五年级奥数.数论.带余除法
小学五年级奥数—数论之同余问题
小学五年级奥数—数论之同余问题数论之同余问题余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。
许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。
知识点拨:一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。
这里:1 当时:我们称a可以被b整除,q称为a除以b的商或完全商2 当时:我们称a不可以被b整除,q称为a除以b的商或不完全商一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c 就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16 39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19 42除以5的余数等于3+4 7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1 3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
五年级奥数.数论.余数性质(C级)
五年级奥数.数论.余数性质(C级)「例T.7 一个两位数除刖金余籬品求这样的两位数。
【哮点】除法必式的应用【难度】I星【题型】解答「解折亍本題为余数问姻的M題吐需要学生明白一个重要知鎭畐就是把余救问题-即“不往徐问題” 转化为整除问题.方法为用被除數减击余数,即得到一个除数的借数;或者是用被除数加上一个“除魏与余數的差S也可说得到一个除數的倍數"本題中315-*2=273>说明273是所求兪数的倍数* 273=3x7x13>所求的两位数的數还要满足比竝丸,符合条件的有91【答案】91I贰冈)在卜-面的空格中填上适当的数*7 4 Z□ □? 2 0 0 4 7□ □ □【耆点】除法公戎的应用I难度】2星【题型】填空[关皱词】如年,第2^,走具杯.3年级,决赛丫第10題,12余【解桁】本題的楝除敷、商和余數巴经給岀,根据除法的计算公瓦:掖徐龜4■除數=商……余敷,建推计算痔到:徐數-(2WM7—13)^742=27…【答集】27I例?]命子里放有编号I到10的十平球,小虹先后二次从盒子中共収出九个球,如果从第二次起,每衣取出的球的编号的和都比上一次的两倍还多一,那么剩卜的球的编号为—・I耆点】餘法公式的应用【难度】3星【题型】填空【关撻词】第盛届、走美杯,四年虬初躺第11罐【解析】令箔I次取的編号为釧第二次聪的编号为2a+i,第三冼取的编号为:2(2i+l ) +L=4a+3;还剰下的编号为:55*7a^=5L-7a,爭a为百臥俞下的趕9;当a为7时,余下的是£【答案】9A<2I巩间】川个口然数,利为100,分别除囚人杵用去足泌「10个商的和为3D;若用四舍五入法,呦个商的利为34. H)个甦中帔3除余I的右_______________ 个.【考点】除法公式的应用I难度】3星【题型〕填空【关犍词】2(X)8年,第天届+走关杯,五年虬和執第洛題【解析】由题意,“用击足法,10个贯的舸为和;用四舍五入法,KJ个商的粗为34"可知,10介数中除直3余2的数有3£{}=4 (个),又知道旧伞自然毀的和为|(趴设除以d余I的数有子个’眸裟报据用去雇法冶十个商的和与山个自摊數的和,可得灵皋戎:£+2rl =l^_3Oi解得,工“・3 3 3【答案】2I例*)托吗想了一个正粋数,并H茨出了它分别除113. 6和9的余数.现知这三余数的和是15.试求该数除以怡的余数.【考点】带余除法的怙算闻題【难度】3星【题璽】解答【关梃词】圣披得堡數学奥秋匹克【解斯】除事氛右和9的余数分别不超过2,乳卷所佛逮三个余就的希永远不超过2 + 5 + 215’既然它们的奔第于15,所以这三个余数分别就是2, 5, £.所以谨數触J君能覆玉6, 9 而|7P6P9| = 1!i T设诱魏为宀则口 = 1伽-1’即d =18伽-1) +门(阿为非零自煤兹h所以它:臨以】8的舍數只能为17,【琴案】17「巩圍】一个正報数,它分别除以7, LL和G的余数*现知这丄余数的利是2SL试求该数除以®的余数.【考点〕带余除法的估算问題【难度】3星【題型】解答【关储词】虽彼得堡数常翼林匹克【解析]除以九II和□的余数好别不趨1±&⑴,12,所以这三金余戲的和永远不^i±6+ L0H-I2-2B , 既然它扪轴和等于2K,所以这三个余数令别就是£ 1血12,所已诬数加I后能被7、II和13 整铝 ft[7,11,131 = 1001 ,址陵数为”* Jf1! d = 1001 m-I +即£t = 91 K11 K( m 4) 4000 (m 非零自然戦h所权它檢以91的舍數只能为知“【答案】90「罰4J用I、9、氛探这四个数字能徘成儿个披H除余!i的四位数?【哮点】徐法公式的应用【难度】5 X 【题型】境空【炭犍词】幣二届,华杯執初名第14题【解析】用1、鼻8. $可排成煌个四位戳.即)988,冷甥"1閱% 9】圈,9和乩9跆1* fJNS,射豹,的」备的}U , SK19 ’細9】它们减去^变为 19B0, 1890, 1881,9JH0. 9810, 9873. 8190, S1S1, 8910, 8973, S8U, 8H83 烬中破M整除的仅有1卿),1S8L S410,曲II,即用1’ 9* & !4可排咸.4介被]除余姑的㈣位數,即J9H8 ,’H918 「闕 19,什么样的数能被J1竝除呢?一个判定法則是:比较奇住数字之和与偶位數字之和.知果它如之差能枝II琛■那虫所给的软就能祓I]整除,否刚就不能够. 现在要求破1】除命敲我们可以連样耆虑:这样的數加上3后*就能楝II整除了-所议我怕粹到“一个数被11除兪!T杓判瓷法則:持偶位歎字相血得一个矜歎,再将奇位數字相新再加上3’ 捋另一个和數、扣果这两个和数之差能被II 除尽,那幺这个醜足被II幣余N的數;否別就不是*矣把h 9、排成一个彼II 除余醫的四住敷,可以把这从卜戡裁成两组,毎组2个数字.算中亠组■作为千位和十住戟’它们的和记柞丸;另外一组柞为百住希个位数*它们之希加上3记作超过脸证,第(1 )钟令组法满足前面的雯求:A-i+n, ^-9 + 8 + 3-20^ J? -A - II 能號1】除 尽 怛 基 余 三 科 分 组 撷 不 觸 匿 要 求*根据判定法則还可以知道,如杲一金数被II 际余缶那么牲奇<1杓任竈两个數字互换,凱者庄偶也的任意两牛数字互換,番到的新数被II 除也余乱 于是,上面第(1}分组屮,1和苦中任一 个可也柞为千位戟,9和呂中任一个可因作为百住魏-这样典有4聊可能的撫法:丹H& 1翻9, 8918 , 粕19答:能排成4个秋和除余it 的數【答耄】4IMJ 用2、沢0. 7V 7、良4这七个数字托被II 除余()的绘小和呆大的七位数?【淆点】除法公戎的应用 【难度】5星 【題型】廩空【解析】用2.队Os 人=、2. 4这七个数字什么样的数能皴11摊除呢? 一个判定決刚是:比校奇住数字之和与偶住数字之舸,如炭它们之 差能被II 除尽,那么所給的戟就能诚I 】整驚,否则就不能够.现在要求被II 除余缶 我怕可以这强考虑;这样的数加上5我减击右点”就能被1】楚除了.(I )如果0做底般:加5把一个0愛咸仏数字舸是2+5+4?+了+2心2人奇位敷字之和与偶位般 序乏和的菱是11的搐編都是自然醜+所以奇软位数字好=1更偶数住藝字之乘禺最小的为 7202745.即足敷为0的最小械11^6的敷为7202740,足敷对D 的最丸被11廉除()的数为 7472020(2)知樂2做雄股:加5把一个2变咸.7,魏字彌是7+(MH7+7+2+4=2人奇住数字之和与偶位数 字5的盖是11的倍欽,隸是自然#L 所収奇瓢位數字之和二19,耐I 便敖字也址乩这拜的数 不存在,(3 )如果4做尾数:加5把一个4塹成乳 数字和是齢0+37+7+2+42人奇位數字之豹乌偶位数 字之和的差是□的倍数,祁是自然醜+所以奇験位数字也机比偽戳位数宇之奉=乩这样的软 不存在”(4)如果?做足数:城右把一伞7更辰L 数字和是2+OKH-I +7+2+4= 16A 拉數字之和与偶位数 字之和的差是1】的催轨 都是自然软,所以奇戟位耻宇之和=备 偶数位数字之和=乩 聂片的为 7202041,即足數为7的最小掠II 除命氏的数为7202047,足數为了的最丸被]I 除余tii 的数为74020277202740>72(i2047 最大 7^72020>7402027I 答案】最*b 7202047.最大7472020 +我们要适 当分组,使痔能 偶位背位 C 1 ) 1 » 89 > e ( 2 ) 1 * 9e > e ( 3 ) 9 » 8i > e ( 4 )$ » 8 i >勺 被I 】整除.現在只宥下面4种分组法:【例5】将七位数叫孑刘924“車复写287次纽威一个2009位数"13579241357924...去这个数中所有位『奇数位上的数字;按上述厅丛一肓删除卜-去直到剩下一个数字为止,则堀后剩卜一的数字是I舟点】找規律计算【难度】4星I題型】解答【关槌词】21)09年,第14届*华杯霉,决赛,第3题【解析】本題哮察二进制,聂后剩下的数是屮“鏗4位值上的数字,周期为=,朋以IO24 +7^I4S 2,耶幺理个周期中的第二个數是弓[«词】3I 30粒珠子依呂粒红色、2粒黑鱼.£粒红色、2粒照色…的次序串成一罔,一只蚂蚱从第2粒黑珠子起跳’每次跳过6料珠子落在下…粒珠子匕这只蚂蚱至少耍跳_____________ 次才能落到黑珠子匕。
五年级培优 竞赛 二合一 精讲系列之9 余数(例题 练习 课后作业一条龙)
第十讲:数论之余数问题余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。
许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。
知识点拨:一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≢r<b;我们称上面的除法算式为一个带余除法算式。
这里:r=时:我们称a可以被b整除,q称为a除以b的商或完全商(1)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商(2)当0一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
五年级奥数-数论之余数问题
数论之余数问题余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。
知识点拨:一、带余除法的定义及性质:一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b=q ……r ,也就是a =b ×q +r,0≤r <b ;我们称上面的除法算式为一个带余除法算式。
这里:(1)当时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商(2)当时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商一个完美的带余除法讲解模型:如图,这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:1.余数的加法定理0r =0r ≠a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.3.同余定理若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m 同余,用式子表示为:a≡b ( mod m ),左边的式子叫做同余式。
小学奥数王峰数论(5)余数问题
教案教师:__ 王鑫___ 学生:_ 王峰上课时间:学生签字:____________【知识点概述】一、带余除法的定义及性质:1.带余除法的定义:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r, 0≤r<b;(1)当0r=时:我们称a可以被b整除,q称为a除以b的商或完全商(2)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商2.和余数相关的一些重要性质:(以下a,b,c均为自然数)性质1:余数小于除数被除数除数商余数性质2:=⨯+除数(被除数-余数)商=÷商(被除数-余数)除数=÷性质3:a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即前两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数,即2.性质4:a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以(2316)⨯除以5的余数等于⨯=。
313当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以(2319)⨯除以5的余数等于3412⨯=除以5的余数,即2.【注】对于上述性质3,4,我们都可以推广到多个自然数的情形,尤其是性质4,对于我们求一个数的n次方除以一个数的余数时非常的有用。
二、数的同余1.同余定义若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a≡b ( mod m )同余式读作:a同余于b,模m由同余的性质,我们可以得到一个非常重要的推论:若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m整除用式子表示为:如果有a≡b ( mod m ),那么一定有a-b=mk,k是整数,即m|(a-b)这个性质非常重要,是将同余问题与前面学过的整除问题相联系的纽带,一定要熟练掌握。
五年级奥数数论带余除法(A级)
带余除法的定义及性质1.定义:一般地,如果a 是整数,b 是整数(0b ≠),若有a b q r ÷= ,也就是a b q r =⨯+,0r b ≤<;我们称上面的除法算式为一个带余除法算式.这里:(1)当0r =时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商(2)当0r ≠时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商一个完美的带余除法讲解模型:如图这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数. 这个图能够让学生清晰的明白带余除法算式中4个量的关系.并且可以看出余数一定要比除数小. 2.余数的性质(1)被除数=除数⨯商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数; (2)余数小于除数.3.解题关键理解余数性质时,要与整除性联系起来,从被除数中减掉余数,那么所得到的差就能够被除数整除了.在一些题目中因为余数的存在,不便于我们计算,去掉余数,回到我们比较熟悉的整除性问题,那么问题就会变得简单了.【例 1】 某数被13除,商是9,余数是8,则某数等于__________.【巩固】一个三位数除以36,得余数8,这样的三位数中,最大的是__________.例题精讲 知识框架 带余除法【例2】除法算式208□□中,被除数最小等于__________.÷=【巩固】计算÷□△,结果是:商为10,余数为▲.如果▲的值是6,那么△的最小值是__________.【例3】71427和19的积被7除,余数是几?【巩固】在下面的空格中填上适当的数.【例4】1013除以一个两位数,余数是12.求出符合条件的所有的两位数.【巩固】一个两位数除310,余数是37,求这样的两位数.【例5】一个两位奇数除1477,余数是49,那么,这个两位奇数是多少?【巩固】大于35的所有数中,有多少个数除以7的余数和商相等?【例6】已知2008被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个?【巩固】写出全部除109后余数为4的两位数.【例7】甲、乙两数的和是1088,甲数除以乙数商11余32,求甲、乙两数.【巩固】用某自然数a去除1992,得到商是46,余数是r,求a和r.【例 8】当1991和1769除以某个自然数n,余数分别为2和1.那么,n最小是多少?【巩固】有三个自然数a,b,c,已知b除以a,得商3余3;c除以a,得商9余11.则c除以b,得到的余数是_________.【例9】有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是多少?【巩固】两数相除,商4余8,被除数、除数、商数、余数四数之和等于415,则被除数是_______.【例 10】 200022222 个除以13所得余数是_____.【巩固】19956666667 个的余数是多少?【随练1】 有一个三位数,其中个位上的数是百位上的数的3倍.且这个三位数除以5余4,除以11余3.这个三位数是__________。
五年级奥数.数论.余数的性质
余数的性质知识结构三大余数定理:(1)余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为2(2)余数的减法定理a与b的差除以c的余数,等于a,b分别除以c的余数之差。
例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1=2.当余数的差不够减时时,补上除数再减。
例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=4(3)余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.乘方:如果a与b除以m的余数相同,那么n a与n b除以m的余数也相同.例题精讲【例1】在1995,1998,2000,2001,2003中,若其中几个数的和被9除余7,则将这几个数归为一组.这样的数组共有______组.【巩固】号码分别为101,126,173,193的4个运动员进行乒乓球比赛,规定每两人比赛的盘数是他们号码的和被3除所得的余数.那么打球盘数最多的运动员打了多少盘?【例2】有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是______.【巩固】用自然数n去除63,91,129得到的三个余数之和为25,那么n=________.【例3】六名小学生分别带着14元、17元、18元、21元、26元、37元钱,一起到新华书店购买《成语大词典》.一看定价才发现有5个人带的钱不够,但是其中甲、乙、丙3人的钱凑在一起恰好可买2本,丁、戊2人的钱凑在一起恰好可买1本.这种《成语大词典》的定价是________元.【巩固】商店里有六箱货物,分别重15,16,18,19,20,31千克,两个顾客买走了其中的五箱.已知一个顾客买的货物重量是另一个顾客的2倍,那么商店剩下的一箱货物重量是________千克.【例4】求478296351⨯⨯除以17的余数.【巩固】求4373091993⨯⨯被7除的余数.【例5】求12÷的余数644319【巩固】 求89143除以7的余数.【例 6】 20102009200920092009⨯⨯⨯L 14444244443个的个位数字是________.【巩固】 2007×2007×…×2007(2008个2007)的个位数字是 。
五年级下册数学试题奥数—有余数的除法
有余数的除法一、知识点定义 设b a ,为正整数,由除法得r q b a ,其中q 是商,r 是余数, b r 0.我们称为带余除法. 被除数=除数 商+余数,或者被除数-余数==除数 商性质 (1)余数小于除数;(2)如果b a ,除以m 的余数相同,则b a 是m 的倍数,我们称b a ,对模m 同余,记作:)(mod m b a ;(3)a 与b 的和除以m 的余数等于与a 、b 分别除以m 的余数之和(或者这个和除以m 的余数)(4)a 与b 的积除以m 的余数等于与a 、b 分别除以m 的余数之积(或者这个积除以m 的余数)(5)若)(mod ),(mod m d c m b a ,则)(mod m d b c a ,)(mod m d b c a ,)(mod m d b c a .二、例题例1 用一个奇数去除255和197,所得余数都是23,求这个奇数.例2 有一个不等于1的整数,它除967,1000,2001得到相同的余数,这个数是多少?例3 求乘积199354128 被13除的余数.例4 从1—100这100个数中最多选出多少个数,使选出来的中每两个的和都不能被3整除?例5 一个正整数被8除余1,所得商被8除也余1,再把第二次所得商除8后余7,最后商是a .又这个数被17除余4,所得商被17除余15,最后得到的商是a 的2倍,求这个正整数.例6 一个正整数除以3余2,除以5余4,除以7余5,求满足条件的最小正整数.例7 20022001除以4的余数是_________.三、练习1.5197104 的积除以11的余数是__________.2.两数相除所得商为23,余数为6,被除数、除数、商、余数之和为779,那么被除数是_________,除数是__________.3.若34和56除以m的余数相同,且m为奇质数,则m除72的余数为__________.4.实验小学五年级有三百多人,将总人数减去5能被6整除,减去6能被7整除,减去7能被8整除,则五年级共有_________人.3107 的余数是_________.5.76.有一个大于1的正整数除314,257,447所得余数相同,则2002除以这个数余数是_______.。
小学五年级奥数—数论之同余问题
一、带余除法的定义及性质:之马矢奏春创作时间:二O二一年七月二十九日一般地,假如a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式.这里:(1)当时:我们称a可以被b整除,q称为a除以b的商或完全商(2)当时:我们称a不成以被b整除,q称为a除以b的商或不完全商一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经由打包后共打包了c捆,那么这个c 就是商,最后还残剩d本,这个d就是余数.这个图能够让学生清晰的明白带余除法算式中4个量的关系.并且可以看出余数必定要比除数小.二、三大余数定理:a与b的和除以c的余数,等于a,b辨别除以c的余数之和,或这个和除以c的余数.例如:23,16除以5的余数辨别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数.例如:23,19除以5的余数辨别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.a与b的乘积除以c的余数,等于a,b辨别除以c的余数的积,或者这个积除以c所得的余数.例如:23,16除以5的余数辨别是3和1,所以23×16除以5的余数等于3×1=3.当余数的和比除数大时,所求的余数等于余数之积再除以c的余数.例如:23,19除以5的余数辨别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子暗示为:a≡b ( mod m ),左边的式子叫做同余式.同余式读作:a同余于b,模m.由同余的性质,我们可以得到一个很是重要的推论:若两个数a,b除以同一个数m得到的余数相同,则a,b的差必定能被m整除用式子暗示为:假若有a≡b ( mod m ),那么必定有a-b=mk,k是整数,即m|(a-b)三、弃九法道理:在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时常日是在一个铺有沙子的土板长进行,因为害怕以前的计算成果丧掉落而经常考验加法运算是否精确,他们的考验方法是这样进行的:例如:考验算式1234除以9的余数为11898除以9的余数为818922除以9的余数为4678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式必定是错的.上述考验方法正好用到的就是我们前面所讲的余数的加法定理,即假如这个等式是精确的,那么左边几个加数除以9的余数的和再除以9的余数必定与等式右边和除以9的余数相同.而我们在求一个自然数除以9所得的余数时,经常不必去列除法竖式进行计算,只要计算这个自然数的各个位数字之和除以9的余数就可以了,在算的时刻往往就是一个9一个9的找并且划去,所以这种方法被称作“弃九法”.所以我们总结出弃九发道理:任何一个整数模9同余于它的各数位上数字之和.往后我们求一个整数被9除的余数,只要先计算这个整数各数位上数字之和,再求这个和被9除的余数即可.运用十进制的这个特点,不但可以考验几个数相加,对于考验相乘、相除和乘方的成果对不合错误同样适用留心:弃九法只能知道原题必定是错的或有可能精确,但不克不及包管必定精确.例如:考验算式9+9=9时,等式两边的除以9的余数都是0,但是显然算式是错误的但是反过来,假如一个算式必定是精确的,那么它的等式2两端必定知足弃九法的规律.这个思惟往往可以帮忙我们解决一些较复杂的算式迷问题.四、中国残剩定理:1.中国现代趣题:中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三.”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”.韩信点兵又称为中国残剩定理,相传汉高祖刘邦问大将军韩信统御兵士若干,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人…….刘邦茫然而不知其数.我们先推敲下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有若干?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人).孙子算经的作者及确实著作年代均不成考,不过按照考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人创造得比西方早,所以这个问题的推广及其解法,被称为中国残剩定理.中国残剩定理(Chinese Remainder Theorem)在近代抽象代数学中占据一席很是重要的地位.2.核心思惟和方法:对于这一类问题,我们有一套看似繁琐但是一旦掌握即可一通百通的方法,下面我们就以《孙子算经》中的问题为例,阐发此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?标题中我们可以知道,一个自然数辨别除以3,5,7后,得到三个余数辨别为2,3,2.那么我们首先机关一个数字,使得这个数字除以3余1,并且照样5和7的公倍数.先由,即5和7的最小公倍数出发,先看35除以3余2,不适合要求,那么就中断看5和7的“下一个”倍数是否可以,很显然70除以3余1类似的,我们再机关一个除以5余1,同时又是3和7的公倍数的数字,显然21可以适合要求.最后再机关除以7余1,同时又是3,5公倍数的数字,45适合要求,那么所求的自然数可以这样计算:,个中k是从1开始的自然数.也就是说知足上述关系的数有无穷多,假如按照实际情况对数的范围加以限制,那么我们就能找到所求的数.例如对上面的问题加上限制前提“知足上面前提最小的自然数”,那么我们可以计算得到所求假如加上限制前提“知足上面前提最小的三位自然数”,我们只要对最小的23加上[3,5,7]即可,即23+105=128.例题精讲:【模块一:带余除法的定义和性质】【例 1】(第五届小学数学报竞赛决赛)用某自然数去除,得到商是46,余数是,乞降.【解析】因为是的倍还多,得到,得,所以,.【巩固】(清华附中小升初分班测验)甲、乙两数的和是,甲数除以乙数商余,求甲、乙两数.【解析】(法1)因为甲乙,所以甲乙乙乙乙;则乙,甲乙.(法2)将余数先去掉落落变成整除性问题,运用倍数关系来做:从中减掉落落往后,就应该是乙数的倍,所以得到乙数,甲数.【巩固】一个两位数除310,余数是37,求这样的两位数.【解析】本题为余数问题的根本题型,需要学生明白一个重要常识点,就是把余数问题---即“不整除问题”转化为整除问题.方法为用被除数减去余数,即得到一个除数的倍数;或者是用被除数加上一个“除数与余数的差”,也可以得到一个除数的倍数.本题中310-37=273,说明273是所求余数的倍数,而273=3×7×13,所求的两位数约数还要知足比37大,适合前提的有39,91.【例 1】(年全国小学数学奥林匹克试题)有两个自然数相除,商是,余数是,已知被除数、除数、商与余数之和为,则被除数是若干?【解析】被除数除数商余数被除数除数+17+13=2113,所以被除数除数=2083,因为被除数是除数的17倍还多13,则由“和倍问题”可得:除数=(2083-13)÷(17+1)=115,所以被除数=2083-115=1968.【巩固】用一个自然数去除另一个自然数,商为40,余数是16.被除数、除数、商、余数的和是933,求这2个自然数各是若干?【解析】本题为带余除法定义式的底子题型.按照题意设两个自然数辨别为x,y,可以得到,解方程组得,即这两个自然数辨别是856,21.【例 2】(2000年“祖冲之杯”小学数学邀请赛试题)三个不合的自然数的和为2001,它们辨别除以19,23,31所得的商相同,所得的余数也相同,这三个数是_______,_______,_______.【解析】设所得的商为,除数为.,,由,可求得,.所以,这三个数辨别是,,.【巩固】(2004年福州市“迎春杯”小学数学竞赛试题)一个自然数,除以11时所得到的商和余数是相等的,除以9时所得到的商是余数的3倍,这个自然数是_________.【解析】设这个自然数除以11余,除以9余,则有,即,只有,,所以这个自然数为.【例 3】(1997年我爱数学少年数学夏令营试题)有48本书分给两组小同伙,已知第二组比第一组多5人.假如把书全部分给第一组,那么每人4本,有残剩;每人5本,书不敷.假如把书全分给第二组,那么每人3本,有残剩;每人4本,书不敷.问:第二组有若干人?【解析】由,知,一组是10或11人.同理可知,知,二组是13、14或15人,因为二组比一组多5人,所以二组只能是15人,一组10人.【巩固】一个两位数除以13的商是6,除以11所得的余数是6,求这个两位数.【解析】因为一个两位数除以13的商是6,所以这个两位数必定大于,并且小于;又因为这个两位数除以11余6,而78除以11余1,这个两位数为.【模块二:三大余数定理的运用】【例 4】有一个大于1的整数,除所得的余数相同,求这个数.【解析】这个题没有奉告我们,这三个数除以这个数的余数辨别是若干,但是因为所得的余数相同,按照同余定理,我们可以得到:这个数必定能整除这三个数中的随便率性两数的差,也就是说它是随便率性两数差的合同数.,,,的约数有,所以这个数可能为.【巩固】有一个整数,除39,51,147所得的余数都是3,求这个数.【解析】(法1),,,12的约数是,因为余数为3要小于除数,这个数是;(法2)因为所得的余数相同,得到这个数必定能整除这三个数中的随便率性两数的差,也就是说它是随便率性两数差的合同数.,,,所以这个数是.【巩固】在小于1000的自然数中,辨别除以18及33所得余数相同的数有若干个?(余数可以为0)【解析】我们知道18,33的最小公倍数为[18,33]=198,所以每198个数一次.1~198之间只有1,2,3,…,17,198(余O)这18个数除以18及33所得的余数相同,而999÷198=5……9,所以共有5×18+9=99个这样的数.【巩固】(2008年仁华考题)一个三位数除以17和19都有余数,并且除以17后所得的商与余数的和等于它除以19后所得到的商与余数的和.那么这样的三位数中最大数是若干,最小数是若干?【解析】设这个三位数为,它除以17和19的商辨别为和,余数辨别为和,则.按照题意可知,所以,即,得.所所以9的倍数,是8的倍数.此时,由知.因为为三位数,最小为100,最大为999,所以,而,所以,,得到,而是9的倍数,所以最小为9,最大为54.当时,,而,所以,故此时最大为;当时,,因为,所以此时最小为.所以这样的三位数中最大的是930,最小的是154.【例 5】两位自然数与除以7都余1,并且,求.【解析】能被7整除,即能被7整除.所以只能有,那么可能为92和81,验算可得当时,知足标题要求,【巩固】黉舍新买来118个乒乓球,67个乒乓球拍和33个乒乓球网,假如将这三种物品等分给每个班级,那么这三种物品剩下的数目相同.请问黉舍共有若干个班?【解析】所求班级数是除以余数相同的数.那么可知该数应该为和的合同数,所求答案为17.【巩固】(2000年全国小学数学奥林匹克试题)在除13511,13903及14589时能剩下相同余数的最大整数是_________.【解析】因为, ,因为13511,13903,14589要被同一个数除时,余数相同,那么,它们两两之差必能被同一个数整除.,所以所求的最大整数是98.【例 6】(2003年南京市少年数学智力冬令营试题)与的和除以7的余数是________.【解析】找规律.用7除2,,,,,,…的余数辨别是2,4,1,2,4,1,2,4,1,…,2的个数是3的倍数时,用7除的余数为1;2的个数是3的倍数多1时,用7除的余数为2;2的个数是3的倍数多2时,用7除的余数为4.因为,所以除以7余4.又两个数的积除以7的余数,与两个数辨别除以7所得余数的积相同.而2003除以7余1,所以除以7余1.故与的和除以7的余数是.【巩固】(2004年南京市少年数学智力冬令营试题)在1995,1998,2000,2001,2003中,若个中几个数的和被9除余7,则将这几个数归为一组.这样的数组共有______组.【解析】1995,1998,2000,2001,2003除以9的余数依次是6,0,2,3,5.因为,,所以这样的数组共有下面4个:, ,,.【例 7】(2005年全国小学数学奥林匹克试题)有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是______.【解析】,,除数应该是290的大于17小于70的约数,只可能是29和58,,,所以除数不是58.,,,,所以除数是【巩固】(2002年全国小学数学奥林匹克试题)用自然数n去除63,91,129得到的三个余数之和为25,那么n=________【解析】n能整除.因为,所以n是258大于8的约数.显然,n不能大于63.适合前提的只有43.【巩固】号码辨别为101,126,173,193的4个运策动进行乒乓球竞赛,规定每两人竞赛的盘数是他们号码的和被3除所得的余数.那么打球盘数最多的运策动打了若干盘?【解析】本题可以表现出加法余数定理的巧用.计算101,126,173,193除以3的余数辨别为2,0,2,1.那么随便率性两名运策动的竞赛盘数只需要用2,0,2,1两两相加除以3即可.显然126运策动打5盘是最多的.【例 8】(2002年《小学生数学报》数学邀请赛试题)六名小学生辨别带着14元、17元、18元、21元、26元、37元钱,一路到新华书店采办《成语大词典》.一看定价才创造有5集团带的钱不敷,但是个中甲、乙、丙3人的钱凑在一路正好可买2本,丁、戊2人的钱凑在一路正好可买1本.这种《成语大词典》的定价是________元.【解析】六名小学生共带钱133元.133除以3余1,因为甲、乙、丙、丁、戊的钱正好能买3本,所以他们五人带的钱数是3的倍数,另一人带的钱除以3余1.易知,这个钱数只能是37元,所以每本《成语大词典》的定价是(元) .【巩固】(2000年全国小学数学奥林匹克试题)市廛里有六箱货品,辨别重15,16,18,19,20,31千克,两个顾客买走了个中的五箱.已知一个顾客买的货品重量是另一个顾客的2倍,那么市廛剩下的一箱货品重量是________千克.【解析】两个顾客买的货品重量是的倍数.,剩下的一箱货品重量除以3应该余2,只能是20千克.【例 9】求的余数.【解析】因为,,,按照同余定理(三),的余数等于的余数,而,,所以的余数为5.【巩固】(华罗庚金杯赛模拟试题)求除以17的余数.【解析】先求出乘积再求余数,计算量较大.可先辨别计算出各因数除以17的余数,再求余数之积除以17的余数.除以17的余数辨别为2,7和11,.【巩固】求的最后两位数.【解析】即推敲除以100的余数.因为,因为除以25余2,所以除以25余8,除以25余24,那么除以25余1;又因为除以4余1,则除以4余1;即能被4 和25整除,而4与25互质,所以能被100整除,即除以100余1,因为,所以除以100的余数即等于除以100的余数,而除以100余29,除以100余43,,所以除以100的余数等于除以100的余数,而除以100余63,所以除以100余63,即的最后两位数为63.【巩固】除以13所得余数是_____.【解析】我们创造222222整除13,2000÷6余2,所以答案为22÷13余9.【巩固】求除以7的余数.【解析】法一:因为 (143被7除余3),所以 (被7除所得余数与被7除所得余数相等)而,(729除以7的余数为1),所以.故除以7的余数为5.法二:计算被7除所得的余数可以用找规律的方法,规律如下表:于是余数以6为周期变更.所以.【巩固】(2007年实验中学考题)除以7的余数是若干?【解析】因为,而1001是7的倍数,所以这个乘积也是7的倍数,故除以7的余数是0;【巩固】被除所得的余数是若干?【解析】31被13除所得的余数为5,当n取1,2,3,时被13除所得余数辨别是5,12,8,1,5,12,8,1以4为周期轮回消掉,所以被13除的余数与被13除的余数相同,余12,则除以13的余数为12;30被13除所得的余数是4,当n取1,2,3,时,被13除所得的余数辨别是4,3,12,9,10,1,4,3,12,9,10,以6为周期轮回消掉,所以被13除所得的余数等于被13除所得的余数,即4,故除以13的余数为4;所以被13除所得的余数是.【巩固】(2008年奥数网杯)已知,问:除以13所得的余数是若干?【解析】2008除以13余6,10000除以13余3,留心到;;;按照这样的递推规律求出余数的变更规律:20082008除以13余,200820082008除以13余,即200820082008是13的倍数.而除以3余1,所以除以13的余数与除以13的余数相同,为6.【巩固】除以41的余数是若干?【解析】找规律:,,,,,……,所以77777是41的倍数,而,所以可以分红399段77777和1个7组成,那么它除以41的余数为7.【巩固】除以10所得的余数为若干?【解析】求成果除以10的余数即求其个位数字.从1到2005这2005个数的个位数字是10个一轮回的,而对一个数的幂方的个位数,我们知道它老是4个一轮回的,是以把所有加数的个位数按每20个(20是4和10的最小公倍数)一组,则不合组中对应的个位数字应该是一样的.首先计算的个位数字,为的个位数字,为4,因为2005个加数共可分红100组另5个数,100组的个位数字和是的个位数即0,别的5个数为、、、、,它们和的个位数字是的个位数 3,所以原式的个位数字是3,即除以10的余数是3.【例 10】 求所有的质数P,使得与也是质数.【解析】 假如,则,都是质数,所以5适合题意.假如P 不等于5,那么P 除以5的余数为1、2、3或者4,除以5的余数即等于、、或者除以5的余数,即1、4、9或者16除以5的余数,只有1和4两种情况.假如除以5的余数为1,那么除以5的余数等于除以5的余数,为0,即此时被5整除,而大于5,所以此时不是质数;假如除以5的余数为4,同理可知不是质数,所以P 不等于5,与至少有一个不是质数,所以只有知足前提.【巩固】 在图表的第二行中,正好填上这十个数,使得每一竖列凹凸两个因数的乘积除以11所得的余数都是3.【解析】 因为两个数的乘积除以11的余数,等于两个数辨别除以11的余数之积.是以原题中的可以改换为,这样凹凸两数的乘积除以11余3就随便马虎计算了.我们得到下面的成果:因数 89 90 91 92 93 94 95 96 97 98因数因数 89 90 91 92 93 94 95 96 97 98因数37195621048进而得到本题的答案是:89909192939495969798因数91958997939490989296因数【巩固】(2000年“华杯赛”试题)3个三位数乘积的算式(个中), 在校正时,创造右边的积的数字次序消掉错误,但是知道最后一位6是精确的,问原式中的是若干?【解析】因为,, 于是,从而(用代入上式考验)…(1),对进行谈论:假如,那么…(2),又的个位数字是6,所以的个位数字为4,可能为、、、,个中只有适合(2),经考验只有适合题意.假如,那么…(3),又的个位数字为2或7,则可能为、、、、,个中只有适合(3),经考验,不合题意.假如,那么…(4),则可能为、,个中没有适合(4)的.假如,那么,,,是以这时不成能适合题意.综上所述,是本题独一的解.【例 11】一个大于1的数去除290,235,200时,得余数辨别为,,,则这个自然数是若干?【解析】按照题意可知,这个自然数去除290,233,195时,得到相同的余数(都为).既然余数相同,我们可以运用余数定理,可知个中随便率性两数的差除以这个数肯定余0.那么这个自然数是的约数,又是的约数,是以就是57和38的合同数,因为57和38的合同数只有19和1,而这个数大于1,所以这个自然数是19.【巩固】一个大于10的自然数去除90、164后所得的两个余数的和等于这个自然数去除220后所得的余数,则这个自然数是若干?【解析】这个自然数去除90、164后所得的两个余数的和等于这个自然数去除后所得的余数,所以254和220除以这个自然数后所得的余数相同,是以这个自然数是的约数,又大于10,这个自然数只能是17或者是34.假如这个数是34,那么它去除90、164、220后所得的余数辨别是22、28、16,不适合标题前提;假如这个数是17,那么他去除90、164、220后所得的余数辨别是5、11、16,适合标题前提,所以这个自然数是17.【例 12】甲、乙、丙三数辨别为603,939,393.某数除甲数所得余数是除乙数所得余数的2倍,除乙数所得余数是除丙数所得余数的2倍.求等于若干?【解析】按照题意,这三个数除以都有余数,则可以用带余除法的形式将它们暗示出来:因为,,要消去余数,,,我们只能先把余数处理成相同的,再两数相减.这样我们先把第二个式子乘以2,使得被除数和余数都扩大2倍,同理,第三个式子乘以4.于是我们可以得到下面的式子:这样余数就处理成相同的.最后两两相减消去余数,意味着能被整除.,,.51的约数有1、3、17、51,个中1、3显然不知足,考验17和51可知17知足,所以等于17.【巩固】一个自然数除429、791、500所得的余数辨别是、、,求这个自然数和的值.【解析】将这些数转化成被该自然数除后余数为的数:,、,这样这些数被这个自然数除所得的余数都是,故同余.将这三个数相减,得到、,所求的自然数必定是和的合同数,而,所以这个自然数是的约数,显然1是不适合前提的,那么只能是19.经由验证,当这个自然数是时,除、、所得的余数辨别为、、,时成立,所以这个自然数是,.【模块三:余数分化运用】【例 13】著名的裴波那契数列是这样的:1、1、2、3、5、8、13、21……这串数列当中第2008个数除以3所得的余数为若干?【解析】斐波那契数列的组成规则是从第三个数起每一个数都等于它前面两个数的和,由此可以按照余数定理将裴波那契数列转换为被3除所得余数的数列:1、1、2、0、2、2、1、0、1、1、2、0……第九项和第十项中断两个是1,与第一项和第二项的值相同且地位中断,所以裴波那契数列被3除的余数每8个一个周期轮回消掉,因为2008除以8的余数为0,所以第2008项被3除所得的余数为第8项被3除所得的余数,为0.【巩固】(2009年走美初赛六年级)有一串数:1,1,2,3,5,8,……,从第三个数起,每个数都是前两个数之和,在这串数的前2009个数中,有几个是5的倍数?【解析】因为两个数的和除以5的余数等于这两个数除以5的余数之和再除以5的余数.所以这串数除以5的余数辨别为:1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,3,0,……可以创造这串余数中,每20个数为一个轮回,且一个轮回中,每5个数中第五个数是5的倍数.因为,所以前2009个数中,有401个是5的倍数.【例 14】(圣彼得堡数学奥林匹克试题)托玛想了一个正整数,并且求出了它辨别除以3、6和9的余数.现知这三余数的和是15.试求该数除以18的余数.【解析】除以3、6和9的余数辨别不超出2,5,8,所以这三个余数的和永远不超出,既然它们的和等于15,所以这三个余数辨别就是2,5,8.所以该数加1后能被3,6,9整除,而,设该数为,则,即(为非零自然数),所以它除以18的余数只能为17.【巩固】(2005年喷鼻香港圣公会小学数学奥林匹克试题)一个家庭,有父、母、兄、妹四人,他们随便率性三人的岁数之和都是3的整数倍,每人的岁数都是一个质数,四人岁数之和是100,父亲岁数最大,问:母亲是若干岁?【解析】从随便率性三人岁数之和是3的倍数,100除以3余1,就知四个岁数都是型的数,又是质数.只有7,13,19,31,37,43,就随便马虎看出:父43岁,母37岁,兄13岁,妹7岁.【例 15】(华杯赛试题)如图,在一个圆圈上有几十个孔(不到100个),小明像玩跳棋那样,从孔出发沿着逆时针标的目标,每隔几孔跳一步,欲望一圈往后能跳回到A孔.他先试着每隔2孔跳一步,成果只能跳到B孔.他又试着每隔4孔跳一步,也只能跳到B孔.最后他每隔6孔跳一步,正好跳回到A孔,你知道这个圆圈上共有若干个孔吗?【解析】设想圆圈上的孔已按下面方法编了号:A孔编号为1,然后沿逆时针标的目标按序编号为2,3,4,…,B孔的编号就是圆圈上的孔数.我们先看每隔2孔跳一步时,小明跳在哪些孔上?很随便马虎看出应在1,4,7,10,…上,也就是说,小明跳到的孔上的编号是3的倍数加1.按题意,小明最后跳到B孔,是以总孔数是3的倍数加1.同样道理,每隔4孔跳一步最后跳到B孔,就意味着总孔数是5的倍数加1;而每隔6孔跳一步最后跳回到A孔,就意味着总孔数是7的倍数.假如将孔数减1,那么得数既是3的倍数也是5的倍数,因而是15的倍数.这个15的倍数加上1 就等于孔数,设孔数为,则(为非零自然数)并且能被7整除.留心15被7除余1,所以被7除余6,15的6倍加1正好被7整除.我们还可以看出,15的其他(小于的7)倍数加1都不克不及被7整除,罢了经大于100.7以上的倍数都不必推敲,是以,总孔数只能是.【巩固】(1997年全国小学数学奥林匹克试题)将依次写到第1997个数字,组成一个1997位数,那么此数除以。
数学奥数通用版上册五年级带余除法课件完整版
简单应用(2) 利用余数解决排序问题
• 例1、如上图,含有红蓝两种颜色的一串珠 子按规律穿在一条细丝线上,你能告诉大 家第2011个珠子的颜色吗?
• 分析:所穿珠子的规律 • 解:这串珠子的规律是每九个为一个循环,
• 被除数、除数、商、余数之间的关系
被除数=除数×商+余数
简单应用(1) 被除数=除数×商+余数的应用
• 例1、一个数除以26,商为15,余数是12,求这个数
• 解:∵被除数=除数×商+余数
∴被除数=26×15+12= 390+12=402
• 例2、127除以一个数,商和余数分别是6和7,求这个 数
补充作业
• 1、某年的十月份有5个星期二,4个星期三, 这年的十月一日是星期几?
• 解:十月份有31天,31÷7=4……3,由题 意知,这一月的31日是星期二,有五天的 是星期日、星期一,星期二,所以这一年 的十月一日是星期日。
• 2、某年的二月份有5个星期一,4个星期二, 二月一是星期几?
• 分析:如果是平年,二月份有28天,28÷7 =4。都是4天,由题意知,这一年是闰年, 有29天,29÷7=4……1,因此,二月一是 星期一。
15÷3=5 、 15÷5=3、 15=3×5 • 即 被除数÷除数=商 被除数÷商=除数 • 被除数=除数×商
带余除法的意义
• 做除法16÷3你发现它与15÷3有什么不同:
16÷3=5……1 即16=3×5+1 ,此时被除
数除以除数出现了余数,我们把这种除法
叫做
带。余除法
五年级奥数知识讲义-余数问题(一)
在整数的除法中,只有能整除与不能整除两种情况,当不能整除时,就产生余数,所以余数问题在小学数学中非常重要。
余数基本关系式:被除数÷除数=商……余数(0≤余数<除数)余数基本恒等式:被除数=除数×商+余数知识梳理1. 一般地,如果是整数,是整数(不为0),若有,也就是,,我们称上面的除法算式为一个带余除法算式。
2.与的和除以c的余数,等于a、b分别除以c的余数之和,当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
3. a与b的乘积除以c的余数,等于a、b分别除以c的余数的积,当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
例1一串数1、2、4、7、11、16、22、29、……这串数的组成规律为第2个数比第1个数多1;第3个数比第2个数多2;第4个数比第3个数多3;依此类推,那么这串数左起第1992个数除以5的余数是_____。
分析与解:设这串数为a1、a2、a3、…、a1992、…,依题意知a=11a=1+12a=1+1+23a=1+1+2+34a=1+1+2+3+45……a=1+1+2+3+…+1991=1+996×19911992因为996÷5=199……1,1991÷5=398……1,所以996×1991的积除以5余数为1,1+996×1991除以5的余数是2。
因此,这串数左起第1992个数除以5的余数是2。
例2除以13所得的余数是_____。
分析与解:因为222222=2×111111=2×111×1001=2×111×7×11×13 所以222222能被13整除。
又因为2000=6×333+2,=,22÷13=1……9,所以要求的余数是9。
例3有一个自然数,用它分别去除63、90、130都有余数,三个余数的和是25。
小学五年奥数-带余除法
带余除法【知能大展台】如果a是一个整数,b是一个自然数,那么一定有两个整数q和r,使得:a=b×q+r(0≤r﹤b)当r=0时,则称 a能被b整除当r≠0时,r叫做a除以b的余数,q叫做a除以b的不完全商.如果a、b两个整数除以自然数m后所得的余数相同,就称整数a、b对于除数m来说就是同余的。
如果两个整数a、b对于除数m(m为自然数)来说就是同余的,那么a与b 的差一定能被m整除。
这是同余的一条重要性质。
根据余数相同,可以对整数进行分类。
例如一个整数a被3除时,余数只能有0、1、2这三种可能,因此所有整数可以分为3k,3k+1,3k+2(k为整数)这三种类型。
【试金石】例1 两个数相除,商是22,余数是8,被除数、除数、商与余数的和是866,求被除数和除数。
【分析】“两个数相除,商是22,余数是8”,可以理解为“被除数比除数的22倍还多8”。
如果把除数看做1倍数,那么本题可转化成一道和倍应用题。
【解答】除数为:(866-22-8×2)÷(22+1)=36被除数为:36×22+8=800答:被除数是800,除数是36。
【智力加油站】两个数相除,商是40,余数是16,被除数与除数的和是877,求除数。
【试金石】例2 一个整数分别除442、297和210,得到相同的余数,这个整数是多少?【分析】根据已知条件可知,本题是要求除数的,并且442、297和210这三个数对于除数来说是同余的。
根据同余的性质,这三个数中任意两个数的差,都应是除数的倍数,即除数是题中三个数中任意两个数的差的公因数。
【解答】442-297=145297-210=87(145,87)=29所求除数应是29的约数,29=1×29,但1不符合题意。
所以,29是所求的整数。
答:这个整数是29。
【智力加油站】【针对性训练】一个整数分别除300、254和185,得到相同的余数,这个整数是多少?【试金石】例3 在大于1999的自然数中,被66除后,商与余数相等的数共有多少个?这些数的总和是多少?【分析】在带余除法中,由于余数<除数,故本题中的商与余数最大不超过65,又由于被除数>1999,故商数>1999÷66,这就限定了商的余数,从而本题可解。
五年级奥数:余数问题
五年级奥数:余数问题在整数的除法中,只有能整除与不能整除两种情况。
当不能整除时,就产生余数,所以余数问题在小学数学中非常重要。
余数有如下一些重要性质(a,b,c均为自然数):(1)余数小于除数。
(2)被除数=除数×商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数。
(3)如果a,b除以c的余数相同,那么a与b的差能被c整除。
例如,17与11除以3的余数都是2,所以17-11能被3整除。
(4)a与b的和除以c的余数,等于a,b分别除以c的余数之和(或这个和除以c的余数)。
例如,23,16除以5的余数分别是3和1,所以(23+16)除以5的余数等于3+1=4。
注意:当余数之和大于除数时,所求余数等于余数之和再除以c的余数。
例如,23,19除以5的余数分别是3和4,所以(23+19)除以5的余数等于(3+4)除以5的余数。
(5)a与b的乘积除以c的余数,等于a,b分别除以c的余数之积(或这个积除以c的余数)。
例如,23,16除以5的余数分别是3和1,所以(23×16)除以5的余数等于3×1=3。
注意:当余数之积大于除数时,所求余数等于余数之积再除以c的余数。
例如,23,19除以5的余数分别是3和4,所以(23×19)除以5的余数等于(3×4)除以5的余数。
性质(4)(5)都可以推广到多个自然数的情形。
例题 15122除以一个两位数得到的余数是66,求这个两位数。
分析与解:由性质(2)知,除数×商=被除数-余数。
5122-66=5056,5056应是除数的整数倍。
将5056分解质因数,得到5056=26×79。
由性质(1)知,除数应大于66,再由除数是两位数,得到除数在67~99之间,符合题意的5056的约数只有79,所以这个两位数是79。
例题 2被除数、除数、商与余数之和是2143,已知商是33,余数是52,求被除数和除数。
小学奥数 数论 余数问题 带余除法(一).题库版
1. 能够根据除法性质调整余数进行解题2.能够利用余数性质进行相应估算3. 学会多位数的除法计算4. 根据简单操作进行找规律计算带余除法的定义及性质 1、定义:一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b =q ……r ,也就是a =b ×q +r ,0≤r <b ;我们称上面的除法算式为一个带余除法算式.这里:(1)当0r =时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商(2)当0r ≠时:我们称a 不可以被b 整除,q称为a 除以b 的商或不完全商一个完美的带余除法讲解模型:如图这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数.这个图能够让学生清晰的明白带余除法算式中4个量的关系.并且可以看出余数一定要比除数小.2、余数的性质⑴ 被除数=除数⨯商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数;⑵ 余数小于除数.知识点拨教学目标5-5-1.带余除法(一)3、解题关键理解余数性质时,要与整除性联系起来,从被除数中减掉余数,那么所得到的差就能够被除数整除了.在一些题目中因为余数的存在,不便于我们计算,去掉余数,回到我们比较熟悉的整除性问题,那么问题就会变得简单了.除法公式的应用【例 1】 某数被13除,商是9,余数是8,则某数等于 .【考点】除法公式的应用 【难度】1星 【题型】填空【关键词】2009年,希望杯,第七届,四年级,复赛,第2题,5分【解析】 125【答案】125【例 2】 一个三位数除以36,得余数8,这样的三位数中,最大的是__________.【考点】除法公式的应用 【难度】1星 【题型】填空【关键词】2008年,希望杯,第六届,四年级,复赛,第3题【解析】 因为最大的三位数为999,999362727÷=,所以满足题意的三位数最大为:36278980⨯+=【答案】980【巩固】 计算口÷△,结果是:商为10,余数为▲.如果▲的值是6,那么△的最小值是_____.【考点】除法公式的应用 【难度】1星 【题型】填空【关键词】2005年,希望杯,第三届,五年级,复赛,第4题,6分【解析】 根据带余除法的性质,余数必须小于除数,则有 △的最小值为7.【答案】7【例 3】 除法算式÷□□=208中,被除数最小等于 .【考点】除法公式的应用 【难度】1星 【题型】填空【关键词】2007年,第5届,希望杯,4年级,初赛,4题【解析】 本题的商和余数已经知道了,若想被除数最小,则需要除数最小即可,除数最小是819+=,所以本题答案为:20×(8+1)+8=188.【答案】188【例 4】 71427和19的积被7除,余数是几?【考点】除法公式的应用 【难度】1星 【题型】填空【关键词】第一届,华杯赛,初赛,第14题【解析】 71427被7除,余数是6,19被7除,余数是5,所以71427×19被7除,余数就是6×5被7除所得的余数2.【答案】2例题精讲【例 5】 1013除以一个两位数,余数是12.求出符合条件的所有的两位数.【考点】除法公式的应用 【难度】1星 【题型】解答【解析】 1013121001-=,100171113=⨯⨯,那么符合条件的所有的两位数有11,13,77,91,因为“余数小于除数”,所以舍去11,答案只有13,77,91.【答案】13,77,91共三个【巩固】 一个两位数除310,余数是37,求这样的两位数.【考点】除法公式的应用 【难度】1星 【题型】解答【解析】 本题为余数问题的基础题型,需要学生明白一个重要知识点,就是把余数问题---即“不整除问题”转化为整除问题.方法为用被除数减去余数,即得到一个除数的倍数;或者是用被除数加上一个“除数与余数的差”,也可以得到一个除数的倍数.本题中310-37=273,说明273是所求余数的倍数,而273=3×7×13,所求的两位数约数还要满足比37大,符合条件的有39,91.【答案】39或者97【巩固】 在下面的空格中填上适当的数.3124774002【考点】除法公式的应用 【难度】2星 【题型】填空【关键词】2004年,第2届,走美杯,3年级,决赛,第10题,12分【解析】 本题的被除数、商和余数已经给出,根据除法的计算公式:被除数÷除数=商余数,逆推计算得到:除数=(20047—13)÷742=27.【答案】27【例 6】 一个两位奇数除1477,余数是49,那么,这个两位奇数是多少?【考点】除法公式的应用 【难度】1星 【题型】解答【解析】 这个两位奇数能被1477-49=1428整除,且必须大于49,1428=2×2×3×7×17,所以这样的两位奇数只有51.【答案】51【例 7】 大于35的所有数中,有多少个数除以7的余数和商相等?【考点】除法公式的应用 【难度】2星 【题型】解答【解析】 除以7的余数只能是0~6,所以商只能是0~6,满足大于7的数只有商和余数都为5、6,所以只能是40、48.【答案】40、48【例 8】 已知2008被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个?【考点】除法公式的应用 【难度】2星 【题型】解答【解析】 本题为一道余数与约数个数计算公式的小综合性题目.由题意所求的自然数一定是2008-10即1998的约数,同时还要满足大于10这个条件.这样题目就转化为1998有多少个大于10的约数,319982337=⨯⨯,共有(1+1)×(3+1)×(1+1)=16个约数,其中1,2,3,6,9是比10小的约数,所以符合题目条件的自然数共有11个.【答案】11【巩固】 写出全部除109后余数为4的两位数.【考点】除法公式的应用 【难度】2星 【题型】解答【关键词】美国长岛,小学数学竞赛,第五届【解析】 1094105357-==⨯⨯.因此,这样的两位数是:15;35;21.【答案】两位数是:15;35;21【例 9】 甲、乙两数的和是1088,甲数除以乙数商11余32,求甲、乙两数.【考点】除法公式的应用 【难度】2星 【题型】解答【关键词】清华附中,小升初分班考试【解析】 (法1)因为 甲=乙1132⨯+,所以 甲+乙=乙1132⨯++乙=乙12321088⨯+=;则乙(108832)1288 =-÷=,甲1088=-乙1000=.(法2)将余数先去掉变成整除性问题,利用倍数关系来做:从1088中减掉32以后,1056就应当是乙数的(111)+倍,所以得到乙数10561288=÷=,甲数1088881000=-=.【答案】乙数10561288=÷=,甲数1088881000=-=【例 10】 用某自然数a 去除1992,得到商是46,余数是r ,求a 和r .【考点】除法公式的应用 【难度】2星 【题型】解答【关键词】第五届,小数报,决赛【解析】 因为1992是a 的46倍还多r ,得到19924643......14÷=,得1992464314=⨯+,所以43a =,14r =.【答案】43a =,14r =【例 11】 当1991和1769除以某个自然数n ,余数分别为2和1.那么,n 最小是多少?【考点】除法公式的应用 【难度】2星 【题型】解答【解析】 如果用1990和1769去除这个自然数n 时,余数是1.而1901769211317-==⨯,我们不妨取13n =,再验证一下:1991131532÷=,1769131361÷=,所以n 最小为13.【答案】13【例 12】 有三个自然数a ,b ,c ,已知b 除以a ,得商3余3;c 除以a ,得商9余11.则c 除以b ,得到的余数是 .【考点】除法公式的应用 【难度】2星 【题型】填空【关键词】2010年,第8届,希望杯,5年级,初赛,第4题,6分【解析】 33b a =+911c a =+(99)232c a b =++=+所以应该余2.【答案】2【例 13】 有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是多少?【考点】除法公式的应用 【难度】3星 【题型】解答【关键词】2003年,小学数学奥林匹克【解析】 被除数+除数+商+余数=被除数+除数+17+13=2113,所以被除数+除数=2083,由于被除数是除数的17倍还多13,则由“和倍问题”可得:除数=(2083-13)÷(17+1)=115,所以被除数=2083-115=1968.【答案】1968【巩固】 两数相除,商4余8,被除数、除数、商数、余数四数之和等于415,则被除数是_______.【考点】除法公式的应用 【难度】3星 【题型】填空【关键词】2002年,小学数学奥林匹克【解析】 因为被除数减去8后是除数的4倍,所以根据和倍问题可知,除数为4154884179---÷+=()(),所以,被除数为7948324⨯+=.【答案】324【巩固】 用一个自然数去除另一个自然数,商为40,余数是16.被除数、除数、商、余数的和是933,求这2个自然数各是多少?【考点】除法公式的应用 【难度】3星 【题型】解答【解析】 本题为带余除法定义式的基本题型.根据题意设两个自然数分别为x ,y ,可以得到40164016933x y x y =+⎧⎨+++=⎩,解方程组得85621x y =⎧⎨=⎩,即这两个自然数分别是856,21. 【答案】两个自然数分别是856,21【例 14】 有一个三位数,其中个位上的数是百位上的数的3倍.且这个三位数除以5余4,除以11余3.这个三位数是_【考点】除法公式的应用 【难度】3星 【题型】填空【解析】 首先个位数不是4就是9,又因为它是百位的3倍所以一定是9,那么百位就是3,又因为它被11除余3,因此十位是9,答案是399【答案】399【例 15】 一个自然数,除以11时所得到的商和余数是相等的,除以9时所得到的商是余数的3倍,这个自然数是_________.【考点】除法公式的应用 【难度】3星 【题型】填空【关键词】2004年,福州市,迎春杯【解析】设这个自然数除以11余a (011)a ≤<,除以9余b (09)b ≤<,则有1193a a b b +=⨯+,即37a b =,只有7a =,3b =,所以这个自然数为12784⨯=.【答案】84【例 16】 盒子里放有编号1到10的十个球,小红先后三次从盒子中共取出九个球,如果从第二次起,每次取出的球的编号的和都比上一次的两倍还多一,那么剩下的球的编号为____.【考点】除法公式的应用 【难度】3星 【题型】填空【关键词】第五届,走美杯,四年级,初赛,第11题【解析】 令第1次取的编号为a ,第二次取的编号为2a+1,第三次取的编号为:2(2a+1)+1=4a+3;还剩下的编号为:55-7a-4=51-7a ,当a 为6时,余下的是9;当a 为7时,余下的是2.【答案】9或者2【例 17】 10个自然数,和为100,分别除以3.若用去尾法,10个商的和为30;若用四舍五入法,l0个商的和为34.10个数中被3除余l 的有________个.【考点】除法公式的应用 【难度】3星 【题型】填空【关键词】2008年,第六届,走美杯,五年级,初赛,第13题【解析】 由题意,“用去尾法,10个商的和为30;用四舍五入法,l0个商的和为34”可知,10个数中除以3余2的数有34-30=4(个),又知道10个自然数的和为100,设除以3余1的数有x 个,那么根据用去尾法后十个商的和与10个自然数的和,可得关系式:2410030333x ⨯+=-,解得,2x =. 【答案】2【例 18】 3782除以某个整数后所得的商恰好是余数的21倍,那么除数最小可能是 .【考点】除法公式的应用 【难度】3星 【题型】填空【关键词】2008年,学而思杯,4年级,第2题【解析】 设除数为a ,商为b ,余数为c ,则3782a b c ÷=,且21b c =.可以将除式转化为213782a c c ⨯+=,所以2113782c a +=(),所以c 和211a +()是3782的约数,378223161=⨯⨯,在3782的约数中只有31611891⨯=被21除所得的余数为1,所以2111891a +=,90a =.【答案】90【例 19】 在大于2009的自然数中,被57除后,商与余数相等的数共有______个.【考点】除法公式的应用 【难度】4星 【题型】填空【关键词】2009年,第14届,华杯赛,初赛,第10题【解析】 根据题意,设这样的数除以57所得的商和余数都为a (a ﹤57),则这个数为57×a +a =58a .所以58a﹥2009,得到a ﹥2009÷58=373458,由于a 为整数,所以a 至少为35.又由于a ﹤57,所以a 最大为56,则a可以为35,36,37,…,56.由于每一个a的值就对应一个满足条件的数,所以所求的满足条件的数共有56-35+1=22个.【答案】22【例 20】用1、9、8、8这四个数字能排成几个被11除余8的四位数?【考点】除法公式的应用【难度】5星【题型】填空【关键词】第二届,华杯赛,初赛,第14题【解析】用1、9、8、8可排成12个四位数,即1988,1898,1889,9188,9818,9881,8198,8189,8918,8981,8819,8891它们减去8变为1980,1890,1881,9180,9810,9873,8190,8181,8910,8973,8811,8883其中被11整除的仅有1980,1881,8910,8811,即用1、9、8、8可排成4个被1除余8的四位数,即1988,1889,8918,8819.【又解】什么样的数能被11整除呢?一个判定法则是:比较奇位数字之和与偶位数字之和,如果它们之差能被11除尽,那么所给的数就能被11整除,否则就不能够.现在要求被11除余8,我们可以这样考虑:这样的数加上3后,就能被11整除了.所以我们得到“一个数被11除余8”的判定法则:将偶位数字相加得一个和数,再将奇位数字相加再加上3,得另一个和数,如果这两个和数之差能被11除尽,那么这个数是被11除余8的数;否则就不是.要把1、9、8、8排成一个被11除余8的四位数,可以把这4个数分成两组,每组2个数字.其中一组作为千位和十位数,它们的和记作A;另外一组作为百位和个位数,它们之和加上3记作B.我们要适当分组,使得能被11整除.现在只有下面4种分组法:经过验证,第(1)种分组法满足前面的要求:A=1+8,B=9+8+3=20,B-A=11能被11除尽.但其余三种分组都不满足要求.根据判定法则还可以知道,如果一个数被11除余8,那么在奇位的任意两个数字互换,或者在偶位的任意两个数字互换,得到的新数被11除也余8.于是,上面第(1)分组中,1和8中任一个可以作为千位数,9和8中任一个可以作为百位数.这样共有4种可能的排法:1988,1889,8918,8819.答:能排成4个被11除余8的数【答案】4。
小学五年级奥数(上)第四讲带余除法共42页文档
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
60、人民的幸福是至高无个的法。— —西塞 罗
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
Hale Waihona Puke xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
五年级奥数基础教程-余数问题小学
余数问题在整数的除法中,只有能整除与不能整除两种情况。
当不能整除时,就产生余数,所以余数问题在小学数学中非常重要。
余数有如下一些重要性质(a,b,c均为自然数):(1)余数小于除数。
(2)被除数=除数×商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数。
(3)如果a,b除以c的余数相同,那么a与b的差能被c整除。
例如,17与11除以3的余数都是2,所以17-11能被3整除。
(4)a与b的和除以c的余数,等于a,b分别除以c的余数之和(或这个和除以c的余数)。
例如,23,16除以5的余数分别是3和1,所以(23+16)除以5的余数等于3+1=4。
注意:当余数之和大于除数时,所求余数等于余数之和再除以c的余数。
例如,23,19除以5的余数分别是3和4,所以(23+19)除以5的余数等于(3+4)除以5的余数。
(5)a与b的乘积除以c的余数,等于a,b分别除以c的余数之积(或这个积除以c的余数)。
例如,23,16除以5的余数分别是3和1,所以(23×16)除以5的余数等于3×1=3。
注意:当余数之积大于除数时,所求余数等于余数之积再除以c的余数。
例如,23,19除以5的余数分别是3和4,所以(23×19)除以5的余数等于(3×4)除以5的余数。
性质(4)(5)都可以推广到多个自然数的情形。
例1 5122除以一个两位数得到的余数是66,求这个两位数。
分析与解:由性质(2)知,除数×商=被除数-余数。
5122-66=5056,5056应是除数的整数倍。
将5056分解质因数,得到5056=26×79。
由性质(1)知,除数应大于66,再由除数是两位数,得到除数在67~99之间,符合题意的5056的约数只有79,所以这个两位数是79。
例2 被除数、除数、商与余数之和是2143,已知商是33,余数是52,求被除数和除数。
五年级奥数-第十讲.数论之余数问题.教师版
第十讲:数论之余数问题余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。
许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。
知识点拨:一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。
这里:r=时:我们称a可以被b整除,q称为a除以b的商或完全商(1)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商(2)当0一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
第五讲 余数问题-(带完整答案)五年级奥数
第五讲余数问题内容概述从此讲开始,我们来进一步研究数论的有关知识。
小学奥数中的数论问题,涉及到整数的整除性、余数问题、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。
在整数的除法中,只有能整除和不能整除两种情况。
当不能整除时,就产生余数,余数问题在小学数学中非常重要。
一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r(也就是a=b×q+r), 0≤r<b;当r=0时,我们称a能被b整除;当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的商余数问题和整除性问题是有密切关系的,因为只要我们去掉余数那么就能和整除性问题联系在一起了。
余数有如下一些重要性质,我们将通过例题给大家讲解。
例题讲析基本性质1:被除数=除数×商(当余数大于0时也可称为不完全商)+余数除数=(被除数-余数)÷商;商=(被除数-余数)÷除数。
余数小于除数。
理解这条性质时,要与整除性联系起来,从被除数中减掉余数,那么所得到的差就能够被除数整除了。
在一些题目中因为余数的存在,不便于我们计算,去掉余数,回到我们比较熟悉的整除性问题,那么问题就会变得简单了。
【例1】(清华附中小升初分班考试)甲、乙两数的和是1088,甲数除以乙数商11余32,求甲、乙两数。
分析:法1:因为甲=乙×11+32,所以甲+乙=乙×11+32+乙=乙×12+32=1088;则乙=(1088-32)÷12=88,甲=1088-乙=1000。
法2:将余数先去掉变成整除性问题,利用倍数关系来做:从1088中减掉32以后,1056就应当是乙数的(11+1)倍,所以得到:乙数=1056÷12=88 ,甲数=1088-88=1000 。
【例2】(第十三届迎春杯决赛)已知一个两位数除1477,余数是49.那么,满足那样条件的所有两位数是 .分析:1477-49=1428是这两位数的倍数,又1428=2×2×3×7×17=51×28=68×21=84×17,因此所求的两位数51或68或84.【例3】(第十届迎春杯决赛)一个自然数除以8得到的商加上这个数除以9的余数,其和是13.求所有满足条件的自然数.分析:设这个数为n,除以9所得余数r≤8,所以除以8得到的商q≥13—8=5,又显然q≤13.q=5时,r=8,n=5×8+4=44;q=6时,r=7,n=6×8+4=52;q=7时,r=6,n=7×8+4=60;q=8时,r=5,n=8×8+4=68;q=9时,r=4,n=9×8+4=76;q=10时,r=3,n=10×8+4=84;q=11时,r=2,n=11×8+4=92;q=12时,r=1,n=12×8+4=100;q=13时,r=0,n=13×8+4=108.满足条件的自然数共有9个:108,100,92,84,76,68,60,52,44.【例4】(北京八中小升初入学测试题)有一个整数,用它去除70,110,160得到的三个余数之和是50。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带余除法的定义及性质
1、定义:一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b =q ……r ,也就是a =b ×q +r , 0≤r <b ;我们称上面的除法算式为一个带余除法算式。
这里:
(1)当0r =时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商
(2)当0r ≠时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商
一个完美的带余除法讲解模型:如图
这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
2、余数的性质
⑴ 被除数=除数⨯商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数; ⑵ 余数小于除数.
3、解题关键
理解余数性质时,要与整除性联系起来,从被除数中减掉余数,那么所得到的差就能够被除数整除了.在一些题目中因为余数的存在,不便于我们计算,去掉余数,回到我们比较熟悉的整除性问题,那么问题就会变得简单了.
例题精讲
知识框架
带余除法
【例 1】某数被13除,商是9,余数是8,则某数等于。
【巩固】一个三位数除以36,得余数8,这样的三位数中,最大的是__________。
【例 2】除法算式 L L
□□=208中,被除数最小等于。
【巩固】计算口÷△,结果是:商为10,余数为▲。
如果▲的值是6,那么△的最小值是_____。
【例 3】71427和19的积被7除,余数是几?
【巩固】在下面的空格中填上适当的数。
31247
7
4002
【例 4】 1013除以一个两位数,余数是12.求出符合条件的所有的两位数.
【巩固】 一个两位数除310,余数是37,求这样的两位数。
【例 5】 一个两位奇数除1477,余数是49,那么,这个两位奇数是多少?
【巩固】 大于35的所有数中,有多少个数除以7的余数和商相等?
【例 6】 已知2008被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个?
【巩固】 写出全部除109后余数为4的两位数.
【例 7】甲、乙两数的和是1088,甲数除以乙数商11余32,求甲、乙两数.
【巩固】用某自然数a去除1992,得到商是46,余数是r,求a和r.
【例 1】当1991和1769除以某个自然数n,余数分别为2和1.那么,n最小是多少?
【巩固】有三个自然数a,b,c,已知b除以a,得商3余3;c除以a,得商9余11。
则c除以b,得到的余数是。
【例 8】有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是多少?
【巩固】两数相除,商4余8,被除数、除数、商数、余数四数之和等于415,则被除数是_______.
【例 2】 2000"2"
2222L 14243个除以13所得余数是_____.
【巩固】 19956
6666667 L 14243
个的余数是多少?
【随练1】 有一个三位数,其中个位上的数是百位上的数的3倍。
且这个三位数除以5余4,除以11余3。
这个三位数是_
【随练2】 一个自然数,除以11时所得到的商和余数是相等的,除以9时所得到的商是余数的3倍,这个
自然数是_________.
【随练3】 盒子里放有编号1到10的十个球,小红先后三次从盒子中共取出九个球,如果从第二次起,每
次取出的球的编号的和都比上一次的两倍还多一,那么剩下的球的编号为____。
课堂检测
家庭作业
【作业1】用一个自然数去除另一个自然数,商为40,余数是16.被除数、除数、商、余数的和是933,求这2个自然数各是多少?
【作业2】10个自然数,和为100,分别除以3。
若用去尾法,10个商的和为30;若用四舍五入法,l0个商的和为34.10个数中被3除余l的有________个.
【作业3】托玛想了一个正整数,并且求出了它分别除以3、6和9的余数.现知这三余数的和是15.试求该数除以18的余数.
【作业4】3782除以某个整数后所得的商恰好是余数的21倍,那么除数最小可能是。
【作业5】在大于2009的自然数中,被57除后,商与余数相等的数共有______个.
教学反馈
学生对本次课的评价
○特别满意○满意○一般
家长意见及建议
家长签字:。