(完整版)用样本估计总体练习试题(可编辑修改word版)

合集下载

样本估计总体练习题

样本估计总体练习题

A. hm
B.
h m
C.
m h
D. 与m , n无关
3. 在一个样本的频率分布直方图中,共有 11 个小 长方形,若中间一个小长方形的面积等于其他 10
1
个小长方形和的
4
一组的频数为 A. C. 32 40 B. D.
,且样本容量解某校高三学生的视力情况,随机地抽 查了该校 100 名高三学生的视力情况, 得到频率 分布直方图,如右,由于不慎将部分数据丢失, 但知道前 4 组的频数成等比数列, 6 组的频数 后 成等差数列,设最大频率为 a,视力在 4.6 到 5.0 之间的学生数为 b,则 a,b 的值分别为( A )
练 习
1. 某班级共有学生 54 人,现根据学生的学号, 用系统抽样的方法,抽取一个容量为 4 的样本. 已知 2 号,28 号,41 号同学在样本中,那么样 本中还有一个同学的学号是 .
2. 在抽取某产品的尺寸过程中,将其尺寸分成 若干组,[a,b]是其中一组,抽查出的个体数在 该组上的频率为 m, 该组上的直方图的高为 h, 则| a-b |等于 ( )
频率/组距
A. 0.27,78 B. 0.27,83 C. 2.7,78 D. 2.7,83
0.3 0.1
4.3
4.5
4.7
4.9
5.1
视力
5.为了了解高一学生的体能情况,某校随机抽取部 分学生进行一分钟跳绳次数测试,将所得数据整理 后, 画出了频率分布直方图.图中从左到右各小长方 形的面积之比为 2:4:17:15:9:3,第二小组的 频数为 12. 频率/组距 0.036 (1)第二小组的频 0.032 率是多少? 0.028 (2)样本容量是多 0.024 少? 0.020 (3)若次数在 110 以 0.016 上(含 110 次)为达 0.012 0.008 标,试估计该校全体 0.004 高一学生的达标率约 o 90 100 110 120 130 140 150 次数 是多少?

(完整版)用样本估计总体检测题(附答案)

(完整版)用样本估计总体检测题(附答案)

The shortest way to do many things is
实用精品文献资料分享
个样本数据的平均数、众数和中位数; (II)根据样本数据,估计 该小区 200 户家庭中日均用电量不超过 7 千瓦时的约有多少户. 16.为了解“节约用水”活动开展一个月来的成效,某单位随机调 查了 20 名职工家庭一个月来的节约用水情况,如下表所示: 节约 水量(吨) 0.5 1 1.5 2 职工数(人) 10 5 4 1 请你根据上表提 供的信息估计该单位 100 位职工的家庭一个月大约能节约用水多少 吨? 17.为增强学生体质,各校要求学生每天在校参加体育锻炼的时间 不少于 1 小时.我区为了解初三学生参加体育锻炼的情况,对部分 初三学生进行了抽样调查,并将调查统计图表绘制如下.请你根据 图表中信息解答下列问题: 时间(h) 0.5 1.0 1.5 2.0 人数 60 a 40 b 估计我区 4000 名初三学生体育锻炼时间达标的约有多少人?
18.在对全市初中生进行的体质健康测试中,青少年体质研究中心 随机抽取的 10 名学生的坐位体前屈的成绩(单位:厘米)如下: 11.2,10.5,11.4,10.2,11.4,11.4,11.2,9.5,12.0,10.2 (1)通过计算,样本数据(10 名学生的成绩)的平均数是 10.9, 中位数是 _________ ,众数是 _________ ; (2)一个学生 的成绩是 11.3 厘米,你认为他的成绩如何?说明理由; (3)研究 中心确定了一个标准成绩,等于或大于这个成绩的学生该项素质被 评定为“优秀”等级,如果全市有一半左右的学生能够达到“优秀” 等级,你认为标准成绩定为多少?说明理由. 19.某学校抽查了某班级某月 10 天的用电量,数据如下表(单位: 度); 度数 8 9 10 13 14 15 天数 1 1 2 3 1 2 (1)这 10 天用 电量的众数是 _________ ,中位数是 _________ ,极差是 _________ ; (2)求这个班级平均每天的用电量; (3)已知该 校共有 20 个班级,该月共计 30 天,试估计该校该月总的用电量. 20.某中学要开运动会,决定从九年级全部的 300 名女生中挑选 30 人,组成一个彩旗方队(要求参加方队的女同学的身高尽可能接近), 现在抽测了 10 名女生的身高,结果如下(单位:厘米): 166 154 151 167 162 158 158 160 162 162 (Ⅰ)依据样本数据估计,九

5_1_4_用样本估计总体练习(原卷版)

5_1_4_用样本估计总体练习(原卷版)

5.1.4用样本估计总体【基础练习】一、单选题1.从某小区抽取100户居民进行月用电量调查,发现其月用电量都在50至350度之间,频率分布直方图如图所示,则这100户居民月用电量的中位数大约为()A.150B.177.8C.183.3D.2002.如图,这是某校高三年级甲、乙两班在上学期的5次数学测试的班级平均分的茎叶图,则下列说法不正确的是()A.甲班的数学成绩平均分的平均水平高于乙班B.甲班的数学成绩的平均分比乙班稳定C.甲班的数学成绩平均分的中位数高于乙班D.甲、乙两班这5次数学测试的总平均分是1033.有4万个不小于70的两位数,从中随机抽取了3000个数据,统计如下:请根据表格中的信息,估计这4万个数据的平均数为()A.92.16B.85.23C.84.73D.77.974.如图是某学校的教研处根据调查结果绘制的本校学生每天放学后的自学时间情况的频率分布直方图:根据频率分布直方图,求出自学时间的中位数和众数的估计值(精确到0.01)分别是()A .2.20,2.25B .2.29,2.20C .2.29,2.25D .2.25,2.255.某歌手大赛进行电视直播,比赛现场有6名特约嘉宾给每位参赛选手评分,场内外的观众可以通过网络平台给每位参赛选手评分.某选手参加比赛后,现场嘉宾的评分情况如下表,场内外共有数万名观众参与了评分,组织方将观众评分按照[)70,80,[)80,90,[]90,100分组,绘成频率分布直方图如下:嘉宾评分的平均数为1x ,场内外的观众评分的平均数为2x ,所有嘉宾与场内外的观众评分的平均数为x ,则下列选项正确的是( ) A .122x x x +=B .122x x x +>C .122x x x +<D .12122x x x x x +>>>二、填空题6.解放战争中,国民党军队拥有过多辆各型坦克,编成了1个装甲兵团(师级编制).我军为了知道这个装甲兵团的各型坦克的数量,釆用了两种方法:一种是传统的情报窃取,一种是用统计学的方法进行估计.统计学的方法最后被证实比传统的情报收集更精确.这个装甲兵团对各型坦克从1开始进行了连续编号,在解放战争期间我军把缴获的这些坦克的编号进行记录并计算出这些编号的平均值为112.5,假设缴获的坦克代表了所有坦克的一个随机样本,则利用你所学过的统计知识估计这个装甲兵团的各型坦克的数量大约有_______.7.为了解某市居民用水情况,通过抽样,获得了100位居民某年的月均用水量(单位:吨),将该数据按照[0,0.5),[0.5,1),…[4.4.5]分成9组,绘制了如图所示的频率分布直方图,政府要试行居民用水定额管理,制定了一个用水量标准a,使85%的居民用水量不超过a(假设a为整数),按平价收水费,超出a的部分按议价收费,则a的最小值为_____.8.我国高铁发展迅速,技术先进,经统计在经停某站的高铁列车,有10个车次的正点率为0.97,有20个车次的正点率为0.99,有10个车次的正点率为0.98,则经停该站高铁列车的所有车次的平均正点率估计值为______.三、解答题9.某工厂为生产一种标准长度为40cm的精密器件,研发了一台生产该精密器件的车床,该精密器件的实际长度为acm,“长度误差”为40a cm,只要“长度误差”不超过0.03cm就认为合格.已知这台车床分昼、夜两个独立批次生产,每天每批次各生产1000件.已知每件产品的成本为5元,每件合格品的利润为10元.在昼、夜两个批次生产的产品中分别随机抽取20件,检测其长度并绘制了如下茎叶图:(1)分别估计在昼、夜两个批次的产品中随机抽取一件产品为合格品的概率;(2)以上述样本的频率作为概率,求这台车床一天的总利润的平均值.10.《中华人民共和国个人所得税法》规定,公民月收入总额(工资、薪金等)不超过免征额的部分不必纳税,超过免征额的部分为全月应纳税所得额,个人所得税税款按税率表分段累计计算.为了给公民合理减负,稳步提升公民的收入水平,自2018年10月1日起,个人所得税免征额和税率进行了调整,调整前后的个人所得税税率表如下:(1)已知小李2018年9月份上交的税费是295元,10月份工资、薪金等税前收入与9月份相同,请帮小李计算一下税率调整后小李10月份的税后实际收入是多少?(2)某税务部门在小李所在公司利用分层抽样方法抽取某月100位不同层次员工的税前收入,并制成下面的频率分布直方图.(i)请根据频率分布直方图估计该公司员工税前收入的中位数;(ii)同一组中的数据以这组数据所在区间中点的值作代表,按调整后税率表,试估计小李所在的公司员工该月平均纳税多少元?【提升练习】1.某校为了解高二年级学生某次数学考试成绩的分布情况,从该年级的1120名学生中随机抽取了100 名学生的数学成绩,发现都在[80,150]内现将这100名学生的成绩按照 [80,90),[90,100),[100,110),[110,120),[120,130),[130,140),[140,150]分组后,得到的频率 分布直方图如图所示则下列说法正确的是( )A .频率分布直方图中a 的值为 0.040B .样本数据低于130分的频率为 0.3C .总体的中位数(保留1位小数)估计为123.3分D .总体分布在[90,100)的频数一定不总体分布在[100,110)的频数相等2.学校为了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:将阅读时间不低于30分钟的观众称为“阅读霸”,则下列命题正确的是( ) A .抽样表明,该校有一半学生为阅读霸 B .该校只有50名学生不喜欢阅读 C .该校只有50名学生喜欢阅读 D .抽样表明,该校有50名学生为阅读霸3.某次测试成绩满分是为150分,设n 名学生的得分分别为()12,,,1n i a a a a N i n ∈≤≤,()1150k b k ≤≤为n名学生中得分至少为k 分的人数.记M 为n 名学生的平均成绩,则( )A .12150b b b M n ++= B .12150150b b b M ++=C .12150b b b M n++>D .12150150b b b M ++>4.某赛季甲、乙两名篮球运动员每场比赛得分用茎叶图表示,茎叶图中甲得分的部分数据被墨迹污损不清(如图1),但甲得分的折线图完好(如图2),则下列结论错误的是( )A .乙运动员得分的中位数是17,甲运动员得分的极差是19B .甲运动员发挥的稳定性比乙运动员发挥的稳定性差C .甲运动员得分有12的叶集中在茎1上 D .甲运动员得分的平均值一定比乙运动员得分的平均值低5.学校随机抽查了本校20个学生,调查他们平均每天进行体育锻炼的时间(单位:min ),根据所得数据的茎叶图,以5为组距将数据分为8组,分别是[0,5),[5,10),…,[35,40],作出频率分布直方图如图所示,则原始的茎叶图可能是( )A .B .C .D .6.在一次体育水平测试中,甲、乙两校均有100名学生参加,其中:甲校男生成绩的优秀率为70%,女生成绩的优秀率为50%;乙校男生成绩的优秀率为60%,女生成绩的优秀率为40%.对于此次测试,给出下列三个结论:①甲校学生成绩的优秀率大于乙校学生成绩的优秀率;②甲、乙两校所有男生成绩的优秀率大于甲、乙两校所有女生成绩的优秀率;③甲校学生成绩的优秀率与甲、乙两校所有学生成绩的优秀率的大小关系不确定.其中,所有正确结论的序号是____________.7.为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为s 1、s 2、s 3,则它们的大小关系为 .(用“>”连接)8.2020年年初,新冠肺炎疫情袭击全国.口罩成为重要的抗疫物资,为了确保口罩供应,某工厂口罩生产线高速运转,工人加班加点生产.设该工厂连续5天生产的口罩数依次为1x ,2x ,3x ,4x ,5x (单位:十万只),若这组数据1x ,2x ,3x ,4x ,5x 的方差为1.44,且21x ,22x ,23x ,24x ,25x 的平均数为4,则该工厂这5天平均每天生产口罩__________十万只.9.某市约有20万住户,为了节约能源,拟出台“阶梯电价”制度,即制定住户月用电量的临界值a ,若某住户某月用电量不超过a 度,则按平价(即原价)0.5(单位:元/度)计费;若某月用电量超过a 度,则超出部分按议价b (单位:元/度)计费,未超出部分按平价计费.为确定a 的值,随机调查了该市100户的月用电量,统计分析后得到如图所示的频率分布直方图.根据频率分布直方图解答以下问题(同一组数据用该区间的中点值作代表).(1)若该市计划让全市70%的住户在“阶梯电价”出台前后缴纳的电费不变,求临界值a;(2)在(1)的条件下,假定出台“阶梯电价”之后,月用电量未达a度的住户用电量保持不变;月用电量超过a度的住户节省“超出部分”的60%,试估计全市每月节约的电量.10.某校的3000名高三学生参加了天一大联考,为了分析此次联考数学学科的情况,现随机从中抽取15名学生的数学成绩(满分:150分),并绘制成如图所示的茎叶图.将成绩低于90分的称为“不及格”,不低于120分的称为“优秀”,其余的称为“良好”.根据样本的数字特征估计总体的情况.(1)估算此次联考该校高三学生的数学学科的平均成绩.(2)估算此次联考该校高三学生数学成绩“不及格”和“优秀”的人数各是多少.(3)在国家扶贫政策的倡导下,该地教育部门提出了教育扶贫活动,要求对此次数学成绩“不及格”的学生分两期进行学业辅导:一期由优秀学生进行一对一帮扶辅导,二期由老师进行集中辅导.根据实践总结,优秀学生进行一对一辅导的转化率为20%;老师集中辅导的转化率为30%,试估算经过两期辅导后,该校高三学生中数学成绩仍然不及格的人数.注:转化率=-辅导前不及格人数辅导后不及格人数辅导前不及格人数100%⨯。

5.1.4用样本估计总体(原卷版)

5.1.4用样本估计总体(原卷版)
分组
频数
频率
10
24
2
合计
1
(1)写出表中 、 及图中 的值(不需过程);
(2)若该校高三年级学生有240人,试估计该校高三年级学生参加社区服务的次数在区间 上的人数;
(3)估计该校高三年级学生参加社区服务次数的中位数.(结果精确到0.01)
【变式11】4.(2023·高一课时练习)某校240名学生参加某次数学选择题测验(共10题每题1分),随机调查了20个学生的成绩如下:
A.a的值为0.005
B.估计这组数据的众数为75
C.估计这组数据的第85百分位数为86
D.估计成绩低于60分的有25人
【变式13】3.(2022·安徽·涡阳县第九中学高一期末)某县在创文明县城期间安排了“垃圾分类知识普及实践活动”.为了解市民的学习成果,该县从某社区随机抽取了160名市民作为样本进行测试,记录他们的成绩,测试卷满分为100分,将数据收集,并整理得到频率分布直方图,如图所示:
(1)求频率分布直方图中a的值;
(2)估计该100名射击爱好者的射击平均得分(求平均值时同一组数据用该组区间的中点值作代表);
(3)该俱乐部计划招募成绩位列前10%的滑雪爱好者组成集训队备战明年的滑雪俱乐部联盟赛,请根据图中信息,估计集训队入围成绩(记为k).
【变式21】3.(2023下·湖南益阳·高一统考期末)某校有高一学生1000人,其中男生 600人,女生 400人,为了解该校全体高一学生的身高信息,甲与乙分别进行了调查.
成绩
1分
2分
3分
4分
5分
6分
7分
8分
9分
10分
人数
6
0
0
2
4
2

秋九年级数学上册 23.4 用样本估计总体作业 (新版)冀教版-(新版)冀教版初中九年级上册数学试题

秋九年级数学上册 23.4 用样本估计总体作业 (新版)冀教版-(新版)冀教版初中九年级上册数学试题

23.4用样本估计总体一、选择题1.%,请估计某某地区1000斤蚕豆种子中不能发芽的有( )A.971斤 B.129斤斤 D.29斤2.[2017·某某]为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有的2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生的人数约为( )A.70 B.720 C.1680 D.23703.[2017·某某期末]积极行动起来,共建节约型社会!我市某居民小区400户居民参加了节水行动,现统计了10户家庭一个月的节水情况,有关数据整理如下表:估计该小区400户家庭这个月节约用水的总量是( )A.360吨 B.400吨C.480吨 D.720吨4.从总体中抽取一部分数据作为样本去估计总体的某种属性.下面叙述正确的是( ) A.样本容量越大,样本平均数就越大B.样本容量越大,样本的方差就越大C.样本容量越大,样本的中位数就越大D.样本容量越大,对总体的估计就越准确二、填空题5.如图6-K-1,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图.若该校共有学生700人,则据此估计步行的有________人.图6-K-16.国庆节期间,小李调查了“福美小区”10户家庭一周内使用环保袋的数量,数据如下(单位:只):6,5,7,8,7,5,8,10,5,9.据此,估计该小区2000户家庭一周内使用环保袋的数量约为________只.7.某校在九年级的一次模拟考试中,随机抽取了40名学生的数学成绩进行分析,其中有10名学生的成绩达到108分及以上,据此估计该校九年级640名学生中这次模拟考试数学成绩达到108分及以上的有________名.8.某果园有苹果树100棵,为了估计该果园的苹果总产量,小王先按长势把苹果树分成了A,B,C三个级别,其中A级30棵,B级60棵,C级10棵,然后从A,B,C三个级别的苹果树中分别随机抽取了3棵,6棵,1棵,测出其产量,制成了如下的统计表.小李看了这个统计表后马上正确估计出了该果园的苹果总产量,那么小李的估计值是________千克.三、解答题9.某鱼塘放养鱼苗10万条,根据这几年的经验知道鱼苗成活率为95%,一段时间后打捞出售,第一次捞出40条,,第二次捞出25条,,第三次捞出35条,,请你估计鱼塘中的鱼总质量大约是多少千克.10.为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制成如下统计图表:身高情况分组表(单位:cm)图6-K-2根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在________组,中位数在________组;(2)样本中,女生身高在E组的人数为________;(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生有多少人.11甲、乙两名工人同时加工同一种零件,现根据两人7天的产品中每天出现的次品数情况绘制成如下不完整的统计图(如图6-K-3)和统计表,依据图表信息,解答下列问题:图6-K-3相关统计量表次品数量统计表(单位:件)(1)补全统计图、表;(2)判断谁出现次品的波动小;(3)估计乙加工该种零件30天出现次品多少件.1.D [解析] 由题意,%)=1000×=29(斤).故选D.2.C [解析] ∵100名学生中持“反对”和“无所谓”意见的共有30名学生,∴持“赞成”意见的学生人数为100-30=70,∴全校持“赞成”意见的学生人数约为2400×70100=1680(名).故选C.3.C [解析] 根据10户家庭一个月的节水情况可得,平均每户节水:(0.5×2+1×3+1.5×4+2×1)÷(2+3+4+1)=1.2(吨),∴400户家庭这个月节约用水的总量是400×1.2=480(吨).故选C.4. D5.2806.14000 [解答] 110×(6+5+7+8+7+5+8+10+5+9)×2000=14000(只).7.1608.7600 [解析] 根据题意,得平均每一棵苹果树的产量为80×3+75×6+70×13+6+1=76(千克),所以该果园的苹果总产量为76×100=7600(千克).9.解:由题意,可得(40×2.5+25×2.2+35×)÷(40+25+35)=2.53(千克),故100000×95%×=240350(千克).答:鱼塘中的鱼总质量大约是240350千克.10.解:(1)∵B组的频数为12,是最多的,∴众数在B组.男生总人数为4+12+10+8+6=40,按照从低到高的顺序,第20,21个数据都在C组,∴中位数在C组.(2)女生身高在E 组的人数占总人数的百分比为%-37.5%-25%-15%=5%. ∵抽取的样本中,男生、女生的人数相同, ∴样本中女生身高在E 组的人数为40×5%=2.(3)400×10+840+380×(25%+15%)=180+152=332(人).答:该校身高在160≤x<170之间的学生约有332人.11 解:(1)从次品数量统计表可以看出甲工人每天的次品数中2件出现了3次,出现的次数最多,故众数是2件.把甲工人每天的次品数按从小到大的顺序排列为(单位:件)0,1,2,2,2,3,4,最中间的数是2件,故中位数是2件.由于乙每天的次品数的平均数是1,所以乙工人第7天出现的次品有1×7-1-0-2-1-1-0=2(件).填表和补图如下.相关统计量表次品数量统计表(单位:件)(2)∵s 甲2=107,s 乙2=47,∴s 甲2>s 乙2,∴乙出现次品的波动小. (3)∵乙的平均数是1件, ∴1×30=30(件).答:估计乙加工该种零件30天出现次品30件.。

北师大版高中数学必修三用样本估计总体同步练习(二).docx

北师大版高中数学必修三用样本估计总体同步练习(二).docx

用样本估计总体同步练习(二)◆知识检测1.从某批零件中抽取若干个,然后再从中抽取40个进行合格检查,发现合格产品有36个,则该批产品的合格率为()A、36%B、72%C、90%D、25%2.从一个养鱼池中捕得m条鱼,做上记号后再放入池中,数日后又捕得n条鱼,其中k条有记号,估计池中有多少条鱼。

3.已知样本:10,8,6,13,8,10,12,11,7,8,9,11,9,12,9,10,11,11,12,那么频率为0.2的范围是()A、5.5-7.5B、7.5-9.5C、9.5-11.5D、11.5-13.54.一个容量为20的样本数据,分组后组距为10,区间与频率分布如下:◆ 能力提高1. 已知样本:10,8,6,10,13,8,10,12,11,7,8,9,12,9,10,11,12,12.那么频率为0.3的范围是( )A .5.5~7.5 B. 7.5~9.5 C.9.5~11.5 D.11.5~13.5 2. 观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿的体重在[2700,3000]的频率为( )A .0.001B .0.01C .0.003D .0.33. 在抽查某产品尺寸的过程中,将尺寸分为若干组,[)b a ,是其中一组,抽查出的个体数在该组上的频率为m ,该组上的直方图的高为h ,则b a -为( )A .hmB .m h C .hmD .与h m ,无关 4. 如右图是高一某班60名学生参加某次数学考试所得的成绩(成绩均为整数)整理后画出的频率分布直方图,则此班成绩的众数为_______,中位数约为_______,优良(120分以上为优良)率为________.5. 灯泡厂从某日生产的一批灯泡中抽取10个进行寿命测试,得灯泡寿命数据(天)如下:30 35 25 25 30 34 26 25 29 21则这批灯泡的平均寿命估计x =______,估计标准差S =________. 6. 某渔场对鱼的重量抽样统计如下表:(1)填写表中的频率.(2)画出频率分布直方图和频率分布折线图.(3)估计鱼的平均体重.(4)若该渔场共打上来6000条鱼,试估计有多少条鱼重量在2.0~3.5斤之间?◆技能培养对50台某种电子设备的寿命逐台进行测试,得到下列数据(单位:h):910,1220,1280,20,2330,900,860,1450,1220,550,160,2020,2590,1730,490, 1620,560,530,500,240,1280,60,190,290,740,1160,220,910,40,1410,3650, 3410,70,510,1270,610,310,220,370,60,1750,890,790,1280,570,760,50,15 30,1860,1280(1)列出样本的频率分布表.(2)画出频率分布直方图和频率分布折线图.(3)估计这批电子设备的平均寿命和寿命小于2000小时的百分比.◆拓展空间在估计总体分布时,我们常常画出样本的频率分布直方图或频率折线图,如果样本容量无限增大,,分组的组距无限减小,那么频率折线图就会无限接近于总体密度曲线,请查阅有关资料,了解总体密度曲线的意义和作用.。

用样本估计总体练习题含答案

用样本估计总体练习题含答案

用样本估计总体练习题(1)1. 张先生去某城市参加学术会议,拟选择在会议中心附近的A、B两酒店中的一个人住.两酒店条件和价格相当,张先生在网上查看了最近入住两个酒店的客人对两酒店的综合评分,并将评分数据记录为如图的茎叶图.记A、B两酒店的宗合评分数据的均值为,,方差为S A2,S B2,若以此为依据,下述判断较合理的是()A.因为,S A2>S B2,应选择A酒店B.因为,S A2<S B2,应选择A酒店C.因为,S A2>S B2,应选择B酒店D.因为,S A2<S B2,应选择B酒店2. 根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关3. 某市为调查学生的学习负担,在某一所学校门口随机抽取一部分学生进行询问调查,这种抽样方法是()A.简单随机抽样B.系统抽样C.分层抽样D.以上都不是4. (5分)如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________.5.(5分) 2020年,面对突如其来的新冠肺炎疫情冲击,在党中央领导下,各地区各部门统筹疫情防控和经济社会发展取得显著成效,商业模式创新发展,消费结构升级持续发展.某主打线上零售产品的企业随机抽取了50名销售员,统计了其2020年的月均销售额(单位:万元),将数据按照[12,14),[14,16),⋯,[22,24]分成6组,制成了如图所示的频率分布直方图.已知[14,16)组的频数比[12,14)组多4.(1)求频率分布直方图中a和b的值;(2)该企业为了挖掘销售员的工作潜力,对销售员实行冲刺目标管理,即给销售员确定一个具体的冲刺目标,完成这个冲刺目标,则给予额外的奖励.若公司希望恰有20%的销售人员能够获得额外奖励,求该企业应该制定的月销售冲刺目标值.参考答案与试题解析用样本估计总体练习题(1)一、选择题(本题共计 3 小题,每题 5 分,共计15分)1.【答案】B【考点】茎叶图【解析】此题暂无解析【解答】此题暂无解答2.【答案】D【考点】频率分布直方图【解析】此题暂无解析【解答】解:从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;2004−2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;从图中看出,2006年以来我国二氧化硫年排放量呈减少趋势,故C正确;2006年以来我国二氧化硫年排放量呈减少趋势,而不是与年份正相关,故D错误.故选D.3.【答案】D【考点】收集数据的方法【解析】利用排除法,本题既不是系统抽样,又不是分层抽样,它的形式类似于简单随机抽样,但它不符合简单随机抽样的两种形式抽签法和随机数表法,不属于三种抽样方法的任一种.【解答】解:由题意知,本题既不是系统抽样,也不是分层抽样,它的形式类似于简单随机抽样,但是它不符合简单随机抽样的两种形式,即抽签法和随机数表法;∴排除系统抽样,分层抽样和简单随机抽样三种方法.故选:D.二、填空题(本题共计 1 小题,共计5分)4.【答案】6.8【考点】茎叶图极差、方差与标准差【解析】根据茎叶图所给的数据,做出这组数据的平均数,把所给的数据和平均数代入求方差的个数,求出五个数据与平均数的差的平方的平均数就是这组数据的方差.【解答】∵ 根据茎叶图可知这组数据是8,9,10,13,15这组数据的平均数是8+9+10+13+155=11 ∴ 这组数据的方差是15[(8−11)2+(9−11)2+(10−11)2+(13−11)2+(15−11)2]=15[9+4+1+4+16]=6.8三、 解答题 (本题共计 1 小题 ,共计5分 )5.【答案】解:(1)由题意得{(a +b +0.12+0.14+0.10+0.04)×2=1,50×b ×2−50×a ×2=4,解得a =0.03,b =0.07.(2)设应该制定的月销售冲刺目标值为x 万元,则在频率分布直方图中x 右边的面积为1−0.8=0.2.最后一组的面积是0.04×2=0.08,最后两组的面积之和为0.10×2+0.04×2=0.28.因为0.08<0.2<0.28,所以x 位于倒数第二组,则(22−x )×0.10+0.08=0.2,解得x =20.8.所以该企业的月销售冲刺目标值应该定为20.8万元.【考点】频率分布直方图【解析】无无【解答】解:(1)由题意得{(a +b +0.12+0.14+0.10+0.04)×2=1,50×b ×2−50×a ×2=4,解得a =0.03,b =0.07.(2)设应该制定的月销售冲刺目标值为x 万元,则在频率分布直方图中x 右边的面积为1−0.8=0.2.最后一组的面积是0.04×2=0.08,最后两组的面积之和为0.10×2+0.04×2=0.28.因为0.08<0.2<0.28,所以x位于倒数第二组,则(22−x)×0.10+0.08=0.2,解得x=20.8.所以该企业的月销售冲刺目标值应该定为20.8万元.。

高职单招高考数学-用样本估计总体练习题

高职单招高考数学-用样本估计总体练习题

用样本估计总体练习题1.在频率分布直方图中,小矩形的高表示 ( )A. B.组距×频率 C.频率D. 2.在用样本频率估计总体分布的过程中,下列说法中正确的是( )A.总体容量越大,估计越精确B.总体容量越小,估计越精确C.样本容量越大,估计越精确D.样本容量越小,估计越精确3.在统计中,样本的标准差可以近似地反映总体的 ( )A.平均状态B.分布规律C.波动大小D.最大值和最小值4.10个小球分别编有号码1,2,3,4,其中1号球4个,2号球2个,3号球3个,4号球1个,数0.4是指1号球占总体分布的 ( )A.频数B.频率C.D.累计频率5. 一个容量为20的样本数据,分组后组距与频数如下表:则样本在区间上[10,50)的频率为 ( )A.0.5B.0.25C.0.6D.0.7 6.在某项体育比赛中,七位裁判为一选手打出的分数如下:90,89,90,95,93,94,93,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( ) A.92,2B.92,2.8C.93,2D.93,2.8 7.在一次数学测验中,某小组14名学生分别与全班的平均分85分的差是:2,3,-3,-5,12,12,8,2,-1,4,-10,-2,5,5,那么这个小组的平均分是 ( )A.97.2B.87.29C.92.32D.82.868.为了调查某一路口某时段的汽车流量,记录了15天同一时段通过该路口的汽车辆数,其中有2天是142辆,2天是145辆,6天是156辆,5天是157辆.那么这15天在该时段通过该路口的汽车平均辆数为( )频率样本容量频率组距频率组距A.146B.150C.153D.6009. 数据-2,-1,0,1,2的方差是 .10.一个容量为n的样本分成若干组,已知某组的频数和频率分别是60和0.3,则n= .11.已知一个样本方差为s 2= [(x1-4)2+(x2-4)2+…+(x10-4)2],则这个样本的容量是,平均数是 .12.甲乙两种冬小麦实验品种连续5年的平均单位面积产量如下:其中产量比较稳定的小麦是 .。

高中数学必修二 9 用样本估计总体(精练)(含答案)

高中数学必修二   9  用样本估计总体(精练)(含答案)

9.2 用样本估计总体(精练)【考点一 频率分布直方图】1.(2021·广西南宁)北京舞蹈学院为了解大一舞蹈专业新生的体重情况,对报到的1000名舞蹈专业生的数据(单位:kg )进行统计,得到如图所示的体重频率分布直方图,则体重在60kg 以上的人数为( )A .100B .150C .200D .250【答案】D【解析】0.04050.01050.25⨯+⨯=,10000.25250⨯=, 故选:D .2.(2021·江苏南京)为了解学生在课外活动方面的支出情况,抽取了n 个同学进行调查,结果显示这些学生的支出金额(单位:元)都在[]10,50内,其中支出金额在[]30,50内的学生有234人,频率分布直方图如图所示,则n 等于( )A .300B .320C .340D .360【答案】D【解析】解:由频率分布直方图知:234[10.010.025]10n=--⨯,∴360=n . 故选:D.3.(2021·宁夏长庆高级中学 )某家庭记录了50天的日用水量数据(单位:3m ),得到频数分布表如下: 50天的日用水量频数分布表(1)在答题卡上作出50天的日用水量数据的频率分布直方图:(2)估计日用水量小于30.35m 的概率; 【答案】(1)答案见解析;(2)0.48. 【解析】(1)(2)由题可知用水量在[0.3,0.4]的频数为10,所以可估计在[0.3,0.35)的频数为5,故用水量小于30.35m 的频数为1513524+++=,其概率为240.4850P ==. 4.(2021·全国·高一专题练习)已知某市2019年全年空气质量等级如表1所示.表12020年5月和6月的空气质量指数如下:5月240 80 56 53 92 126 45 87 56 60191 62 55 58 56 53 89 90 125 124103 81 89 44 34 53 79 81 62 116 886月63 92 110 122 102 116 81 163 158 7633 102 65 53 38 55 52 76 99 127120 80 108 33 35 73 82 90 146 95选择合适的统计图描述数据,并回答下列问题:(1)分析该市2020年6月的空气质量情况.(2)比较该市2020年5月和6月的空气质量,哪个月的空气质量较好?【答案】(1)答案见解析;(2)从整体上看,5月的空气质量略好于6月,但5月有重度污染,而6月没有.【解析】(1)根据该市2020年6月的空气质量指数和空气质量等级分级标准,可以画出该市这个月的不同空气质量等级的频数与频率分布表(表2).表2从表中可以看出,“优”“良”的天数达19天,占了整月的63.33%,没有出现“重度污染”和“严重污染”.我们还可以用条形图和扇形图对数据作出直观的描述,如图1和图2.从条形图中可以看出,在前三个等级的占绝大多数,空气质量等级为“良”的天数最多,后三个等级的天数很少,从扇形图中可以看出,空气质量为“良”的天数占了总天数的一半,大约有三分之二为“优”“良”,大多数是“良”和“轻度污染”.因此,整体上6月的空气质量不错.图1图2我们也可以用折线图展示空气质量指数随时间的变化情况,如图3.容易发现,6月的空气质量指数在100附近波动.图3(2)根据该市2020年5月的空气质量指数和空气质量分级标准,可以画出该市这个月的不同空气质量等级的频数和频率分布表(表3).表3为了便于比较,我们选用复合条形图,将两组数据同时反映到一个条形图上.通过条形图中柱的高低,可以更直观地进行两个月的空气质量的比较(下图).图4由表3和图4可以发现,5月空气质量为“优”和“良”的总天数比6月多.所以,从整体上看,5月的空气质量略好于6月,但5月有重度污染,而6月没有.【考点二常见统计图表】1.(2021·全国·月考)(多选)在新冠疫情期间,全国人民万众一心,众志成城,在抓防控疫情同时,又能促进复工复产.为了响应政府号召,积极恢复生产,某市相关部门对本市1500个大型企业的复工情况进行了调查,调查结果如图所示,则下列说法正确的是( )A.其他情况的企业比例为37.4%B.从调查的大型企业中任选一个,该企业是暂未全面恢复生产的概率为0.235C.不超过200个企业倾向于部分岗位恢复生产D.部分岗位恢复生产或暂未复工的企业超过604个【答案】AD【解析】对A ,100%23.5%16.8%22.3%37.4%---=,故A 正确;对B ,暂未全面恢复生产包括部分岗位恢复生产和暂未复工以及其他,占比为77.7%,故对应概率为0.777,故B 错误;对C ,倾向于部分岗位恢复生产的企业个数为150016.8%252⨯=(个),故C 错误;对D ,部分岗位恢复生产或暂未复工的企业个数为()150016.8%23.5%605⨯+≈(个),故D 正确. 故选:AD.2.(2021·全国·高一课时练习)(多选)“小康县”的经济评价标准为①年人均收入不低于7000元;②年人均食品支出(单位:元)不高于年人均收入的35%.某县有40万人,年人均收入如表所示,年人均食品支出如图所示,则该县( )A .未达到标准①B .达到标准①C .达到标准②D .不是小康县【答案】BD【解析】由图表可知年人均收入为()2000340005600058000610000712000516000340⨯+⨯+⨯+⨯+⨯+⨯+⨯÷7050=(元),达到了标准①;年人均食品支出为()140032000524001330001036009402695⨯+⨯+⨯+⨯+⨯÷=(元),则年人均食品支出占年人均收入的2695100%38.2%35%7050⨯≈>,未达到标准②,所以该县不是小康县. 故选:BD .3.(2021·全国·高一课时练习)(多选)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2017年1月至2019年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线统计图.根据该折线统计图,下列结论正确的是( )A.年接待游客量逐年增加B.各年的月接待游客量高峰期大致都在8月C.2017年1月至12月月接待游客量逐月增加D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】ABD【解析】对A,接待游客量虽然逐月波动,但总体上逐年增加,故A正确;对B,折线统计图可知,各年的月接待游客量高峰期大致都在8月,故B正确;对C,2017年8月至9月月接待游客量呈下降趋势,故C错误;对D,折线统计图可知,各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳,故D正确.故选:ABD.4.(2021·广东广雅中学 )如图是国家统计周公布的2020年下半年快递运输量情况,请根据图中信息选出正确的选项( )A.2020年下半年,每个月的异地快递量部是同城快递量的6倍以上B.2020年10月份异地快递增长率小于9月份的异地快递增长率(注.增长率指相对前一个月而言)C.2020年下半年,异地快递量与月份呈正相关关系D.2020年下半年,同城和异地快递量最高均出现在11月【答案】BCD【解析】对于A,2020年7月的异地快递量为572812.9万件,同城快递量为105191.1万件,异地快递量不是同城快递量的6倍,故A不正确;对于B,因为679556.6599604.6708642.6679556.6599604.6679556.6-->,9月异地快递增长率明显高于10月异地快递增长率,故B正确;对于C,由图可看出,除2020年12月异地快递量较11月略少,其余都有较明显增加,因此可以判断异地快递量与月份呈正相关关系,故C正确;对于D,由图可看出,同城和异地快递量最高都在11月份,故D正确.故选:BCD5(2021·江苏·高三月考)数据显示,全国城镇非私营单位就业人员平均工资在2011年为40000元,到了2020年,为97379元,比上年增长7.6%.根据下图提供的信息,下面结论中正确的是( )2011-2020年城镇非私营单位就业人员年平均工资及增速A.2011年以来,全国城镇非私营单位就业人员平均工资逐年增长B.工资增速越快,工资的绝对值增加也越大C.与2011年相比,2019年全国城镇非私营单位就业人员平均工资翻了一番多D.2018年全国城镇非私营单位就业人员平均工资首次突破90000元【答案】AC【解析】对选项A:由图可知,2011年以来,全国城镇非私营单位就业人员平均工资逐年增长,只是每年增速有变化,故选项A正确;对选项B:工资增速越快,工资的绝对值增加也越大,这是错误的,工资的绝对值的增加还与上一年的工资水平有关系,故选项B错误;÷≈元,故选项C正对选项C:根据数据2019年全国城镇非私营单位就业人员平均工资为97379 1.07690500确;÷÷≈元,所以对选项D:根据数据2018年全国城镇非私营单位就业人员平均工资为97379 1.076 1.09882423全国城镇非私营单位就业人员平均工资首次突破90000元应为2019年,故选项D错误.故选:AC.【考点三百位分数】1.(2021·湖北省水果湖高级中学高二月考)某校高一年级一名学生一学年以来七次月考物理成绩(满分100分)依次为84,78,82,84,86,89,96,则这名学生七次月考物理成绩的第70百分位数为( ) A.86 B.84 C.96 D.89【答案】A⨯=.所以这名学生七次月考物理成绩的第70百分位数为86.【解析】因为770% 4.9故选:A.2.(2021·安徽·霍邱县第一中学)为了解应届大学毕业生工作之初的薪资情况,随机调查了12名应届大学毕业生,他们的工作之初的基本工资分别为:2850,2950,3050,2880,2755,2710,2890,3130,2940,3325,2920,2880,则样本的第85百分位数是( )A.3050 B.2950 C.3130 D.3325【答案】C【解析】将这组数据从小到大排列为:2710,2755,2850,2880,2880,2890,2920,2940,2950,3050,3130,3325⨯=,可知样本数据的第85百分位数为第11个数,即为3130.由1285%10.2故选:C.3.(2021·江苏如皋·高一月考)为了弘扬体育精神,学校组织秋季运动会,在一项比赛中,学生甲进行了8组投篮,得分分别为10,8,a,8,7,9,6,8,如果学生甲的平均得分为8分,那么这组数据的75百分位数为( )A.8 B.9 C.8.5 D.9.5【答案】C【解析】由题意可得:1088796888a+++++++=,解得:8a=,将这组数据从小到大的顺序排列为6,7,8,8,8,8,9,10,因为875%6⨯=为整数,所以这组数据的75百分位数为898.52+=,故选:C.4.(2021·浙江·)已知100个数据的25百分位数是9.3,则下列说法正确的是( )A.这100个数据中一定有25个数小于或等于9.3B.把这100个数据从小到大排列后,9.3是第25个数据C.把这100个数据从小到大排列后,9.3是第25个数据和第26个数据的平均数D.把这100个数据从小到大排列后,9.3是第25个数据和第24个数据的平均数【答案】C【解析】因为100×25%=25为整数,第25个数据和第26个数据的平均数为第25百分位数,所以这100个数据中不一定有25个数小于或等于9.3,故A错误;所以第25个数据和第26个数据的平均数为第25百分位数,是9.3,所以第25个数据不一定是9.3,故B 错误;根据百分位数的定义,可知这100个数据从小到大排列后,9.3是第25个数据和第26个数据的平均数,故C正确,D错误.故选:C.【考点四特征数】1.(2021·广东肇庆)(多选)已知一组数据为-1,1,5,5,0,则该组数据的( )A.众数是5 B.平均数是2C.中位数是5 D.方差是32 5【答案】ABD【解析】数据为-1,1,5,5,0,的众数为5,A正确;数据的平均数为1155025-++++=,B正确;数据的中位数为1,C错误;数据的方差为()()()()()22222 12125252023255--+-+-+-+-=,D正确.故选:ABD.2.(2021·广东·高一月考)(多选)四名同学各掷骰子5次,分别记录每次骰子出现的点数.根据四名同学的统计结果,可以判断出一定没有出现点数6的有( ) A .中位数为3,众数为3 B .平均数为3,众数为4 C .平均数为3,中位数为3 D .平均数为2,方差为2.4【答案】BD【解析】对于A ,当掷骰子出现的结果为1,2,3,3,6时, 满足中位数为3,众数为3,所以A 不可以判断;对于B ,若平均数为3,且出现点数为6,则其余4个数的和为9, 而众数为4,故其余4个数的和至少为10,所以B 可以判断; 对于C ,当掷骰子出现的结果为1,1,3,4,6时,满足平均数为3,中位数为3,可以出现点6,所以C 不能判断; 对于D ,若平均数为2,且出现点数6, 则方差221(62) 3.2 2.45S >-=>,所以当平均数为2,方差为2.4时,一定不会出现点数6. 故选:BD.3.(2021·江苏省镇江中学)(多选)甲、乙两位学生的五次数学成绩统计如表所示,则下列判断不正确的是( )A .甲的成绩的平均数等于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差 【答案】BD【解析】选项A :甲的成绩的平均数为4050607080605x ++++==甲,乙的成绩的平均数为5050506090605x ++++==乙,故A 正确,选项B :根据表格可得甲的中位数为60,乙的中位数为50,故B 错误,选项C :甲的成绩的方差为222221(4060)(5060)(7060)(8060)2005s ⎡⎤=-+-+-+-=⎣⎦甲, 乙的成绩的方差为222Z 1(5060)3(9060)2402005s ⎡⎤=-⨯+-=>⎣⎦,故C 正确, 选项D :甲的成绩的极差为804040-=,乙的成绩的极差为905040-=,故D 错误. 故选:BD4.(2021·全国·高三月考)在某文艺比赛中,由6名媒体代表组成的甲组、12名专家组成的乙组和12名观众代表组成的丙组分别给选手打分(100分制,选手得分为所有评委打分的平均分).已知甲组对某选手打分为;46,50,52,48,48,56,乙组、丙组对该选手打分的平均分分别为48和56,标准差分别为3.7和11.8,则( ) A .该选手的得分为51.6 B .甲组打分的中位数为50C .相对于丙组,乙组打分稳定性更高D .相对于丙组,乙组对该选手评价更高 【答案】AC【解析】甲组打分平均分为4650524848566+++++=50,6501248125651.6,61212x ⨯+⨯+⨯∴==++故A 正确;将46,50,52,48,48,56,按照从小到大得顺序排列得46,48,48,50,52,56, 所以甲组打分的中位数为48502+=49,B 错误; 根据标准差知乙组评委打分的波动小,稳定性更高,故C 正确; 根据平均数知丙组对选手评价更高,D 错误. 故选:AC.5.(2021·贵州·贵阳市第二十五中学 )已知123,,,,n x x x x 平均数为a ,标准差是b ,则12332,32,32,,32n x x x x ++++的平均数是________,标准差是________.【答案】32a +【解析】解:由题得12n x x x na +++=,(n x a b n++-=则12332,32,32,,32n x x x x ++++的平均数是123232323232n x x x na na nn+++++++==+,12332,32,32,,32n x x x x ++++的标准差是2221(3232)9[()()]3n n x a x a x a b nn+++---++-==.故答案为:32a +;3b .6.(2021·广西河池·高一月考)已知:1x ,2x ,3x …,n x 的平均数为a .则132x +,232x +,…,32n x +的平均数是__________. 【答案】32a +或23a + 【解析】由题()121n x x x x a n=+++=,所以12n x x x na +++=,则132x +,232x +,…,32n x +的平均数: ()()()121323232n x x x n ++++++⎡⎤⎣⎦()()1211323232n x x x n an n a nn=++++=+=+⎡⎤⎣⎦, 故答案为:32a +7(2021·全国·高一课时练习)已知一组数据1x ,2x ,…,10x 的方差是2,且()()()2221210333380x x x -+-++-=,则这组数据的平均数x =___________.【答案】-3或9【解析】由题意可知,2101010221111()22102010i i i i i i x x x x x x ---===-=⇔-+=∑∑∑,因为101110i i x x -==∑,即10110i i x x -==∑,所以210212010i i x x -==+∑,因为()()()10102122212101333903806i i i i x x x x x ==-+-++-=-+=∑∑,所以220106090380x x --+-+=,解得3x -=-或9. 故答案为:-3或9.8.(2021·江西·新余市第一中学高二月考)已知样本910,11,x y ,,的平均数是10,方差是4,则xy =_____; 【答案】91 【解析】因为样本910,11,x y ,,的平均数是10,方差是4,所以()191011105x y ++++=,()()()()()22222191010101110101045x y ⎡⎤-+-+-+-+-=⎣⎦, 则 ()()2220,101018x y x y +=-+-=, 解得 13,7x y ==或 7,13x y ==, 所以91xy =, 故答案为:91 【考点五 综合运用】1.(2021·广东肇庆)为了迎接新高考,某校举行物理和化学等选科考试,其中,600名学生化学成绩(满分100分)的频率分布直方图如图所示,其中成绩分组区间是:第一组[)45,55,第二组[)55,65,第三组[)65,75,第四组[)75,85,第五组[)85,95.已知图中前三个组的频率依次构成等差数列,第一组和第五组的频率相同.(1)求a ,b 的值;(2)估算高分(大于等于80分)人数;(3)估计这600名学生化学成绩的平均值(同一组中的数据用该组区间的中点值作代表)和中位数(中位数精确到0.1).【答案】(1)0.0200.045a b =⎧⎨=⎩;(2)90;(3)平均值为69.5,中位数为69.4【解析】(1)由题意可知:()0.0050.02520.0050.0250.005101b b a +=⨯⎧⎨++++⨯=⎩,解得0.0200.045a b =⎧⎨=⎩.(2)高分的频率约为:0.0200.005100.005100.1522a ⎛⎫⎛⎫+⨯=+⨯= ⎪⎪⎝⎭⎝⎭. 故高分人数为:6000.1590⨯=.(3)平均值为:500.00510600.02510700.04510800.02010⨯⨯+⨯⨯+⨯⨯+⨯⨯900.0051069.5+⨯⨯=.设中位数为x ,则()0.005100.025100.045650.5x ⨯+⨯+⨯-=,69.4x ≈. 故中位数为69.4.2.(2021·广西·东兰县高级中学 )某企业质管部门,对某条生产线上生产的产品随机抽取100件进行相关数据的对比,并对每个产品进行综合评分(满分100分),下图是这100件产品的综合评分的频率分布直方图.若将综合评分大于等于80分以上的产品视为优等品.(1)求这100件产品中优等品的件数; (2)求这100件产品的综合评分的中位数. 【答案】(1)60;(2)82.5.【解析】(1)由频率和为1得:(0.0050.0100.0250.020)101,0.040a a ++++⨯==. 所以优等品件数为:(0.020.04)1010060+⨯⨯=. (2)设综合评分的中位数为x ,则(0.0050.0100.025)100.040(80)0.5x ++⨯+⨯-=. 解得82.5x =,所以综合评分的中位数为82.5.3.(2021·江西·南城县第二中学 )抚州市为了了解学生的体能情况,从全市所有高一学生中按80:1的比例随机抽取200人进行一分钟跳绳次数测试,将所得数据整理后,分为6组画出频率分布直方图(如图所示),现一,二两组数据丢失,但知道第二组的频率是第一组的3倍.(1)若次数在120以上(含120次)为优秀,试估计全市高一学生的优秀率是多少?全市优秀学生的人数约为多少?(2)求第一组、第二小组的频率是多少?并补齐频率分布直方图; (3)估计该全市高一学生跳绳次数的中位数和平均数?【答案】(1)8640;(2)第一组频率为0.03,第二组频率为0.09.频率分布直方图见解析;(3)中位数为3343,均值为121.9【解析】(1)由频率分布直方图,分数在120分以上的频率为(0.0300.0180.006)100.54++⨯=, 因此优秀学生有0.54200808640⨯⨯=(人); (2)设第一组频率为x ,则第二组频率为3x , 所以30.340.541x x +++=,0.03x =, 第一组频率为0.03,第二组频率为0.09. 频率分布直方图如下:(3)前3组数据的频率和为(0.0030.0090.034)100.46++⨯=,中位数在第四组,设中位数为n,则1100.30.460.5120110n-⨯+=-,3343n=.均值为0.03950.091050.341150.31250.181350.06145121.9⨯+⨯+⨯+⨯+⨯+⨯=.4.(2021·福建·闽江学院附中高一月考)某次数学测试后,数学老师对该班n位同学的成绩进行分折,全班同学的成绩都分布在区间[95,145],制成的频率分布直方图如图所示,已知成绩在区间[125,135)的有12人.(1)求n和该班数学成绩的众数;(2)根据频率分布直方图,估计本次测试该班的数学平均分(同一组数据用该组数据区间的中点值表示).【答案】(1)60n=,众数:120;(2)118.5【解析】1)由频率分布直方图得成绩在区间[125,135)的频率为0.020100.2⨯=,又因为成绩在区间[125,135)的有12人,所以120.2n=,解得60n=.由频率分布直方图得该班数学成绩的众数在[)115,125组内,且为120;(2)由题知[)[)[)[)[]95,105,105,115,115,125,125135,135,145,对于的频率分别为0.15,0.25,0.3,0.2,0.1, 所以本次测试该班的数学平均分为0.151000.251100.31200.21300.1140118.5⨯+⨯+⨯+⨯+⨯=5.(2021·广西·玉林市育才中学)棉花是我国纺织工业重要的原料.新疆作为我国最大的产棉区,对国家棉花产业发展、确保棉粮安全以及促进新疆农民增收、实现乡村振兴战略都具有重要意义.动态、准确掌握棉花质量现状,可以促进棉花产业健康和稳定的发展.在新疆某地收购的一批棉花中随机抽测了100根棉花的纤维长度(单位:mm ),得到样本的频数分布表如下:(1)在图中作出样本的频率分布直方图;(2)根据(1)作出的频率分布直方图求这一棉花样本的众数、中位数与平均数,并对这批棉花的众数、中位数和平均数进行估计.【答案】(1)答案见解析;(2)众数为:275(mm),中位数为:252.5mm ,平均数为:222mm ,购进的这批棉花的众数、中位数和平均数分别约为275mm 、252.5mm 和222mm . 【解析】(1)样本的频率分布直方图如图所示.(2)由样本的频率分布直方图,得众数为:250300275(mm)2+=; 设中位数x 为,(250)0.00850%48%x -⨯=-,则解得252.5x =,即中位数为252.5mm . 设平均数为x ,则250.04750.08x =⨯+⨯+1250.11750.12250.16⨯+⨯+⨯+2750.43250.12222⨯+⨯=,故平均数为222mm .由样本的这些数据,可得购进的这批棉花的众数、中位数和平均数分别约为275mm 、252.5mm 和222mm . 6.(2021·云南省玉溪第一中学 )某市为了了解人们对“中国梦”的伟大构想的认知程度,针对本市不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分100分(95分及以上为认知程度高),结果认知程度高的有20m m人,按年龄分成5组,其中第一组:[)20,25,第二组:[)25,30,第三组:[)30,35,第四组:[)35,40,第五组:[]40,45,得到如图所示的频率分布直方图.(1)根据频率分布直方图,估计这m 人的平均年龄和第80百分位数;(2)现从以上各组中采用分层随机抽样的方法抽取20人,担任本市的宣传使者.若第四组宣传使者的年龄的平均数与方差分别为37和52,第五组宣传使者的年龄的平均数与方差分别为43和1,求这m 人中35~45岁所有人的年龄的方差.【答案】(1)平均年龄32.25岁,第80百分位数为37.5;(2)10. 【解析】解:(1)设这m 人的平均年龄为x ,则22.50.0527.50.3532.50.337.50.242.50.132.25x =⨯+⨯+⨯+⨯+⨯=.设第80百分位数为a ,由50.02(40)0.040.2a ⨯+-⨯=,解得37.5a =. (2)由频率分布直方图得各组人数之比为1:7:6:4:2,故各组中采用分层随机抽样的方法抽取20人,第四组和第五组分别抽取4人和2人, 设第四组、第五组的宣传使者的年龄的平均数分别为4x ,5x ,方差分别为24s ,25s ,则437x =,543x =,2452s =,251s =, 设第四组和第五组所有宣传使者的年龄平均数为z ,方差为2s . 则4542396x x z +==, ()(){}222224545142106s s x z s x z ⎡⎤⎡⎤=⨯+-+⨯+-=⎢⎥⎢⎥⎣⎦⎣⎦, 因此,第四组和第五组所有宣传使者的年龄方差为10,据此,可估计这m 人中年龄在35~45岁的所有人的年龄方差约为10.7.(2021·广西·玉林市第十一中学)为了选拔参加自行车比赛的选手,对自行车运动员甲、乙两人在相同条件下进行了6次测试,测得他们的最大速度(单位:m/s )的数据如下:(1)画出茎叶图;(2)估计甲、乙两运动员的最大速度的均值和方差,并判断谁参加比赛更合适. 【答案】(1)茎叶图见解析;(2)派乙更合适 【解析】(1)茎叶图如下:(2)甲的平均数为:()112730313537386x =+++++=33, 乙的平均数为:216x =(28+29+33+34+36+38)=33, 甲的方差为:()2114736944162563S =+++++=, 乙的方差为:()221382516192563S =++++=, 甲、乙的平均数相等,乙的方差更小,则乙的发挥更稳定,故乙参加比赛更合适.8.(2021·河南·高一期末)我国棉花产量居世界首位,产棉省市区有22个新疆是长绒棉的主产区,新疆棉区日照充足,气候干旱,雨量稀少,属灌溉棉区,所产的新疆长绒棉因质地光亮、有弹性,绒长质优,原棉色泽好,备受消费者的青睐.某科技公司欲进一步改良优质棉品质,对甲乙两块试验田种植的两种棉花新品种的棉绒长度进行测量,分别记录抽查数据如下(单位:mm ):甲:10210199981039899;乙:110115908575115110.试从统计的角度分析说明哪个棉花新品种比较稳定.【答案】甲块试验田种植的棉花新品种的棉绒长度比较稳定 【解析】品种甲的平均数1102101999810398991007x ++++++==, 甲的方差为2222222211(102100)(101100)(99100)(98100)(103100)(98100)(99100)7s ⎡⎤=-+-+-+-+-+-+-⎣⎦247= 乙的平均数21101159085751151101007x ++++++==, 乙的方差为2222222221(110100)(115100)(90100)(85100)(75100)(115100)(110100)7s ⎡⎤=-+-+-+-+-+-+-⎣⎦16007= 因为12x x =,2212s s <,所以甲块试验田种植的棉花新品种的棉绒长度比较稳定.。

高二数学用样本估计总体练习题及答案

高二数学用样本估计总体练习题及答案

高二数学用样本估计总体练习题及答案1.关于频率分布直方图,正确的说法是直方图的高表示该组上的个体在样本中出现的频数与组距的比值。

2.样本在区间(-50,50]上的频率为25%。

3.样本方差S²能够估计总体稳定性。

4.(1)这种抽样方法是简单随机抽样。

(2)甲车间的数据茎叶图呈现出正态分布,乙车间的数据茎叶图呈现出偏态分布,说明甲车间的生产情况比乙车间更加稳定。

(3)甲车间的平均值为100.14,标准差为8.59,乙车间的平均值为98.57,标准差为16.66,甲车间的产品比较稳定。

5.该小组成绩的平均数、众数、中位数分别为87、85、85.6.数据a1,a2,…,a20,x这21个数据的方差约为0.1905.7.样本的频率分布能够用来估计总体的频率分布。

8.同学平均成绩好,但___同学的成绩波动更大。

9.一位中学生在30天中记忆英语单词的数量如下:2天记忆51个,3天记忆52个,6天记忆53个,8天记忆54个,7天记忆55个,3天记忆56个,1天记忆57个。

求这位中学生30天中的平均记忆量。

10.从一批棉花中抽取9根棉花的纤维长度如下(单位:mm):82,202,352,321,25,293,86,206,115.求样本平均数、样本方差和样本标准差。

11.有甲、乙两个球队,甲队有6名队员,乙队有20名队员,他们的身高数据如下(单位:mm):甲队身高分别为187,181,175,185,173,179;乙队身高分别为180,179,182,184,183,183,183,176,176,181,177,177,178,180,177,184,177,182,177,183.求两队队员的平均身高,比较甲、乙两队身高的整齐程度。

12.甲、乙两台机床在相同技术条件下同时生产一种尺寸为10mm的零件,现从中各抽测10个,它们的尺寸分别如下(单位:mm):甲10,2,10,1,10,9,8,9,9,10;乙10,3,10,4,9,6,9,9,10,10.求上述两个样本的平均数与方差,并估计哪台机床生产的零件质量更好。

高中数学 基础知识篇 1.6 用样本估计总体训练(含解析)北师大版必修3

高中数学 基础知识篇 1.6 用样本估计总体训练(含解析)北师大版必修3

高中数学基础知识篇 1.6 用样本估计总体训练(含解析)北师大版必修35 用样本估计总体(必修3北师版)建议用时实际用时满分实际得分45分钟100分一、选择题(每小题6分,共24分)1.在用样本频率估计总体分布的过程中,下列说法中正确的是()A.总体容量越大,估计越精确B.总体容量越小,估计越精确C.样本容量越大,估计越精确D.样本容量越小,估计越精确2.一个容量为32的样本,已知某组样本的频率为0.25,则该组样本的频数为()A.2B.4C.6D.83. 为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如下,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.6到5.0之间的学生数为b,则a, b的值分别为()A.0.27,78B.0.27,83C.2.7,78D.2.7,834.在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为()A.9.4,0.484B.9.4,0.016C.9.5,0.04D.9.5,0.16二、填空题(每小题6分,共12分)5.一个容量为n的样本,分成若干组,已知某组的频数和频率分别为50和0.25,则n=.6.若128,,,k k k的方差为3,则12(3),k-282(3),,2(3)k k--的方差为.三、解答题(共64分)7.(20分)下表给出了某学校120名12岁男生的区间[122,126)[126,130)[130,134)[134,138)[138,142)[142,146)[146,150)[150,154)[154,158) 人数5 8 10 22 33 20 116 5(2)画出频率分布直方图;(3)根据累积频率分布,估计小于134的数据约占多少百分比.8.(22分)为了考察甲乙两种小麦的长势,分别从中抽取10株苗,测得苗高如下:甲12 13 14 15 10 16 13 11 15 11 乙11 16 17 14 13 19 6 8 10 16 哪种小麦长得比较整齐?9. (22分)从A、B两种棉花中各抽10株,测得它们的株高如下:(cm)A: 25 41 40 37 22 14 19 39 21 42B: 27 16 44 27 44 16 40 16 40 40(1) 哪种棉花的苗长得高?(2) 哪种棉花的苗长得整齐?5 用样本估计总体(必修3北师版)答题纸得分:一、选择题题号 1 2 3 4答案二、填空题5. 6.三、解答题7.8.9.5 用样本估计总体(必修3北师版)答案一、选择题1.C 解析:∵用样本频率估计总体分布的过程中,估计的是否准确与总体的数量无关,只与样本容量在总体中所占的比例有关,∴样本容量越大,估计的越精确.2.D 解析:该组样本的频数为32×0.25=8.3.A 解析:由频率分布直方图知组矩为0.1,4.3~4.4间的频数为100×0.1×0.1=1.4.4~4.5间的频数为100×0.1×0.3=3.又前4组的频数成等比数列,∴公比为3.根据后6组频数成等差数列,且共有100-13=87(人).从而4.6~4.7间的频数最大,且为1×33=27,∴a=0.27.设公差为d ,则6×27+d=87,∴d=-5,从而b =4×27+×=78.4.D 解析:去掉一个最高分和一个最低分后,所剩数据为9.4,9.4,9.6,9.4,9.7, 其平均值为(9.4+9.4+9.6+9.4+9.7)=9.5,方差为⎡⎤⎣⎦222221(9.4-9.5)+(9.4-9.5)+(9.6-9.5)+(9.4-9.5)+(9.7-9.5)=0.0165. 二、填空题5.200 解析:∵频数和频率分别为50和0.25,∴n==200.6.12 解析:∵k 1,k 2,…,k 8的方差为3,∴2k 1,2k 2,…,2k 8的方差是22×3=12,∴2k 1-6,2k 2-6,…,2k 8-6的方差是12. 三、解答题 7.解:(1)样本的频率分布表与累积频率表如下: (3)根据累积频率分布,小于134的数据约占×100%≈19.2%. 8. 甲种小麦长得比较整齐. 9.(1)乙种棉花的苗长得高;(2)甲种棉花的苗长得整齐.区间 [122,126) [126,130) [130,134) [134,138) [138,142) [142,146) [146,150) [150,154) [154,158)人数 5 8 10 22 33 20 11 6 5 频率241151 121 60114011 61 12011 201 241累积频率241120131202320136049120109 24231。

14.4-用样本估计总体(同步训练)(含答案)高中数学苏教版(2019)必修二

14.4-用样本估计总体(同步训练)(含答案)高中数学苏教版(2019)必修二

14.4 用样本估计总体(同步训练)-高中数学苏教版(2019)必修二一、选择题1.由小到大排列一组数据1x ,2x ,3x ,4x ,5x ,其中每个数据都小于1-,则对于样本1,1x ,2x -,3x ,4x -,5x 的中位数是( )2.大力开展体育运动,增强学生体质,是学校教育的重要目标之一.某校组织全校学生进行立定跳远训练,为了解训练的效果,从该校学生中随机抽出100人进行立定跳远达标测试,其中高一抽取了40人,高二抽取了30人,高三抽取了30人.达标测试数据如图所示,则估计该校学生的平均达标率为( )A.42%B.46%C.48%D.54%3.某公司为了调查员工的健康状况,由于女员工所占比重大,按性别分层,用按比例分配的分层随机抽样的方法抽取样本,若样本中有女员工39人,男员工21人,女员工的平均体重为50kg ,标准差为6,男员工的平均体重为70kg ,标准差为4.则所抽取的所有员工的体重的方差为( )A.29B.120C.100D.1124.为调查某地区中学生每天睡眠时间,采用样本量比例分配的分层随机抽样,现抽取初中生800人,其每天睡眠时间均值为9小时,方差为1,抽取高中生1200人,其每天睡眠时间均值为8小时,方差为0.5,则估计该地区中学生每天睡眠时间的方差为( )A.0.96B.0.94C.0.79D.0.755.为了学习,宣传和践行党的二十大精神,某班组织全班学生开展了以“学党史,知国情,圆梦想”为主题的党史暨时政知识竞赛活动.已知该班男生20人,女生30人,根据统计解题思路,男生组成绩和女生组成绩的方差分别为2212,s s .记该班成绩的方差为2s ,则下列判断正确的是( )A.2s =2≥2=22212235s s +≥6.某校组织高一1班,2班开展数学竞赛,1班40人,2班30人,根据统计解题思路,两班成绩的方差分别为21s ,22s .记两个班总成绩的方差为2s ,则( )A.2s ≥2≥2=22212437s s +≤二、多项选择题7.近一个月宜昌气温变化很大,为了解其变化情况,近17天最高气温分别为3,2,7,9,12,13,11,10,7,8,5,10,8,m ,14,15,11(其中m 数据缺失),则下列结论中正确的是( )A.这组数据的中位数可能是9B.这组数据的众数可能是10C.m 的值可以通过中位数的值确定,D.m 的值可以通过全部数据的平均数确定8.如图所示,下列频率分布直方图显示了三种不同的分布形态.图(1)形成对称形态,图(2)形成“右拖尾”形态,图(3)形成“左拖尾”形态,根据所给图作出以下判断,正确的是( )A.图(1)的平均数=中位数=众数B.图(2)的平均数<众数<中位数C.图(2)的众数<中位数<平均数D.图(3)的平均数<中位数<众数三、填空题9.某同学10次数学检测成绩统计如下:95,97,94,93,95,97,97,96,94,93,这组数据的众数为___________.10.2024年1月九省联考的数学试卷出现新结构,其中多选题计分标准如下:①本题共3小题,每小题6分,满分18分;②每道小题的四个选项中有两个或三个正确选项,全部选对得6分,有选错的得0分;③部分选对得部分分(若某小题正确选项为两个,漏选一个正确选项得3分;若某小题正确选项为三个,漏选一个正确选项得4分,漏选两个正确选项得2分).已知在某次新结构数学试题的考试中,小明同学三个多选题中第一小题确定得满分,第二小题随机地选了两个选项,第三小题随机地选了一个选项,则小明同学多选题所有可能总得分(相同总分只记录一次)的中位数为______.11.某市2022年和2023年5月1日至5日每日的最高气温(单位:℃)如表:则这五天的最高气温更稳定的是________年.(选填“2022”或“2023”)四、解答题12.甲,乙两名射箭运动员在10次射箭训练中,射中的环数分别为:甲9,10,8,9,9,7,8,9,10,8乙9,9,8,8,10,9,9,8,8,9(1)计算这10次训练中甲,乙射中环数的平均数和方差;(2)从计算结果看,哪位运动员的射箭技术更好?13.某中学新建了学校食堂,每天有近2000名学生在学校食堂用午餐,午餐开放时间约40分钟,食堂制作了三类餐食,第一类是选餐,学生凭喜好在做好的大约6种菜和主食米饭中任意选购;第二类是套餐,已按配套好菜色盛装好,可直接取餐:第三类是面食,如煮面、炒粉等,为了更合理地设置口布局,增加学生的用餐满意度,学校学生会在用餐的学生中对就餐选择、各类餐食的平均每份取餐时长以及可接受等待时间进行问卷调查,并得到以下的统计图表:已知饭堂的售饭窗口一共有20个,就餐高峰期时有240名学生在等待就餐.(1)根据以上调查统计,如果设置12个选餐窗口,4个套餐窗口,4个面食窗口,就餐高峰期时,假设大家在排队时自动选择较短的队伍等待(即各类餐食的窗口前队伍长度各自相同),求选择选餐的同学取到午餐的最长等待时间;(2)取餐时至多等待多长时间能让80%的同学感到满意?(即在接受等待时长内取到餐,保留整数);(3)根据以上的调查统计,从等待时长和公平的角度上考虑,如何设置各类售饭窗口数更优化,并给出你的求解过程.参考答案1.答案:C解析:由于小到大排列一组数据1x ,2x ,3x ,4x ,5x ,其中每个数据都小于1-,所以123451x x x x x <<<<<-,则123451x x x x x >->->-->->,将1,1x ,2x -,3x ,4x -,5x 从小到大排列为1x ,3x ,5x ,1,4x -,2x -,故选:C 2.答案:C100%48%=.3.答案:B215070573921+⨯=+,则样本中所有员工的体重的方差222223921[6(5057)][4(7057)]12039213921s =⨯+-+⨯+-=++.故选:B 4.答案:B1200988.41200800+⨯=+(小时),该地区中学生每天睡眠时间的方差为2280012001(98.4)0.5(88.4)0.9412008001200800⎡⎤⎡⎤⨯+-+⨯+-=⎣⎦⎣⎦++.故选B.,则2222112201[()()()]20s x x x x x x =-+-++- ,()2222122012201[220]20x x x x x x x x =+++-++++ 2222212201[4020]20x x x x x =+++-+202222221220111[20]2020i i x x x x x x ==+++-=-∑ ,同理3022221130i i s y y ==-∑,20222112020ii x s x =∴=+∑,3022213030i i y s y ==+∑1(2030)50x y =+=222203022222212112312323505555i i i i s s x y s x y x x y ==⎛⎫++⎛⎫'∴=+-=++- ⎪⎪⎝⎭⎝⎭∑∑22212236()525s s x y +=+-≥故选:D .6.答案:B解析:设两个班的平均分分别为1x ,2x ,两个班的总的平均分为x ,则()()222221122403040304030s s x x s x x ⎡⎤⎡⎤=+-++-⎣⎦⎣⎦++()()22221122437s x x s x x ⎡⎤⎡⎤+-++-⎣⎦⎣⎦=≥故选:B.7.答案:ABD解析:由题意,若9m <,中位数是9,A 正确:若10m =,众数都是10,B 正确,中位数是10时,10m ≥,m 不确定,C 错误:8.答案:ACD解析:根据平均数,中位数,众数的概念结合图形解题思路判断.9.答案:97解析:在10次数学检测成绩中,93、94、95各有2次,96有1次,97有3次,所以这组数据的众数是97.故答案为:97.10.答案:11解析:由题意得小明同学第一题得6分;第二题选了2个选项,可能得分情况有3种,分别是得0分、4分和6分;第二题选了1个选项,可能得分情况有3种,分别是得0分、2分和3分;由于相同总分只记录一次,因此小明的总分情况有:6分、8分、9分、10分、12分、13分、14分、15分共8种情况,11=,故答案为:11.11.答案:202329.4=,则其方差为222221(2629.4)(2729.4)(3029.4)(3329.4)(3129.4) 6.6225⎡⎤⨯-+-+-+-+-=⎣⎦,23.4=,则其方差为222221(2223.4)(2523.4)(2423.4)(2423.4)(2223.4) 1.445⎡⎤⨯-+-+-+-+-=⎣⎦,因为1.44 6.622<,所以这五天的最高气温更稳定的是2023年;故答案为:202312.答案:(1)甲的平均数为8.7,方差为0.81,乙的平均数为8.7,方差为0.41(2)乙解析:(1)根据题中所给数据,甲的平均数为()19108997891088.710x =+++++++++=甲,()1998810998898.710=+++++++++=,甲的方差为()()()2222198.7108.788.70.8110s ⎡⎤=-+-++-=⎣⎦ 甲,乙的方差为()()()2222198.798.798.70.4110s ⎡⎤=-+-++-=⎣⎦ 乙,故甲的平均数为8.7,标准差为0.81,乙的平均数为8.7,标准差为0.41.22x s s =>甲乙乙,,因为平均数相同,方差越小的技术越稳定,所以乙的技术较为稳定,故乙运动员的射箭技术更好.13.答案:(1)20分钟;(2)18分钟;(3)答案见解析解析:(1)由题意得就餐高峰期时选择选餐的总人数为50240120503020⨯=++人;10=人,所以选择选餐的同学取到午餐的最长等待时间为21020⨯=分钟,(2)由可接受等待时长的频率分布直方图可知,分组为[)5,10,[)10,15,[)15,20,[)20,25的频率分别为0.15,0.45,0.35,0.05,所以可接受等待时长在2025-分钟以内的同学占0.05,即有95%的同学不满意可接受等待时长在1525-分钟以内的同学占0.050.350.4+=,即有60%的同学对等待时间少于15分钟感到满意,所以至多等待的时间[)15,20x ∈,能让80%的同学感到满意()0.6150.070.8x +-⨯=,所以18x ≈分钟,至多等待18分钟,能让80%的同学感到满意.(3)假设设置m 个选餐窗口,n 个套餐窗口,k 个面食窗口,则各队伍的同学最长等待时间如下:即得1207220.51m n ⨯=⨯=::20:3:4n k =,而20m n k ++=,故15m ≈,2n ≈,3k ≈,因此建议设置选餐、套餐、面食三个类别的窗口数分别为15,2,3个.。

高考数学用样本估计总体专项测试(含答案)

高考数学用样本估计总体专项测试(含答案)

2019 届高考数学用样本预计整体专项测试(含答案)一般状况下 ,假如整体的容量较大 ,不便剖析其数据特点 ,我们可以经过随机抽取必定的样本。

以下是用样本预计整体专项测试,希望考生能够仔细练习。

1.甲、乙两名篮球运动员每场竞赛的得分状况用茎叶图表示如右:则以下说法中正确的个数为()①甲得分的中位数为26,乙得分的中位数为36;②甲、乙比较 ,甲的稳固性更好 ;③乙有的叶集中在茎 3 上;④甲有的叶集中在茎1,2,3 上.A.1B.2C.3D.42.一组数据的均匀数是 4.8,方差是3.6,若将这组数据中的每一个数据都加上 60,获得一组新数据 ,则所得新数据的均匀数和方差分别是() A.55.2,3.6 B.55.2,56.4C.64.8,63.6D.64.8,3.63.某中学高三 (2)班甲、乙两名学生自高中以来每次考试成绩的茎叶图如图 ,以下说法正确的选项是 ()A. 乙学生比甲学生发挥稳固,且均匀成绩也比甲学生高B.乙学生比甲学生发挥稳固,但均匀成绩不如甲学生高C.甲学生比乙学生发挥稳固,且均匀成绩比乙学生高D.甲学生比乙学生发挥稳固,但均匀成绩不如乙学生高4.为了研究某药品的疗效,选用若干名志愿者进行临床试验.所有志愿者的舒张压数据 (单位 :kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的次序分别编号为第一组 ,第二组 ,,第五组 .以下图是依据试验数据制成的频次散布直方图 .已知第一组与第二组共有20 人,第三组中没有疗效的有 6 人,则第三组中有疗效的人数为()A.6B.8C.12D.185.(2019 福建宁德模拟 )对某商铺一个月内每日的顾客人数进行了统计 , 获得样本的茎叶图 (以下图 ),则该样本的中位数、众数、极差分别是()A.46,45,56B.46,45,53C.47,45,56D.45,47,536.某工厂对一批产品进行了抽样检测 .以下图是依据抽样检测后的产品净重 (单位 :克)数据绘制的频次散布直方图 ,此中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于 100 克的个数是 36,则样本中净重要于或等于 98 克而且小于 104 克的产品的个数是 ()A.90B.75C.60D.457.某赛季 ,甲、乙两名篮球运动员都参加了11 场竞赛 ,他们每场竞赛得分的状况用右图所示的茎叶图表示,若甲运动员的中位数为a,乙运动员的众数为 b,则 a-b= .8.为了检查某厂工人生产某种产品的能力,随机抽查了 20 位工人某天生产该产品的数目 ,产品数目的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95],由此获得频次散布直方图如图,则由此预计该厂工人一天生产该产品数目在[55,70)的人数约占该厂工人总数的百分率是.9.(2019 广东 ,文 17)某车间 20 名工人年纪数据以下表 :年纪(岁) 工人数(人) 19 1 28 3 29 3 30 5 31 4 32 3 40 1共计 20(1)求这 20 名工人年纪的众数与极差;(2)以十位数为茎 ,个位数为叶 ,作出这 20 名工人年纪的茎叶图 ;(3)求这 20 名工人年纪的方差 .能力提高组10.在发生某公共卫惹祸件时期,有专业机构以为该事件在一段时间没有发生大规模集体感染的标记为连续10 天,每日新增疑似病例不超出7 人.依据过去 10 天甲、乙、丙、丁四地新增疑似病例数据,必定切合该标记的是 ()A. 甲地 :整体均值为 3,中位数为 4B.乙地 :整体均值为 1,整体方差大于 0C.丙地 :中位数为 2,众数为 3D.丁地 :整体均值为 2,整体方差为 311.样本 (x1,x2,,xn)的均匀数为 ,样本 (y1,y2,,ym) 的均匀数为 ),若样本(x1,x2,,xn,y1,y2,,ym) 的均匀数 = +(1-),此中 0,则 n,m 的大小关系为 () A.nm C.n=m D.不可以确立12.(2019 课标全国Ⅰ ,文 18)从某公司生产的某种产品中抽取100 件,丈量这些产品的一项质量指标值,由丈量结果得以下频数散布表:质量指标值分组[75,85) [85,95) [95,105) [105,115) [115,125) 频数 6 26 38 22 8(1)在答题卡上作出这些数据的频次散布直方图;(2)预计这类产质量量指标值的均匀数及方差(同一组中的数据用该组区间的中点值作代表 );(3)依据以上抽样检查数据 ,可否定为该公司生产的这类产品切合质量指标值不低于 95 的产品起码要占所有产品80%的规定 ?参照答案1.C 分析 :由茎叶图可知乙的集中趋向更好,故②错误 ,①③④正确 .2.D 分析 :每一个数据都加上60 时 ,均匀数也应加上60,而方差不变 .3.A 分析 :从茎叶图可知乙同学的成绩在80~100 分分数段的有 9 次,而甲同学的成绩在80~100 分分数段的只有7 次;再从题图上还能够看出,乙同学的成绩集中在 90~100 分分数段的最多 ,而甲同学的成绩集中在 80~90 分分数段的最多 .故乙同学比甲同学发挥较稳固且均匀成绩也比甲同学高 .4.C 分析 :设样本容量为 n,由题意 ,得(0.24+0.16)1n=20,解得 n=50.因此第三组频数为0.36150=18.由于第三组中没有疗效的有 6 人,因此第三组中有疗效的人数为18-6=12.5.A 分析 :茎叶图中共有 30 个数据 ,因此中位数是第 15 个和第 16 个数字的均匀数 ,即(45+47)=46,清除 C,D;再计算极差 ,最小数据是 12,最大数据是 68,因此 68-12=56,应选 A.6.A 分析 :样本中产品净重小于100 克的频次为 (0.050+0.100)2=0.3,又频数为 36,样本容量为 =120.样本中净重要于或等于98 克而且小于 104 克的产品的频次为(0.100+0.150+0.125)2=0.75,样本中净重要于或等于98 克而且小于 104 克的产品的个数为1200.75=90.7.8 分析 :由茎叶图可知 ,a=19,b=11,a-b=8.8.52.5% 分析 :联合直方图能够看出 :生产数目在 [55,65)的人数频次为0.0410=0.4,生产数目在 [65,75)的人数频次为 0.02510=0.25,而生产数目在 [65,70)的人数频次约为 0.25=0.125,因此生产数目在 [55,70)的人数频次约为 0.4+0.125=0.525,即 52.5%.9.解:(1)由图可知 ,众数为 30.极差为 :40-19=21.(2)1 92 8889993 0000011112224 0(3)依据表格可得 :=30,s2=[(19-30)2+3(28-30)2+3(29-30)2+5(30-30)2+4(31-30)2+3(32-30)2+(40-30)2]=12.6.10.D 分析:依据信息可知 ,连续 10 天内,每日的新增疑似病例不可以有超出 7 的数 ,选项 A 中,中位数为 4,可能存在大于 7 的数 ;同理 ,在选项 C中也有可能 ;选项 B 中的整体方差大于 0,表达不明确 ,假如数目太大 , 也有可能存在大于 7 的数 ;选项 D 中 ,依据方差公式 ,假如有大于 7 的数存在 ,那么方差不会为 3,故答案选 D.11.A 分析 :由题意知样本 (x1,,xn,y1,,ym)的均匀数为 ,又= +(1-),即=,1-=.照本宣科是一种传统的教课方式,在我国有悠长的历史。

11.2_用样本估计总体练习题

11.2_用样本估计总体练习题

§11.2 用样本估计总体一、选择题1.用样本频率分布估计总体频率分布的过程中,下列说法正确的是 ( ) A.总体容量越大,估计越精确 B.总体容量越小,估计越精确C.样本容量越大,估计越精确 D.样本容量越小,估计越精确2.频率分布直方图中,小长方形的面积等于 ( ) A.组距 B.频率 C.组数 D.频数3.一个容量为100的样本,其数据的分组与各组的频数如下表组别(0,10](10,20](20,30](30,40](40,50](50,60](60,70]频数1213241516137A.0.13 B.0.39 C.0.52 D.0.644.一个容量为35的样本数据,分组后,组距与频数如下:[5,10),5个;[10,15),12个;[15,20),7个;[20,25),5个;[25,30),4个;[30,35),2个.则样本在区间[20,+∞)上的频率为 ( ) A.20% B.69% C.31% D.27%5.某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102), [102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是 ( )A.90 B.75 C.60 D.456.对某校400名学生的体重(单位:kg)进行统计,得到如图所示的频率分布直方图,则学生体重在60kg 以上的人数为( )A.300 B.100C.60 D.207.样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为( ).A. 65B.65C. 2 D.28.为了了解某地区10 000名高三男生的身体发育情况,抽查了该地区100名年龄为17~18岁的高三男生体重(kg),得到频率分布直方图如图.根据图示,请你估计该地区高三男生中体重在[56.5,64.5]的学生人数是( )A.40 B.400C.4 000 D.4 4009.如图是根据某校10位高一同学的身高(单位:cm)画出的茎叶图,其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个位数字,从图中可以得到这10位同学身高的中位数是 ( )A.161 cm B.162 cmC.163 cm D.164 cm10.从甲、乙两种树苗中各抽测了10株树苗的高度,其茎叶图如图.根据茎叶图,下列描述正确的是( )A.甲种树苗的平均高度大于乙种树苗的平均高度,且甲种树苗比乙种树苗长得整齐B.甲种树苗的平均高度大于乙种树苗的平均高度,但乙种树苗比甲种树苗长得整齐C.乙种树苗的平均高度大于甲种树苗的平均高度,且乙种树苗比甲种树苗长得整齐D.乙种树苗的平均高度大于甲种树苗的平均高度,但甲种树苗比乙种树苗长得整齐11.对某种电子元件的使用寿命进行跟踪调查,所得样本的频率分布直方图如图所示,由图可知,这一批电子元件中使用寿命在100~300 h的电子元件的数量与使用寿命在300~600 h的电子元件的数量的比是( )A.12B.13C.14D.1612.一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( )A.57.2,3.6 B.57.2,56.4 C.62.8,63.6 D.62.8,3.6二、填空题8题13.一个容量为n 的样本,分成若干组,已知甲组的频数和频率分别为36和14,则容量n =__,且频率为16的乙组的频数是___.14.为了帮助班上的两名贫困生解决经济困难,班上的20名同学捐出了自己的零花钱,他们捐款数(单位:元)如下:19,20,25,30,24,23,25,29,27,27,28,28,26,27,21,30,20,19,22,20.班主任老师准备将这组数据制成频率分布直方图,以表彰他们的爱心.制图时先计算最大值与最小值的差是________.若取组距为2,则应分成________组;若第一组的起点定为18.5,则在[26.5,28.5)内的频数为________.15.将容量为n 的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n =________.16.如图是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图可知________.甲运动员的成绩好于乙运动员;②乙运动员的成绩好于甲运动员;③甲、乙两名运 动员的成绩没有明显的差别;④甲运动员的最低得分为0分.17.甲、乙两名同学学业水平考试的9科成绩如茎叶图所示,请你根据茎叶图判断谁的平均分高________.(填“甲”或“乙”)18. 如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为___.(注:方差2222121()()()n s x x x x x x n⎡⎤=-+-++-⎣⎦,其中x 为x 1,x 2,…,x n 的平均数)19.某中学为了解学生数学课程的学习情况,在3 000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3 000名学生在该次数学考试中成绩小于60分的学生数是________.20.某校开展“爱我青岛,爱我家乡”摄影比赛,9位评委为17题089103518题19题20题参赛作品A给出的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是________.三、解答题21.(2013·合肥高一检测)在某电脑杂志的一篇文章中,每个句子的字数如下:10,28,31,17, 23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,24,27,17在某报纸的一篇文章中,每个句子的字数如下:27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22(1)将这两组数据用茎叶图表示;(2)将这两组数据进行比较分析,你会得到什么结论?22.(创新拓展)如图是一个样本的频率分布直方图,且在[15,18)内频数为8.(1)求样本容量;(2)若[12,15)一组的小长方形面积为0.06,求[12,15) 一组的频数;(3)求样本在[18,33)内的频率.23.某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A配方的频数分布表指标值分组[90,94) [94,98) [98,102) [102,106) [106,110] 频数8 20 42 22 8指标值分组[90,94) [94,98) [98,102) [102,106) [106,110] 频数 4 12 42 32 10(1)(2)已知用B配方生产的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=⎩⎪⎨⎪⎧-2,t<94,2,94≤t<102,4,t≥102.估计用B配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述100件产品平均一件的利润.24.某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150)后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求分数在[120,130)内的频率;22题(2)若在同一组数据中,将该组区间的中点值(如:组区间[100,110)的中点值为100+1102=105.)作为这组数据的平均分,据此,估计本次考试的平均分;(3)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.25.某制造商3月生产了一批乒乓球,随机抽取100个进行检查,测得每个球的直径(单位:mm ),将数据进行分组,得到如下频率分布表:(1)补充完成频率分布表(结果保留两位小数),并在上图中画出频率分布直方图;(2)若上述频率作为概率,已知标准乒乓球直径为40.00 mm ,试求这批乒乓球的直径误差不超过0.03 mm 的概率; (3)统计方法中,同一组数据常用该组区间的中点值(例如区间[39.99,40.01)的中点值是40.00)作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).26.某市2010年4月1日~4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物): 61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45. 样本频率分布表:分组 频数 频率 [41,51) 2 230 [51,61) 1 130 [61,71) 4 430 [71,81) 6 630 [81,91) 10 1030 [91,101) [101,111]2230分组 频数 频率 [39.95,39.97) 10 [39.97,39.99) 20 [39.99,40.01) 50 [40.01,40.03] 20 合计10025题(1)完成频率分布表;(2)作出频率分布直方图; (3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.CBCCA BDCBD CD13. 144 24; 14. 11 6 5;15 60;16.①;17.乙 18. 解:_22222211(89101315)11,s [(811)(911)(1011)(1311)(1511)] 6.855x =++++==-+-+-+-+-= 19.解:平均数为x =90,则标准差为s =15[(89-90)2+(87-90)2+(90-90)2+(91-90)2+(93-90)2=2. 20.解:根据样本的频率分布直方图,成绩小于60分的学生的频率为(0.002+0.006+0.012)×10=0.20,所以可推测3 000名学生中成绩小于60分的人数为600名.21.解:x≥4时,89+89+92+93+92+91+947=6407≠91,∴x<4,则89+89+92+93+92+91+x +907=91,∴x=1.22.解 (1)(2)电脑杂志上每个句子的字数集中在10~30之间;而报纸上每个句子的字数集中在20~40之间.还可以看出电脑杂志上每个句子的平均字数比报纸上每个句子的平均字数要少.说明电脑杂志作为科普读物需要通俗易懂、简明.23.解 (1)由图可知[15,18)一组对应的纵轴数值为475,且组距为3,则[15,18)一组对应的频率为475×3=425.又已知[15,18)一组的频数为8,所以样本容量n =8425=50.(2)[12,15)一组的小长方形面积为0.06,即[12,15)一组的频率为0.06,且样本容量为50,所以[12,15)一组的频数为50×0.06=3.(3)由(1)、(2)知[12,15)一组的频数为3,[15,18)一组的频数为8,样本容量为50,所以[18,33)内频数为50-3-8=39,所以[18,33)内的频率为3950=0.78.24.解析 (1)由试验结果知,用A 配方生产的产品中优质品的频率为22+8100=0.3,所以用A 配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B 配方生产的产品中优质品的频率为32+10100=0.42,所以用B 配方生产的产品的优质品率的估计值为0.42.(2)由条件知,用B 配方生产的一件产品的利润大于0当且仅当其质量指标值t≥94,由试验结果知,质量指标值t≥94的频率为0.96.所以用B 配方生产的一件产品的利润大于0的概率估计值为0.96.用B配方生产的产品平均一件的利润为1100×[4×(-2)+54×2+42×4]=2.68(元).25.解析 (1)分数在[120,130)内的频率为1-(0.1+0.15+0.15+0.25+0.05)=1-0.7=0.3.(2)估计平均分为x=95×0.1+105×0.15+115×0.15+125×0.3+135×0.25+145×0.05=121.(3)由题意,[110,120)分数段的人数为60×0.15=9(人).[120,130)分数段的人数为60×0.3=18(人).∵用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,∴需在[110,120)分数段内抽取2人,并分别记为m,n;在[120,130)分数段内抽取4人,并分别记为a,b,c,d;设“从样本中任取2人,至多有1人在分数段[120,130)内”为事件A,则基本事件共有(m,n),(m,a),…,(m,d),(n,a),…,(n,d),(a,b),…,(c,d)共15种.则事件A包含的基本事件有(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),(n,b),(n,c),(n,d)共9种.∴P(A)=915=3 5.26.解析(1)频率分布表如下:分组频数频率[39.95,39.97) 10 0.10[39.97,39.99) 20 0.20[39.99,40.01) 50 0.50[40.01,40.03] 20 0.20合计100 1频率颁布直方图如图:(2)误差不超过0.03 mm,即直径落在[39.97,40.03]内,其概率为0.2+0.5+0.2=0.9.(3)整体数据的平均值为39.96×0.10+39.98×0.20+40.00×0.50+40.02×0.20=40.00(mm).27.解析(1)频率分布表:分组 频数 频率 [41,51) 2 230 [51,61) 1 130 [61,71) 4 430 [71,81) 6 630 [81,91) 10 1030 [91,101) 5 530 [101,111]2230(2)频率分布直方图:(3)答对下述两条中的一条即可:①该市一个月中空气污染指数有2天处于优的水平,占当月天数的115.有26天处于良的水平,占当月天数的1315.处于优或良的天数共有28天,占当有月数的1415.说明该市空气质量基本良好.②轻微污染有2天,占当月天数的115.污染指数在80以上接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的1730,超过50%.说明该市空气质量有待进一步改善.。

人教版高中数学必修三 第二章 统计用样本估计总体练习题及答案

人教版高中数学必修三  第二章 统计用样本估计总体练习题及答案

人教版高中数学必修三第二章统计用样本估计总体练习题及答案用样本估计总体练习题一、选择题1. 对于两个变量之间的相关系数,下列说法中正确的是() A.r越大,相关程度越大B.r??0,???,r越大,相关程度越小,r越小,相关程度越大 C.r?1且r越接近于1,相关程度越大;r越接近于0,相关程度越小 D.以上说法都不对2. r是相关系数,则结论正确的个数为①r∈[-1,-0.75]时,两变量负相关很强②r∈[0.75,1]时,两变量正相关很强③r∈(-0.75,-0.3]或[0.3,0.75)时,两变量相关性一般④r=0.1时,两变量相关很弱A.1B.2C.3D.4?=1.5x-15,则 3. 回归方程yA.y=1.5x-15 B.15是回归系数a C.1.5是回归系数a D.x=10时,y=04. 下面哪些变量是相关关系A.出租车费与行驶的里程B.房屋面积与房屋价格C.身高与体重D.铁的大小与质量5. 有关线性回归的说法,不正确的是A.相关关系的两个变量不是因果关系第1页共7页B.散点图能直观地反映数据的相关程度C.回归直线最能代表线性相关的两个变量之间的关系D.任一组数据都有回归方程6. 为了研究性格和血型的关系,抽查80人实验,血型和性格情况如下:O型或A型者是内向型的有18人,外向型的有22人,B型或AB型是内向型的有12人,是外向型的有28人,则有多大的把握认为性格与血型有关系 A.99.9�G B.99�G C.没有充分的证据显示有关 D.1�G 参考数据: P(K2≥k0) k07. 对变量x, y 有观测数据(x1,y1)(i=1,2,…,10),得散点图1;对变量u ,v 有观测数据(u1,v1)(i=1,2,…,10),得散点图2. 由这两个散点图可以判断。

0.5 0.455 0.10 2.706 0.010 6.635 0.001 10.828 y30252021105o123图1456605040302021vxo123图24567u(A)变量x 与y 正相关,u 与v 正相关(B)变量x 与y 正相关,u 与v 负相关第2页共7页(C)变量x 与y 负相关,u 与v 正相关(D)变量x 与y 负相关,u 与v 负相关二、填空题8. 相关关系与函数关系的区别是.?=4.4x+838.199. 已知回归方程y,则可估计x与y的增长速度之比约为________. ?=bx+a过定点________. 10. 线性回归方程y三、解答题11. 下表是某小卖部6天卖出热茶的杯数与当天气温的对比表:气温/℃ 杯数 2620 18 24 13 34 10 38 4 50 -1 64 (1)将上表中的数据制成散点图. (2)你能从散点图中发现温度与饮料杯数近似成什么关系吗?(3)如果近似成线性关系的话,请求出回归直线方程来近似地表示这种线性关系.(4)如果某天的气温是-5℃时,预测这天小卖部卖出热茶的杯数.12. 某市近10年的煤气消耗量与使用煤气户数的历史资料如下:年 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 份 x用户(万 1 1.21.6 1.8 22.53.2 44.2 4.5 第3页共7页户) y (百万立方米)(1)检验是否线性相关;(2)求回归方程;(3)若市政府下一步再扩大5千煤气用户,试预测该市煤气消耗量将达到多少.13. 为研究某家庭编号 xi(收入)千0.8 1.1 1.3 1.5 1.5 1.8 2.0 2.2 2.4 2.8 入与月平均生元活支出的关yi(支出)千0.7 1.0 1.2 1.0 1.3 1.5 1.3 1.7 2.0 2.5 系,该市统计调查队随机调查10个家庭,得数据如下:1 2 3 4 5 6 7 8 9 10 市家庭平均收6 7 9.8 12 12.1 14.5 20 24 25.4 27.5 第4页共7页元求回归直线方程.答案一、选择题 1. C 2. D 3. A 4. C 5. D 6. C 7. C 二、填空题8. 函数关系是两个变量之间有完全确定的关系,而相关关系是两个变量之间并没有严格的确定关系,当一个变量变化时,另一变量的取值有一定的随机性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节 用样本估计总体
时间:45 分钟 分值:75 分
一、选择题(本大题共 6 小题,每小题 5 分,共 30 分) 1.(2013·重庆卷)如下图是某公司 10 个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为(
)
A.0.2 B .0.4 C .0.5
D .0.6
解析 由茎叶图可知数据落在区间[22,30)内的频数为 4,所以数
据落在区间[22,30) 4 0.4,故选 B.
内的频率为 =
10
答案 B
2.(2013·陕西卷)对一批产品的长度(单位:毫米)进行抽样检测, 下图为检测结果的频率分布直方图. 根据标准, 产品长度在区间[20,25)上为一等品, 在区间[15,20)和[25,30)上为二等品, 在区间[10,15)和[30,35)上为三等品. 用频率估计概率, 现从该批产品中随机抽取 1 件, 则其为二等品的概率是(
)
A.0.09 B.0.20
C.0.25 D.0.45
解析由频率分布直方图的性质可知,样本数据在区间[25,30)上的频率为1-5×(0.02+0.04+0.06+0.03)=0.25,则二等品的频率为0.25+0.04×5=0.45,故任取1 件为二等品的概率为0.45.
答案 D
3.(2013·四川卷)某学校随机抽取20 个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5 将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是( )
解析由茎叶图知,各组频数统计如下表:
分组[0,5) [5,10) [10,[15,[20,[25,[30,[35,
区间15) 20) 25) 30) 35) 40) 频数
统计
1 1 4
2 4
3 3 2
答案 A
4.(2014·河南郑州预测)PM2.5是指大气中直径小于或等于2.5 微米的颗粒物,也称为可入肺颗粒物,下图是据某地某日早7 点至晚8 点甲、乙两个PM2.5监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是( )
A.甲B.乙
C.甲乙相等D.无法确定
解析由茎叶图可知甲数据比较集中,所以甲地浓度的方差小,选 A.
答案 A
5.甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:
甲乙丙丁
平均环数x8.3 8.8 8.8 8.7
(
) A .甲 B .乙 C .丙
D .丁
解析 由题目表格中数据可知,丙平均环数最高,且方差最小, 说明丙技术稳定,且成绩好,选 C.
答案 C
6. 样本(x 1,x 2,…,x n )的平均数为x ,样本(y 1,y 2,…,y m )的平
均数为y (x ≠y ),若样本(x 1,x 2,…,x n ,y 1,y 2,…y m )的平均数z =αx +(1
-α)y ,其中 0<α<1
,则 n ,m 的大小关系为( )
2
A .n <m
B .n >m
C .n =m
D .不能确定
解析 依题意得 x 1+x 2+…+x n =n x ,y 1+y 2+…+y m =m y , x 1+x 2+…+x n +y 1+y 2+…+y m =(m +n )z =(m +n )αx +(m +n )(1 -α)y ,
所以 n x +m y =(m +n )αx +(m +n )(1-α)y . 所以Error!
于是有 n -m =(m +n )[α-(1-α)] =(m +n )(2α-1).
因为 0<α 1
< ,所以
2 2α-1<0. 所以 n -m <0,即 n <m . 答案 A
二、填空题(本大题共 3 小题,每小题 5 分,共 15 分)
7.某校举行2014 年元旦汇演,九位评委为某班的节目打出的分数(百分制)如茎叶统计图所示,去掉一个最高分和一个最低分后,所剩数据的中位数为.
解析根据茎叶图,去掉一个最高分和一个最低分后,得到的数据为七个,中位数为85.
答案85
8.(2014·武汉调研)
某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].则
(1)图中的x=;
(2)若上学所需时间不少于1 小时的学生可申请在学校住宿,则该校600 名新生中估计有名学生可以申请住宿.解析由频率分布直方图知20x=1-20×(0.025+0.006 5+0.003+0.003),解得x=0.012 5.上学时间不少于1 小时的学生频率为
0.12,因此估计有 0.12×600=72 人可以申请住宿.
答案 0.012 5 72
9.(2014·安徽联考)已知 x 是 1,2,3,x,5,6,7 这七个数据的中位数,
且 1,3, x , - y 这四个数据的平均数为 1
1 y 的最小值为

解析 由已知得 3≤x ≤5 , 则 +
x
1+3+x -y
=1,

4
∴y =x , 1 1 1
∴ +y = +x ,又函数 y = +x 在[3,5]上单调递增,∴当 x =3 时 x x x 10
取最小值 .
3
答案
10 3
三、解答题(本大题共 3 小题,每小题 10 分,共 30 分) 10.(2014·衡阳调研)甲、乙两台机床同时生产一种零件,在 10 天中,两台机床每天出的次品数分别是:
10 天生产中出次品的平均数较小?出次品的波动较小?
1
解 x 甲= ×(0×3+1×2+2×3+3×1+4×1)=1.5,
10 1
x 乙= ×(0×2+1×5+2×2+3×1)=1.2,
10 s 甲
2 = 1 ×[(0-1.5)2+(1-1.5)2+(0-1.5)2+…+(2-1.5)2+(4- 10
×
1.5)2]=1.65,
s2=
1
[(2-1.2)2+(3-1.2)2+(1-1.2)2+…+(0-1.2)2+(1-
10
1.2)2]=0.76.
从结果看乙台机床10 天生产中出次品的平均数较小,出次品的波动也较小.
11.(2013·新课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500 元,未售出的产品,每1 t 亏损300 元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如下图所示.经销商为下一个销售季度购进了130 t 该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.
(1)将T 表示为X 的函数;
(2)根据直方图估计利润T 不少于57 000 元的概率.
解(1)当X∈[100,130)时,T=500X-300(130-X)
=800X-39 000.
当X∈[130,150]时,T=500×130=65 000.
所以T=Error!
- = (2)由(1)知利润 T 不少于 57 000 元当且仅当 120≤X ≤150. 由直方图知需求量 X ∈[120,150]的频率为 0.7,所以下一个销售季度内的利润 T 不少于 57 000 元的概率的估计值为 0.7.
12.(2013·安徽卷)为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取 30 名高三年级学生, 以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:
(1) 若甲校高三年级每位学生被抽取的概率为 0.05,求甲校高三
年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60 分及 60 分以上为及格);
(2) 设甲、乙两校高三年级学生这次联考数学平均成绩分别为 x 1、
x 2, 估计 x 1-x 2 的值.
解 (1)设甲校高三年级学生总人数为 n . 30
由题意知, =0.05,即 n =600.
n
样本中甲校高三年级学生数学成绩不及格人数为 5,据此估计甲
校高三年级此次联考数学成绩及格率为 1 5 5
.
30 6
(2)设甲、乙两校样本平均数分别为x ′1,x ′2.
根据样本茎叶图可知,30(x ′1-x ′2)=30x ′1-30x ′2=(7-5) +(55+8-14)+(24-12-65)+(26-24-79)+(22-20)+92=2+49 -53-77+2+92=15.
因此x′1-x′2=0.5.故x1-x2 的估计值为0.5 分.。

相关文档
最新文档