不等式的证明分析法与综合法习题
不等式的证明
ab 证明:要证| | <1 1 ab 只需证|a+b|<|1+ab|
ab 例3:|a|<1,|b|<1,求证:| 1 ab |<1
只需证|a+b|2<|1+ab|2 展开得 a2+2ab+b2<1+2ab+a2b2 只需证 a2+b2<1+a2b2 只需证 a2+b2-1-a2b2 <0 即证(a2-1)(1-b2)<0 ∵|a|<1,|b|<1 ∴a2-1<0,1-b2>0 (a2-1)(1-b2)<0
hoq037egk
不宣的行规。为什么?原因只有一个,甲醛太便宜了!”„„„2天灾突变 ---突遇“非典”|正当花开人充满信心,准备再展往日辉 煌的时候,一场突如其来的飞来横祸将花开啤酒又一次抛入了险境。还记得那场可怕的、横扫全国的传染病——非典型肺炎(下面简 称“非典”)?地球人肯定都清楚地记得,谁也无法想像它会把全社会搅动成如此惨烈的、人人惊慌的模样!几年前爆炒兰花时,100 元钱的铃兰能“呼呼”地窜到40多万,人心都疯了。这一次,人确实都害怕了,没有那一次比这个更害怕的!仿佛地球马上就要毁灭 了,好像世界到了末日了似的,马启明刻骨铭心地记得那一场场景象。这是天灾!不是人祸。2003年初,当电视新闻首次报道,我国 广东省首例确诊的传染性疾病——“非典”时,马启明只是知道世界上又添了一种传染病叫“非典”,当个新闻听一下也就拉倒,心 想广东离江苏省海涛州绿溪镇太遥远了,“非典”不一定就能传到江苏,并没有在意,“非典”也只把它作为闲聊时的一个话题一带 而过了。与此同时花开啤酒单位员工们都忙着加班加点地生产啤酒,梦想着月底的工资和奖金又要拿到手,该如何花销?马启明从新 闻上看到,4月3日至4月8日世界卫生组织官员到达广东佛山考察,举行新闻发布会,到广州市第八人民医院考察,向外国驻广州领事 馆总领事们通报广东情况、世界卫生组织官员发布“取消到广东旅游不明智”等等一系列非正常的行动。紧接着在广东考察工作的** 总书记4月14日上午来到广东省疾病预防控制中心慰问,深入了解防治 “非典”型肺炎的情况,特别指出:把防治“非典”型肺炎 的工作,作为关系改革发展稳定大局、关系人民群众身体健康和生命安全的一件大事,切实抓紧抓好,把防治“非典”提到政治的高 度来看。政治的高度,马启明觉得政治的高度就是要多大就有多大,一切都要给它让路,事态真的有这么严重吗?很快电视、报纸上 有关“非典”的报道越来越多,马启明感到事情越来越不对劲。 “隔离”、“消毒”、“死亡”成了每个人关注的重点,人人出门带 着口罩,公共娱乐场所关闭,特别是江苏也发现“非典”病人时,特别是啤酒销量锐减,他当初的预感被现实残酷地撕成了碎片。4月 30日单位特地召开了一次“非典”专题会,会上通报的情况,把马启明当时就给吓傻了,吓呆了,当时的情景到现在马启明仍历历在目。 为保持空气畅通,会议室的门窗都大开着。从窗口望出去,天气阴沉沉的,风“呜呜呜”地像魔鬼一样疯狂抽打着室外的行道树,路 上几乎看不到来往的车辆和行人。马启明的心里莫明地恐惧、烦燥、紧张起来,他的心脏似乎要从胸腔里蹦跳出来了一样。会议由赵 树春主持,他神情严肃地讲道:“各位,这场突
2.2.1综合法和分析法
ab成立
思考:上述两种证法有什么异同?
相同
不同
都是直接证明 证法1 从已知条件出发,以已知的定义、公理、 定理为依据,逐步下推,直到推出要证明的结论 为止 综合法 证法2 从问题的结论出发,追溯导致结论成立的 条件,逐步上溯,直到使结论成立的条件和已知 条件吻合为止 分析法
综合法和分析法的推证过程如下: 综合法
此时,如果能把角和边统一起来,那么就可以进一 步寻找角和边之间的关系,进而判断三角形的形状,余 弦定理正好满足要求.于是,可以用余弦定理进行证明.
b = ac.
2
证明: 由A,B,C成等差数列,有
2B=A+C. ①
因为A,B,C为△ABC的内角,所以 A+B+C=180°. ②
π 由① ① ②,得 B = . 3
2
③
由a,b,c成等比数列,有
b = ac.
④
注:解决数学问题时,学会语言转换;还要细致,找出隐含条件。
文字语言 图形语言 符号语言
由余弦定理及③,可得
b = a + c - 2accosB = a + c - ac.
再由④,得 即 因此 从而
2
2
2
2
2
a + c - ac = ac, 2 (a - c) = 0.
高中数学选修1-1
第三章 导数及其应用
引入
我们知道事物分成正面和方面。证明题目的方法很多, 不管有多少,从正面看从大宏观与大高度看只分成两类。
2.2.1综合法和分析法(一) ——综合法
练习.已知a>0,b>0,求证a(b2+c2)+b(c2+a2)≥4abc 分析: 首先,分析待证不等式的特点:不 等式的右端是3个数a,b,c乘积的4倍, 左端为两项之和,其中每一项都是一个 数与另两个数的平方和之积.据此,只要 把两个数的平方和转化为这两个数的积 的形式,就能使不等式左、右两端具有 相同的形式. 其次,寻找转化的依据及证明中要用的 其他知识:应用不等式x2+y2≥2xy就能实 现转化,不等式的基本性质是证明的依 据.
高中数学不等式证明的常用方法经典例题
关于不等式证明的常用方法重难点归纳(1)比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述 如果作差以后的式子可以整理为关于某一个变量的二次式,则考虑用判别式法证(2)综合法是由因导果,而分析法是执果索因2 不等式证明还有一些常用的方法 换元法、放缩法、反证法、函数单调性法、判别式法、数形结合法等 换元法主要有三角代换,均值代换两种,在应用换元法时,要注意代换的等价性 放缩性是不等式证明中最重要的变形方法之一.有些不等式,从正面证如果不易说清楚,可以考虑反证法 凡是含有“至少”“惟一”或含有其他否定词的命题,适宜用反证法典型题例例1证明不等式n n2131211<++++Λ(n ∈N *)知识依托 本题是一个与自然数n 有关的命题,首先想到应用数学归纳法,另外还涉及不等式证明中的放缩法、构造法等例2求使y x +≤a y x +(x >0,y >0)恒成立的a 的最小值知识依托 该题实质是给定条件求最值的题目,所求a 的最值蕴含于恒成立的不等式中,因此需利用不等式的有关性质把a 呈现出来,等价转化的思想是解决题目的突破口,然后再利用函数思想和重要不等式等求得最值例3已知a >0,b >0,且a +b =1 求证 (a +a 1)(b +b 1)425证法一 (分析综合法) 证法二 (均值代换法) 证法三 (比较法) 证法四 (综合法) 证法五 (三角代换法)巩固练习1 已知x 、y 是正变数,a 、b 是正常数,且ybx a +=1,x +y 的最小值为 _ 2 设正数a 、b 、c 、d 满足 a +d =b +c ,且|a -d |<|b -c |,则ad 与bc 的大小关系是_________3 若m <n ,p <q ,且(p -m )(p -n )<0,(q -m )(q -n )<0,则m 、n 、p 、q 的大小顺序是__________4 已知a ,b ,c 为正实数,a +b +c =1 求证(1)a 2+b 2+c 2≥31(2)232323+++++c b a ≤6 5 已知x ,y ,z ∈R ,且x +y +z =1,x 2+y 2+z 2=21,证明 x ,y ,z ∈[0,32]6 证明下列不等式(1)若x ,y ,z ∈R ,a ,b ,c ∈R +,则c b a y b a c x a c b +++++22z 2≥2(xy +yz +zx ) (2)若x ,y ,z ∈R +,且x +y +z =xyz ,则z y x y x z x z y +++++≥2(zy x 111++) 7 已知i ,m 、n 是正整数,且1<i ≤m <n(1)证明 n i A i m <m i A i n (2)证明 (1+m )n >(1+n )m8 若a >0,b >0,a 3+b 3=2,求证 a +b ≤2,ab ≤1不等式知识的综合应用典型题例例1用一块钢锭烧铸一个厚度均匀,且表面积为2平方米的正四棱锥形有盖容器(如右图)设容器高为h 米,盖子边长为a 米,(1)求a 关于h 的解析式;(2)设容器的容积为V 立方米,则当h 为何值时,V 最大?求出V 的最大值(求解本题时,不计容器厚度)知识依托 本题求得体积V 的关系式后,应用均值定理可求得最值例2已知a ,b ,c 是实数,函数f (x )=ax 2+bx +c ,g (x )=ax +b ,当-1≤x ≤1时|f (x )|≤1(1)证明 |c |≤1;(2)证明 当-1 ≤x ≤1时,|g (x )|≤2;(3)设a >0,有-1≤x ≤1时, g (x )的最大值为2,求f (x )知识依托 二次函数的有关性质、函数的单调性,绝对值不等式例3设二次函数f (x )=ax 2+bx +c (a >0),方程f (x )-x =0的两个根x 1、x 2满足0<x 1<x 2a1 (1)当x ∈[0,x 1)时,证明x <f (x )<x 1;(2)设函数f (x )的图象关于直线x =x 0对称,证明 x 0<21x 巩固练习1 定义在R 上的奇函数f (x )为增函数,偶函数g (x )在区间[0,+∞)的图象与f (x )的图象重合,设a >b >0,给出下列不等式,其中正确不等式的序号是( )①f (b )-f (-a )>g (a )-g (-b ) ②f (b )-f (-a )<g (a )-g (-b ) ③f (a )-f (-b )>g (b )-g (-a ) ④f (a )-f (-b )<g (b )-g (-a ) A ①③B ②④C ①④D ②③2 下列四个命题中 ①a +b ≥2ab ②sin 2x +x2sin 4≥4 ③设x ,y 都是正数,若y x 91+=1,则x +y 的最小值是12 ④若|x -2|<ε,|y -2|<ε,则|x -y |<2ε,其中所有真命题的序号是__________4 已知二次函数 f (x )=ax 2+bx +1(a ,b ∈R ,a >0),设方程f (x )=x 的两实数根为x 1,x 2(1)如果x 1<2<x 2<4,设函数f (x )的对称轴为x =x 0,求证x 0>-1; (2)如果|x 1|<2,|x 2-x 1|=2,求b 的取值范围6 设函数f (x )定义在R 上,对任意m 、n 恒有f (m +n )=f (m )·f (n ),且当x >0时,0<f (x )<1(1)求证 f (0)=1,且当x <0时,f (x )>1;(2)求证 f (x )在R 上单调递减;(3)设集合A ={ (x ,y )|f (x 2)·f (y 2)>f (1)},集合B ={(x ,y )|f (ax -g +2)=1,a ∈R },若A ∩B =∅,求a 的取值范围7 已知函数f (x )=1222+++x cbx x (b <0)的值域是[1,3], (1)求b 、c 的值;(2)判断函数F (x )=lg f (x ),当x ∈[-1,1]时的单调性,并证明你的结论; (3)若t ∈R ,求证 lg57≤F (|t -61|-|t +61|)≤513 数列与不等式的交汇题型分析及解题策略【命题趋向】数列与不等式交汇主要以压轴题的形式出现,试题还可能涉及到与导数、函数等知识综合一起考查.主要考查知识数列的通项公式、前n 项和公式以及二者之间的关系、等差数列和等比数列、归纳与猜想、数归纳法、比较大小、不等式证明、参数取值范围的探求,在不等式的证明中要注意放缩法的应用. 【典例分析】题型一 求有数列参与的不等式恒成立条件下参数问题求得数列与不等式结合恒成立条件下的参数问题主要两种策略:(1)若函数f(x)在定义域为D ,则当x ∈D 时,有f(x)≥M 恒成立⇔f(x)min ≥M ;f(x)≤M 恒成立⇔f(x)max ≤M ;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得. 【例1】等比数列{a n }的公比q >1,第17项的平方等于第24项,求使a 1+a 2+…+a n >1a 1+1a 2+…+1a n 恒成立的正整数n 的取值范围.【例2】(08·全国Ⅱ)设数列{a n }的前n 项和为S n .已知a 1=a ,a n+1=S n +3n ,n ∈N*.(Ⅰ)设b n =S n -3n ,求数列{b n }的通项公式;(Ⅱ)若a n+1≥a n ,n ∈N*,求a 的取值范围.【点评】 一般地,如果求条件与前nABCDS项和相关的数列的通项公式,则可考虑S n 与a n 的关系求解题型二 数列参与的不等式的证明问题此类不等式的证明常用的方法:(1)比较法,特别是差值比较法是最根本的方法;(2)分析法与综合法,一般是利用分析法分析,再利用综合法分析;(3)放缩法,主要是通过分母分子的扩大或缩小、项数的增加与减少等手段达到证明的目的.【例3】 已知数列{a n }是等差数列,其前n 项和为S n ,a 3=7,S 4=24.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设p 、q 都是正整数,且p ≠q ,证明:S p+q <12(S 2p +S 2q ).【点评】 利用差值比较法比较大小的关键是对作差后的式子进行变形,途径主要有:(1)因式分解;(2)化平方和的形式;(3)如果涉及分式,则利用通分;(4)如果涉及根式,则利用分子或分母有理化.【例4】 (08·安徽高考)设数列{a n }满足a 1=0,a n+1=ca n 3+1-c ,c ∈N*,其中c 为实数.(Ⅰ)证明:a n ∈[0,1]对任意n ∈N*成立的充分必要条件是c ∈[0,1];(Ⅱ)设0<c <13,证明:a n ≥1-(3c)n -1,n ∈N*;(Ⅲ)设0<c <13,证明:a 12+a 22+…+a n 2>n +1-21-3c,n ∈N*.题型三 求数列中的最大值问题求解数列中的某些最值问题,有时须结合不等式来解决,其具体解法有:(1)建立目标函数,通过不等式确定变量范围,进而求得最值;(2)首先利用不等式判断数列的单调性,然后确定最值;(3)利用条件中的不等式关系确定最值.【例5】 (08·四川)设等差数列{a n }的前n 项和为S n ,若S 4≥10,S 5≤15,则a 4的最大值为______.【例6】 等比数列{a n }的首项为a 1=2002,公比q =-12.(Ⅰ)设f(n)表示该数列的前n 项的积,求f(n)的表达式;(Ⅱ)当n取何值时,f(n)有最大值.题型四 求解探索性问题数列与不等式中的探索性问题主要表现为存在型,解答的一般策略:先假设所探求对象存在或结论成立,以此假设为前提条件进行运算或逻辑推理,若由此推出矛盾,则假设不成立,从而得到“否定”的结论,即不存在.若推理不出现矛盾,能求得在范围内的数值或图形,就得到肯定的结论,即得到存在的结果.【例7】 已知{a n }的前n 项和为S n ,且a n +S n =4.(Ⅰ)求证:数列{a n }是等比数列;(Ⅱ)是否存在正整数k ,使S k+1-2S k -2>2成立. 【点评】在导出矛盾时须注意条件“k ∈N *”,这是在解答数列问题中易忽视的一个陷阱.【例8】 (08·湖北)已知数列{a n }和{b n }满足:a 1=λ,a n+1=23a n +n -4,b n =(-1)n (a n -3n +21),其中λ为实数,n 为正整数. (Ⅰ)对任意实数λ,证明数列{a n }不是等比数列;(Ⅱ)试判断数列{b n }是否为等比数列,并证明你的结论;(Ⅲ)设0<a <b,S n 为数列{b n }的前n 项和.是否存在实数λ,使得对任意正整数n ,都有a <S n <b?若存在,求λ的取值范围;若不存在,说明理由.数列与不等式命题新亮点例1 把数列一次按第一个括号一个数,按第二个括号两个数,按第三个括号三个数,按第四个括号一个数…,循环分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(23) …,则第50个括号内各数之和为_____.点评:恰当的分组,找到各数之间的内在联系是解决之道.此外,这种题对观察能力有较高的要求. 例2 设{}n a 是由正数构成的等比数列, 12n n n b a a ++=+,3n n n c a a +=+,则( )A. nn b c > B. n n b c < C. n n b c ≥ D. n n b c ≤点评:此题较易入手,利用作差法即可比较大小,考察数列的递推关系. 例3 若对(,1]x ∈-∞-,不等式21()2()12x x mm --<恒成立,则实数m 的取值范围( )A. (2,3)-B. (3,3)-C. (2,2)-D. (3,4)-例4四棱锥S-ABCD 的所有棱长均为1米,一只小虫从S 点出发沿四棱锥的棱爬行,若在每一顶点处选择不同的棱都是等可能的.设小虫爬行n 米后恰好回到S 点的概率为n P (1)求2P 、3P 的值; (2)求证: 131(2,)n nP P n n N ++=≥∈(3)求证: 2365>(2,)24n n P P P n n N -+++≥∈…例5 已知函数()2f x x x =+.(1)数列{}n a 满足: 10a >,()1n n a f a +'=,若11112ni ia =<+∑对任意的n N ∈恒成立,试求1a 的取值范围; (2)数列{}n b 满足: 11b =,()1n n b f b +=()n N ∈,记11n nc b =+,k S 为数列{}n c 的前k 项和, k T 为数列{}n c 的前k 项积,求证1710nk k k kT S T =<+∑. 例6 (1)证明: ()ln1(0)x x x +<> (2)数列{}n a 中. 11a =,且()11211122n n n a a n n --⎛⎫=++≥ ⎪⎝⎭; ①证明: ()724n a n ≥≥ ②()21n a e n <≥ 【专题训练】1.已知无穷数列{a n }是各项均为正数的等差数列,则有( )A .a 4a 6<a 6a 8B .a 4a 6≤a 6a 8C .a 4a 6>a 6a 8D .a 4a 6≥a 6a 82.设{a n }是由正数构成的等比数列,b n =a n+1+a n+2,c n =a n +a n+3,则( ) A .b n >c nB .b n <c nC .b n ≥c nD .b n ≤c n3.已知{a n }为等差数列,{b n }为正项等比数列,公比q≠1,若a 1=b 1,a 11=b 11,则( )A .a 6=b 6B .a 6>b 6C .a 6<b 6D .a 6>b 6或a 6<b 6 4.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k =( ) A .9 B .8 C .7 D .6 5.已知等比数列{a n }的公比q >0,其前n 项的和为S n ,则S 4a 5与S 5a 4的大小关系是( )A .S 4a 5<S 5a 4B .S 4a 5>S 5a 4C .S 4a 5=S 5a 4D .不确定 6.设S n =1+2+3+…+n ,n ∈N*,则函数f(n)=S n(n +32)S n+1的最大值为( )A .120B .130C .140D .1507.已知y 是x 的函数,且lg3,lg(sinx -12),lg(1-y)顺次成等差数列,则( )A .y 有最大值1,无最小值B .y 有最小值1112,无最大值C .y 有最小值1112,最大值1D .y 有最小值-1,最大值1 8.已知等比数列{a n }中a 2=1,则其前3项的和S 3的取值范围是( )A.(-∞,-1]B.(-∞,-1)∪(1,+∞) C.[3,+∞)D.(-∞,-1]∪[3,+∞)9.设3b 是1-a 和1+a 的等比中项,则a +3b 的最大值为( )A .1B .2C .3D .410.设等比数列{a n }的首相为a 1,公比为q ,则“a 1<0,且0<q <1”是“对于任意n ∈N*都有a n+1>a n ”的( )A .充分不必要条件B .必要不充分条件C .充分比要条件D .既不充分又不必要条件11.{a n }为等差数列,若a 11a 10<-1,且它的前n 项和S n 有最小值,那么当S n 取得最小正值时,n =( )A .11B .17C .19D .2112.设f(x)是定义在R 上恒不为零的函数,对任意实数x 、y ∈R ,都有f(x)f(y)=f(x +y),若a 1=12,a n =f(n)(n ∈N*),则数列{a n }的前n 项和S n 的取值范围是 ( ) A .[12,2)B .[12,2]C .[12,1)D .[12,1]13.等差数列{a n }的前n 项和为S n ,且a 4-a 2=8,a 3+a 5=26,记T n =S nn2,如果存在正整数M ,使得对一切正整数n ,T n ≤M 都成立.则M 的最小值是__________.14.无穷等比数列{a n }中,a 1>1,|q|<1,且除a 1外其余各项之和不大于a 1的一半,则q 的取值范围是________. 15.已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则(a +b)2cd的最小值是________.A.0B.1C.2D.416.等差数列{a n }的公差d 不为零,S n 是其前n 项和,给出下列四个命题:①A .若d <0,且S 3=S 8,则{S n }中,S 5和S 6都是{S n }中的最大项;②给定n ,对于一定k ∈N*(k <n),都有a n -k +a n+k =2a n ;③若d >0,则{S n }中一定有最小的项;④存在k ∈N*,使a k -a k+1和a k -a k -1同号 其中真命题的序号是____________.17.已知{a n }是一个等差数列,且a 2=1,a 5=-5.(Ⅰ)求{a n }的通项n a ;(Ⅱ)求{a n }前n 项和S n 的最大值.18.已知{a n }是正数组成的数列,a 1=1,且点(a n ,a n +1)(n ∈N *)在函数y =x 2+1的图象上.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若列数{b n }满足b 1=1,b n +1=b n +2a n ,求证:b n ·b n +2<b 2n +1. 19.设数列{a n }的首项a 1∈(0,1),a n =3-a n -12,n =2,3,4,…. (Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =a n 3-2a n ,证明b n <b n+1,其中n 为正整数. 20.已知数列{a n }中a 1=2,a n+1=(2-1)( a n +2),n =1,2,3,….(Ⅰ)求{a n }的通项公式;(Ⅱ)若数列{a n }中b 1=2,b n+1=3b n +42b n +3,n =1,2,3,….证明:2<b n ≤a 4n -3,n =1,2,3,… 21.已知二次函数y =f(x)的图像经过坐标原点,其导函数为f '(x)=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N*)均在函数y =f(x)的图像上.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =1a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N*都成立的最小正整数m22.数列{}n a 满足11a =,21()n n a n n a λ+=+-(12n =L ,,),λ是常数.(Ⅰ)当21a =-时,求λ及3a 的值;(Ⅱ)数列{}n a 是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由;(Ⅲ)求λ的取值范围,使得存在正整数m ,当nm >时总有0n a <.利用导数处理与不等式有关的问题一、 利用导数证明不等式(一)、利用导数得出函数单调性来证明不等式某个区间上导数大于(或小于)0时,则该单调递增(或递减)。
不等式的证明4
2、已知a、b都是正数,且a≠b, 求证:
a
b
b>
a
a
b
3、已知a、b、c是正数,且a+b+c=1, 求证:
(1)(1-a)(1-b)(1-c) ≥8abc
5、已知a>0, b>0,且a+b=1,求证:
(3)分析法证明不等式的格式
(2)ab+bc+ca≤ 1、不等式常见的证明方法
5、已知a>0, b>0,且a+b=1,求证: (1)比较法证明不等式的步骤
5、已知a>0, b>0,且a+b=1, 求证:
(1)a1abb1
25 4
(2)
a1a2
bb12
25 2
三、归纳ቤተ መጻሕፍቲ ባይዱ结: 1、不等式常见的证明方法
比较法-------综合法-------分析法
2、每种证明方法经常用来证明什 么样的不等式,如何根据特点 选择适当的证明方法
3、每种证明方法的基本书写格式
(3) a1b1c18 2、已知a、b都是正数,且a≠b, 求证:
4、已知a、b、c是正数,求证:
么样的不等式,如何根据特点 比较法-------综合法-------分析法 (执果寻因)
2 2 2 所证不等式两边有两数的和或积的时候
a b c 么样的不等式,如何根据特点
5、已知a>0, b>0,且a+b=1,求证:
(2)综合法经常证明什么样的不等式
所证不等式两边有两数的和或积的时候
3、分析法
(1)定义:
由所证不等式出发寻找使结论成立的条件 (执果寻因)
(2)分析法经常证明什么样的不等式
无理不等式、分式不等式或 所证明不等式形式比较麻烦时
高三数学不等式的证明·典型例题
不等式的证明·典型例题【例1】已知a,b,c∈R+,求证:a3+b3+c3≥3abc.【分析】用求差比较法证明.证明:a3+b3+c3-3abc=[(a+b)3+c3]-3a2b-3ab2-3abc=(a+b+c)[(a+b)2-(a+b)c+c2]-3ab(a+b+c)=(a+b+c)[a2+b2+c2-ab-bc-ca]∵a,b,c∈R+,∴a+b+c>0.(c-a)]2≥0即 a3+b3+c3-3abc≥0,∴a3+b3+c3≥3abc.【例2】已知a,b∈R+,n∈N,求证:(a+b)(a n+b n)≤2(a n+1+b n+1).【分析】用求差比较法证明.证明:左-右=a n+1+ab n+a n b+b n+1-2a n+1-2b n+1=ab n+a n b-a n+1-b n+1=a(b n-a n)+b(a n-b n)=(b n-a n)(a-b)(*) 当a>b>0时,b n-a n<0,a-b>0,∴(*)<0;当b>a>0时,b n-a n>0,a-b<0,∴(*)<0;当a=b>0时,b n-a n=0,a-b=0,∴(*)=0.综上所述,有(a+b)(a n+b n)-2(a n+1+b n+1)≤0.即 (a+b)(a n+b n)≤2(a n+1+b n+1).【说明】在求差比较的三个步骤中,“变形”是关键,常用的变形手段有配方、因式分解等,常将“差式”变形为一个常数,或几个因式积的形式.【例3】已知a,b∈R+,求证a a b b≥a b b a.【分析】采用求商比较法证明.证明:∵a,b∈R+,∴a b b a>0综上所述,当a>0,b>0,必有a a b b≥a b b a.【说明】商值比较法的理论依据是:【例4】已知a、b、c是不全等的正数,求证:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc.【分析】采用综合法证明,利用性质a2+b2≥2ab.证明:∵b2+c2≥2bc,a>0,∴a(b2+c2)≥2abc.①同理b(c2+a2)≥2abc②c(a2+b2)≥2abc③∵a,b,c不全相等,∴①,②,③中至少有一个式子不能取“=”号∴①+②+③,得a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc.【例5】已知a,b,c∈R+,求证:(1)(ab+a+b+1)(ab+ac+bc+c2)≥16abc;【分析】用综合法证明,注意构造定理所需条件.证明:(1)ab+a+b+1=(a+1)(b+1),ab+ac+bc+c2=(a+c)(b+c).∴(a+1)(b+1)(a+c)(b+c)≥16abc因此,当a,b,c∈R+,有(ab+a+b+1)(ab+ac+bc+c2)≥16abc.【说明】用均值定理证明不等式时,一要注意定理适用的条件,二要为运用定理对式子作适当变形,把式子分成若干分,对每部分运用均值定理后,再把它们相加或相乘.【分析】采用分析法证明.(*)∵a<c,b<c,∴a+b<2c,∴(*)式成立.∴原不等式成立.用充分条件代替前面的不等式.【例7】若a、b、c是不全相等的正数,求证:证明二:(综合法)∵a,b,c∈R+,abc成立.上式两边同取常用对数,得【说明】分析法和综合法是对立统一的两个方面.在证法一中,前面是分析法,后面是综合法,两种方法结合使用,使问题较易解决.分析法的证明过程恰恰是综合法的分析、思考过程,综合法的证明方法是分析思考过程的逆推.【例8】已知a>2,求证log a(a-1)·log a(a+1)<1.【分析】两个对数的积不好处理,而两个同底对数的和却易于处理.因为我们可以先把真数相乘再取对数,从而将两个对数合二为一,平均值不等式恰好有和积转化功能可供利用.证明:∵a>2,∴log a(a-1)>0,log a(a+1)>0.又log a(a-1)≠log a(a+1)∴log a(a-1)·log a(a+1)<1.【说明】上式证明如果从log a(a-1)·log a(a+1)入手,得log a(a-1)二为一了.另外,在上述证明过程中,用较大的log a a2代替较小的log a(a2-1),并用适当的不等号连结,从而得出证明.这种方法通常叫做“放缩法”.同样,也可以用较小的数代替较大的数,并用适当的不等号连结.【例9】已知:a,b,c都是小于1的正数;【分析】采用反证法证明.其证明思路是否定结论从而导出与已知或定理的矛盾.从而证明假设不成立,而原命题成立.对题中“至少∵a,b,c都是小于1的正数,故与上式矛盾,假设不成立,原命题正确.【说明】反证法是利用互为逆否命题具有等价性的思想进行推证的.反证法必须罗列各种与原命题相异的结论,缺少任何一种可能,则反证都是不完全的,遇到“至少”、“至多”、“唯一”等字句的命题常用反证法.|a|≤1.【说明】换元法是将较为复杂的不等式利用等价转换的思想转换成易证明的不等式.常用的换元法有(1),若|x|≤1,可设x=sinα,α∈R;(2)若x2+y2=1,可设x=sinα,y=cosα;(3)若x2+y2≤1,可设x=【例11】已知a1、a2、…a n,b1、b2、…b n为任意实数,求证明:构造一个二次函数它一定非负,因它可化为(a1x-b1)2+(a2x-b2)2+…+(a n x-b n)2.∴Δ≤0,(当a1,a2,…a n都为0时,所构造式子非二次函数,但此时原不等式显然成立.)【说明】上例是用判别式法证明的“柯西不等式”,它可写为:变量分别取|a+b|,|a|、|b|时就得到要证的三个式子.因此,可考虑从函数∴f(x2)>f(x1),f(x)在[0,+∞)上是增函数.取x1=|a+b|,x2=|a|+|b|,显然0≤x1≤x2.∴f(|a+b|)≤f(|a|+|b|).【说明】这里是利用构造函数,通过函数的单调性,结合放缩法来证明不等式的.应注意的是,所给函数的单调整性应予以论证.【例13】已知a,b,m,n∈R,且a2+b2=1,m2+n2=1,求证:|am+bn|≤1.证法一:(比较法)证法二:(分析法)∵a,b,m,n∈R,∴上式成立,因此原不等式成立.证法三:(综合法)∵a,b,m,n∈R,∴(|a|-|m|)2≥0,(|b|-|n|)2≥0.即a2+m2≥2|am|,b2+n2≥2|bn|∴a2+m2+b2+n2≥2(|am|+|bn|)∵a2+b2=1,m2+n2=1,∴|am|+|bn|≤1∴|am+bn|≤|am|+|bn|≤1.证法四:(换元法)由已知,可设a=sinα,b=cosα,m=sinβ,n=cosβ.于是|am+bn|=|sinαsinβ+cosαcosβ|=|cos(α-β)|≤1.【说明】一个不等式的证明方法往往不只一种,要注意依据题目特点选择恰当的方法.【例14】已知f(x)=x2-x+c,且|x-a|<1,(a,b,c∈R)求证:|f(x)-f(a)|<2(|a|+1).【分析】绝对值不等式的证明充分利用绝对值不等式性质:证明:|f(x)-f(a)|=|x2-x+c-a2+a-c|=|(x+a)(x-a)-(x-a)|=|x-a||x+a-1|<|x+a-1|=|(x-a)+2a-1|<|x-a|+|2a|+|(-1)|<1+2|a|+1=2(|a|+1).∴|f(x)-f(a)|<2(|a|+1).【例15】当h与|a|,|b|,1中最大的一个相等,求证:当|x|>h时,由已知,有|x|>h≥|a|,|x|>h≥|b|,|x|>h≥1 ∴|x|2≥b.。
不等式证明几种方法
同理: ,
以上三式相乘:(1a)a•(1b)b•(1c)c≤ 与①矛盾
∴原式成立
例五、已知a+b+c> 0,ab+bc+ca> 0,abc> 0,求证:a,b,c> 0
证:设a< 0,∵abc> 0,∴bc< 0
又由a+b+c> 0,则b+c=a> 0
∴ab+bc+ca=a(b+c) +bc< 0与题设矛盾
8.若x,y> 0,且x+y>2,则 和 中至少有一个小于2
一、裂项放缩
例1.(1)求 的值; (2)求证: .
解析:(1)因为 ,所以
(2)因为 ,所以
奇巧积累
:(1) (2)
(3)
(4)
(5) (6)
(7) (8)
(9)
(10) (11)
(11)
(12)
(13)
(14) (15)
(15)
例2.(1)求证:
分析:当水的流速相同时,水管的流量取决于水管横截面面积的大小。设截面的周长为 பைடு நூலகம்则周长为 的圆的半径为 ,截面积为 ;周长为 的正方形为 ,截面积为 。所以本题只需证明 。
证明:设截面的周长为 ,则截面是圆的水管的截面面积为 ,截面是正方形的水管的截面面积为 。只需证明: 。
为了证明上式成立,只需证明 。
例3、已知a,b,m都是正数,并且 求证: (1)
证法一要证(1),只需证 (2)
要证(2),只需证 (3)
要证(3),只需证 (4)
已知(4)成立,所以(1)成立。
不等式的证明方法经典例题
不等式的证明方法不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。
注意ab b a 222≥+的变式应用。
常用2222b a b a +≥+ (其中+∈R b a ,)来解决有关根式不等式的问题。
一、比较法比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。
1、已知a,b,c 均为正数,求证:ac c b b a c b a +++++≥++111212121 二、综合法综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。
2、a 、b 、),0(∞+∈c ,1=++c b a ,求证:31222≥++c b a3、设a 、b 、c 是互不相等的正数,求证:)(444c b a abc c b a ++>++ 4、 知a,b,c R ∈,求证:)(2222222c b a a cc bb a++≥+++++5、),0(∞+∈y x 、且1=+y x ,证:9)11)(11(≥++y x 。
6、已知.9111111,,≥⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=+∈+b a b a R b a 求证: 三、分析法分析法的思路是“执果索因”:从求证的不等式出发,探索使结论成立的充分条件,直至已成立的不等式。
7、已知a 、b 、c 为正数,求证:)3(3)2(23abc c b a ab b a -++≤-+8、),0(∞+∈c b a 、、且1=++c b a ,求证3≤++c b a 。
四、换元法换元法实质上就是变量代换法,即对所证不等式的题设和结论中的字母作适当的变换,以达到化难为易的目的。
9、1<b ,求证:1)1)(1(22≤--+b a ab 。
10、122=+y x ,求证:22≤+≤-y x11、已知a>b>c,求证:.411ca cb b a -≥-+- 12、已知1≤x 2+y 2≤2,求证:21≤x 2-xy +y 2≤3.13、已知x 2-2xy +y 2≤2,求证:| x +y |≤10. 14、解不等式15+--x x >21 15、-1≤21x --x ≤2.五、增量代换法在对称式(任意互换两个字母,代数式不变)和给定字母顺序(如a >b >c)的不等式,常用增量进行代换,代换的目的是减少变量的个数,使要证的结论更清晰,思路更直观,这样可以使问题化难为易,化繁为简.16、已知a ,b ∈R ,且a +b = 1,求证:(a +2)2+(b +2)2≥225. 六、利用“1”的代换型17、.9111 ,1 ,,,≥++=++∈+c b a c b a R c b a 求证:且已知七、反证法反证法的思路是“假设→矛盾→肯定”,采用反证法时,应从与结论相反的假设出发,推出矛盾的过程中,每一步推理必须是正确的。
高中数学第二讲证明不等式的基本方法综合法与分析法
2。
2.2 分析法课堂导学三点剖析一,利用分析法证明不等式【例1】 (1)设a>b 〉0,求证:333b a b a ->-。
(2)已知0〈α〈π,证明2sin2α≤cot 2α,并指出等号成立的条件。
证明:(1)要证333b a b a ->-,∵a>b〉0,有3b a ->0, ∴需证(3b a -)3>(33b a -)3,展开得a —b 〉a —323b a +b ab -323, 即证明)(3333b a ab -〉0, 也就是证33b a ->0,在题设条件下这一不等式显然成立,∴原不等式成立.(2)要证2sin2α≤cot 2α,由0<α<π知sinα〉0,只需证2sinα·sin2α≤1+cosα,即证明4sin 2αcosα-(1+cosα)≤0,也就是证(1+cosα)[4(1—cosα)cosα-1]≤0,而1+cosα>0,于是只要证-4cos 2α+4cosα—1≤0,即—(2cosα—1)2≤0,就是(2cosα-1)2≥0,这是显然的。
∴2sin2α≤cot 2α,等号在2cosα=1,α=3π时取得。
各个击破类题演练1若a ,b,c 三数均大于1,且ab=10,求证:log a c+log b c≥4lgc.证明:由于a>1,b 〉1,要证log a c+log b c≥4lgc,需证b ca clg lg lg lg +≥4lgc,而lgc>0, 因此只要证b a lg 1lg 1+≥4,即证b a b a lg lg lg lg +≥4。
∵ab=10,有lga+lgb=1,于是只需证lga·lgb≤41, 而lga·lgb≤(2lg lg b a +)2=41。
∴不等式log a c+log b c≥4lgc 成立.变式提升1已知a>0,b 1—a 1>1,求证:ba ->+111。
高二数学 不等式的证明典型例题分析
不等式的证明·典型例题【例1】已知a,b,c∈R+,求证:a3+b3+c3≥3abc.【分析】用求差比较法证明.证明:a3+b3+c3-3abc=[(a+b)3+c3]-3a2b-3ab2-3abc=(a+b+c)[(a+b)2-(a+b)c+c2]-3ab(a+b+c)=(a+b+c)[a2+b2+c2-ab-bc-ca]∵a,b,c∈R+,∴a+b+c>0.(c-a)]2≥0即 a3+b3+c3-3abc≥0,∴a3+b3+c3≥3abc.【例2】已知a,b∈R+,n∈N,求证:(a+b)(a n+b n)≤2(a n+1+b n+1).【分析】用求差比较法证明.证明:左-右=a n+1+ab n+a n b+b n+1-2a n+1-2b n+1=ab n+a n b-a n+1-b n+1=a(b n-a n)+b(a n-b n)=(b n-a n)(a-b)(*) 当a>b>0时,b n-a n<0,a-b>0,∴(*)<0;当b>a>0时,b n-a n>0,a-b<0,∴(*)<0;当a=b>0时,b n-a n=0,a-b=0,∴(*)=0.综上所述,有(a+b)(a n+b n)-2(a n+1+b n+1)≤0.即 (a+b)(a n+b n)≤2(a n+1+b n+1).【说明】在求差比较的三个步骤中,“变形”是关键,常用的变形手段有配方、因式分解等,常将“差式”变形为一个常数,或几个因式积的形式.【例3】已知a,b∈R+,求证a a b b≥a b b a.【分析】采用求商比较法证明.证明:∵a,b∈R+,∴a b b a>0综上所述,当a>0,b>0,必有a a b b≥a b b a.【说明】商值比较法的理论依据是:【例4】已知a、b、c是不全等的正数,求证:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc.【分析】采用综合法证明,利用性质a2+b2≥2ab.证明:∵b2+c2≥2bc,a>0,∴a(b2+c2)≥2abc.①同理b(c2+a2)≥2abc②c(a2+b2)≥2abc③∵a,b,c不全相等,∴①,②,③中至少有一个式子不能取“=”号∴①+②+③,得a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc.【例5】已知a,b,c∈R+,求证:(1)(ab+a+b+1)(ab+ac+bc+c2)≥16abc;【分析】用综合法证明,注意构造定理所需条件.证明:(1)ab+a+b+1=(a+1)(b+1),ab+ac+bc+c2=(a+c)(b+c).∴(a+1)(b+1)(a+c)(b+c)≥16abc因此,当a,b,c∈R+,有(ab+a+b+1)(ab+ac+bc+c2)≥16abc.【说明】用均值定理证明不等式时,一要注意定理适用的条件,二要为运用定理对式子作适当变形,把式子分成若干分,对每部分运用均值定理后,再把它们相加或相乘.【分析】采用分析法证明.(*) ∵a<c,b<c,∴a+b<2c,∴(*)式成立.∴原不等式成立.用充分条件代替前面的不等式.【例7】若a、b、c是不全相等的正数,求证:证明二:(综合法)∵a,b,c∈R+,abc成立.上式两边同取常用对数,得【说明】分析法和综合法是对立统一的两个方面.在证法一中,前面是分析法,后面是综合法,两种方法结合使用,使问题较易解决.分析法的证明过程恰恰是综合法的分析、思考过程,综合法的证明方法是分析思考过程的逆推.【例8】已知a>2,求证log a(a-1)·log a(a+1)<1.【分析】两个对数的积不好处理,而两个同底对数的和却易于处理.因为我们可以先把真数相乘再取对数,从而将两个对数合二为一,平均值不等式恰好有和积转化功能可供利用.证明:∵a>2,∴log a(a-1)>0,log a(a+1)>0.又log a(a-1)≠log a(a+1)∴log a(a-1)·log a(a+1)<1.【说明】上式证明如果从log a(a-1)·log a(a+1)入手,得log a(a-1)二为一了.另外,在上述证明过程中,用较大的log a a2代替较小的log a(a2-1),并用适当的不等号连结,从而得出证明.这种方法通常叫做“放缩法”.同样,也可以用较小的数代替较大的数,并用适当的不等号连结.【例9】已知:a,b,c都是小于1的正数;【分析】采用反证法证明.其证明思路是否定结论从而导出与已知或定理的矛盾.从而证明假设不成立,而原命题成立.对题中“至少∵a,b,c都是小于1的正数,故与上式矛盾,假设不成立,原命题正确.【说明】反证法是利用互为逆否命题具有等价性的思想进行推证的.反证法必须罗列各种与原命题相异的结论,缺少任何一种可能,则反证都是不完全的,遇到“至少”、“至多”、“唯一”等字句的命题常用反证法.|a|≤1.【说明】换元法是将较为复杂的不等式利用等价转换的思想转换成易证明的不等式.常用的换元法有(1),若|x|≤1,可设x=sinα,α∈R;(2)若x2+y2=1,可设x=sinα,y=cosα;(3)若x2+y2≤1,可设x=【例11】已知a1、a2、…a n,b1、b2、…b n为任意实数,求证明:构造一个二次函数它一定非负,因它可化为(a1x-b1)2+(a2x-b2)2+…+(a n x-b n)2.∴Δ≤0,(当a1,a2,…a n都为0时,所构造式子非二次函数,但此时原不等式显然成立.)【说明】上例是用判别式法证明的“柯西不等式”,它可写为:变量分别取|a+b|,|a|、|b|时就得到要证的三个式子.因此,可考虑从函数∴f(x2)>f(x1),f(x)在[0,+∞)上是增函数.取x1=|a+b|,x2=|a|+|b|,显然0≤x1≤x2.∴f(|a+b|)≤f(|a|+|b|).【说明】这里是利用构造函数,通过函数的单调性,结合放缩法来证明不等式的.应注意的是,所给函数的单调整性应予以论证.【例13】已知a,b,m,n∈R,且a2+b2=1,m2+n2=1,求证:|am+bn|≤1.证法一:(比较法)证法二:(分析法)∵a,b,m,n∈R,∴上式成立,因此原不等式成立.证法三:(综合法)∵a,b,m,n∈R,∴(|a|-|m|)2≥0,(|b|-|n|)2≥0.即a2+m2≥2|am|,b2+n2≥2|bn|∴a2+m2+b2+n2≥2(|am|+|bn|)∵a2+b2=1,m2+n2=1,∴|am|+|bn|≤1∴|am+bn|≤|am|+|bn|≤1.证法四:(换元法)由已知,可设a=sinα,b=cosα,m=sinβ,n=cosβ.于是|am+bn|=|sinαsinβ+cosαcosβ|=|cos(α-β)|≤1.【说明】一个不等式的证明方法往往不只一种,要注意依据题目特点选择恰当的方法.【例14】已知f(x)=x2-x+c,且|x-a|<1,(a,b,c∈R)求证:|f(x)-f(a)|<2(|a|+1).【分析】绝对值不等式的证明充分利用绝对值不等式性质:证明:|f(x)-f(a)|=|x2-x+c-a2+a-c|=|(x+a)(x-a)-(x-a)|=|x-a||x+a-1|<|x+a-1|=|(x-a)+2a-1|<|x-a|+|2a|+|(-1)|<1+2|a|+1=2(|a|+1).∴|f(x)-f(a)|<2(|a|+1).【例15】当h与|a|,|b|,1中最大的一个相等,求证:当|x|>h时,由已知,有|x|>h≥|a|,|x|>h≥|b|,|x|>h≥1∴|x|2≥b.。
高中数学第二讲证明不等式的基本方法二综合法与分析法学案新人教A版选修4_520171115395
二综合法与分析法1.理解综合法和分析法的概念.2.掌握综合法和分析法的证明过程.1.综合法一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做________,又叫__________或____________.【做一做1】若a<b<0,则下列不等式中成立的是()1 1 1 1 1 1 b b+1A. <B.a+>b+C.b+>a+ D. <a b b a a b a a+12.分析法证明命题时,我们还常常从要证的______出发,逐步寻求使它成立的充分条件,直至所需条件为__________或______________(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证明方法叫做__________,这是一种__________的思考和证明方法.【做一做2-1】分析法是从要证的结论出发,寻求使它成立的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件1【做一做2-2】当x>1时,不等式x+≥a恒成立,则实数a的取值范围是()x-1A.(-∞,2] B.[2,+∞)C.[3,+∞)D.(-∞,3]答案:1.综合法顺推证法由因导果法1 1【做一做1】C∵a<b<0,∴>,故选项A,B错误,而选项C正确.选项D中,a bb+1 b取b=-1,则=0,而>0,故选项D错误.a+1 a2.结论已知条件一个明显成立的事实分析法执果索因【做一做2-1】 A1 1【做一做2-2】D要使x+≥a恒成立,则令f(x)=x+的最小值大于等于ax-1 x-11 1 1即可,而x+=x-1++1≥2x-1·+1=3.x-1 x-1 x-1∴f(x)的最小值为3,∴a≤3.1.如何理解综合法证明不等式剖析:(1)证明的特点.综合法又叫顺推证法或由因导果法,是由已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推出所要证明的结论成立.1(2)证明的框图表示.用P表示已知条件或已有的不等式,用Q表示所要证明的结论,则综合法可用框图表示为P ⇒Q1 Q1⇒Q2 Q2⇒Q3 Q n⇒Q→→→……→(3)证明的主要依据.①a-b>0 a>b,a-b=0 a=b,a-b<0 a<b;②不等式的性质;③几个重要不等式:a+ba2≥0(a∈R),a2+b2≥2ab(a,b∈R),≥ab(a>0,b>0).2使用综合法时要防止因果关系不清晰,逻辑表达混乱等现象.2.如何理解分析法证明不等式剖析:(1)证明的特点.分析法又叫逆推证法或执果索因法,是须从证明的不等式出发,逐步寻找使它成立的充分条件.直到最后把要证明的不等式转化为判定一个明显成立的不等式为止.(2)证明过程的框图表示.用Q表示要证明的不等式,则分析法可用框图表示为得到一个明显成立的不等式P3⇐P2 P2⇐P1 P1⇐Q←…←←←3.综合法和分析法的优点剖析:综合法的优点是结构整齐,而分析法更容易找到证明不等式的突破口,所以通常是分析法找思路,综合法写步骤.分析法证明不等式是“逆求”,而绝不是逆推,即寻找的是充分条件,而不是必要条件.题型一综合法证明不等式1 1 25【例1】已知a,b∈R+,且a+b=1,求证:(a+)2+(b+)2≥.a b 2分析:本题中条件a+b=1是解题的重点,由基本不等式的知识联想知应由重要不等式来变形出要证明的结论,本题a+b=1,也可以视为是“1”的代换问题.反思:(1)综合法证明不等式,揭示出条件和结论之间的因果联系,为此要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键.(2)综合法证明不等式中所依赖的已知不等式主要是重要不等式,其中常用的有如下几个:①a2≥0(a∈R).a+b 1②(a-b)2≥0(a,b∈R),其变形有:a2+b2≥2ab,( )2≥ab,a2+b2≥(a+b)2.2 2a+b b a③若a,b为正实数,≥ab.特别+≥2.2 a b④a2+b2+c2≥ab+bc+ca.题型二分析法证明不等式a-b 2 a+b a-b 2【例2】已知a>b>0,求证:<-ab<.8a 2 8b2分析:本题要证明的不等式显得较为复杂,不易观察出怎样由a>b>0得到要证明的不等式,因而可以用分析法先变形要证明的不等式,从中找到证题的线索.反思:分析法的格式是固定化的,但是每一步都是上一步的充分条件,即每一步数学式的变化都是在这个要求之下一步一步去寻找成立的条件或结论、定理.题型三易错辨析a2b2+b2c2+c2a2【例3】已知a,b,c∈R+,求证≥abc.a+b+c错解:因为a2b2+b2c2+c2a2≥33 a2b2·b2c2·c2a2=3abc3 abc,①又a+b+c≥33 abc,②a2b2+b2c2+c2a2 3abc3 abc故≥≥abc.③a+b+c33 abca b 错因分析:我们知道不等式具有性质:若a>b>0,c>d>0,则ac>bd,但>却不一c d定成立.答案:1 1【例1】证法一:不等式左边=(a+)2+(b+)2a b1 1=a2+b2+4+( +)a2 b2a+b 2 a+b 2=4+a2+b2++a2 b22b b2 a2 2a=4+a2+b2+1+++++1a a2 b2 bb a b2 a2=4+(a2+b2)+2+2( +)+( +)a b a2 b2a+b 2 b a b a≥4++2+2×2·+2··2 a b a b1 25=4++2+4+2=,2 2即原不等式成立.a+b 1证法二:∵a,b∈R+,且a+b=1,∴ab≤()2=.2 41 1∴(a+)2+(b+)2a b1 1=4+(a2+b2)+( +)a2 b2a+b2-2ab =4+[(a+b)2-2ab]+a2b21-2ab=4+(1-2ab)+a2b2311-2 ×1 4 25≥4+(1-2× )+=.4 1 2241 1 25∴(a+)2+(b+)2≥.a b 2【例2】证明:要证原不等式成立,a-b 2 a-b 2只需证<a+b-2 ab<,4a4ba-b a-b即证( )2<( a-b)2<( )2.2 a 2 ba-b a-b只需证<a-b<,2 a 2 ba+b a+b即<1<,2 a 2 bb a即<1<.a bb a只需证<1<.a b∵a>b>0,b a∴<1<成立.a b∴原不等式成立.【例3】正解:因为a2b2+b2c2≥2ab2c,b2c2+c2a2≥2abc2,c2a2+a2b2≥2a2bc,以上三式相加,化简得:a2b2+b2c2+a2c2≥abc(a+b+c),两边同除以正数a+b+c得:a2b2+b2c2+a2c2≥abc.a+b+c1.下列三个不等式:①a<0<b;②b<a<0;③b<0<a,其中能使1a<1b成立的充分条件有()A.①②B.①③C.②③D.①②③12.下面对命题“函数f(x)=x是奇函数”的证明不是综合法的是()x11A.∀x∈R且x≠0有f(-x)=(x)(x)=-f(x),则f(x)是奇函数=x x11B.∀x∈R且x≠0有f(x)+f(-x)=x+()=0,∴f(x)=-f(-x),则+(-x)+x xf(x)是奇函数4C.∀x∈R且x≠0,∵f(x)≠0,∴f(x)f(x)=1xx1xx=-1,∴f(-x)=-f(x),则f(x)是奇函数D.取x=-1,f(-1)=1111=-2,又f(1)=1+=2.f(-1)=-f(1),则f(x)是1奇函数3.若a>0,b>0,则下列两式的大小关系为lg(1)a b________1[lg(1+a)+lg(1+b)].22a b4.已知a,b,c都是正数,求证:2(ab)2a b c≤3(3abc).3答案:1.A①a<0<b1a<1b;②b<a<01a<1b;③b<0<a1a>1b.故选A.2.D D项中,选取特殊值进行证明,不是综合法.3.≥12[lg(1+a)+lg(1+b)]=1212lg[(1+a)(1+b)]=lg[(1a )(1b)]又∵lg(1+ab2a b2)=lg()2,且a>0,b>0.∴a+1>0,b+1>0,1a b∴=[(a 1)(1b)]≤1122a b22,a b1∴lg(1)≥lg[(1a )(1b)].22≥1a b即lg(1)22[lg(1+a)+lg(1+b)].4.分析:用分析法去找证题的突破口.要证原不等式,只需证2ab≤c 33abc,即只需证c 2ab≥33abc,把2ab转化为ab ab,问题就解决了.或由分析法的途径,也很容易用综合法的形式写出证明过程.a b证法一:要证2(ab)2a b c≤3(3abc),只需证a+b-2ab≤a+b+c-33abc,3即2ab≤c 33abc.移项,得c 2ab≥33abc.5由 a ,b ,c 都为正数,得 c 2 ab = c ab ab ≥33 abc .∴原不等式成立.证法二:∵a ,b ,c 都是正数, ∴ c ab ab ≥33 c ab ab =33 abc ,即 c 2 ab ≥33 abc . 故2 ab ≤ c33 abc .∴a +b - 2 ab ≤a +b +c -33 abc .a b∴ 2(ab ) 2a b c≤3(3abc ).36。
高中数学第二讲证明不等式的基本方法综合法与分析法
2。
2.1 综合法课堂导学三点剖析一,利用综合法证明不等式【例1】 (1)若a>0,b 〉0,求证:ab b a 22+≥a+b.思路分析:主要利用不等式2ba +≥ab 和a 2+b 2≥2ab。
证明:由a 2+b 2≥2ab,∴2(a 2+b 2)≥a 2+b 2+2ab,即2(a 2+b 2)≥(a+b)2。
∴ab b a 22+≥b a b a b a b a ++≥++222)()(2=a+b.(2)设a ,b ,c 都是正数,求证:2222222≥+++++a c c b b a (a+b+c ).思路分析:主要利用不等式2)(2222y x y x +≥+。
证明:由不等式a 2+b 2≥2)(22222b a ab b a +=++. ∴22b a +≥2ba +. 同理,2,22222ac a c cb c b +≥++≥+2)222(2222222=+++++=+++++∴ca cb ba a c cb b a (a+b+c )各个击破类题演练1已知a,b,c∈(0,+∞),且a ,b ,c 成等比数列,求证:a 2+b 2+c 2≥(a—b+c)2。
证明:左边-右边=2(ab+bc-ac)。
∵a,b ,c 成等比数列,∴b 2=ac.又∵a,b,c∈(0,+∞),∴0〈b=ac ≤2ca +〈a+c 。
∴a+c—b 〉0。
∴2(ab+bc —ac )=2(ab+bc —b 2)=2b(a+c —b )〉0,∴a 2+b 2+c 2>(a —b+c )2.变式提升1若a,b,c 是正数,能确定b a c c a b c b a +++++222与2c b a ++的大小吗? 解析:∵cb a +24+(b+c )≥4a, ac b +24+(c+a)≥4b, ba c +24+(a+b)≥4c , ∴c b a +24+a c b +24+ba c +24≥2(a+b+c ), 即b a c a c b c b a +++++222≥2c b a ++. 二、用综合法证明条件不等式【例2】 已知a,b ,c 〉0,且abc=1,求证:c b a ++≤a 1+b 1+c 1。
高一数学的不等式证明经典例题
典型例题一例1 假如10<<x ,证明)1(log )1(log x x a a +>-〔0>a 且1≠a 〕.分析1 用作差法来证明.需分为1>a 和10<<a 两种情况,去掉绝对值符号,然后比拟法证明.解法1 〔1〕当1>a 时,因为 11,110>+<-<x x , 所以 )1(log )1(log x x a a +--)1(log )1(log x x a a +---=0)1(log 2>--=x a .〔2〕当10<<a 时, 因为 11,110>+<-<x x 所以 )1(log )1(log x x a a +--)1(log )1(log x x a a ++-=0)1(log 2>-=x a .综合〔1〕〔2〕知)1(log )1(log x x a a +>-.分析2 直接作差,然后用对数的性质来去绝对值符号. 解法2 作差比拟法.因为 )1(log )1(log x x a a +--a x a x lg )1lg(lg )1lg(+--=[])1lg()1lg(lg 1x x a+--=[])1lg()1lg(lg 1x x a+---=0)1lg(lg 12>--=x a, 所以)1(log )1(log x x a a +>-.说明:解法一用分类相当于增设了条件,便于在变形中脱去绝对值符号;解法二用对数性质〔换底公式〕也能达到同样的目的,且不必分而治之,其解法自然简捷、明快.典型例题二例2 设0>>b a ,求证:.abba b a b a >分析:发现作差后变形、判断符号较为困难.考虑到两边都是正数,可以作商,判断比值与1的大小关系,从而证明不等式.证明:b a a b ba ab b a b a b aba b a ---=⋅=)( ∵0>>b a ,∴.0,1>->b a ba∴1)(>-b a b a . ∴a b ba ba b a .1> 又∵0>abb a , ∴.abba b a b a >.说明:此题考查不等式的证明方法——比拟法(作商比拟法).作商比拟法证明不等式的步骤是:判断符号、作商、变形、判断与1的大小.典型例题三例3 对于任意实数a 、b ,求证444()22a b a b ++≥〔当且仅当a b =时取等号〕 分析 这个题假如使用比拟法来证明,将会很麻烦,因为,所要证明的不等式中有4()2a b +,展开后很复杂。
高中数学 第二讲 证明不等式的基本方法 2.2 综合法与分析法练习(含解析)新人教A版选修4-5-新
2.2 综合法与分析法[A 级 基础巩固]一、选择题1.若实数x ,y 满足不等式xy >1,x +y ≥0,则()A .x >0,y >0B .x <0,y <0C .x >0,y <0D .x <0,y >0解析:因为xy >1>0,所以x ,y 同号.又x +y ≥0,故x >0,y >0.答案:A2.设x ,y >0,且xy -(x +y )=1,则( ) A .x +y ≥2(2+1)B .xy ≤2+1C .x +y ≤2(2+1)2D .xy ≥2(2+1)解析:因为x ,y >0,且xy -(x +y )=1,所以(x +y )+1=xy ≤⎝⎛⎭⎪⎫x +y 22. 所以(x +y )2-4(x +y )-4≥0,解得x +y ≥2(2+1).答案:A3.对任意的锐角α,β,下列不等关系中正确的是()A .sin(α+β)>sin α+sin βB .sin(α+β)>cos α+cos βC .cos(α+β)>sin α+sin βD .cos(α+β)<cos α+cos β解析:因为α,β为锐角,所以0<α<α+β<π,所以cos α>cos(α+β).又cos β>0,所以cos α+cos β>cos(α+β). 答案:D4.设13<⎝ ⎛⎭⎪⎫13b <⎝ ⎛⎭⎪⎫13a<1,则( ) A .a a <a b <b aB .a a <b a <a bC .a b <a a <b aD .a b <b a <a a解析:因为13<⎝ ⎛⎭⎪⎫13b <⎝ ⎛⎭⎪⎫13a<1, 所以0<a <b <1,所以a aa b =a a -b >1,所以a b <a a , a a b a =⎝ ⎛⎭⎪⎫a b a .因为0<a b<1,a >0, 所以⎝ ⎛⎭⎪⎫a b a <1,所以a a <b a ,所以a b <a a <b a . 答案:C5.已知a ,b ∈R,则“a +b >2,ab >1”是“a >1,b >1”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当a >1,b >1时,两式相加得a +b >2,两式相乘得ab >1.反之,当a +b >2,ab >1时,a >1,b >1不一定成立.如:a =12,b =4也满足a +b >2,ab =2>1,但不满足a >1,b >1. 答案:B二、填空题6.若1a <1b <0,已知下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④b a +a b>2. 其中正确的不等式的序号为________.解析:因为1a <1b<0, 所以b <a <0,故②③错.答案:①④7.若a >0,b >0,则下列两式的大小关系为:lg ⎝ ⎛⎭⎪⎫1+a +b 2________12[lg(1+a )+lg(1+b )]. 解析:12[lg(1+a )+lg(1+b )]=12lg[(1+a )(1+b )]=lg[(1+a )(1+b )]12, 又lg ⎝ ⎛⎭⎪⎫1+a +b 2=lg ⎝ ⎛⎭⎪⎫a +b +22, 因为a >0,b >0,所以a +1>0,b +1>0,所以[(a +1)(1+b )]12≤a +1+b +12=a +b +22, 所以lg ⎝ ⎛⎭⎪⎫1+a +b 2≥lg[(1+a )(1+b )]12. 即lg ⎝ ⎛⎭⎪⎫1+a +b 2≥12[lg(1+a )+lg(1+b )].答案:≥8.已知a >0,b >0,若P 是a ,b 的等差中项,Q 是a ,b 的等比中项,1R 是1a ,1b的等差中项,则P ,Q ,R 按从大到小的排列顺序为________.解析:P =a +b 2,Q =ab ,2R =1a +1b , 所以R =2ab a +b ≤Q =ab ≤P =a +b 2, 当且仅当a =b 时取等号.答案:P ≥Q ≥R三、解答题9.已知a >0,b >0,2c >a +b ,求证:c -c 2-ab <a .证明:要证c -c 2-ab <a ,只需证明c <a +c 2-ab ,即证b -a <2c 2-ab ,当b -a <0时,显然成立;当b -a ≥0时,只需证明b 2+a 2-2ab <4c 2-4ab ,即证(a +b )2<4c 2,由2c >a +b 知上式成立.所以原不等式成立.10.已知△ABC 的三边长是a ,b ,c ,且m 为正数.求证:aa +m +b b +m >c c +m. 证明:要证a a +m +b b +m >c c +m ,只需证a (b +m )(c +m )+b (a +m )(c +m )-c (a +m )·(b +m )>0,即证abc +abm +acm +am 2+abc +abm +bcm +bm 2-abc -acm -bcm -cm 2>0, 即证abc +2abm +(a +b -c )m 2>0.由于a ,b ,c 是△ABC 的边长,m >0,故有a +b >c ,即(a +b -c )m 2>0.所以abc +2abm +(a +b -c )m 2>0是成立的.因此aa +m +b b +m >c c +m 成立.B 级 能力提升1.已知a ,b ,c 为三角形的三边且S =a 2+b 2+c 2,P =ab +bc +ca ,则( )A .S ≥2PB .P <S <2PC .S >PD .P ≤S <2P 解析:因为a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca ,所以a 2+b 2+c 2≥ab +bc +ca ,即S ≥P .又三角形中|a -b |<c ,所以a 2+b 2-2ab <c 2,同理b 2-2bc +c 2<a 2,c 2-2ac +a 2<b 2,所以a 2+b 2+c 2<2(ab +bc +ca ),即S <2P .答案:D2.若n 为正整数,则2n +1与2n +1n 的大小关系是________.解析:要比较2n +1与2n +1n 的大小,只需比较(2n +1)2与⎝ ⎛⎭⎪⎫2n +1n 2的大小,即4n +4与4n +4+1n 的大小. 因为n 为正整数,所以4n +4+1n>4n +4. 所以2n +1<2n +1n .答案:2n +1<2n +1n3.设a ,b ,c ,d 均为正数,且a +b =c +d .证明:(1)若ab >cd ,则a +b >c +d ; (2)a +b >c +d 是|a -b |<|c -d |的充要条件.证明:(1)因为(a +b )2=a +b +2ab ,(c +d )2=c +d +2cd ,由题设a +b =c +d ,ab >cd ,得(a +b )2>(c +d )2. 因此a +b >c +d .(2)①若|a -b |<|c -d |,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd,由(1)得a+b>c+d.②若a+b>c+d,则(a+b)2>(c+d)2即a+b+2ab>c+d+2cd,因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2,因此|a-b|<|c-d|,综上所述a+b>c+d是|a-b|<|c-d|的充要条件.。
不等式的八种证明方法及一题多证
不等式的证明:一、比较法:比较法是证明不等式的最基本、最重要的方法,它常用的证明方法有两种: 1.作差比较法方法:欲证A>B,只需要证A-B>0 步骤:“作差----变形----判断符号”。
使用此法作差后主要变形形式的处理:○将差变形为常数或一个常数与几个平方和的形式常用配方法或实数特征a2≥0判断差的符号。
○将差变形为几个因式的积的形式,常用因式分解法。
○若变形后得到二次三项式,常用判别式定符号。
总之,变形的目的是有利于判断式子的符号,而变形方法不限定,也就是说,关键是变形的目标。
2.作商比较法方法:要证A>B,常分以下三种情况:若B>0,只需证明1AB >; 若B=0,只需证明A>0; 若B<0,只需证明1AB<。
(3)步骤:“作商-----变形-----判断商数与1的大小” 例:已知a , b , m 都是正数,并且a < b ,求证:bam b m a >++解析:用作差比较法∵)()()()()(m b b a b m m b b m b a m a b b a m b m a +-=++-+=-++ ∵a ,b ,m 都是正数,并且a <b ,∴b + m > 0 , b - a > 0 ∴0)()(>+-m b b a b m 即:b a m b m a >++ 例:已知a>b>0,求证:()2a ba ba b ab +>解析:用作商比较法∵()222222a b a b a b a b a b a b a b a b a ba ababb ab -++-----+⎛⎫=== ⎪⎝⎭又∵a>b>0,()221,012a b a ba ba ab a b b a b ab -+-⎛⎫∴>>∴> ⎪⎝⎭∴>例:已知0 < x < 1, 0 < a < 1,试比较|)1(log | |)1(log |x x a a +-和的大小。
不等式的证明分析法与综合法习题(可编辑修改word版)
2.3 不等式的证明(2)——分析法与综合法习题知能目标锁定1.掌握分析法证明不等式的方法与步骤,能够用分析法证明一些复杂的不等式;2.了解综合法的意义,熟悉综合法证明不等式的步骤与方法;重点难点透视1.综合法与分析法证明不等式是重点,分析法是证明不等式的难点.方法指导1.分析法⑴分析法是证明不等式的一种常用方法.它的证明思路是:从未知,看需知,逐步靠已知.即”执果索因”.⑵分析法证明的逻辑关系是:结论 B ⇐B1 ⇐B2⇐ ⇐Bn⇐A⑶用分析法证题一定要注意书写格式,并保证步步可逆.(A 已确认).⑷用分析法探求方向,逐步剥离外壳,直至内核.有时分析法与综合法联合使用.当不等式两边有多个根式或多个分式时,常用分析法.2.综合法⑴ 综合法的特点是 :由因导果 .其逻辑关系是 :已知条件A ⇒B1 ⇒B2⇒ ⇒Bn⇒B (结论),后一步是前一步的必要条件.⑵在用综合法证题时要注意两点:常用分析法去寻找证题思路,找出从何处入手, 将不等式变形,使其结构特点明显或转化为容易证明的不等式.精题巧练一.夯实双基1.若a>2,b>2,则a b 与a+b 的大小关系是a b( )a+bA.= B. < C.> D.不能确定2.设b >a > 0 ,则下列不等式中正确的是()A.lga> 0 B. >b -a C.a<1 +aD.b<b + 1 b 1 +a 2 +a a a +1b -a2 xyb + 2 a bc x + y 3. 若 a ,b,c ∈ R + ,且 a+b+c=1,那么 1a + 1 +b 1有最小值( ) cA.6B.9C.4D.34. 设a = 2, b = - 3, c = - ,那么 a ,b,c 的大小关系是( )A .a > b > cB .a > c > bC .b > a > cD .b > c > a 5. 若 x >y>1,则下列 4 个选项中最小的是( )A. x + yB.2xyC. D. 1 ( 1 + 1 )2 二.循序厚积x + y2 x y6. 已知两个变量 x,y 满足 x+y=4,则使不等式 1 +4≥ m 恒成立的实数m 的取值范围是;7. 已知 a,b 为正数,且 a+b=1 则 x y+ 的最大值为 ;8. 若 a ,b,c ∈ R +,且 a +b+c=1,则+ + 的最大值是;9. 若 x y+yz+zx=1,则 x 2 + y 2 + z 2 与 1 的关系是;10. 10.若a > b > 0, m = - b , n = ,则 m 与 n 的大小关系是.三、提升能力11. a 、b 、c 、d 是不全相等的正数,求证:(a b+cd)(ac+bd)>abcd12.设 x >0,y>0,求证:≤ 213. 已知 a,b ∈ R + ,且 a+b=1,求证: (a + 1 )2 + (b + 1 )2≥25. a b27 6 a + 2 aa - bx + y214. 设 a,b,c 是不全相等的正数,求证: lg a + b + lg b + c + lg a + c> lg a + lg b + lg c .2 2 215. 如果直角三角形的周长为 2,则它的最大面积是多少?友情提示易错点:乱用均值不等式;误用分析法,把”逆求”作为”逆推”,以证” p ⇒ q 为例, 这时的推理过程就是: q ⇒ q 1 ⇒ q 2 ⇒ ⇒ q n ⇒ p .证明的结果是证明了逆命题”q ⇒ p ”.而正确的推证过程是: q ⇐ q 1 ⇐ q 2 ⇐ ⇐ q n ⇐ p . 易忽视点:均值不等式中能否取道”=”的条件分析易被忽视导致出错. 解题规律:用定理,抓步骤,重格式.。
高中数学—综合法与分析法
∵∴即a2>(aab->-1bcb),(+b-bc-1)c(c+-ca)-1<a0, 0 成立.
5. 已知 m, nR+,
求证
m
+ 2
n
m+n
mnnm
.
证明: ∵ m, nR+,
要证
m+ 2
n
m+n
mnnm
,
只需证
(
m+ 2
n
)m+n
mnnm
,
(
m+ 2
n
)m+n
(
mn )m+n ,
∴只需证 ( mn)m+n mnnm,
b3+c3=(b+c)(b2-bc+c2) ≥(b+c)bc, c3+a3=(c+a)(c2-ca+a2) ≥(c+a)ca, ∴2(a3+b3+c3)≥(a+b)ab+(b+c)bc+(c+a)ca
=a2b+ab2+b2c+bc2+c2a+ca2 =a2(b+c)+b2(a+c)+c2(a+b).
配方计算得 (a-b)2+(b-c)2+(c-a)2>0,
∵a, b, c互不相等, ∴(a-b)2+(b-c)2+(c-a)2>0 成立, ∴原不等式成立.
4. 已知 a>b>c,
求证
1 a-b
+
1 b-c
+
1 c-a
综合法和分析法
一、复习:
推理
合情推理
(或然性推理)
演绎推理 (必然性推理)
归纳
类比
三段论
(特殊到一般) (特殊到特殊)(一般到特殊)
演绎推理是证明数学结论、建立数学体系的 重要思维过程.
数学结论、证明思路的发现,主要靠合情推理.
问题 1:已知 a, b 0 ,求证:a(b2 c2 ) b(c2 a2 )≥ 4abc
2
只要证 0 ≤ ( a b )2
因为最后一个不等式成 立,故结论成立。
综合法
分析法
表达简洁!
目的性强,易于探索!
练一练:
1、求证: 6 7 2 2 5
2、求证: a a 1 a 2 a 3(a 3)
3、已知1 tan a 1,求证:3sin 2a 4cos2a 2 tan a
综合法的特点:由因导果
分析法的特点:执果索因.
上联:由因导果,顺藤摸瓜 下联:执果索因,逆推破案 横批:得心应手
ab ≤ a b (a 0,b 0)? 指出其中的证明方法的特点. 2
证法1:对于正数a,b, 有
( a b)2 ≥ 0
证法2:要证 ab ≤ a b 2
只要证 2 ab ≤ a b
a b 2 ab ≥ 0 只要证 0 ≤ a 2 ab b
a b ≥ 2 ab a b ≥ ab
象这种利用已知条件和某些数学定义、公 理、定理等,经过一系列的推理论证,最后推 导出所要证明的结论成立,这种证明方法叫综 合法.(又称顺推证法)
分析法综合法证明不等式
设a、b、c均为正数,且a+b+c=1,证明:
(1)ab+bc+ac≤ ;(2) + + ≥1.
证明:(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac得a2+b2+c2≥ab+bc+ca.由题设得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1.所以3(ab+bc+ca)≤式是“由因导果”,用分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,可以增加解题思路,开阔视野.
分析法、综合法证明不等式
【例2】(1)已知x,y均为正数,且x>y,求证:2x+ ≥2y+3;
(2)设a,b,c>0且ab+bc+ca=1,求证:a+b+c≥ .
【证明】(1)因为x>0,y>0,x-y>0,2x+ -2y=2(x-y)+ =(x-y)+(x-y)+ ≥
3 =3,所以2x+ ≥2y+3.
(2)因为a,b,c>0,所以要证a+b+c≥ ,只需证明(a+b+c)2≥3.即证:a2+b2+c2+2(ab+bc+ca)≥3,而ab+bc+ca=1,故需证明:a2+b2+c2+2(ab+bc+ca)≥3(ab+bc+ca).即证:a2+b2+c2≥ab+bc+ca.而ab+bc+ca≤ + + =a2+b2+c2(当且仅当a=b=c时等号成立)成立.所以原不等式成立.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3不等式的证明(2)——分析法与综合法习题
知能目标锁定
1.掌握分析法证明不等式的方法与步骤,能够用分析法证明一些复杂的不等式;
2.了解综合法的意义,熟悉综合法证明不等式的步骤与方法;
重点难点透视
1.综合法与分析法证明不等式是重点,分析法是证明不等式的难点.
方法指导
1. 分析法
⑴分析法是证明不等式的一种常用方法.它的证明思路是:从未知,看需知,逐步靠已知.即”执果索因”.
⑵分析法证明的逻辑关系是:结论A B B B B n ⇐⇐⇐⇐⇐ 21 (A 已确认). ⑶用分析法证题一定要注意书写格式,并保证步步可逆.
⑷用分析法探求方向,逐步剥离外壳,直至内核.有时分析法与综合法联合使用.当不等式两边有多个根式或多个分式时,常用分析法. 2. 综合法
⑴综合法的特点是:由因导果.其逻辑关系是:已知条件
B
B B B A n ⇒⇒⇒⇒⇒ 21(结论),后一步是前一步的必要条件.
⑵在用综合法证题时要注意两点:常用分析法去寻找证题思路,找出从何处入手,将不等式变形,使其结构特点明显或转化为容易证明的不等式.
一.夯实双基
1.若a>2,b>2,则ab 与a+b 的大小关系是ab( )a+b
A.=
B. <
C.>
D.不能确定
2.0>>a b 设,则下列不等式中正确的是( ) A.0
lg
>b a B.a b a b ->- C.
a
a a
a ++<
+211 D.
1
1++<
a b a
b
3.若a,b,c +
∈R ,且a+b+c=1,那么
c
b
a
111+
+
有最小值( )
A.6
B.9
C.4
D.3
4.设2
6,37,2-=-==
c b a ,那么a,b,c 的大小关系是( )
c b a A >>. b c a B >>. c a b C >>. a c b D >>.
5.若x>y>1,则下列4个选项中最小的是( ) A.
2
y x + B.
y
x xy +2 C.xy D. )11(21y
x
+
二.循序厚积
6.已知两个变量x,y 满足x+y=4,则使不等式m
y
x
≥+
41恒成立的实数m 的取值范
围是________;
7.已知 a,b 为正数,且a+b=1则22+++b a 的最大值为_________; 8.若a,b,c +
∈R ,且a+b+c=1,则c b a ++的最大值是__________;
9.若xy+yz+zx=1,则222z y x ++与1的关系是__________; 10. b
a n
b a m b a -=
-
=
>>,,0若,则m 与n 的大小关系是______.
三、提升能力
11. a 、b 、c 、d 是不全相等的正数,求证:(a b+cd)(ac+bd)>abcd
12.设x>0,y>0,求证: 2
2
y x y
x +≤
+
13.已知a,b +
∈R ,且a+b=1,求证:2
25)1()1(2
2
≥
+
++
b
b a
a .
14.设a,b,c 是不全相等的正数, 求证:c b a c a c b b a lg lg lg 2
lg
2
lg
2
lg
++>+++++.
15.如果直角三角形的周长为2,则它的最大面积是多少?
易错点:乱用均值不等式;误用分析法,把”逆求”作为”逆推”,以证” p ⇒q 为例,这时的推理过程就是:p q q q q n ⇒⇒⇒⇒⇒ 21.证明的结果是证明了逆命题”q ⇒p ”.而正确的推证过程是:p q q q q n ⇐⇐⇐⇐⇐ 21. 易忽视点:均值不等式中能否取道”=”的条件分析易被忽视导致出错. 解题规律:用定理,抓步骤,重格式.。