五年级奥数-②数的整除(2)

合集下载

五年级下册数学奥数-整除问题

五年级下册数学奥数-整除问题
2.数字求和法 能被3、9整除得数的特性:各位数字之和能被3、9整除。
思路点拨
能被2、5整除的数的特性: 个位数字能被2或5整除 能被4、25整除的数的特性:末两位数能被4或25整除 能被8、125整除的数的特性: 末三位数能被8或125整除
思路点拨
判断下面6个数的整除性 1230, 13579, 121680, 875421, 33330, 14511
被3整除:31209, 64653, 403659, 198954, 1112288844
思路 点拨
被9整除:403659, 198954
(2)173ロ是一个四位数,张老师说:“我在方框内填入1个数字, 使得这个四位数能被9整除.”请问:张老师在方框中填入的数 字可能是多少?
7
练2
(1)判断下面6个数的整除性:3124,31206,382113, 527689101,55554,12030456,哪些数能被3整除?哪些数能被9整除?
1480元或1488元
练1
(1)判断下面6个数的整除性:3415,7560,3400,45235,5886,7300,哪 些数能被8整除?哪些数能被25整除?
被8整除:7560,3400 被25整除:3400,7300
(2)在37ロ0的方框内填入数字,使它能被125整除,那么方框内可 以填入的数字是多少?
被3整除:31206, 382113, 527689101,55554444, 12030456 被9整除:382113, 55554444
(2)在52后面添上一个一位数,使得组成的三位数是3的倍数. 请问:添上的这个一位数可能是多少?
2或5或8
思考:423512能否被6整除?
分析 因为423512÷6=423512÷2÷3,

小学奥数5-2-2 数的整除之四大判断法综合运用(二).专项练习及答案解析

小学奥数5-2-2 数的整除之四大判断法综合运用(二).专项练习及答案解析

1. 了解整除的性质;2. 运用整除的性质解题;3. 整除性质的综合运用.一、常见数字的整除判定方法1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。

【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a 和数b 都能被数c 整除,那么它们的和或差也能被c 整除.即如果c ︱a ,c ︱b ,那么c ︱(a ±b ).知识点拨教学目标5-2-2.数的整除之四大判断法综合运用(二)性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m 为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b|a,且d|c,那么bd|ac;例题精讲模块一、11系列【例 1】以多位数142857为例,说明被11整除的另一规律就是看奇数位数字之和与偶数位数字之和的差能否被11整除.【考点】整除之11系列【难度】2星【题型】解答【解析】略【答案】142857110000041000021000810051071=⨯+⨯+⨯+⨯+⨯+⨯()()()()()110000114199992100118199511171=⨯-+⨯++⨯-+⨯++⨯-+⨯()()=⨯+⨯+⨯+⨯+⨯+-+-+-11000014999921001899511418275因为根据整除性质1和铺垫知,等式右边第一个括号内的数能被11整除,再根据整除性质1,要判断142857能否被11整除,只需判断418275487125()()能-+-+-=++-++否被11整除,因此结论得到说明.【例 2】试说明一个4位数,原序数与反序数的和一定是11的倍数(如:1236为原序数,那么它对应的反序数为6321,它们的和7557是11的倍数.【考点】整除之11系列 【难度】2星 【题型】解答【解析】 略 【答案】设原序数为abcd ,则反序数为dcba ,则abcd +dcba 100010010100010010a b c d d c b a =+++++++()()10011101101001a b c d =+++1191101091a b c d =+++(),因为等式的右边能被11整除,所以abcd + dcba 能被11整除【例 3】 一个4位数,把它的千位数字移到右端构成一个新的4位数.已知这两个4位数的和是以下5个数的一个:①9865;②9866;③9867;④9868;⑤9869.这两个4位数的和到底是多少?【考点】整除之11系列 【难度】2星 【题型】解答【解析】 设这个4位数是abcd ,则新的4位数是bcda .两个数的和为1001110011011abcd bcda a b c d +=+++,是11的倍数.在所给的5个数中只有9867是11的倍数,故正确的答案为9867.【答案】9867模块二、7、11、13系列【例 4】 以多位数142857314275为例,说明被7、11、13整除的规律.【考点】整除之7、11、13系列 【难度】3星 【题型】解答【解析】 略【答案】142857314275142100000000085710000003141000275=⨯+⨯+⨯+142(10000000011)857(9999991)314(10011)275=⨯-+⨯++⨯-+ 14210000000011428579999998573141001314275=⨯-+⨯++⨯-+ (14210000000018579999993141001)(857142275314)=⨯+⨯+⨯+-+- 因为根据整除性质1和铺垫知,等式右边第一个括号内的数能被7、11、13整除,再根据整除性质1,要判断142857314275能否被7、11、13整除,只需判断857142275314-+-能否被7、11、13整除,因此结论得到说明.【例 5】 已知道六位数20279□是13的倍数,求□中的数字是几?【考点】整除之7、11、13系列 【难度】2星 【题型】填空【解析】 根据一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除的特点知道:27920=7-□□,7□是13的倍数,□是8的时候是13倍数,所以知道方格中填1。

小学 级数的整除 奥数真题

小学 级数的整除 奥数真题

99的倍数为n奇数时
8.试证明 n位原序数与n位反序数
的差一定是
9的倍数为偶n 数时
(如:12365 为原序数,那么它对应的反序数为 56321 ,它们的差 43956 是 99 的倍数.)
9.如图,把 1~9 这 9 个数字放在一个圆圈上。请在某两个数字之间剪开,分别按顺时针和 逆时针次序形成两个九位数(比如在 7 和 8 之间剪开,就形成了 826543197 和 791345628 这两个九位数).如果要求剪开后所得到的两个九位数的差能被 396 整除,那么可以从 哪两个数字之间剪开?
位数除以 667 的结果是

16.(2009 年学而思五升六竞赛班选拔考试第 20 题)把数字 1 到 9 各使用一次,组成一个被
555667 整除的 9 位数,这个 9 位数是

17.如果一个五位数,它的各位数字乘积恰好是它的各位数字和的 25 倍.那么,这个五位 数的前两位的最大值是_________。
10 00 1 222 2 13 579 1 4 9 16 25 1 5 14 30 55 2 7 21 51 106
再考虑因数 2,其累积过程如下图。 由于 5 多于 2,则 c 方格内所填的自 01 34 8 1 2 5 9 17 0 2 7 16 33 2 4 11 27 60 0 4 15 42 102
5. 右图的方格表中已经填入了 9 个数,其余 20 个方格内的数都等于它左侧方格中的数乘以 它上面方格中的数。比如 a=5×10=50,b=5×12=60。那么 c 方格内所填的自然数的末尾有 ___个连续的 0。
10 12 14 16
5a b 10
15
20
25
c
【分析】由于考虑的是 c 末尾有多少个连续的 0,则只需考虑有多个 5,有多少个 2 即可。 先考虑因数 5,其累积如下图:

奥数专题数论-数的整除附答案

奥数专题数论-数的整除附答案

(数论问题数的整除性)1、五年级数论问题:数的整除难度:中难度/高难度四位数“3AA1”是9的倍数,那么A=_____.答:2、五年级数论问题:数的整除难度:中难度/高难度在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____.答3、五年级数论问题:数的整除难度:中难度/高难度能同时被2、3、5整除的最大三位数是_____.答:4、五年级数论问题:数的整除难度:中难度/高难度能同时被2、5、7整除的最大五位数是_____.答:5、五年级数论问题:数的整除难度:中难度/高难度1至100以内所有不能被3整除的数的和是_____.答:(数论问题)1、五年级数的整除习题答案:解答:7已知四位数3AA1正好是9的倍数,则其各位数字之和3+A+A+1一定是9的倍数,可能是9的1倍或2倍,可用试验法试之.设3+A+A+1=9,则A=2.5,不合题意.再设3+A+A+1=18,则A=7,符合题意.事实上,3771÷9=419.2、五年级数的整除习题答案:解答:1这个数奇数位上数字和与偶数位上数字和之差是0或是11的倍数,那么这个数能被11整除.偶数位上数字和是5+7=12,因而,奇数位上数字和2+□+9应等于12,□内应填12-2-9=1.3、五年级数的整除习题答案:解答:990要同时能被2和5整除,这个三位数的个位一定是0.要能被3整除,又要是最大的三位数,这个数是990.4、五年级数的整除习题答案:解答:99960解法一:能被2、5整除,个位数应为0,其余数位上尽量取9,用7去除999□0,可知方框内应填 6.所以,能同时被2、5、7整除的最大五位数是99960. 解法二:或者这样想,2,5,7的最小公倍数是70,而能被70整除的最小六位是100030.它减去70仍然是70的倍数,所以能被2,5,7整除的最大五位数是100030-70=99960.5、五年级数的整除习题答案:解答:3367先求出1~100这100个数的和,再求100以内所有能被3整除的数的和,以上二和之差就是所有不能被3整除的数的和.(1+2+3+...+100)-(3+6+9+12+ (99)=(1+100)÷2⨯100-(3+99)÷2⨯33=5050-1683=3367。

01.被30以下质数整除的数

01.被30以下质数整除的数

小学五年级奥数题——数的整除问题(一)小学五年级奥数题——数的整除问题(二)一、1到200这200个自然数中,能被6或8整除的数共有多少个?二、两位小数□.□1,每个数位上的数字都不同,其中能被24除尽的共有多少个?三、两个整数,他们的积能被和整除,就称为一对“好数”,例如70和30,那么在1,2,3……,16这十六个数中,有好数多少对?四、把一个能被6整除的两位数的十位和个位上的数字互换,得到的一个新的两位数仍然还能被6整除,这样的两位数共有()个,按照从大到小的顺序排列,中间一个是()。

五、在724左边添上一个数字a,右边添上一个数字b,组成一个五位数,如果这个五位数是12的倍数,那么a×b的最大值是多少?六、用六位数可以表示日期,例如,960310表示1996年3月10日。

在表示1996年3月份和4月份日期的61个六位数中,能被3整除的六位数共有()个。

七、老师报出一个四位数,将这个四位数的数码顺序倒排后得到一个新四位数,将这两个四位数相加,甲的答数是9898;乙的答数是9998;丙的答数是9988;丁的答数是9888。

其中有一个同学的结果是正确的,那么做对的同学是()。

八、一个4位数,把它的千位数字移到右端构成一个新的4位数,已知这两个4位数的和是以下5个数中的一个:①9865;②9866;③9867;④9868;⑤9869。

这两个4位数的和是()。

九、六位数3ABABAB是6的倍数,这样的六位数共有多少个?十、一个六位数,它能被9和11整除,去掉这个六位数的首尾两个数字,中间的四位数字是1997,那么这个六位数是多少?1.任一个三位数连续写两次得到一个六位数.试证:这个六位数能同时被7、11、13整除.2.证明:任何两个自然数的和、差、积中,至少有一个数能被3整除.3.某个七位数2000□□□能同时被1、2、3、4、5、6、7、8、9整除,那么最后三位是什么?4.在865后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除,且使这个数值尽可能的小。

五年级奥数第二讲数的整除

五年级奥数第二讲数的整除

第二讲 数的整除知识点:﹤1﹥整除概念: 表示:﹤2﹥整除的性质:﹤3﹥整除的特征:(1)解法:○1 ○2 我要上名校示例﹤1﹥有一个四位数b a 62,它能同时被2、3、5整除,这样的四位数有多少个?练一练:有一个四位数Ο2Ο2,它能同时被2、3、5整除,这样的四位数有多少个?示例﹤2﹥有一个六位数b a 4273,它能被72整除,则a 、b 分别为多少?练一练:若四位数b a 89能被15整除,则a 、b 分别为多少?示例﹤3﹥有一个十位数59911995xy 能被99整除,则χ、y 分别为多少?练一练:有一个六位数Ο2004Ο,能被99整除,则○中分别填多少?示例﹤4﹥六位数ΟΟ1992能被95整除,这个六位数是多少?练一练 能被4、5、6整除的最大的三位数是多少?示例﹤5﹥1~200中,有多少个数能被2或5整除?练一练:1~300中,有多少个数不能被3或5整除?示例﹤6﹥一个整数乘17,积的末三位是999,这个数最小是多少?练一练:一个整数乘19,积的末三位是321,这样的整数中最小是多少?示例﹤7﹥五年级有72名学生,乘车春游,共交车费Ο7.52Ο元(○为污损数字,看不清)平均每个学生交了多少元钱?练一练:一本老账本上记着:老王买了72只桶,共用去Ο9.67Ο元,其中○处是被虫蛀掉的数字,请把这笔账补上。

示例﹤8﹥ 一个两位数能被2整除,且两个数位上的数字之和是8,这样的两位数有多少个?练一练:能被11整除,并且各个数位上数字之和等于43的五位数一共有多少个?示例﹤9﹥在28的前面连续写上若干个1993,得到一个多位数 1993199319931993若干个28如果这个多位数能被11整除,那么它最少是多少位?练一练:如果 2005200520052005个n 01能被11整除,那么n 的最小值是多少?示例﹤10﹥ 商店里有六箱货物,分别重15、16、18、19、20、31千克,两个顾客买走其中的五箱,已知一个顾客买的货物是另一个顾客的2倍,那么商店剩下的一箱货物有多重?练一练:五年级同学分成四个小组集邮,第一组集了127张,第二组集了149张,第三组集了238张,第四小组只集了95张。

最新小学五年级奥数全册讲义(1-30讲)(含详解)【值得拥有】

最新小学五年级奥数全册讲义(1-30讲)(含详解)【值得拥有】

小学五年级奥数全册讲义第1讲数字迷(一)第2讲数字谜(二)第3讲定义新运算(一)第4讲定义新运算(二)第5讲数的整除性(一)第6讲数的整除性(二)第7讲奇偶性(一)第8讲奇偶性(二)第9讲奇偶性(三)第10讲质数与合数第11讲分解质因数第12讲最大公约数与最小公倍数(一)第13讲最大公约数与最小公倍数(二)第14讲余数问题第15讲孙子问题与逐步约束法第16讲巧算24第17讲位置原则第18讲最大最小第19讲图形的分割与拼接第20讲多边形的面积第21讲用等量代换求面积第22 用割补法求面积第23讲列方程解应用题第24讲行程问题(一)第25讲行程问题(二)第26讲行程问题(三)第27讲逻辑问题(一)第28讲逻辑问题(二)第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。

例如用猜想、拼凑、排除、枚举等方法解题。

数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。

这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。

例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。

分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。

当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。

(5÷13-7)×(17+9)。

当“÷”在第二或第四个○内时,运算结果不可能是整数。

当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。

例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。

小学五年级下期数学思维训练(奥数)《数的整除》教学设计及练习题

小学五年级下期数学思维训练(奥数)《数的整除》教学设计及练习题

数的整除专题简析:数的整除是研究自然数之间关系的学问。

我们在课本中已经学习了能被2、3、5整除的数的特征,本讲让我们来探讨能被4或25,8或125,9,7,11,13整除的数的特征。

例1研究能被4或25整除的数的特征。

有四组数如下:(1)424 316 9840 628 880(2)7354 126 766 894 9343(3)925 575 850 1000 8075(4)835 355 360 1005 495把第(1)、(2)两组数分别除以4,第(3)、(4)两组数分别除以25,找出能被4或25整除的数的特征。

分析与解答:通过计算可以知道:第(1)组的数都能被4整除,而第(2)组的数都不能被4整除;同样,第(3)组的数都能被25整除,第(,4)组的数都不能被25整除.。

仔细观察这四组数的末两位数会发现:第(1)组中的每个数的末两位数都能被4整除,而第(2)组中的每个数的末两位数都不能被4整除;同样,第(3)组中的每个数的末两位数都能被25整除,而第(4)组中的每个数的末两位数都不能被25整除。

所以能被4或25整除的数的特征:一个数的末两位数能被4或25整除,这个数就一定能被4或25整除。

随堂练习:1、判断312、142、280能否被4整除。

2、判断375、260、165能否被25整除。

例2研究能被8或125整除的数的特征。

有四组数如下:(1)4840 3160 7544 6112 2248(2)5551 9854 4886 1102 4540(3)3750 3500 3875 2625 5375(4)2005 1050 2795 7350 1985把第(1)、(2)两组数分别除以8,第(3)、(4)两组数分别除以125,找出能被8或125整除的数的特征。

分析与解答:通过计算可以知道:第(1)组的数都能被8整除,而第(2)组的数都不能被8整除;同样,第(3)组的数都能被125整除,第(4)组的数都不能被25整除.。

五年级奥数第2讲-整除问题进阶

五年级奥数第2讲-整除问题进阶

课堂检测
(1)在7315、58674、325702、96723、360360中,7的倍数有哪些?13的倍数有哪些?
(2)四位数 33 能同时被9和11整除,这个四位数是多少?
(3)四位数27 8能被7整除,那么这个四位数是多少?
(4)已知多位数81 258258...258,能同时被7和13整除,方格内的数字是多少?
五年级奥数第2讲-整除问题进阶
第二讲
整除问题进阶
• 数论专题第2讲
知识精讲
上一讲我们学习了一些比较常用的整除判断方法,如利用末位数字判断、利用 数字和判断等。 1.尾数判断法 (1)能被2、5整除的数的特性:个位数字能被2、5整除. (2)能被4、25整除的数的特性:末两位能被4、25整除。 (3)能被8、125整除的数的特性:末三位能被8、125整除。 2.数字求和法 能被3、9整除得数的特性:各位数字之和能被3、9整除。 3.奇偶位求差法 能被11整除的数的特性:“奇位和”与“偶位和”的差能被11整除。
2012个258
(5)已知多位数11...1 33...3,能被7整除,那么中间方格内的数字是多少?
2011个1020/11/5
18
挑战极限
例题六:
有一个五位数,它的末三位为999。如果这个数能被23整除,那么这个五位数最小 是多少? 分析:我们没有学过能被23整除的数的特征,而且23也不能拆分成两个特殊数的乘 积,因此不可能根据整除特征来考虑,我们尝试从整除的定义来入手,这个五位数 能被23整除,就是说,它能写成23与另一个数的乘积,接下来大家想到该怎么办了 吗?
现在我们再来学习一些新的判断方法。
知识精讲
一、截断作和
能被99整除的数的特征:从个位开始每两位一截,得到的所有两位数(最前面的 可以是一位数)之和,能被99整除。

五年级奥数第二讲:整除的进阶

五年级奥数第二讲:整除的进阶

第二讲:整除问题进阶上讲我们学习了一些常用的整除判断方法,本讲我们再学习一些新的判断方法。

一、截断作和。

能被99整除的数的特征:从个位开始每两位一截,得到的所有两位数(最前面的可以是一位数,在前面加个0相当于是两位数)之和能被99整除。

举个例子:9912875643是不是99的倍数?方法1:99 12 87 56 43-------99 + 12 + 87 + 56 + 43=99×3=297,和是99的倍数,所以这个数就是99的倍数。

还可以怎么做?方法2:99=9×11,是9的倍数也是11的倍数。

是9的倍数,数字和是9的倍数。

9+9+1+2+8+7+5+6+4+3=54,54÷9=6,所以这个数是9的倍数;是11的倍数,奇偶位和差分析法。

奇数位的和:3+6+7+2+9=27偶数位的和:4+5+8+1+9=27差是:27-27=0 0÷11=0,所以这个多位数是11的也是9的即99的倍数。

1、六位数()2008()能同时被9和11整除。

这个六位数是多少?分析:是9的倍数也是11的倍数即是:9×11=99的倍数。

设六位数是BA2008。

两位一截。

共3个两位数。

+=+≤A+BA+B2=891818922008和应该是99的倍数,所以只能是99×1=99成立,99×2=198不成立。

=99,所以A=1,B=7,所以这个六位数是:120087。

答:120087。

2、已知九位数1234()()789能被99整除。

这个九位数是多少?分析:设1234(A )(B)789,从个位开始,两位一截,得到:1、23、4(A )、(B)7 、89,和是:01+23+两位数4A+两位数B7+89=113+40+A+B×10+7=160+A+10×B=99的倍数。

160+A+10×B的最小值:160+0+10×0=160(A和B在中间可以最小是0 。

五年级奥数-②数的整除(2)

五年级奥数-②数的整除(2)

数的整除(2)(4.9)姓名_______________数的整除特征:①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0).下面“特征”含义相似。

②能被5整除的数的特征:个位是0或5。

③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。

④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

⑤能被8(或125)整除的数的特征:末三位数能被8(或125)整除。

⑥能被11整除的数的特征:这个整数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是11的倍数。

⑦能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。

例如:判断13574是否是11的倍数?解:这个数的奇数位上数字之和与偶数位上数字和的差是:(4+5+1)-(7+3)=0。

因为0是任何整数的倍数,所以11|0。

因此13574是11的倍数。

例如:判断1059282是否是7的倍数?解:把1059282分为1059和282两个数。

因为1059-282=777,又7|777,所以7|1059282。

因此1059282是7的倍数。

例如:判断3546725能否被13整除?解:把3546725分为3546和725两个数.因为3546-725=2821。

再把2821分为2和821两个数,因为821—2=819,又13|819,所以13|2821,进而13|3546725.例1、36、60、87、95、104、123、235、396、432、505、606、712、918这些数中。

能被2整除的数有________________________________________;是3的倍数的有_________________________________;5的倍数有____________________________。

小学5年级数整除(奥数真题)

小学5年级数整除(奥数真题)

崔氏五年级第七八讲 数的整除的综合运用㈠㈡特说明:数的整除综合应用共分2讲,所选高频考题与今年真题均为这2讲范围之内的,共30道题目。

今后如有类似情况(连续两讲为同一知识点的一,二),2讲补充题均合并为1讲,共出30道题。

1 .在方框中填上两个数字,可以相同也可以不同,使4□32□是9的倍数。

⑴请随便填出一种,并检查自己填的是否正确; ⑵一共有多少种满足条件的填法?2.⑴从1~3998这3998个自然数中,有多少个能被4整除?⑵从1~3998这3998个自然数中,有多少个数的各位数字之和能被4整除?3.在小于5000的自然数中,能被11整除,并且数字和为13的数,共有 个。

4.(第2届华杯赛初赛第14题)用1、9、8、8这四个数字能排成几个被11除余8的四位数?5 .右图的方格表中已经填入了9个数,其余20个方格内的数都等于它左侧方格中的数乘以它上面方格中的数。

比如a =5×10=50,b =5×12=60。

那么c 方格内所填的自然数的末尾有___个连续的0。

cba 252015105161412106.右图中最上排有五个数,将相邻两个数的乘积写在它们之间下方的圈内。

第二排的四个数填完后,再依次填第三、四、五排,第五排中的数A 的末尾共有多少个0?7 .(2008年数学解题能力展示初赛试题)已知九位数2007122□□既是9的倍数,又是11的倍数;那么,这个九位数是多少?8.试证明n n位原序数与位反序数的差一定是999n n的倍数为奇数时的倍数为偶数时 (如:12365为原序数,那么它对应的反序数为56321,它们的差43956是99的倍数.)9.如图,把1~9这9个数字放在一个圆圈上。

请在某两个数字之间剪开,分别按顺时针和逆时针次序形成两个九位数(比如在7和8之间剪开,就形成了826543197和791345628这两个九位数).如果要求剪开后所得到的两个九位数的差能被396整除,那么可以从哪两个数字之间剪开?98765432110 .对怎样的最小值n ,数122221n 个2被9999个9整除?11.一个19位数99777744444⋅⋅⋅Ο⋅⋅⋅个个能被13整除,求О内的数字. A 292025151212.(2003年希望杯第1届五年级2试第3题)六位数2003□□能被99整除,它的最后两位数是。

五年级下册数学试题- 奥数第02讲:整除 人教版(含答案)

五年级下册数学试题- 奥数第02讲:整除    人教版(含答案)

第2讲:数的整除内容概述:掌握整除的概念和基本性质,掌握能被某些特殊数整除的数的特征。

通过分析整除特征解决数的补填问题,以及多位数的构成问题等。

典型问题:兴趣篇1.下面有9个自然数:14,35,80,152,650,434,4375,9064,24125。

在这些自然数中,请问:(1)有哪些数能被2整除?哪些能被4整除?哪些能被8整除?(2)有哪些数能被5整除?哪些能被25整除?哪些能被125整除?【分析】(1)能被2整除的数末位应是2的倍数,有:14,80,152,650,434,9064,;能被4整除的末两位应为4的倍数,有:80,152,9064;能被8整除的末三位应为8的倍数,有:80,152,9064;(2)能被5整除的末位应为5的倍数,有35,80,650,4375,24125;能被25整除的末两位应为25的倍数,有:650,4375,24125;能被125整除的末三位应为125的倍数,有:4375,24125;2.有如下9个三位数:452,387,228,975,525,882,715,775,837。

这些数中哪些能被3整除?哪些能被9整除?哪些能同时被2和3整除?【分析】能被3整除的应为数字和为3的倍数,有:387,228,975,525,882,837;能被9整除的数字和应为9的倍数,有:387,882,837;能同时被2和3整除的数有:228、882。

3.一个三位数64的十位数字未知。

请分别根据下列要求找出“”中合适的取值:(1)如果要求这个三位数能被3整除,“”可能等于多少?(2)如果要求这个三位数能被4整除,“”可能等于多少?(3)这个三位数有没有可能同时被3和4整除,如果有可能,“”可能等于多少?【分析】 (1)数字和保证是3的倍数,则可填写2,5,8;(2)能被4整除,则末两位能被4整除,则可填写0、2、4、6、8;(3)既能被3又能被4整除,则两者均需符合,应填2或者84.新学年开学了,同学们要改穿新的校服。

五年级奥数专题-数的整除

五年级奥数专题-数的整除

五年级奥数专题-数的整除如果整除a 除以不为零数b,所得的商为整数而余数为0,我们就说a 能被b 整除,或叫b 能整除a.如果a 能被b 整除,那么,b 叫做a 的约数,a 叫做b 的倍数.数的整除的特征:(1) 能被2整除的数的特征:如果一个整数的个位数字是2、4、6、8、0,那么这个整数一定能被2整除.(2) 能被3(或9)整除的数的特征:如果一个整数的各个数字之和能被3(或9)整除,那么这个整数一定能被3(或9)整除.(3) 能被4(或25)整除的数的特征:如果一个整数的末两位数能被4(或25)整除,那么这个数就一定能被4(或25)整除.(4) 能被5整除的数的特征:如果一个整数的个位数字是0或5,那么这个整数一定能被5整除.(5) 能被6整除的数的特征:如果一个整数能被2整除,又能被3整除,那么这个数就一定能被6整除.(6) 能被7(或11或13)整除的数的特征:一个整数分成两个数,末三位为一个数,其余各位为另一个数,如果这两个数之差是0或是7(或11或13)的倍数,这个数就能被7(或11或13)整除.(7) 能被8(或125)整除的数的特征:如果一个整数的末三位数能被8(或125)整除,那么这个数就一定能被8(或125)整除.(8) 能被11整除的数的特征:如果一个整数的奇数位数字之和与偶数位数字之和的差(大减小)能被11整除,那么它必能被11整除.一、例题与方法指导例1. 一个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____.思路导航:一个数如果是88的倍数,这个数必然既是8的倍数,又是11的倍数.根据8的倍数,它的末三位数肯定也是8的倍数,从而可知这个六位数个位上的数是0或8.而11的倍数奇偶位上数字和的差应是0或11的倍数,从已知的四个数看,这个六位数奇偶位上数字的和是相等的,要使奇偶位上数字和差为0,两个方框内填入的数字是相同的,因此这个六位数有两种可能或又 23056088=2620238568÷88=2711所以,本题的答案是2620或2711.例2. 123456789□□,这个十一位数能被36整除,那么这个数的个位上的数最小是_____.思路导航:因为36=9⨯4,所以这个十一位数既能被9整除,又能被4整除.因为1+2+…+9=45,由能被9整除的数的特征,(可知□+□之和是0(0+0)、9(1+8,8+1,2+7,7+2,3+6,6+3,4+5,5+4)和18(9+9).再由能被4整除的数的特征:这个数的末尾两位数是4的倍数,可知□□是00,04,…,36,…,72,…96.这样,这个十一位数个位上有0,2,6三种可能性.所以,这个数的个位上的数最小是0.例3. 下面一个1983位数33…3□…4中间漏写了一个数字(方框),已 991个 991个知这个多位数被7整除,那么中间方框内的数字是_____.思路导航:33...3□44 (4)991个个=33...3⨯10993+3□4⨯10990+44 (4)990个 990个因为111111能被7整除,所以33…3和44…4都能被7整除,所以只要990个 990个3□4能被7整除,原数即可被7整除.故得中间方框内的数字是6.例4. 有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数是_____.思路导航:三个连续的两位数其和必是3的倍数,已知其和是11的倍数,而3与11互质,所以和是33的倍数,能被33整除的两位数只有3个,它们是33、66、99.所以有当和为33时,三个数是10,11,12;当和为66时,三个数是21,22,23;当和为99时,三个数是32,33,34.所以,答案为 10,11,12或21,22,23或32,33,34.[注]“三个连续自然数的和必能被3整除”可证明如下:设三个连续自然数为n,n+1,n+2,则n+(n+1)+(n+2)=3n+3=3(n+1)所以,)2+nn+n能被3整除.(+)1(+二、巩固训练1.有这样的两位数,它的两个数字之和能被4整除,而且比这个两位数大1的数,它的两个数字之和也能被4整除.所有这样的两位数的和是____.2.一个小于200的自然数,它的每位数字都是奇数,并且它是两个两位数的乘积,那么这个自然数是_____.3.任取一个四位数乘3456,用A表示其积的各位数字之和,用B表示A的各位数字之和,C表示B的各位数字之和,那么C是_____.4.有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从小到大排列起来,第五个数的末位数字是_____.1. 118符合条件的两位数的两个数字之和能被4整除,而且比这个两位数大1的数,如果十位数不变,则个位增加1,其和便不能整除4,因此个位数一定是9,这种两位数有:39、79.所以,所求的和是39+79=118.2. 195因为这个数可以分解为两个两位数的积,而且15⨯15=225>200,所以其中至少有1个因数小于15,而且这些因数均需是奇数,但11不可能符合条件,因为对于小于200的自然数凡11的倍数,具有隔位数字之和相等的特点,个位百位若是奇数,十位必是偶数.所以只需检查13的倍数中小于200的三位数13⨯13=169不合要求,13⨯15=195适合要求.所以,答案应是195.3. 9根据题意,两个四位数相乘其积的位数是七位数或八位数两种可能.因为3456=384⨯9,所以任何一个四位数乘3456,其积一定能被9整除,根据能被9整除的数的特征,可知其积的各位数字之和A也能被9整除,所以A有以下八种可能取值:9,18,27,36,45,54,63,72.从而A的各位数字之和B总是9,B的各位数字之和C也总是9.4. 9∵0+1+4+7+9=21能被3整除,∴从中去掉0或9选出的两组四个数字组成的四位数能被3整除.即有0,1,4,7或1,4,7,9两种选择组成四位数,由小到大排列为:1047,1074,1407,1470,1479,1497….所以第五个数的末位数字是9.三、拓展提升1. 找出四个互不相同的自然数,使得对于其中任何两个数,它们的和总可以被它们的差整除,如果要求这四个数中最大的数与最小的数的和尽可能的小,那么这四个数里中间两个数的和是多少?2.只修改21475的某一位数字,就可知使修改后的数能被225整除,怎样修改?3. 500名士兵排成一列横队.第一次从左到右1、2、3、4、5(1至5)名报数;第二次反过来从右到左1、2、3、4、5、6(1至6)报数,既报1又报6的士兵有多少名?4. 试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明.答案1. 如果最小的数是1,则和1一起能符合“和被差整除”这一要求的数只有2和3两数,因此最小的数必须大于或等于2.我们先考察2、3、4、5这四个数,仍不符合要求,因为5+2=7,不能被5-2=3整除.再往下就是2、3、4、6,经试算,这四个数符合要求.所以,本题的答案是(3+4)=7.2. 因为225=25 9,要使修改后的数能被25整除,就要既能被25整除,又能被9整除,被25整除不成问题,末两位数75不必修改,只要看前三个数字即可,根据某数的各位数字之和是9的倍数,则这个数能被9整除的特征,因为2+1+4+7+5=19,19=18+1,19=27-8,所以不难排出以下四种改法:把1改为0;把4改为3;把1改为9;把2改为1.3. 若将这500名士兵从右到左依次编号,则第一次报数时,编号能被5整除的士兵报1;第二次报数时,编号能被6整除的士兵报6,所以既报1又报6的士兵的编号既能被5整除又能被6整除,即能被30整除,在1至500这500个自然数中能被30整除的数共有16个,所以既报1又报6的士兵共有16名.4. 不能.假设能够按照题目要求在圆周上排列所述的100个数,我们来按所排列顺序将它们每5个分为一组,可得20组,其中每两组都没有共同的数,于是,在每一组的5个数中都至少有两个数是3 的倍数.从而一共有不少于40个数是3 的倍数.但事实上,在1至100的自然数中有33个数是3的倍数,导致矛盾.。

五年级奥数(2)

五年级奥数(2)

五年级奥数(2)数的整除姓名:1、能被2整除的数的特征:一个数的个位数字如果是0,2,4,6,8中的一个,那么这个数就能被2整除。

2、能被3整除的数的特征:一个数各个数位上的数字之和如果能被3整除,那么这个数就能被3整除。

3、能被5整除的数的特征:一个数的个位数字如果是0或5,那么这个数就能被5整除。

4、能被4(或25)整除的数的特征:一个数的末两位数如果能被4(或25)整除,那么这个数就能被4(或25)整除。

5、(能被8(或125)整除的数的特征:一个数的末三位数如果能被8(或125)整除,那么这个数就能被8(或125)整除。

6、能被9整除的数的特征:一个数各个数位上的数字之和如果能被9整除,那么这个数就能被9整除。

7、能被7整除的数的特征:若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595,59-5×2=49,所以6139是7的倍数,余类推。

8、能被11整除的数的特征,奇数位(从左往右数)上的数字和与偶数位上的数字和之差(大数减小数)能被11整除,则该数就能被11整除。

11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!9、能被13整除的数的特征,若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。

如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。

10、能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除11、能被6整除的数,如果一个数既能被2整除又能被3整除,那么这个数能被6整除12、能被10整除的数,如果一个数既能被2整除又能被5整除,那么这个数能被10整除(即个位数为零)13、能被12整除的数,若一个整数能被3和4整除,则这个数能被12整除练习1.在5、46、2、15、18、47、30、210中,(1)能被2整除的有( )。

五年级(奥数) 数的整除

五年级(奥数)  数的整除

五年级数的整除
1、有三根铁丝,分别长12厘米、18厘米、54厘米。

要把它们都截成同样长的小段不许剩余,每段最长是多少厘米?一共能截多少段?
2、五年级三个班分别有24人、36人、42人参加体育锻炼,要把它们分成人数相等的小组,但各班同学不能打乱。

最多每组多少人?每班各分多少组?
3、一张长方形纸长112厘米,宽80厘米,把它剪成若干个同样大小的正方形,使边长是
整厘米且不能有剩余,最少能剪多少个?
4、用长16厘米,宽14厘米的长方形木板来拼成一个正方形,最少需要用这样的木板多
少块?
5、张妮有若干张画片,7张一数还余4张,5张一数又少3张,3张一数正好。

问:张妮
至少有多少张画片?
6、五年级两个班的学生一起排队去做操,如果9人排一队,多出一人;如果10人排一队,同样多出一个人。

这两个班最少共有多少人?
7、有一篮鸡蛋,每按4个一堆分多一个;按5个一堆分多1个;按每6个一堆分也多1个。

这篮鸡蛋至少有多少个?
8、一个四位数9□2□既有约数2,又是3的倍数,同时又能被5整除。

这个四位数最大是什么?
9、六位数“568□□□”能同时被2、3、5整除。

求这样的六位数中最小的一个是多少?。

数的整除

数的整除

五年级(下)奥数《数的整除》(一)1、(1)下面哪些数能被4整除?312 142 280 6250 992 1024(2)下面哪些数能被25整除?375 260 165 400 125 450(3)下面哪些数能被8整除?2256 2616 1448 3378 1848(4)下面哪些数能被125整除?375 1875 8125 5525 2500(5)下面哪些数能被9整除?504 243 5049 449 8628 6219(6)下面哪些数能被7整除?86492 321153 552525 25046(7)下面哪些数能被13整除?59306 628667 129987 588735(8)下面哪些数能被11整除?72017 38380 47476 9777682、在方框里填上适当的数字,使所成的数适合所给出的条件。

(1)1384□4能被8整除(2)35□能被9整除(3)2□0□能被11整除4、在□内填入适当的数,使下面的五位数能被9整除,并且后两位数能被7整除。

4□17□□85□4 37□3□5、把1~1999这1999个自然数依次写下来,得一多位数123456789101112……199719981999,试求这一多位数除以9的余数。

6、在358后面补上三个数字组成的一个六位数,使它能分别被4、4、5整除,这样的六位数中最小的是几?7、由0~6组成,百位比十位大,十位比个位大的三位数,能被3整除的数有()个?8、恰好能被6、7、8、9整除的五位数有多少个?9、一个五位数,如果去掉万位和个位上的数字,就是一个同时是2、3、5的倍数的最小三位数,在满足条件的这些五位数中,是11的倍数的最大的一个数是()。

10、一个三位数,有一个约数是最小的质数,同时它又是3的倍数,并且能被5整除,则这个数最小是()。

11、已知七位数92AB4329能被99整除,那么两位数AB=()。

12、六个袋内分别有18、19、21、23、25与34个球,其中一个袋内装的都是有裂口的球,其余五个袋内都没有带裂口的球.现在小王拿了其中三个袋,小丁拿了两个袋,只剩下那个装有裂口球的袋.如果小王得到的球数是小丁得到的两倍,那么有裂口的球是______个13、一年级有72名学生课间加餐共交□52.7□元,(□辨认不清)每人交了()元。

五年级奥数-数的整除问题

五年级奥数-数的整除问题

五年级奥数-数的整除问题介绍本文档将涵盖五年级奥数中与数的整除问题相关的内容。

数的整除是数学中的一项基本概念,它在解决实际问题和数学推理中起着重要的作用。

数的整除定义两个整数a和b,若存在整数c,使得c * b = a,则称a能被b 整除,记作b|a。

其中a称为被除数,b称为除数,c称为商。

整除的特性1. 如果a能被b整除,那么a的所有倍数也能被b整除。

2. 如果a能被b整除,b能被c整除,那么a也能被c整除。

3. 如果a能被b整除,b能被a整除,那么a和b相等。

判断一个数能否被另一个数整除的方法1. 试除法:从除数的最小可能取值开始逐步增加,直到找到一个能整除被除数的除数或者超过了被除数的一半。

如果找到了能整除的除数,则其为被除数的因数;否则,被除数为质数。

试除法:从除数的最小可能取值开始逐步增加,直到找到一个能整除被除数的除数或者超过了被除数的一半。

如果找到了能整除的除数,则其为被除数的因数;否则,被除数为质数。

2. 质因数分解法:将被除数和除数都进行质因数分解,然后比较它们的质因数是否相同。

如果除法相同,则说明除数能够整除被除数;否则,不可整除。

质因数分解法:将被除数和除数都进行质因数分解,然后比较它们的质因数是否相同。

如果除法相同,则说明除数能够整除被除数;否则,不可整除。

数的整除问题的应用数的整除问题在实际生活和数学中都有广泛的应用,例如:1. 分配问题:将一定数量的物品平均分给每个人,需要确定每个人能够得到多少个物品,就需要解决数的整除问题。

2. 判断质数:质数是只能被1和自身整除的数,通过判断能否被其他数整除,可以检验一个数是否为质数。

3. 数论问题:在数论研究中,数的整除问题是一个重要的主题,涉及到数的性质和结构等方面。

总结数的整除是五年级奥数中的基本概念之一,通过研究整除的定义、特性和判断方法,可以解决实际问题和进行数学推理。

在实际生活和数学领域中,数的整除问题有着广泛的应用,我们应该加强对该概念的理解和掌握。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数的整除(2)(4.9)
姓名_______________
数的整除特征:
①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0).下面“特征”含义相似。

②能被5整除的数的特征:个位是0或5。

③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。

④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

⑤能被8(或125)整除的数的特征:末三位数能被8(或125)整除。

⑥能被11整除的数的特征:这个整数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是11的倍数。

⑦能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。

例如:判断13574是否是11的倍数?
解:这个数的奇数位上数字之和与偶数位上数字和的差是:(4+5+1)-(7+3)=0。

因为0是任何整数的倍数,所以11|0。

因此13574是11的倍数。

例如:判断1059282是否是7的倍数?
解:把1059282分为1059和282两个数。

因为1059-282=777,又7|777,所以7|1059282。

因此1059282是7的倍数。

例如:判断3546725能否被13整除?
解:把3546725分为3546和725两个数.因为3546-725=2821。

再把2821分为2和821两个数,因为821—2=819,又13|819,所以13|2821,进而13|3546725.
例1、36、60、87、95、104、123、235、396、432、505、606、712、918这些数
中。

能被2整除的数有________________________________________;是3的倍数的有_________________________________;5的倍数有____________________________。

你还能找出哪些数是6的倍数吗?______________________________________。

例2、126、248、368、472、582、1234、5678、2468、2340、97532这些数中能被4整除的数有_______________________________;8的倍数有____________________。

你还能找出12的倍数吗?___________________________________。

例3、在□内填上适当的数字,使六位数43217□能被4(或25)整除.
例4、在□内填上合适的数字,使五位数4□32□能被9整除.
例5、在□内填上合适的数字,使□679□能同时被8、9整除.
例6、在□内填上合适的数字,使六位数19□88□能被35整除.
例7、一个六位数586□□□能同时被3、4、5整除,求这样的六位数中最小的一
个?
例8、一年级有72名学生,课间加餐共交了□67.9□元(□内的数字辨认不清),每人交了多少钱?(每人交钱一样多)
例9、一个整数a与108的乘积是一个完全平方数.求a的最小值与这个平方数。

例10、问24共有多少个约数?全部约数之和是多少?
例11、求240的约数的个数。

全部约数之和是多少?
例12、求1080的约数的个数。

例13、2×3×4×…×9×10,这个连乘积的末尾有几个0?
例14、225×72×(),要使这个连乘积的最后四个数字都是0,在括号内最小应填什么自然数?
※拓展练习:
1、个位数是6,且能被3整除的三位数有多少个?
2、用1,2,3,4这四个数码可以组成24个没有重复数字的四位数,其中能被11整除的有哪几个?
3、一个三位数能被11整除,去掉末位数字后所得的两位数能被9整除,这样的三位数有哪些?
4、小马虎买了72支同样的钢笔,可是发票不慎落水浸湿,单价已无法辨认,总价数字也不全,只能认出:□11.4□元(□表示不明数字)。

你能帮助小马虎找出不明数字吗?
5、40名同学排成一排,由第一名开始报数,报奇数的同学落选退出队列,报偶数的同学站在原位置不动,然后再从头报数,如此继续下去,最后剩下的一名当选。

小胖非常想去,他在第一次排队时应该站在队列的什么位置上才能被选中?
同步测试(4.9)
姓名_____________ 成绩_____________
1、在数38、57、76、95、105、25
2、365、405、987中,
能被2整除的有:()
能被5整除的有:()
能被3整除的有:()
2、 (1) 18共有多少个约数?
(2) 180共有多少个约数?
3、在□内填上适当的数字,使七位数98765□能被4整除。

4、五位数4□56□能被9整除。

这个五位数可能是多少?(至少写出三个)
( )、()、()。

5、 150×148×(),要使这个连乘积的最后四个数字都是0,在括号内最小应填什么自然数?
6、在65后面补上2个数字,组成一个四位数,使它能分别被3、4、5整除,且使这个数值尽可能的小。

△7、李老师为学校一共买了28支价格相同的钢笔,共付人民币9□.2□元.已知□处数字相同,请问每支钢笔多少元?
△8、在□内填上合适的数字,使□679□能同时被8、9整除。

※9、求各位数字都是 7,并能被63整除的最小自然数。

※10、把一个三位数的百位和个位上的数字互换,得到一个新的三位数,新、旧两
个三位数都能被4整除。

这样的三位数共有多少个?。

相关文档
最新文档