄取某化合物的选区电子衍射图,加速电压为,计算电子加速后运动时的波长。

200kV 解:根据de Broglie 关系式:34122.74210h h p m mλυ−−=====×【1.6】对一个运动速度c υ (光速)的自由粒子,有人进行了如下推导:1v vv v 2h h E m p m νλ=====①②③④⑤结果得出12m m υυ=的结论。

上述推导错在何处?请说明理由。

解:微观粒子具有波性和粒性,两者的对立统一和相互制约可由下列关系式表达:/E hv p h λ==式中,等号左边的物理量体现了粒性,等号右边的物理量体现了波性,而联系波性和粒性的纽带是Planck 常数。

根据上述两式及早为人们所熟知的力学公式:p m υ=知 ①,②,④和⑤四步都是正确的。

微粒波的波长λ服从下式:/u v λ=式中,u 是微粒的传播速度,它不等于微粒的运动速度υ ,但③中用了/u v λ=,显然是错的。

在④中,无疑是正确的,这里的E 是微粒的总能量。

若计及E 中的势能,则⑤也不正确。

E hv =【1.7】子弹(质量0.01kg ,速度1000m·s -1),尘埃(质量10-9kg ,速度10m·s -1)、作布郎运动的花粉(质量10-13kg ,速度1m·s -1)、原子中电子(速度1000 m·s -1)等,其速度的不确定度均为原速度的10%,判断在确定这些质点位置时,不确定度关系是否有实际意义?解:按测不准关系,诸粒子的坐标的不确定度分别为:子弹:343416.2610 6.63100.01100010%h J s x m m v kg m s −−−×⋅Δ===×⋅Δ××⋅ 尘埃:3425916.62610 6.6310101010%h J s x m m v kg m s −−−−×⋅Δ===×⋅Δ××⋅花粉:34201316.62610 6.631010110%h J sx m m v kg m s −−−−×⋅Δ===×⋅Δ××⋅电子:3463116.626107.27109.10910100010%h J s x m m v kg m s −−−−×⋅Δ===×⋅Δ×××⋅【1.8】电视机显象管中运动的电子,假定加速电压为1000V ,电子运动速度的不确定度υΔ为υ的10%,判断电子的波性对荧光屏上成像有无影响?解:在给定加速电压下,由不确定度关系所决定的电子坐标的不确定度为:34103.8810h x m mυ−−====×这坐标不确定度对于电视机(即使目前世界上最小尺寸最小的袖珍电视机)荧光屏的大小来说,完全可以忽略。

人的眼睛分辨不出电子运动中的波性。

因此,电子的波性对电视机荧光屏上成像无影响。

【1.9】用不确定度关系说明光学光栅(周期约)观察不到电子衍射(用100000电压加速电子)。

610m −V 解:解法一:根据不确定度关系,电子位置的不确定度为:9911 1.22610/1.226101.22610x h h x p h m λ−−−===×=×=×这不确定度约为光学光栅周期的10-5倍,即在此加速电压条件下电子波的波长约为光学光栅周期的10-5倍,用光学光栅观察不到电子衍射。

解法二:若电子位置的不确定度为10-6m ,则由不确定关系决定的动量不确定度为:3462816.62610106.62610x h J p x m J s m −−−−×Δ==Δ=×s在104V 的加速电压下,电子的动量为:2315.40210x x p m J s m υ−−====×由Δp x 和p x 估算出现第一衍射极小值的偏离角为:2812315arcsin arcsin6.62610arcsin 5.40210arcsin100x xop p J s m J s m θθ−−−−−Δ==⎛⎞×⎜⎟×⎝⎠≈这说明电子通过光栅狭缝后沿直线前进,落到同一个点上。

因此,用光学光栅观察不到电子衍射。

【1.10】请指出下列算符中的线性算符和线性自轭算符:22,,d d dx idx dxdx解:由线性算符的定义:i j i ˆˆA()A A j ˆψψψ+=+ψ22d d ,,d x d x x 为线性算符;而d idx 为线性自轭算符.【1.11】2axxe ϕ−=是算符22224d a x dx ⎛⎞−⎜⎟⎝的本征函数,求其本征值。

⎠解:应用量子力学基本假设Ⅱ(算符)和Ⅲ(本征函数,本征值和本征方程)得:22222222244ax d d a x a x xe dx dx ψ−⎛⎞⎛⎞−=−⎜⎟⎜⎟⎝⎠⎝⎠ ()2222224ax ax dxe a x xe dx −−=−()2222222232323242444ax ax ax ax ax ax ax d e ax e a x e dxaxe axe a x e a x e −−−−−−=−−=−−+−2−266axaxe a ψ−=−=−因此,本征值为。

6a −【1.12】下列函数中,哪几个是算符22d dx 的本征函数?若是,求出本征值。

e x 3,sin ,2cos ,,sin cos x x x x +x 解:2x2d e d x =,是x e 22d d x 的本征函数,本征值为1。

22d sin x 1sin x,d x=×sin x 是22d d x 的本征函数,本征值为1。

22d (2cos x )2cos x d x =【1.13】im e φ和cos m φ对算符did φ是否为本征函数?若是,求出本征值。

解:im im d i e ie d φφφ=,im im me φ=−所以,im e φ是算符d id φ的本征函数,本征值为m −。

而()cos sin sin cos d i m i m m im m c d m φφφφ=−=−≠ φ所以cos m φ不是算符did φ的本征函数。

【1.14】证明在一维势箱中运动的粒子的各个波函数互相正交。

证:在长度为l 的一维势箱中运动的粒子的波函数为:()n x ψ=01x << n =1,2,3,……令n 和n’表示不同的量子数,积分:()()()()()()()()()()()()()()''0'0''''0''''0''''2sin sin sin sin 222sinsin sin sin l lnn llln x n xx x d dx l ln x n x dx l l ln n n n x x l l l n n n n l l n n n n x x l l n n n n n n n n n n n n ππψψτππππππππππππππ==⎡⎤−+⎢⎥⎢⎥=−⎢⎥−+××⎢⎥⎣⎦⎡⎤−+⎢⎥⎢⎥=−⎢⎥−+⎢⎥⎣⎦−+=−−+∫∫n 和皆为正整数,因而和'n ()'n n −()'n n +皆为正整数,所以积分:()()'lnn x x d ψψτ=∫根据定义,()n x ψ和()'n xψ互相正交。

相关文档
最新文档