北京高考导数大题分类()
2024年高考数学真题分类汇编09:函数与导数(含详细答案解析)
![2024年高考数学真题分类汇编09:函数与导数(含详细答案解析)](https://img.taocdn.com/s3/m/24632478e3bd960590c69ec3d5bbfd0a7956d5b5.png)
函数与导数一、单选题1.(2024·全国)已知函数为f (x )=-x 2-2ax -a ,x <0e x+ln (x +1),x ≥0,在R 上单调递增,则a 取值的范围是()A.(-∞,0]B.[-1,0]C.[-1,1]D.[0,+∞)2.(2024·全国)已知函数为f (x )的定义域为R ,f (x )>f (x -1)+f (x -2),且当x <3时f (x )=x ,则下列结论中一定正确的是()A.f (10)>100B.f (20)>1000C.f (10)<1000D.f (20)<100003.(2024·全国)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.24.(2024·全国)设函数f (x )=(x +a )ln (x +b ),若f (x )≥0,则a 2+b 2的最小值为()A.18B.14C.12D.15.(2024·全国)曲线f x =x 6+3x -1在0,-1 处的切线与坐标轴围成的面积为()A.16B.32C.12D.-326.(2024·全国)函数f x =-x 2+e x -e -x sin x 在区间[-2.8,2.8]的大致图像为()A. B.C. D.7.(2024·全国)设函数f x =e x +2sin x1+x 2,则曲线y =f x 在0,1 处的切线与两坐标轴围成的三角形的面积为()A.16B.13C.12D.238.(2024·北京)已知x 1,y 1 ,x 2,y 2 是函数y =2x图象上不同的两点,则下列正确的是()A.log 2y 1+y 22>x 1+x22 B.log 2y 1+y 22<x 1+x22C.log 2y 1+y 22>x 1+x 2D.log 2y 1+y 22<x 1+x 29.(2024·天津)下列函数是偶函数的是()A.y=e x-x2x2+1B.y=cos x+x2x2+1C.y=e x-xx+1D.y=sin x+4xe|x|10.(2024·天津)若a=4.2-0.3,b=4.20.3,c=log4.20.2,则a,b,c的大小关系为()A.a>b>cB.b>a>cC.c>a>bD.b>c>a11.(2024·上海)下列函数f x 的最小正周期是2π的是()A.sin x+cos xB.sin x cos xC.sin2x+cos2xD.sin2x-cos2x12.(2024·上海)已知函数f(x)的定义域为R,定义集合M=x0x0∈R,x∈-∞,x0,f x <f x0,在使得M =-1,1的所有f x 中,下列成立的是()A.存在f x 是偶函数B.存在f x 在x=2处取最大值C.存在f x 是严格增函数D.存在f x 在x=-1处取到极小值二、多选题13.(2024·全国)设函数f(x)=(x-1)2(x-4),则()A.x=3是f(x)的极小值点B.当0<x<1时,f(x)<f x2C.当1<x<2时,-4<f(2x-1)<0D.当-1<x<0时,f(2-x)>f(x)14.(2024·全国)设函数f(x)=2x3-3ax2+1,则()A.当a>1时,f(x)有三个零点B.当a<0时,x=0是f(x)的极大值点C.存在a,b,使得x=b为曲线y=f(x)的对称轴D.存在a,使得点1,f1为曲线y=f(x)的对称中心三、填空题15.(2024·全国)若曲线y=e x+x在点0,1处的切线也是曲线y=ln(x+1)+a的切线,则a=.16.(2024·全国)已知a>1,1log8a -1log a4=-52,则a=.17.(2024·全国)曲线y=x3-3x与y=-x-12+a在0,+∞上有两个不同的交点,则a的取值范围为.18.(2024·天津)若函数f x =2x2-ax-ax-2+1有唯一零点,则a的取值范围为.19.(2024·上海)已知f x =x,x>01,x≤0,则f3 =.四、解答题20.(2024·全国)已知函数f(x)=ln x2-x+ax+b(x-1)3(1)若b=0,且f (x)≥0,求a的最小值;(2)证明:曲线y=f(x)是中心对称图形;(3)若f (x )>-2当且仅当1<x <2,求b 的取值范围.21.(2024·全国)已知函数f (x )=e x -ax -a 3.(1)当a =1时,求曲线y =f (x )在点1,f (1) 处的切线方程;(2)若f (x )有极小值,且极小值小于0,求a 的取值范围.22.(2024·全国)已知函数f x =a x -1 -ln x +1.(1)求f x 的单调区间;(2)若a ≤2时,证明:当x >1时,f x <e x -1恒成立.23.(2024·全国)已知函数f x =1-ax ln 1+x -x .(1)当a =-2时,求f x 的极值;(2)当x ≥0时,f x ≥0恒成立,求a 的取值范围.24.(2024·北京)已知f x =x +k ln 1+x 在t ,f t t >0 处切线为l .(1)若切线l 的斜率k =-1,求f x 单调区间;(2)证明:切线l 不经过0,0 ;(3)已知k =1,A t ,f t ,C 0,f t ,O 0,0 ,其中t >0,切线l 与y 轴交于点B 时.当2S △ACO =15S △ABO ,符合条件的A 的个数为?(参考数据:1.09<ln3<1.10,1.60<ln5<1.61,1.94<ln7<1.95)25.(2024·天津)设函数f x =x ln x .(1)求f x 图象上点1,f 1 处的切线方程;(2)若f x ≥a x -x 在x ∈0,+∞ 时恒成立,求a 的取值范围;(3)若x 1,x 2∈0,1 ,证明f x 1 -f x 2 ≤x 1-x 2 12.26.(2024·上海)若f x =log a x (a >0,a ≠1).(1)y =f x 过4,2 ,求f 2x -2 <f x 的解集;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列,求a 的取值范围.27.(2024·上海)对于一个函数f x 和一个点M a ,b ,令s x =(x -a )2+f x -b 2,若P x 0,f x 0 是s x取到最小值的点,则称P 是M 在f x 的“最近点”.(1)对于f (x )=1x(x >0),求证:对于点M 0,0 ,存在点P ,使得点P 是M 在f x 的“最近点”;(2)对于f x =e x ,M 1,0 ,请判断是否存在一个点P ,它是M 在f x 的“最近点”,且直线MP 与y =f (x )在点P 处的切线垂直;(3)已知y =f (x )在定义域R 上存在导函数f (x ),且函数g (x )在定义域R 上恒正,设点M 1t -1,f t -g t ,M 2t +1,f t +g t .若对任意的t ∈R ,存在点P 同时是M 1,M 2在f x 的“最近点”,试判断f x 的单调性.参考答案:1.B【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【解析】因为f x 在R上单调递增,且x≥0时,f x =e x+ln x+1单调递增,则需满足--2a2×-1≥0-a≤e0+ln1,解得-1≤a≤0,即a的范围是[-1,0].故选:B.2.B【分析】代入得到f(1)=1,f(2)=2,再利用函数性质和不等式的性质,逐渐递推即可判断.【解析】因为当x<3时f(x)=x,所以f(1)=1,f(2)=2,又因为f(x)>f(x-1)+f(x-2),则f(3)>f(2)+f(1)=3,f(4)>f(3)+f(2)>5,f(5)>f(4)+f(3)>8,f(6)>f(5)+f(4)>13,f(7)>f(6)+f(5)>21,f(8)>f(7)+f(6)>34,f(9)>f(8)+f(7)>55,f(10)>f(9)+f(8)>89,f(11)>f(10)+f(9)>144,f(12)>f(11)+f(10)>233,f(13)>f(12)+f(11)>377f(14)>f(13)+f(12)>610,f(15)>f(14)+f(13)>987,f(16)>f(15)+f(14)>1597>1000,则依次下去可知f(20)>1000,则B正确;且无证据表明ACD一定正确.故选:B.【点睛】关键点点睛:本题的关键是利用f(1)=1,f(2)=2,再利用题目所给的函数性质f(x)>f(x-1)+ f(x-2),代入函数值再结合不等式同向可加性,不断递推即可.3.D【分析】解法一:令F x =ax2+a-1,G x =cos x,分析可知曲线y=F(x)与y=G(x)恰有一个交点,结合偶函数的对称性可知该交点只能在y轴上,即可得a=2,并代入检验即可;解法二:令h x =f(x)-g x ,x∈-1,1,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a=2,并代入检验即可.【解析】解法一:令f(x)=g x ,即a(x+1)2-1=cos x+2ax,可得ax2+a-1=cos x,令F x =ax2+a-1,G x =cos x,原题意等价于当x∈(-1,1)时,曲线y=F(x)与y=G(x)恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y轴上,可得F0 =G0 ,即a-1=1,解得a=2,若a=2,令F x =G x ,可得2x2+1-cos x=0因为x∈-1,1,则2x2≥0,1-cos x≥0,当且仅当x=0时,等号成立,可得2x2+1-cos x≥0,当且仅当x=0时,等号成立,则方程2x2+1-cos x=0有且仅有一个实根0,即曲线y=F(x)与y=G(x)恰有一个交点,所以a=2符合题意;综上所述:a=2.解法二:令h x =f(x)-g x =ax2+a-1-cos x,x∈-1,1,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4.C【分析】解法一:由题意可知:f (x )的定义域为-b ,+∞ ,分类讨论-a 与-b ,1-b 的大小关系,结合符号分析判断,即可得b =a +1,代入可得最值;解法二:根据对数函数的性质分析ln (x +b )的符号,进而可得x +a 的符号,即可得b =a +1,代入可得最值.【解析】解法一:由题意可知:f (x )的定义域为-b ,+∞ ,令x +a =0解得x =-a ;令ln (x +b )=0解得x =1-b ;若-a ≤-b ,当x ∈-b ,1-b 时,可知x +a >0,ln x +b <0,此时f (x )<0,不合题意;若-b <-a <1-b ,当x ∈-a ,1-b 时,可知x +a >0,ln x +b <0,此时f (x )<0,不合题意;若-a =1-b ,当x ∈-b ,1-b 时,可知x +a <0,ln x +b <0,此时f (x )>0;当x ∈1-b ,+∞ 时,可知x +a ≥0,ln x +b ≥0,此时f (x )≥0;可知若-a =1-b ,符合题意;若-a >1-b ,当x ∈1-b ,-a 时,可知x +a 0,ln x +b 0,此时f (x )<0,不合题意;综上所述:-a =1-b ,即b =a +1,则a 2+b 2=a 2+a +1 2=2a +12 2+12≥12,当且仅当a =-12,b =12时,等号成立,所以a 2+b 2的最小值为12;解法二:由题意可知:f (x )的定义域为-b ,+∞ ,令x +a =0解得x =-a ;令ln (x +b )=0解得x =1-b ;则当x ∈-b ,1-b 时,ln x +b <0,故x +a ≤0,所以1-b +a ≤0;x ∈1-b ,+∞ 时,ln x +b >0,故x +a ≥0,所以1-b +a ≥0;故1-b +a =0,则a 2+b 2=a 2+a +1 2=2a +12 2+12≥12,当且仅当a =-12,b =12时,等号成立,所以a 2+b 2的最小值为12.故选:C .【点睛】关键点点睛:分别求x +a =0、ln (x +b )=0的根,以根和函数定义域为临界,比较大小分类讨论,结合符号性分析判断.5.A【分析】先求出切线方程,再求出切线的截距,从而可求面积.【解析】f x =6x 5+3,所以f 0 =3,故切线方程为y =3(x -0)-1=3x -1,故切线的横截距为13,纵截距为-1,故切线与坐标轴围成的面积为12×1×13=16故选:A .6.B【分析】利用函数的奇偶性可排除A 、C ,代入x =1可得f 1 >0,可排除D .【解析】f -x =-x 2+e -x -e x sin -x =-x 2+e x -e -x sin x =f x ,又函数定义域为-2.8,2.8 ,故该函数为偶函数,可排除A 、C ,又f 1 =-1+e -1e sin1>-1+e -1e sin π6=e 2-1-12e >14-12e>0,故可排除D .故选:B .7.A【分析】借助导数的几何意义计算可得其在点0,1 处的切线方程,即可得其与坐标轴交点坐标,即可得其面积.【解析】fx =ex+2cos x 1+x 2 -e x +2sin x ⋅2x1+x 22,则f0 =e 0+2cos0 1+0 -e 0+2sin0 ×01+02=3,即该切线方程为y -1=3x ,即y =3x +1,令x =0,则y =1,令y =0,则x =-13,故该切线与两坐标轴所围成的三角形面积S =12×1×-13 =16.故选:A .8.A【分析】根据指数函数和对数函数的单调性结合基本不等式分析判断AB ;举例判断CD 即可.【解析】由题意不妨设x 1<x 2,因为函数y =2x 是增函数,所以0<2x 1<2x 2,即0<y 1<y 2,对于选项AB :可得2x1+2x 22>2x 1·2x 2=2x 1+x 22,即y 1+y 22>2x 1+x 22>0,根据函数y =log 2x 是增函数,所以log 2y 1+y 22>log 22x 1+x22=x 1+x22,故A 正确,B 错误;对于选项C :例如x 1=0,x 2=1,则y 1=1,y 2=2,可得log 2y 1+y 22=log 232∈0,1 ,即log 2y 1+y 22<1=x 1+x 2,故C 错误;对于选项D :例如x 1=-1,x 2=-2,则y 1=12,y 2=14,可得log 2y 1+y 22=log 238=log 23-3∈-2,-1 ,即log 2y 1+y 22>-3=x 1+x 2,故D 错误,故选:A .9.B【分析】根据偶函数的判定方法一一判断即可.【解析】对A ,设f x =e x -x 2x 2+1,函数定义域为R ,但f -1 =e -1-12,f 1 =e -12,则f -1 ≠f 1 ,故A 错误;对B ,设g x =cos x +x 2x 2+1,函数定义域为R ,且g -x =cos -x +-x 2-x 2+1=cos x +x 2x 2+1=g x ,则g x 为偶函数,故B 正确;对C ,设h x =e x -xx +1,函数定义域为x |x ≠-1 ,不关于原点对称,则h x 不是偶函数,故C 错误;对D ,设φx =sin x +4x e |x |,函数定义域为R ,因为φ1 =sin1+4e ,φ-1 =-sin1-4e ,则φ1 ≠φ-1 ,则φx 不是偶函数,故D 错误.故选:B .10.B【分析】利用指数函数和对数函数的单调性分析判断即可.【解析】因为y =4.2x 在R 上递增,且-0.3<0<0.3,所以0<4.2-0.3<4.20<4.20.3,所以0<4.2-0.3<1<4.20.3,即0<a <1<b ,因为y =log 4.2x 在(0,+∞)上递增,且0<0.2<1,所以log 4.20.2<log 4.21=0,即c <0,所以b >a >c ,故选:B 11.A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【解析】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .12.B【分析】对于ACD 利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B ,构造函数f x =-2,x <-1x ,-1≤x ≤11,x >1即可判断.【解析】对于A ,若存在y =f (x )是偶函数, 取x 0=1∈[-1,1],则对于任意x ∈(-∞,1),f (x )<f (1), 而f (-1)=f (1), 矛盾, 故A 错误;对于B ,可构造函数f x =-2,x <-1,x ,-1≤x ≤1,1,x >1,满足集合M =-1,1 ,当x <-1时,则f x =-2,当-1≤x ≤1时,f x ∈-1,1 ,当x >1时,f x =1,则该函数f x 的最大值是f 2 ,则B 正确;对C ,假设存在f x ,使得f x 严格递增,则M =R ,与已知M =-1,1 矛盾,则C 错误;对D ,假设存在f x ,使得f x 在x =-1处取极小值,则在-1的左侧附近存在n ,使得f n >f -1 ,这与已知集合M 的定义矛盾,故D 错误;故选:B .13.ACD【分析】求出函数f x 的导数,得到极值点,即可判断A ;利用函数的单调性可判断B ;根据函数f x 在1,3 上的值域即可判断C ;直接作差可判断D .【解析】对A ,因为函数f x 的定义域为R ,而f x =2x -1 x -4 +x -1 2=3x -1 x -3 ,易知当x ∈1,3 时,f x <0,当x ∈-∞,1 或x ∈3,+∞ 时,f x >0函数f x 在-∞,1 上单调递增,在1,3 上单调递减,在3,+∞ 上单调递增,故x =3是函数f x 的极小值点,正确;对B ,当0<x <1时,x -x 2=x 1-x >0,所以1>x >x 2>0,而由上可知,函数f x 在0,1 上单调递增,所以f x >f x 2 ,错误;对C ,当1<x <2时,1<2x -1<3,而由上可知,函数f x 在1,3 上单调递减,所以f 1 >f 2x -1 >f 3 ,即-4<f 2x -1 <0,正确;对D ,当-1<x <0时,f (2-x )-f (x )=1-x 2-2-x -x -1 2x -4 =x -1 22-2x >0,所以f (2-x )>f (x ),正确;故选:ACD .14.AD【分析】A 选项,先分析出函数的极值点为x =0,x =a ,根据零点存在定理和极值的符号判断出f (x )在(-1,0),(0,a ),(a ,2a )上各有一个零点;B 选项,根据极值和导函数符号的关系进行分析;C 选项,假设存在这样的a ,b ,使得x =b 为f (x )的对称轴,则f (x )=f (2b -x )为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,3-3a )为f (x )的对称中心,则f (x )+f (2-x )=6-6a ,据此进行计算判断,亦可利用拐点结论直接求解.【解析】A 选项,f (x )=6x 2-6ax =6x (x -a ),由于a >1,故x ∈-∞,0 ∪a ,+∞ 时f (x )>0,故f (x )在-∞,0 ,a ,+∞ 上单调递增,x ∈(0,a )时,f (x )<0,f (x )单调递减,则f (x )在x =0处取到极大值,在x =a 处取到极小值,由f (0)=1>0,f (a )=1-a 3<0,则f (0)f (a )<0,根据零点存在定理f (x )在(0,a )上有一个零点,又f (-1)=-1-3a <0,f (2a )=4a 3+1>0,则f (-1)f (0)<0,f (a )f (2a )<0,则f (x )在(-1,0),(a ,2a )上各有一个零点,于是a >1时,f (x )有三个零点,A 选项正确;B 选项,f (x )=6x (x -a ),a <0时,x ∈(a ,0),f (x )<0,f (x )单调递减,x ∈(0,+∞)时f (x )>0,f (x )单调递增,此时f (x )在x =0处取到极小值,B 选项错误;C 选项,假设存在这样的a ,b ,使得x =b 为f (x )的对称轴,即存在这样的a ,b 使得f (x )=f (2b -x ),即2x 3-3ax 2+1=2(2b -x )3-3a (2b -x )2+1,根据二项式定理,等式右边(2b -x )3展开式含有x 3的项为2C 33(2b )0(-x )3=-2x 3,于是等式左右两边x 3的系数都不相等,原等式不可能恒成立,于是不存在这样的a ,b ,使得x =b 为f (x )的对称轴,C 选项错误;D 选项,方法一:利用对称中心的表达式化简f (1)=3-3a ,若存在这样的a ,使得(1,3-3a )为f (x )的对称中心,则f (x )+f (2-x )=6-6a ,事实上,f (x )+f (2-x )=2x 3-3ax 2+1+2(2-x )3-3a (2-x )2+1=(12-6a )x 2+(12a -24)x +18-12a ,于是6-6a =(12-6a )x 2+(12a -24)x +18-12a即12-6a =012a -24=018-12a =6-6a,解得a =2,即存在a =2使得(1,f (1))是f (x )的对称中心,D 选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,f (x )=2x 3-3ax 2+1,f (x )=6x 2-6ax ,f (x )=12x -6a ,由f (x )=0⇔x =a 2,于是该三次函数的对称中心为a 2,f a2,由题意(1,f (1))也是对称中心,故a2=1⇔a =2,即存在a =2使得(1,f (1))是f (x )的对称中心,D 选项正确.故选:AD【点睛】结论点睛:(1)f (x )的对称轴为x =b ⇔f (x )=f (2b -x );(2)f (x )关于(a ,b )对称⇔f (x )+f (2a -x )=2b ;(3)任何三次函数f (x )=ax 3+bx 2+cx +d 都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是f (x )=0的解,即-b 3a ,f -b3a 是三次函数的对称中心15.ln2【分析】先求出曲线y =e x +x 在0,1 的切线方程,再设曲线y =ln x +1 +a 的切点为x 0,ln x 0+1 +a ,求出y ,利用公切线斜率相等求出x 0,表示出切线方程,结合两切线方程相同即可求解.【解析】由y =e x +x 得y =e x +1,y |x =0=e 0+1=2,故曲线y =e x +x 在0,1 处的切线方程为y =2x +1;由y =ln x +1 +a 得y =1x +1,设切线与曲线y =ln x +1 +a 相切的切点为x 0,ln x 0+1 +a ,由两曲线有公切线得y =1x 0+1=2,解得x 0=-12,则切点为-12,a +ln 12 ,切线方程为y =2x +12 +a +ln 12=2x +1+a -ln2,根据两切线重合,所以a -ln2=0,解得a =ln2.故答案为:ln216.64【分析】将log 8a ,log a 4利用换底公式转化成log 2a 来表示即可求解.【解析】由题1log 8a -1log a 4=3log 2a -12log 2a =-52,整理得log 2a 2-5log 2a -6=0,⇒log 2a =-1或log 2a =6,又a >1,所以log 2a =6=log 226,故a =26=64故答案为:64.17.-2,1【分析】将函数转化为方程,令x 3-3x =-x -1 2+a ,分离参数a ,构造新函数g x =x 3+x 2-5x +1,结合导数求得g x 单调区间,画出大致图形数形结合即可求解.【解析】令x 3-3x =-x -1 2+a ,即a =x 3+x 2-5x +1,令g x =x 3+x 2-5x +1x >0 ,则g x =3x 2+2x -5=3x +5 x -1 ,令g x =0x >0 得x =1,当x ∈0,1 时,g x <0,g x 单调递减,当x ∈1,+∞ 时,g x >0,g x 单调递增,g 0 =1,g 1 =-2,因为曲线y =x 3-3x 与y =-x -1 2+a 在0,+∞ 上有两个不同的交点,所以等价于y =a 与g x 有两个交点,所以a ∈-2,1.故答案为:-2,1 18.-3,-1 ∪1,3【分析】结合函数零点与两函数的交点的关系,构造函数g x =2x 2-ax 与h x =ax -3,x ≥2a1-ax ,x <2a,则两函数图象有唯一交点,分a =0、a >0与a <0进行讨论,当a >0时,计算函数定义域可得x ≥a 或x ≤0,计算可得a ∈0,2 时,两函数在y 轴左侧有一交点,则只需找到当a ∈0,2 时,在y 轴右侧无交点的情况即可得;当a <0时,按同一方式讨论即可得.【解析】令f x =0,即2x 2-ax =ax -2 -1,由题可得x 2-ax ≥0,当a =0时,x ∈R ,有2x 2=-2 -1=1,则x =±22,不符合要求,舍去;当a >0时,则2x 2-ax =ax -2 -1=ax -3,x ≥2a1-ax ,x <2a,即函数g x =2x 2-ax 与函数h x =ax -3,x ≥2a1-ax ,x <2a有唯一交点,由x 2-ax ≥0,可得x ≥a 或x ≤0,当x ≤0时,则ax -2<0,则2x 2-ax =ax -2 -1=1-ax ,即4x 2-4ax =1-ax 2,整理得4-a 2 x 2-2ax -1=2+a x +1 2-a x -1 =0,当a =2时,即4x +1=0,即x =-14,当a ∈0,2 ,x =-12+a 或x =12-a>0(正值舍去),当a ∈2,+∞ 时,x =-12+a <0或x =12-a<0,有两解,舍去,即当a ∈0,2 时,2x 2-ax -ax -2 +1=0在x ≤0时有唯一解,则当a ∈0,2 时,2x 2-ax -ax -2 +1=0在x ≥a 时需无解,当a ∈0,2 ,且x ≥a 时,由函数h x =ax -3,x ≥2a1-ax ,x <2a关于x =2a 对称,令h x =0,可得x =1a 或x =3a ,且函数h x 在1a ,2a上单调递减,在2a ,3a上单调递增,令g x =y =2x 2-ax ,即x -a 2 2a 24-y 2a 2=1,故x ≥a 时,g x 图象为双曲线x2a 24-y 2a2=1右支的x 轴上方部分向右平移a2所得,由x2a 24-y 2a2=1的渐近线方程为y =±aa 2x =±2x ,即g x 部分的渐近线方程为y =2x -a 2,其斜率为2,又a ∈0,2 ,即h x =ax -3,x ≥2a1-ax ,x <2a在x ≥2a 时的斜率a ∈0,2 ,令g x =2x 2-ax =0,可得x =a 或x =0(舍去),且函数g x 在a ,+∞ 上单调递增,故有1a <a 3a>a,解得1<a <3,故1<a <3符合要求;当a <0时,则2x 2-ax =ax -2 -1=ax -3,x ≤2a1-ax ,x >2a,即函数g x =2x 2-ax 与函数h x =ax -3,x ≤2a1-ax ,x >2a有唯一交点,由x 2-ax ≥0,可得x ≥0或x ≤a ,当x ≥0时,则ax -2<0,则2x 2-ax =ax -2 -1=1-ax ,即4x 2-4ax =1-ax 2,整理得4-a 2 x 2-2ax -1=2+a x +1 2-a x -1 =0,当a =-2时,即4x -1=0,即x =14,当a ∈-2,0 ,x =-12+a <0(负值舍去)或x =12-a0,当a ∈-∞,2 时,x =-12+a >0或x =12-a>0,有两解,舍去,即当a ∈-2,0 时,2x 2-ax -ax -2 +1=0在x ≥0时有唯一解,则当a ∈-2,0 时,2x 2-ax -ax -2 +1=0在x ≤a 时需无解,当a ∈-2,0 ,且x ≤a 时,由函数h x =ax -3,x ≤2a1-ax ,x >2a关于x =2a 对称,令h x =0,可得x =1a 或x =3a ,且函数h x 在2a ,1a上单调递减,在3a ,2a上单调递增,同理可得:x ≤a 时,g x 图象为双曲线x 2a 24-y 2a 2=1左支的x 轴上方部分向左平移a2所得,g x 部分的渐近线方程为y =-2x +a 2,其斜率为-2,又a ∈-2,0 ,即h x =ax -3,x ≥2a1-ax ,x <2a在x <2a 时的斜率a ∈-2,0 ,令g x =2x 2-ax =0,可得x =a 或x =0(舍去),且函数g x 在-∞,a 上单调递减,故有1a >a 3a<a,解得-3<a <-1,故-3<a <-1符合要求;综上所述,a ∈-3,-1 ∪1,3 .故答案为:-3,-1 ∪1,3 .【点睛】关键点点睛:本题关键点在于将函数f x 的零点问题转化为函数g x =2x 2-ax 与函数h x =ax -3,x ≥2a1-ax ,x <2a的交点问题,从而可将其分成两个函数研究.19.3【分析】利用分段函数的形式可求f 3 .【解析】因为f x =x ,x >01,x ≤0, 故f 3 =3,故答案为:3.20.(1)-2(2)证明见解析(3)b ≥-23【分析】(1)求出f x min =2+a 后根据f (x )≥0可求a 的最小值;(2)设P m ,n 为y =f x 图象上任意一点,可证P m ,n 关于1,a 的对称点为Q 2-m ,2a -n 也在函数的图像上,从而可证对称性;(3)根据题设可判断f 1 =-2即a =-2,再根据f (x )>-2在1,2 上恒成立可求得b ≥-23.【解析】(1)b =0时,f x =ln x2-x+ax ,其中x ∈0,2 ,则f x =1x +12-x =2x 2-x+a ,x ∈0,2 ,因为x 2-x ≤2-x +x 2 2=1,当且仅当x =1时等号成立,故f x min =2+a ,而f x ≥0成立,故a +2≥0即a ≥-2,所以a 的最小值为-2.,(2)f x =ln x2-x+ax +b x -1 3的定义域为0,2 ,设P m ,n 为y =f x 图象上任意一点,P m ,n 关于1,a 的对称点为Q 2-m ,2a -n ,因为P m ,n 在y =f x 图象上,故n =ln m2-m+am +b m -1 3,而f 2-m =ln 2-m m +a 2-m +b 2-m -1 3=-ln m2-m +am +b m -1 3 +2a ,=-n +2a ,所以Q 2-m ,2a -n 也在y =f x 图象上,由P 的任意性可得y =f x 图象为中心对称图形,且对称中心为1,a .(3)因为f x >-2当且仅当1<x<2,故x=1为f x =-2的一个解,所以f1 =-2即a=-2,先考虑1<x<2时,f x >-2恒成立.此时f x >-2即为lnx2-x+21-x+b x-13>0在1,2上恒成立,设t=x-1∈0,1,则ln t+11-t-2t+bt3>0在0,1上恒成立,设g t =ln t+11-t-2t+bt3,t∈0,1,则g t =21-t2-2+3bt2=t2-3bt2+2+3b1-t2,当b≥0,-3bt2+2+3b≥-3b+2+3b=2>0,故g t >0恒成立,故g t 在0,1上为增函数,故g t >g0 =0即f x >-2在1,2上恒成立.当-23≤b<0时,-3bt2+2+3b≥2+3b≥0,故g t ≥0恒成立,故g t 在0,1上为增函数,故g t >g0 =0即f x >-2在1,2上恒成立.当b<-23,则当0<t<1+23b<1时,g t <0故在0,1+2 3b上g t 为减函数,故g t <g0 =0,不合题意,舍;综上,f x >-2在1,2上恒成立时b≥-2 3 .而当b≥-23时,而b≥-23时,由上述过程可得g t 在0,1递增,故g t >0的解为0,1,即f x >-2的解为1,2.综上,b≥-2 3 .【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.21.(1)e-1x-y-1=0(2)1,+∞【分析】(1)求导,结合导数的几何意义求切线方程;(2)解法一:求导,分析a≤0和a>0两种情况,利用导数判断单调性和极值,分析可得a2+ln a-1>0,构建函数解不等式即可;解法二:求导,可知f (x)=e x-a有零点,可得a>0,进而利用导数求f x 的单调性和极值,分析可得a2+ln a-1>0,构建函数解不等式即可.【解析】(1)当a=1时,则f(x)=e x-x-1,f (x)=e x-1,可得f(1)=e-2,f (1)=e-1,即切点坐标为1,e-2,切线斜率k=e-1,所以切线方程为y-e-2=e-1x-1,即e-1x-y-1=0.(2)解法一:因为f(x)的定义域为R,且f (x)=e x-a,若a≤0,则f (x)≥0对任意x∈R恒成立,可知f (x )在R 上单调递增,无极值,不合题意;若a >0,令f (x )>0,解得x >ln a ;令f (x )<0,解得x <ln a ;可知f (x )在-∞,ln a 内单调递减,在ln a ,+∞ 内单调递增,则f (x )有极小值f ln a =a -a ln a -a 3,无极大值,由题意可得:f ln a =a -a ln a -a 3<0,即a 2+ln a -1>0,构建g a =a 2+ln a -1,a >0,则g a =2a +1a>0,可知g a 在0,+∞ 内单调递增,且g 1 =0,不等式a 2+ln a -1>0等价于g a >g 1 ,解得a >1,所以a 的取值范围为1,+∞ ;解法二:因为f (x )的定义域为R ,且f (x )=e x -a ,若f (x )有极小值,则f (x )=e x -a 有零点,令f (x )=e x -a =0,可得e x =a ,可知y =e x 与y =a 有交点,则a >0,若a >0,令f (x )>0,解得x >ln a ;令f (x )<0,解得x <ln a ;可知f (x )在-∞,ln a 内单调递减,在ln a ,+∞ 内单调递增,则f (x )有极小值f ln a =a -a ln a -a 3,无极大值,符合题意,由题意可得:f ln a =a -a ln a -a 3<0,即a 2+ln a -1>0,构建g a =a 2+ln a -1,a >0,因为则y =a 2,y =ln a -1在0,+∞ 内单调递增,可知g a 在0,+∞ 内单调递增,且g 1 =0,不等式a 2+ln a -1>0等价于g a >g 1 ,解得a >1,所以a 的取值范围为1,+∞ .22.(1)见解析(2)见解析【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性;(2)先根据题设条件将问题可转化成证明当x >1时,e x -1-2x +1+ln x >0即可.【解析】(1)f (x )定义域为(0,+∞),f (x )=a -1x =ax -1x当a ≤0时,f (x )=ax -1x <0,故f (x )在(0,+∞)上单调递减;当a >0时,x ∈1a,+∞ 时,f (x )>0,f (x )单调递增,当x ∈0,1a时,f (x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,+∞)上单调递减;a >0时,f (x )在1a ,+∞ 上单调递增,在0,1a上单调递减.(2)a ≤2,且x >1时,e x -1-f (x )=e x -1-a (x -1)+ln x -1≥e x -1-2x +1+ln x ,令g (x )=e x -1-2x +1+ln x (x >1),下证g (x )>0即可.g (x )=e x -1-2+1x ,再令h (x )=g (x ),则h (x )=e x -1-1x2,显然h (x )在(1,+∞)上递增,则h (x )>h (1)=e 0-1=0,即g (x )=h (x )在(1,+∞)上递增,故g (x)>g (1)=e0-2+1=0,即g(x)在(1,+∞)上单调递增,故g(x)>g(1)=e0-2+1+ln1=0,问题得证23.(1)极小值为0,无极大值.(2)a≤-12【分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值.(2)求出函数的二阶导数,就a≤-12、-12<a<0、a≥0分类讨论后可得参数的取值范围.【解析】(1)当a=-2时,f(x)=(1+2x)ln(1+x)-x,故f (x)=2ln(1+x)+1+2x1+x-1=2ln(1+x)-11+x+1,因为y=2ln(1+x),y=-11+x+1在-1,+∞上为增函数,故f (x)在-1,+∞上为增函数,而f (0)=0,故当-1<x<0时,f (x)<0,当x>0时,f (x)>0,故f x 在x=0处取极小值且极小值为f0 =0,无极大值.(2)f x =-a ln1+x+1-ax1+x-1=-a ln1+x-a+1x1+x,x>0,设s x =-a ln1+x-a+1x1+x,x>0,则s x =-ax+1-a+11+x2=-a x+1+a+11+x2=-ax+2a+11+x2,当a≤-12时,sx >0,故s x 在0,+∞上为增函数,故s x >s0 =0,即f x >0,所以f x 在0,+∞上为增函数,故f x ≥f0 =0.当-12<a<0时,当0<x<-2a+1a时,sx <0,故s x 在0,-2a+1 a上为减函数,故在0,-2a+1a上s x <s0 ,即在0,-2a+1 a上f x <0即f x 为减函数,故在0,-2a+1 a上f x <f0 =0,不合题意,舍.当a≥0,此时s x <0在0,+∞上恒成立,同理可得在0,+∞上f x <f0 =0恒成立,不合题意,舍;综上,a≤-1 2 .【点睛】思路点睛:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.24.(1)单调递减区间为(-1,0),单调递增区间为(0,+∞).(2)证明见解析(3)2【分析】(1)直接代入k=-1,再利用导数研究其单调性即可;(2)写出切线方程y-f(t)=1+k1+t(x-t)(t>0),将(0,0)代入再设新函数F(t)=ln(1+t)-t1+t,利用导数研究其零点即可;(3)分别写出面积表达式,代入2S △ACO =15S ABO 得到13ln (1+t )-2t -15t1+t=0,再设新函数h (t )=13ln (1+t )-2t -15t1+t(t >0)研究其零点即可.【解析】(1)f (x )=x -ln (1+x ),f (x )=1-11+x =x1+x(x >-1),当x ∈-1,0 时,f x <0;当x ∈0,+∞ ,f x >0;∴f (x )在(-1,0)上单调递减,在(0,+∞)上单调递增.则f (x )的单调递减区间为(-1,0),单调递增区间为(0,+∞).(2)f (x )=1+k 1+x ,切线l 的斜率为1+k1+t,则切线方程为y -f (t )=1+k1+t (x -t )(t >0),将(0,0)代入则-f (t )=-t 1+k 1+t,f (t )=t 1+k1+t ,即t +k ln (1+t )=t +t k 1+t ,则ln (1+t )=t 1+t ,ln (1+t )-t1+t =0,令F (t )=ln (1+t )-t1+t,假设l 过(0,0),则F (t )在t ∈(0,+∞)存在零点.F (t )=11+t -1+t -t (1+t )2=t(1+t )2>0,∴F (t )在(0,+∞)上单调递增,F (t )>F (0)=0,∴F (t )在(0,+∞)无零点,∴与假设矛盾,故直线l 不过(0,0).(3)k =1时,f (x )=x +ln (1+x ),f (x )=1+11+x =x +21+x>0.S △ACO =12tf (t ),设l 与y 轴交点B 为(0,q ),t >0时,若q <0,则此时l 与f (x )必有交点,与切线定义矛盾.由(2)知q ≠0.所以q >0,则切线l 的方程为y -t -ln t +1 =1+11+t x -t ,令x =0,则y =q =y =ln (1+t )-tt +1.∵2S △ACO =15S ABO ,则2tf (t )=15t ln (1+t )-t t +1,∴13ln (1+t )-2t -15t 1+t =0,记h (t )=13ln (1+t )-2t -15t1+t(t >0),∴满足条件的A 有几个即h (t )有几个零点.h(t )=131+t -2-15(t +1)2=13t +13-2t 2+2t +1 -15(t +1)2=2t 2+9t -4(t +1)2=(-2t +1)(t -4)(t +1)2,当t ∈0,12 时,h t <0,此时h t 单调递减;当t ∈12,4 时,h t >0,此时h t 单调递增;当t ∈4,+∞ 时,h t <0,此时h t 单调递减;因为h (0)=0,h 120,h (4)=13ln5-20 13×1.6-20=0.8>0,h (24)=13ln25-48-15×2425=26ln5-48-725<26×1.61-48-725=-20.54<0,所以由零点存在性定理及h (t )的单调性,h (t )在12,4 上必有一个零点,在(4,24)上必有一个零点,综上所述,h (t )有两个零点,即满足2S ACO =15S ABO 的A 有两个.【点睛】关键点点睛:本题第二问的关键是采用的是反证法,转化为研究函数零点问题.25.(1)y =x -1(2)2(3)证明过程见解析【分析】(1)直接使用导数的几何意义;(2)先由题设条件得到a =2,再证明a =2时条件满足;(3)先确定f x 的单调性,再对x 1,x 2分类讨论.【解析】(1)由于f x =x ln x ,故f x =ln x +1.所以f 1 =0,f 1 =1,所以所求的切线经过1,0 ,且斜率为1,故其方程为y =x -1.(2)设h t =t -1-ln t ,则h t =1-1t =t -1t,从而当0<t <1时h t <0,当t >1时h t >0.所以h t 在0,1 上递减,在1,+∞ 上递增,这就说明h t ≥h 1 ,即t -1≥ln t ,且等号成立当且仅当t =1.设g t =a t -1 -2ln t ,则f x -a x -x =x ln x -a x -x =x a 1x -1-2ln 1x=x ⋅g 1x.当x ∈0,+∞ 时,1x的取值范围是0,+∞ ,所以命题等价于对任意t ∈0,+∞ ,都有g t ≥0.一方面,若对任意t ∈0,+∞ ,都有g t ≥0,则对t ∈0,+∞ 有0≤g t =a t -1 -2ln t =a t -1 +2ln 1t ≤a t -1 +21t -1 =at +2t-a -2,取t =2,得0≤a -1,故a ≥1>0.再取t =2a ,得0≤a ⋅2a +2a 2-a -2=22a -a -2=-a -2 2,所以a =2.另一方面,若a =2,则对任意t ∈0,+∞ 都有g t =2t -1 -2ln t =2h t ≥0,满足条件.综合以上两个方面,知a 的取值范围是2 .(3)先证明一个结论:对0<a <b ,有ln a +1<f b -f ab -a<ln b +1.证明:前面已经证明不等式t -1≥ln t ,故b ln b -a ln a b -a =a ln b -a ln ab -a +ln b =ln b a b a -1+ln b <1+ln b ,且b ln b -a ln a b -a =b ln b -b ln a b -a +ln a =-ln a b 1-a b +ln a >-ab-1 1-a b+ln a =1+ln a ,所以ln a +1<b ln b -a ln ab -a <ln b +1,即ln a +1<f b -f a b -a<ln b +1.由f x =ln x +1,可知当0<x <1e 时f x <0,当x >1e时f x >0.所以f x 在0,1e 上递减,在1e,+∞ 上递增.不妨设x 1≤x 2,下面分三种情况(其中有重合部分)证明本题结论.情况一:当1e≤x 1≤x 2<1时,有f x 1 -f x 2 =f x 2 -f x 1 <ln x 2+1 x 2-x 1 <x 2-x 1<x 2-x 1,结论成立;情况二:当0<x 1≤x 2≤1e时,有f x 1 -f x 2 =f x 1 -f x 2 =x 1ln x 1-x 2ln x 2.对任意的c ∈0,1e,设φx =x ln x -c ln c -c -x ,则φx =ln x +1+12c -x.由于φx 单调递增,且有φ c 2e1+12c=ln c2e1+12c+1+12c -c2e1+12c<ln1e1+12c+1+12c -c2=-1-12c +1+12c=0,且当x ≥c -14ln 2c-1 2,x >c 2时,由12c -x≥ln 2c -1可知φ x =ln x +1+12c -x >ln c 2+1+12c -x =12c -x-ln 2c -1 ≥0.所以φ x 在0,c 上存在零点x 0,再结合φ x 单调递增,即知0<x <x 0时φ x <0,x 0<x <c 时φ x >0.故φx 在0,x 0 上递减,在x 0,c 上递增.①当x 0≤x ≤c 时,有φx ≤φc =0;②当0<x <x 0时,由于c ln 1c =-2f c ≤-2f 1e =2e <1,故我们可以取q ∈c ln 1c,1 .从而当0<x <c1-q 2时,由c -x >q c ,可得φx =x ln x -c ln c -c -x <-c ln c -c -x <-c ln c -q c =c c ln 1c-q <0.再根据φx 在0,x 0 上递减,即知对0<x <x 0都有φx <0;综合①②可知对任意0<x ≤c ,都有φx ≤0,即φx =x ln x -c ln c -c -x ≤0.根据c ∈0,1e和0<x ≤c 的任意性,取c =x 2,x =x 1,就得到x 1ln x 1-x 2ln x 2-x 2-x 1≤0.所以f x 1 -f x 2 =f x 1 -f x 2 =x 1ln x 1-x 2ln x 2≤x 2-x 1.情况三:当0<x 1≤1e ≤x 2<1时,根据情况一和情况二的讨论,可得f x 1 -f 1e≤1e -x 1≤x 2-x 1,f 1e -f x 2 ≤x 2-1e ≤x 2-x 1.而根据f x 的单调性,知f x 1 -f x 2 ≤f x 1 -f 1e 或f x 1 -f x 2 ≤f 1e-f x 2 .故一定有f x 1 -f x 2 ≤x 2-x 1成立.综上,结论成立.【点睛】关键点点睛:本题的关键在于第3小问中,需要结合f x 的单调性进行分类讨论.26.(1)x |1<x <2(2)a >1【分析】(1)求出底数a ,再根据对数函数的单调性可求不等式的解;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列等价于a 2=21x +342-18在0,+∞ 上有解,利用换元法结合二次函数的性质可求a 的取值范围.【解析】(1)因为y =f x 的图象过4,2 ,故log a 4=2,故a 2=4即a =2(负的舍去),而f x =log 2x 在0,+∞ 上为增函数,故f 2x -2 <f x ,故0<2x -2<x 即1<x <2,故f 2x -2 <f x 的解集为x |1<x <2 .(2)因为存在x 使得f x +1 、f ax 、f x +2 成等差数列,故2f ax =f x +1 +f x +2 有解,故2log a ax =log a x +1 +log a x +2 ,因为a >0,a ≠1,故x >0,故a 2x 2=x +1 x +2 在0,+∞ 上有解,由a 2=x 2+3x +2x 2=1+3x +2x 2=21x +34 2-18在0,+∞ 上有解,令t =1x ∈0,+∞ ,而y =2t +34 2-18在0,+∞ 上的值域为1,+∞ ,故a 2>1即a >1.27.(1)证明见解析(2)存在,P 0,1 (3)严格单调递减【分析】(1)代入M (0,0),利用基本不等式即可;(2)由题得s x =(x -1)2+e 2x ,利用导函数得到其最小值,则得到P ,再证明直线MP 与切线垂直即可;(3)根据题意得到s 1 x 0 =s 2 x 0 =0,对两等式化简得f x 0 =-1g (t ),再利用“最近点”的定义得到不等式组,即可证明x 0=t ,最后得到函数单调性.【解析】(1)当M (0,0)时,s x =(x -0)2+1x -0 2=x 2+1x2≥2x 2⋅1x 2=2,当且仅当x 2=1x 2即x =1时取等号,故对于点M 0,0 ,存在点P 1,1 ,使得该点是M 0,0 在f x 的“最近点”.(2)由题设可得s x =(x -1)2+e x -0 2=(x -1)2+e 2x ,则s x =2x -1 +2e 2x ,因为y =2x -1 ,y =2e 2x 均为R 上单调递增函数,则s x =2x -1 +2e 2x 在R 上为严格增函数,而s 0 =0,故当x <0时,s x <0,当x >0时,s x >0,故s x min =s 0 =2,此时P 0,1 ,而f x =e x ,k =f 0 =1,故f x 在点P 处的切线方程为y =x +1.而k MP =0-11-0=-1,故k MP ⋅k =-1,故直线MP 与y =f x 在点P 处的切线垂直.(3)设s 1x =(x -t +1)2+f x -f t +g t 2,s 2x =(x -t -1)2+f x -f t -g t 2,而s 1x =2(x -t +1)+2f x -f t +g t f x ,s 2x =2(x -t -1)+2f x -f t -g t f x ,若对任意的t ∈R ,存在点P 同时是M 1,M 2在f x 的“最近点”,设P x 0,y 0 ,则x 0既是s 1x 的最小值点,也是s 2x 的最小值点,因为两函数的定义域均为R ,则x 0也是两函数的极小值点,则存在x0,使得s 1 x 0 =s 2 x 0 =0,即s 1 x 0 =2x 0-t +1 +2f x 0 f x 0 -f (t )+g (t ) =0①s 2 x 0 =2x 0-t -1 +2f x 0 f x 0 -f (t )-g (t ) =0②由①②相等得4+4g (t )⋅f x 0 =0,即1+f x 0 g (t )=0,即f x 0 =-1g (t ),又因为函数g (x )在定义域R 上恒正,则f x 0 =-1g (t )<0恒成立,接下来证明x 0=t ,因为x 0既是s 1x 的最小值点,也是s 2x 的最小值点,则s 1x 0 ≤s (t ),s 2x 0 ≤s (t ),即x 0-t +1 2+f x 0 -f t +g t 2≤1+g t 2,③x 0-t -12+f x 0 -f t -g t 2≤1+g t 2,④③+④得2x 0-t 2+2+2f x 0 -f (t ) 2+2g 2(t )≤2+2g 2(t )即x 0-t 2+f x 0 -f t 2≤0,因为x 0-t 2≥0,f x 0 -f t 2≥0则x 0-t =0f x 0 -f t =0,解得x 0=t ,则f t =-1g (t )<0恒成立,因为t 的任意性,则f x 严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到f x 0 =-1g (t ),再利用最值点定义得到x 0=t 即可.。
2023高考数学北京卷导数的计算历年真题及答案
![2023高考数学北京卷导数的计算历年真题及答案](https://img.taocdn.com/s3/m/e3458838eef9aef8941ea76e58fafab069dc44e1.png)
2023高考数学北京卷导数的计算历年真题及答案一、第一题已知函数f(x) = x^3 - 2x + 1,求f(x)的导数f'(x)。
解答过程:首先,根据导数的定义,我们知道f'(x) = lim(h→0) [f(x+h) - f(x)] / h。
代入f(x) = x^3 - 2x + 1,得到f'(x) = lim(h→0) [(x+h)^3 - 2(x+h) + 1 - x^3 + 2x - 1] / h。
展开并进行化简计算,得到f'(x) = lim(h→0) [3x^2h + 3xh^2 + h^3 -2h] / h。
再一次化简,得到f'(x) = lim(h→0) (3x^2 + 3xh + h^2 - 2)。
在h→0的极限下,只有常数项-2保留,得到导数 f'(x) = 3x^2 - 2。
所以,f(x)的导数为 f'(x) = 3x^2 - 2。
二、第二题已知函数f(x) = 2x^2 + 3x - 5,求f(x)的导数f'(x)及f''(x)。
解答过程:首先,计算f(x)的导数f'(x)。
根据导数的定义,f'(x) = lim(h→0)[f(x+h) - f(x)] / h。
代入f(x) = 2x^2 + 3x - 5,得到f'(x) = lim(h→0) [2(x+h)^2 + 3(x+h) -5 - (2x^2 + 3x - 5)] / h。
展开并进行化简计算,得到f'(x) = lim(h→0) [2x^2 + 4xh + 2h^2 + 3x + 3h - 5 - 2x^2 - 3x + 5] / h。
再一次化简,得到f'(x) = lim(h→0) (4xh + 2h^2 + 3h) / h。
化简后消去h,得到 f'(x) = lim(h→0) (4x + 2h + 3)。
(完整word版)北京高考导数大题分类
![(完整word版)北京高考导数大题分类](https://img.taocdn.com/s3/m/56b2437e0b4c2e3f572763f3.png)
导数大题分类一、含参数单调区间的求解步骤:①确定定义域(易错点)②求导函数)('x f③对)('x f 进行整理,能十字交叉的十字交叉分解,若含分式项,则进行通分整理.④)('x f 中x 的最高次系数是否为0,为0时求出单调区间.例1:x x a x a x f ++-=23213)(,则)1)(1()('--=x ax x f 要首先讨论0=a 情况 ⑤)('x f 最高次系数不为0,讨论参数取某范围的值时,若0)('≥x f ,则)(x f 在定义域内单调递增;若0)('≤x f ,则)(x f 在定义域内单调递减. 例2:x x a x f ln 2)(2+=,则)('x f =)0(,12>+x x ax ,显然0≥a 时0)('>x f ,此时)(x f 的单调区间为),0(+∞.⑥)('x f 最高次系数不为0,且参数取某范围的值时,不会出现0)('≥x f 或者0)('≤x f 的情况 求出)('x f =0的根,(一般为两个)21,x x ,判断两个根是否都在定义域内.如果只有一根在定义域内,那么单调区间只有两段.若两根都在定义域内且一根为常数,一根含参数.则通过比较两根大小分三种情况讨论单调区间,即212121,,x x x x x x =<>. 例3:若)0(,ln )1(2)(2≠++-=a x x a x a x f ,则x x ax x f )1)(1()('--=,)0(>x 解方程0)('=x f 得a x x 1,121== 0<a 时,只有11=x 在定义域内.0>a 时,比较两根要分三种情况:1,10,1><<=a a a用所得的根将定义域分成几个不同的子区间,讨论)('x f在每个子区间内的正负,求得)(x f的单调区间。
2024全国高考真题数学汇编:导数在研究函数中的应用
![2024全国高考真题数学汇编:导数在研究函数中的应用](https://img.taocdn.com/s3/m/8fca0ab5b9f67c1cfad6195f312b3169a451ea2f.png)
2024全国高考真题数学汇编导数在研究函数中的应用一、单选题1.(2024上海高考真题)已知函数()f x 的定义域为R ,定义集合 0000,,,M x x x x f x f x R ,在使得 1,1M 的所有 f x 中,下列成立的是()A .存在 f x 是偶函数B .存在 f x 在2x 处取最大值C .存在 f x 是严格增函数D .存在 f x 在=1x 处取到极小值二、多选题2.(2024全国高考真题)设函数2()(1)(4)f x x x ,则()A .3x 是()f x 的极小值点B .当01x 时, 2()f x f xC .当12x 时,4(21)0f xD .当10x 时,(2)()f x f x 3.(2024全国高考真题)设函数32()231f x x ax ,则()A .当1a 时,()f x 有三个零点B .当0a 时,0x 是()f x 的极大值点C .存在a ,b ,使得x b 为曲线()y f x 的对称轴D .存在a ,使得点 1,1f 为曲线()y f x 的对称中心三、填空题4.(2024全国高考真题)曲线33y x x 与 21y x a 在 0, 上有两个不同的交点,则a 的取值范围为.四、解答题5.(2024全国高考真题)已知函数3()e x f x ax a .(1)当1a 时,求曲线()y f x 在点 1,(1)f 处的切线方程;(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.6.(2024全国高考真题)已知函数 1ln 1f x ax x x .(1)当2a 时,求 f x 的极值;(2)当0x 时, 0f x ,求a 的取值范围.7.(2024全国高考真题)已知函数 1ln 1f x a x x .(1)求 f x 的单调区间;(2)当2a 时,证明:当1x 时, 1e x f x 恒成立.8.(2024上海高考真题)对于一个函数 f x 和一个点 ,M a b ,令 22()()s x x a f x b ,若 00,P x f x 是 s x 取到最小值的点,则称P 是M 在 f x 的“最近点”.(1)对于1()(0)f x x x,求证:对于点 0,0M ,存在点P ,使得点P 是M 在 f x 的“最近点”;(2)对于 e ,1,0x f x M ,请判断是否存在一个点P ,它是M 在 f x 的“最近点”,且直线MP 与()y f x 在点P 处的切线垂直;(3)已知()y f x 在定义域R 上存在导函数()f x ,且函数()g x 在定义域R 上恒正,设点11,M t f t g t , 21,M t f t g t .若对任意的t R ,存在点P 同时是12,M M 在 f x 的“最近点”,试判断 f x 的单调性.9.(2024北京高考真题)设函数 ln 10f x x k x k ,直线l 是曲线 y f x 在点 ,0t f t t 处的切线.(1)当1k 时,求 f x 的单调区间.(2)求证:l 不经过点 0,0.(3)当1k 时,设点 ,0A t f t t , 0,C f t , 0,0O ,B 为l 与y 轴的交点,ACO S 与ABO S 分别表示ACO △与ABO 的面积.是否存在点A 使得215ACO ABO S S △△成立?若存在,这样的点A 有几个?(参考数据:1.09ln31.10 ,1.60ln51.61 ,1.94ln71.95 )10.(2024天津高考真题)设函数 ln f x x x .(1)求 f x 图象上点 1,1f 处的切线方程;(2)若 f x a x 在 0,x 时恒成立,求a 的值;(3)若 12,0,1x x ,证明 121212f x f x x x .11.(2024全国高考真题)已知函数3()ln (1)2x f x ax b x x (1)若0b ,且()0f x ,求a 的最小值;(2)证明:曲线()y f x 是中心对称图形;(3)若()2f x 当且仅当12x ,求b 的取值范围.参考答案1.B【分析】对于ACD 利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B ,构造函数2,1,111,1x f x x x x即可判断.【详解】对于A ,若存在()y f x 是偶函数,取01[1,1]x ,则对于任意(,1),()(1)x f x f ,而(1)(1)f f ,矛盾,故A 错误;对于B ,可构造函数 2,1,,11,1,1,x f x x x x满足集合 1,1M ,当1x 时,则 2f x ,当11x 时, 1,1f x ,当1x 时, 1f x ,则该函数 f x 的最大值是 2f ,则B 正确;对C ,假设存在 f x ,使得 f x 严格递增,则M R ,与已知 1,1M 矛盾,则C 错误;对D ,假设存在 f x ,使得 f x 在=1x 处取极小值,则在1 的左侧附近存在n ,使得 1f n f ,这与已知集合M 的定义矛盾,故D 错误;故选:B.2.ACD【分析】求出函数 f x 的导数,得到极值点,即可判断A ;利用函数的单调性可判断B ;根据函数 f x 在 1,3上的值域即可判断C ;直接作差可判断D.【详解】对A ,因为函数 f x 的定义域为R ,而 22141313f x x x x x x ,易知当 1,3x 时, 0f x ,当 ,1x 或 3,x 时, 0f x 函数 f x 在 ,1 上单调递增,在 1,3上单调递减,在 3, 上单调递增,故3x 是函数 f x 的极小值点,正确;对B ,当01x 时, 210x x x x ,所以210x x ,而由上可知,函数 f x 在 0,1上单调递增,所以 2f x f x ,错误;对C ,当12x 时,1213x ,而由上可知,函数 f x 在 1,3上单调递减,所以 1213f f x f ,即 4210f x ,正确;对D ,当10x 时, 222(2)()12141220f x f x x x x x x x ,所以(2)()f x f x ,正确;故选:ACD.3.AD【分析】A 选项,先分析出函数的极值点为0,x x a ,根据零点存在定理和极值的符号判断出()f x 在(1,0),(0,),(,2)a a a 上各有一个零点;B 选项,根据极值和导函数符号的关系进行分析;C 选项,假设存在这样的,a b ,使得x b 为()f x 的对称轴,则()(2)f x f b x 为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,33)a 为()f x 的对称中心,则()(2)66f x f x a ,据此进行计算判断,亦可利用拐点结论直接求解.【详解】A 选项,2()666()f x x ax x x a ,由于1a ,故 ,0,x a 时()0f x ,故()f x 在 ,0,,a 上单调递增,(0,)x a 时,()0f x ,()f x 单调递减,则()f x 在0x 处取到极大值,在x a 处取到极小值,由(0)10 f ,3()10f a a ,则(0)()0f f a ,根据零点存在定理()f x 在(0,)a 上有一个零点,又(1)130f a ,3(2)410f a a ,则(1)(0)0,()(2)0f f f a f a ,则()f x 在(1,0),(,2)a a 上各有一个零点,于是1a 时,()f x 有三个零点,A 选项正确;B 选项,()6()f x x x a ,a<0时,(,0),()0x a f x ,()f x 单调递减,,()0x 时()0f x ,()f x 单调递增,此时()f x 在0x 处取到极小值,B 选项错误;C 选项,假设存在这样的,a b ,使得x b 为()f x 的对称轴,即存在这样的,a b 使得()(2)f x f b x ,即32322312(2)3(2)1x ax b x a b x ,根据二项式定理,等式右边3(2)b x 展开式含有3x 的项为303332C (2)()2b x x ,于是等式左右两边3x 的系数都不相等,原等式不可能恒成立,于是不存在这样的,a b ,使得x b 为()f x 的对称轴,C 选项错误;D 选项,方法一:利用对称中心的表达式化简(1)33f a ,若存在这样的a ,使得(1,33)a 为()f x 的对称中心,则()(2)66f x f x a ,事实上,32322()(2)2312(2)3(2)1(126)(1224)1812f x f x x ax x a x a x a x a ,于是266(126)(1224)1812a a x a x a即126012240181266a a a a,解得2a ,即存在2a 使得(1,(1))f 是()f x 的对称中心,D 选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,32()231f x x ax ,2()66f x x ax ,()126f x x a ,由()02a f x x ,于是该三次函数的对称中心为,22a a f ,由题意(1,(1))f 也是对称中心,故122a a ,即存在2a 使得(1,(1))f 是()f x 的对称中心,D 选项正确.故选:AD【点睛】结论点睛:(1)()f x 的对称轴为()(2)x b f x f b x ;(2)()f x 关于(,)a b 对称()(2)2f x f a x b ;(3)任何三次函数32()f x ax bx cx d 都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是()0f x 的解,即,33b b f aa是三次函数的对称中心4. 2,1 【分析】将函数转化为方程,令 2331x x x a ,分离参数a ,构造新函数 3251,g x x x x 结合导数求得 g x 单调区间,画出大致图形数形结合即可求解.【详解】令 2331x x x a ,即3251a x x x ,令 32510,g x x x x x 则 2325351g x x x x x ,令 00g x x 得1x ,当 0,1x 时, 0g x , g x 单调递减,当 1,x 时, 0g x , g x 单调递增, 01,12g g ,因为曲线33y x x 与 21y x a 在 0, 上有两个不同的交点,所以等价于y a 与 g x 有两个交点,所以 2,1a .故答案为:2,1 5.(1) e 110x y (2)1, 【分析】(1)求导,结合导数的几何意义求切线方程;(2)解法一:求导,分析0a 和0a 两种情况,利用导数判断单调性和极值,分析可得2ln 10a a ,构建函数解不等式即可;解法二:求导,可知()e x f x a 有零点,可得0a ,进而利用导数求 f x 的单调性和极值,分析可得2ln 10a a ,构建函数解不等式即可.【详解】(1)当1a 时,则()e 1x f x x ,()e 1x f x ,可得(1)e 2f ,(1)e 1f ,即切点坐标为 1,e 2 ,切线斜率e 1k ,所以切线方程为 e 2e 11y x ,即 e 110x y .(2)解法一:因为()f x 的定义域为R ,且()e x f x a ,若0a ,则()0f x 对任意x R 恒成立,可知()f x 在R 上单调递增,无极值,不合题意;若0a ,令()0f x ,解得ln x a ;令()0f x ,解得ln x a ;可知()f x 在 ,ln a 内单调递减,在 ln ,a 内单调递增,则()f x 有极小值 3ln ln f a a a a a ,无极大值,由题意可得: 3ln ln 0f a a a a a ,即2ln 10a a ,构建 2ln 1,0g a a a a ,则 120g a a a,可知 g a 在 0, 内单调递增,且 10g ,不等式2ln 10a a 等价于 1g a g ,解得1a ,所以a 的取值范围为 1, ;解法二:因为()f x 的定义域为R ,且()e x f x a ,若()f x 有极小值,则()e x f x a 有零点,令()e 0x f x a ,可得e x a ,可知e x y 与y a 有交点,则a ,若0a ,令()0f x ,解得ln x a ;令()0f x ,解得ln x a ;可知()f x 在 ,ln a 内单调递减,在 ln ,a 内单调递增,则()f x 有极小值 3ln ln f a a a a a ,无极大值,符合题意,由题意可得: 3ln ln 0f a a a a a ,即2ln 10a a ,构建 2ln 1,0g a a a a ,因为则2,ln 1y a y a 在 0, 内单调递增,可知 g a 在 0, 内单调递增,且 10g ,不等式2ln 10a a 等价于 1g a g ,解得1a ,所以a 的取值范围为 1, .6.(1)极小值为0,无极大值.(2)12a 【分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值.(2)求出函数的二阶导数,就12a 、102a 、0a 分类讨论后可得参数的取值范围.【详解】(1)当2a 时,()(12)ln(1)f x x x x ,故121()2ln(1)12ln(1)111x f x x x x x,因为12ln(1),11y x y x在 1, 上为增函数,故()f x 在 1, 上为增函数,而(0)0f ,故当10x 时,()0f x ,当0x 时,()0f x ,故 f x 在0x 处取极小值且极小值为 00f ,无极大值.(2) 11ln 11ln 1,011a x ax f x a x a x x x x,设 1ln 1,01a x s x a x x x,则222111211111a a x a a ax a s x x x x x ,当12a 时, 0s x ,故 s x 在 0, 上为增函数,故 00s x s ,即 0f x ,所以 f x 在 0, 上为增函数,故 00f x f .当102a 时,当0x 0s x ,故 s x 在210,a a 上为减函数,故在210,a a上 0s x s ,即在210,a a上 0f x 即 f x 为减函数,故在210,a a上 00f x f ,不合题意,舍.当0a ,此时 0s x 在 0, 上恒成立,同理可得在 0, 上 00f x f 恒成立,不合题意,舍;综上,12a .【点睛】思路点睛:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.7.(1)见解析(2)见解析【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性;(2)先根据题设条件将问题可转化成证明当1x 时,1e 21ln 0x x x 即可.【详解】(1)()f x 定义域为(0,) ,11()ax f x a x x当0a 时,1()0ax f x x,故()f x 在(0,) 上单调递减;当0a 时,1,x a时,()0f x ,()f x 单调递增,当10,x a时,()0f x ,()f x 单调递减.综上所述,当0a 时,()f x 的单调递减区间为(0,) ;0a 时,()f x 的单调递增区间为1,a ,单调递减区间为10,a.(2)2a ,且1x 时,111e ()e (1)ln 1e 21ln x x x f x a x x x x ,令1()e 21ln (1)x g x x x x ,下证()0g x 即可.11()e 2x g x x ,再令()()h x g x ,则121()e x h x x,显然()h x 在(1,) 上递增,则0()(1)e 10h x h ,即()()g x h x 在(1,) 上递增,故0()(1)e 210g x g ,即()g x 在(1,) 上单调递增,故0()(1)e 21ln10g x g ,问题得证8.(1)证明见解析(2)存在,0,1P (3)严格单调递减【分析】(1)代入(0,0)M ,利用基本不等式即可;(2)由题得 22(1)e x s x x ,利用导函数得到其最小值,则得到P ,再证明直线MP 与切线垂直即可;(3)根据题意得到 10200s x s x ,对两等式化简得 01()f xg t ,再利用“最近点”的定义得到不等式组,即可证明0x t ,最后得到函数单调性.【详解】(1)当(0,0)M 时, 222211(0)02s x x x x x ,当且仅当221x x 即1x 时取等号,故对于点 0,0M ,存在点 1,1P ,使得该点是 0,0M 在 f x 的“最近点”.(2)由题设可得 2222(1)e 0(1)e x x s x x x ,则 2212e x s x x ,因为 221,2e x y x y 均为R 上单调递增函数,则 2212e xs x x 在R 上为严格增函数,而 00s ,故当0x 时, 0s x ,当0x 时, 0s x ,故 min 02s x s ,此时 0,1P ,而 e ,01x f x k f ,故 f x 在点P 处的切线方程为1y x .而01110MP k ,故1MP k k ,故直线MP 与 y f x 在点P 处的切线垂直.(3)设 221(1)()s x x t f x f t g t ,222(1)()s x x t f x f t g t ,而 12(1)2()s x x t f x f t g t f x , 22(1)2()s x x t f x f t g t f x ,若对任意的t R ,存在点P 同时是12,M M 在 f x 的“最近点”,设 00,P x y ,则0x 既是 1s x 的最小值点,也是 2s x 的最小值点,因为两函数的定义域均为R ,则0x 也是两函数的极小值点,则存在0x ,使得 10200s x s x ,即 10000212()()0s x x t f x f x f t g t ① 20000212()()0s x x t f x f x f t g t ②由①②相等得 044()0g t f x ,即 01()0f x g t ,即 01()f x g t,又因为函数()g x 在定义域R 上恒正,则 010()f xg t 恒成立,接下来证明0x t ,因为0x 既是 1s x 的最小值点,也是 2s x 的最小值点,则 1020(),()s x s t s x s t ,即 2220011x t f x f t g t g t ,③ 2220011x t f x f t g t g t ,④③ ④得 222200222()2()22()x t f x f t g t g t 即 22000x t f x f t ,因为 2200,00x t f x f t 则 0000x t f x f t,解得0x t ,则 10()f tg t 恒成立,因为t 的任意性,则 f x 严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到 01()f x g t,再利用最值点定义得到0x t 即可.9.(1)单调递减区间为(1,0) ,单调递增区间为(0,) .(2)证明见解析(3)2【分析】(1)直接代入1k ,再利用导数研究其单调性即可;(2)写出切线方程()1()(0)1k y f t x t t t,将(0,0)代入再设新函数()ln(1)1t F t t t ,利用导数研究其零点即可;(3)分别写出面积表达式,代入215ACO ABO S S 得到13ln(1)21501t t t t ,再设新函数15()13ln(1)2(0)1t h t t t t t研究其零点即可.【详解】(1)1()ln(1),()1(1)11x f x x x f x x x x,当 1,0x 时, 0f x ;当 0,x ,()0f x ¢>;()f x 在(1,0) 上单调递减,在(0,) 上单调递增.则()f x 的单调递减区间为(1,0) ,单调递增区间为(0,) .(2)()11k f x x ,切线l 的斜率为11k t,则切线方程为()1()(0)1k y f t x t t t,将(0,0)代入则()1,()111k k f t t f t t t t,即ln(1)1k t k t t tt ,则ln(1)1t t t ,ln(1)01t t t ,令()ln(1)1t F t t t,假设l 过(0,0),则()F t 在(0,)t 存在零点.2211()01(1)(1)t t t F t t t t ,()F t 在(0,) 上单调递增,()(0)0F t F ,()F t 在(0,) 无零点, 与假设矛盾,故直线l 不过(0,0).(3)1k 时,12()ln(1),()1011x f x x x f x x x.1()2ACO S tf t ,设l 与y 轴交点B 为(0,)q ,0t 时,若0q ,则此时l 与()f x 必有交点,与切线定义矛盾.由(2)知0q .所以0q ,则切线l 的方程为 111ln 1x t y t t t,令0x ,则ln(1)1t y q y t t.215ACO ABO S S ,则2()15ln(1)1t tf t t t t,13ln(1)21501t t t t ,记15()13ln(1)2(0)1th t t t t t, 满足条件的A 有几个即()h t 有几个零点.2222221313221151315294(21)(4)()21(1)(1)(1)(1)t t t t t t t h t t t t t t ,当10,2t时, 0h t ,此时 h t 单调递减;当1,42t时, 0h t ,此时 h t 单调递增;当 4,t 时, 0h t ,此时 h t 单调递减;因为1(0)0,0,(4)13ln 520131.6200.802h h h,15247272(24)13ln 254826ln 548261.614820.5402555h,所以由零点存在性定理及()h t 的单调性,()h t 在1,42上必有一个零点,在(4,24)上必有一个零点,综上所述,()h t 有两个零点,即满足215ACO ABO S S 的A 有两个.【点睛】关键点点睛:本题第二问的关键是采用的是反证法,转化为研究函数零点问题.10.(1)1y x (2)2(3)证明过程见解析【分析】(1)直接使用导数的几何意义;(2)先由题设条件得到2a ,再证明2a 时条件满足;(3)先确定 f x 的单调性,再对12,x x 分类讨论.【详解】(1)由于 ln f x x x ,故 ln 1f x x .所以 10f , 11f ,所以所求的切线经过 1,0,且斜率为1,故其方程为1y x .(2)设 1ln h t t t ,则 111t h t t t,从而当01t 时 0h t ,当1t 时 0h t .所以 h t 在 0,1上递减,在 1, 上递增,这就说明 1h t h ,即1ln t t ,且等号成立当且仅当1t .设 12ln g t a t t ,则ln 1f x a x x x a x x a x g .当 0,x0, ,所以命题等价于对任意 0,t ,都有 0g t .一方面,若对任意 0,t ,都有 0g t ,则对 0,t 有112012ln 12ln 1212g t a t t a t a t at a t t t,取2t ,得01a ,故10a .再取t,得2022a a a,所以2a .另一方面,若2a ,则对任意 0,t 都有 212ln 20g t t t h t ,满足条件.综合以上两个方面,知a 的值是2.(3)先证明一个结论:对0a b ,有 ln 1ln 1f b f a a b b a.证明:前面已经证明不等式1ln t t ,故lnln ln ln ln ln ln 1ln 1bb b a a a b a aa b b b b b a b a a,且1lnln ln ln ln ln ln ln 1ln 11a a b b a a b b b a b b a a a a a a b a b a b b,所以ln ln ln 1ln 1b b a a a b b a,即 ln 1ln 1f b f a a b b a.由 ln 1f x x ,可知当10e x 时 0f x ,当1ex 时()0f x ¢>.所以 f x 在10,e上递减,在1,e上递增.不妨设12x x ,下面分三种情况(其中有重合部分)证明本题结论.情况一:当1211ex x 时,有122122121ln 1f x f x f x f x x x x x x ,结论成立;情况二:当1210e x x 时,有 12121122ln ln f x f x f x f x x x x x .对任意的10,e c,设ln ln x x x c cln 1x x 由于 x单调递增,且有1111111ln 1ln11102e2e ec c,且当2124ln 1x c c,2cx2ln 1c 可知2ln 1ln 1ln 102c x x c.所以 x 在 0,c 上存在零点0x ,再结合 x 单调递增,即知00x x 时 0x ,0x x c 时 0x .故 x 在 00,x 上递减,在 0,x c 上递增.①当0x x c 时,有 0x c ;②当00x x112221e e f f c,故我们可以取1,1q c .从而当201cx q1ln ln ln ln 0x x x c c c c c c q c.再根据 x 在 00,x 上递减,即知对00x x 都有 0x ;综合①②可知对任意0x c ,都有 0x ,即ln ln 0x x x c c .根据10,e c和0x c 的任意性,取2c x ,1x x,就得到1122ln ln 0x x x x .所以12121122ln ln f x f x f x f x x x x x 情况三:当12101e x x时,根据情况一和情况二的讨论,可得11e f x f21e f f x而根据 f x 的单调性,知 1211e f x f x f x f或 1221e f x f x f f x .故一定有12f x f x 成立.综上,结论成立.【点睛】关键点点睛:本题的关键在于第3小问中,需要结合 f x 的单调性进行分类讨论.11.(1)2 (2)证明见解析(3)23b【分析】(1)求出 min 2f x a 后根据()0f x 可求a 的最小值;(2)设 ,P m n 为 y f x 图象上任意一点,可证 ,P m n 关于 1,a 的对称点为 2,2Q m a n 也在函数的图像上,从而可证对称性;(3)根据题设可判断 12f 即2a ,再根据()2f x 在 1,2上恒成立可求得23b .【详解】(1)0b 时, ln 2xf x ax x,其中 0,2x ,则112,0,222f x a a x x x x x,因为 22212x x x x,当且仅当1x 时等号成立,故 min 2f x a ,而 0f x 成立,故20a 即2a ,所以a 的最小值为2 .,(2) 3ln12x f x ax b x x的定义域为 0,2,设 ,P m n 为 y f x 图象上任意一点,,P m n 关于 1,a 的对称点为 2,2Q m a n ,因为 ,P m n 在 y f x 图象上,故 3ln 12m n am b m m,而 3322ln221ln 122m m f m a m b m am b m a m m,2n a ,所以 2,2Q m a n 也在 y f x 图象上,由P 的任意性可得 y f x 图象为中心对称图形,且对称中心为 1,a .(3)因为 2f x 当且仅当12x ,故1x 为 2f x 的一个解,所以 12f 即2a ,先考虑12x 时, 2f x 恒成立.此时 2f x 即为 3ln21102x x b x x在 1,2上恒成立,设 10,1t x ,则31ln201t t bt t在 0,1上恒成立,设 31ln2,0,11t g t t bt t t,则2222232322311t bt b g t bt t t,当0b ,232332320bt b b b ,故 0g t 恒成立,故 g t 在 0,1上为增函数,故 00g t g 即 2f x 在 1,2上恒成立.当203b 时,2323230bt b b ,故 0g t 恒成立,故 g t 在 0,1上为增函数,故 00g t g 即 2f x 在 1,2上恒成立.当23b ,则当01t 时, 0g t故在 上 g t 为减函数,故 00g t g ,不合题意,舍;综上, 2f x 在 1,2上恒成立时23b .而当23b 时,而23b 时,由上述过程可得 g t 在 0,1递增,故 0g t 的解为 0,1,即 2f x 的解为 1,2.综上,23b .【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.。
2023北京高考数学导数题
![2023北京高考数学导数题](https://img.taocdn.com/s3/m/02da66f40d22590102020740be1e650e53eacf43.png)
2023北京高考数学导数题2023北京高考数学导数题第一部分:问题描述在2023年的北京高考数学卷子中,有一道关于导数的题目引起了广泛的讨论。
这道题目涉及到函数的导数及其在实际问题中的应用。
通过解答这道题目,考生们需要展示出对导数概念的理解以及对实际问题的抽象能力。
第二部分:题目内容题目要求考生计算某函数在给定点处的导数,并利用求导的结果来解决实际问题。
具体内容如下:设函数f(x)表示某物体从初始位置出发沿直线匀速运动,其位移与时间的关系满足f(x) = 2x^2 - 3x + 5。
求物体在时刻x=2处的速度。
第三部分:解题思路对于这道题目,考生首先需要计算出函数f(x)的导数。
根据导数的定义,导数表示函数变化的速率,可以通过求函数在某一点的切线斜率来计算。
根据导数的定义,我们可以得到f'(x) = 4x - 3。
接下来,考生需要将x=2代入导数表达式中得到相应的速度值。
第四部分:解答过程将x=2代入导数表达式,可以得到f'(2) = 4(2) - 3 = 5。
因此,物体在时刻x=2处的速度为5。
第五部分:意义解释在解答过程中,考生需要进一步解释计算出的速度值的意义。
由于题目中所给定的函数表示物体的位移与时间的关系,所以导数表示了物体的瞬时速度。
在这个特定的情境中,物体在时刻x=2处的瞬时速度为5。
第六部分:实际应用这道题目通过导数的概念和应用,将抽象的数学概念与实际问题相联系。
在现实生活中,导数有着广泛的应用领域,包括物理、经济、工程等。
例如,在物理学中,导数可以用来描述物体的速度和加速度;在经济学中,导数可以用来分析收益率和成本函数的变化率。
在解答这道题目的过程中,考生们不仅仅是在计算数字,更重要的是培养了对导数及其应用的理解和运用能力。
通过将抽象的数学知识与实际问题相结合,考生不仅能够更好地掌握相关知识,还能够培养出解决实际问题的能力。
总结:这道2023北京高考数学卷子中关于导数的题目,引发了广泛的讨论。
导数大题求参归类(学生版)
![导数大题求参归类(学生版)](https://img.taocdn.com/s3/m/5838dcb1aff8941ea76e58fafab069dc502247d7.png)
导数大题求参归类目录题型01 恒成立求参:常规型题型02 恒成立求参:三角函数型题型03恒成立求参:双变量型题型04 恒成立求参:整数型题型05恒成立求参:三角函数型整数题型06“能”成立求参:常规型题型07“能”成立求参:双变量型题型08“能”成立求参:正余弦型题型09 零点型求参:常规型题型10 零点型求参:双零点型题型11 零点型求参:多零点综合型题型12 同构型求参:x1,x2双变量同构题型13 虚设零点型求参高考练场热点题型归纳题型01恒成立求参:常规型【解题攻略】利用导数求解参数范围的两种常用方法:(1)分离参数法:将参数和自变量分离开来,构造关于自变量的新函数,研究新函数最值与参数之间的关系,求解出参数范围;(2)分类讨论法:根据题意分析参数的临界值,根据临界值作分类讨论,分别求解出满足题意的参数范围最后取并集.1(2024上·北京·高三阶段练习)设a>0,函数f(x)=x a ln x.(1)讨论f(x)的单调性;(2)若f(x)≤x,求a的取值范围;(3)若f (x)≤1,求a.2(2024上·甘肃武威·高三统考期末)已知函数f x =2xe x+a ln x+1.(1)当a=0时,求f x 的最大值;(2)若f x ≤0在x∈0,+∞上恒成立,求实数a的取值范围.【变式训练】1(2023上·江苏镇江·高三校考阶段练习)已知函数f x =x2-ax e x.(1)若f x 在-2,-1上单调递增,求实数a的取值范围;(2)若f x ≥sin x对x∈-∞,0恒成立,求实数a的取值范围.2(2024上·山西·高三期末)已知函数f x =m x-12-2x+2ln x,m≥2.(1)求证:函数f x 存在单调递减区间,并求出该函数单调递减区间a,b的长度b-a的取值范围;(2)当x≥1时,f x ≤2xe x-1-4x恒成立,求实数m的取值范围.3(2024·全国·模拟预测)已知函数f(x)=2x2-a ln x-1,a∈R.(1)求函数f(x)的单调区间;(2)若对任意的x∈(0,+∞),不等式f(x+1)>(x+1)2+1x+1-1e x恒成立,求实数a的取值范围.题型02恒成立求参:三角函数型【解题攻略】三角函数与导数应用求参:1.正余弦的有界性2.三角函数与函数的重要放缩公式:x≥sin x x≥0.1(2023·全国·高三专题练习)已知函数f x =sin xx,g x =a cos x.(1)求证:x∈0,π2时,f x <1;(2)当x∈-π2,0∪0,π2时,f x >g x 恒成立,求实数a的取值范围;(3)当x∈-π2,0∪0,π2时,f x2>g x 恒成立,求实数a的取值范围.2(2023上·全国·高三期末)已知函数f (x )=e x sin x -2x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求f (x )在区间0,π2上的最大值;(3)设实数a 使得f (x )+x >ae x 对x ∈R 恒成立,求a 的最大整数值.【变式训练】1(2023上·湖北省直辖县级单位·高三校考阶段练习)已知函数f x =e ax -2ax a ∈R ,a ≠0 .(1)讨论f x 的单调性;(2)若不等式f x ≥sin x -cos x +2-2ax 对任意x ≥0恒成立,求实数a 的取值范围.2(2023上·甘肃定西·高三甘肃省临洮中学校考阶段练习)已知函数f x =e x-sin x-cos x,f x 为其导函数.(1)求f x 在-π,+∞上极值点的个数;(2)若f (x)≥ax+2-2cos x a∈R对∀x∈-π,+∞恒成立,求a的值.题型03恒成立求参:双变量型【解题攻略】一般地,已知函数y =f x ,x ∈a ,b ,y =g x ,x ∈c ,d(1)若∀x 1∈a ,b ,∀x 2∈c ,d ,总有f x 1 <g x 2 成立,故f x max <g x min ;(2)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,故f x max <g x max ;(3)若∃x 1∈a ,b ,∀x 2∈c ,d ,有f x 1 <g x 2 成立,故f x min <g x min ;(4)若∃x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,故f x min <g x max .1(2023·四川攀枝花·统考模拟预测)已知函数f x =ae x -x a ∈R .(1)当a =1时,求f x 的单调区间;(2)设函数g x =x 2-1 e x -x -f x ,当g x 有两个极值点x 1,x 2x 1<x 2 时,总有tg x 2 ≥2+x 1 ex 2+x 22-3 成立,求实数t 的值.2(2024上·四川成都·高三成都七中校考阶段练习)设函数f x =e x -ax ,其中a ∈R .(1)讨论函数f (x )在[1,+∞)上的极值;(2)若函数f (x )有两零点x 1,x 2x 1<x 2 ,且满足x 1+λx 21+λ>1,求正实数λ的取值范围.【变式训练】1(2023·上海松江·校考模拟预测)已知函数f (x )=ax -a ln x -e xx.(1)若a =0,求函数y =f (x )的极值点;(2)若不等式f (x )<0恒成立,求实数a 的取值范围;(3)若函数y =f (x )有三个不同的极值点x 1、x 2、x 3,且f (x 1)+f (x 2)+f (x 3)≤3e 2-e ,求实数a 的取值范围.2(2023下·山东德州·高三校考阶段练习)已知函数f x =2ln x +12(a -x )2,其中a ∈R .(1)讨论函数f x 的单调性;(2)若f x 存在两个极值点x 1,x 2x 1<x 2 ,f x 2 -f x 1 的取值范围为34-ln2,158-2ln2 ,求a 的取值范围.题型04恒成立求参:整数型【解题攻略】恒成立求参的一般规律①若k ≥f (x )在[a ,b ]上恒成立,则k ≥f (x )max ;②若k ≤f (x )在[a ,b ]上恒成立,则k ≤f (x )min ;③若k ≥f (x )在[a ,b ]上有解,则k ≥f (x )min ;④若k ≤f (x )在[a ,b ]上有解,则k ≤f (x )max ;如果参数涉及到整数,要注意对应解中相邻两个整数点函数的符号1(2023上·湖北·高三校联考阶段练习)已知f x =e x -2x +a .(1)若f x ≥0恒成立,求实数a 的取值范同:(2)设x 表示不超过x 的最大整数,已知e x +2ln x -e +2 x +2≥0的解集为x x ≥t ,求et .(参考数据:e ≈2.72,ln2≈0.69,ln3≈1.10)2(2023上·浙江·高三校联考阶段练习)已知函数f x =ae x-2,g x =x+1x+2ln x,e=2.71828⋯为自然对数底数.(1)证明:当x>1时,ln x<x2-12x;(2)若不等式f x >g x 对任意的x∈0,+∞恒成立,求整数a的最小值.【变式训练】1(2023·江西景德镇·统考一模)已知函数f x =sin x+sin ax,x∈0,π2.(1)若a=2,求函数g x =f x +sin x值域;(2)是否存在正整数a使得f xx>3cos x恒成立?若存在,求出正整数a的取值集合;若不存在,请说明理由.2(2023·全国·高三专题练习)已知函数f x =5+ln x,g x =kxx+1k∈R.(1)若函数f x 的图象在点1,f1处的切线与函数y=g x 的图象相切,求k的值;(2)若k∈N∗,且x∈1,+∞时,恒有f x >g x ,求k的最大值.(参考数据:ln5≈1.61,ln6≈1.7918,ln2+1≈0.8814)题型05恒成立求参:三角函数型整数1(2020·云南昆明·统考三模)已知f(x)=e x-2x-1 2.(1)证明:f(x)>0;(2)对任意x≥1,e sin x+x2-ax-1-ln x>0,求整数a的最大值.(参考数据:sin1≈0.8,ln2≈0.7)2(2020上·浙江·高三校联考阶段练习)已知函数f x =a sin x +sin2x ,a ∈R .(1)若a =2,求函数f x 在0,π 上的单调区间;(2)若a =1,不等式f x ≥bx cos x 对任意x ∈0,2π3恒成立,求满足条件的最大整数b .【变式训练】1(2022·全国·高三专题练习)已知函数f (x )=e x +a cos x -2x -2,f ′(x )为f (x )的导函数.(1)讨论f ′(x )在区间0,π2 内极值点的个数;(2)若x ∈-π2,0时,f (x )≥0恒成立,求整数a 的最小值.2(2023·云南保山·统考二模)设函数f x =x sin x ,x ∈R (1)求f x 在区间0,π 上的极值点个数;(2)若x 0为f x 的极值点,则f x 0 ≥λln 1+x 20 ,求整数λ的最大值.题型06“能”成立求参:常规型【解题攻略】形如f x ≥g x 的有解的求解策略:1、构造函数法:令F x =f x -g x ,利用导数求得函数F x 的单调性与最小值,只需F x max≥0恒成立即可;2、参数分离法:转化为a≥φx 或a≤φx 恒成立,即a≥φx min或a≤φx max恒成立,只需利用导数求得函数φx 的单调性与最值即可.1(2023上·浙江·高三浙江省长兴中学校联考期中)已知函数f x =a ln x+x,a∈R.(1)讨论函数f x 的单调性;(2)若存在x∈e,e2,使f x ≤ax+1 2ln x成立,求实数a的取值范围.注:e为自然对数的底数.2(2023上·湖南长沙·高三统考阶段练习)已知函数f x =a2e2x+a-2e x-12x2,y=g x 是y=f x 的导函数.(1)若a=3,求y=g x 的单调区间;(2)若存在实数x∈0,1使f x >32a-2成立,求a的取值范围.【变式训练】1(2023·全国·模拟预测)已知函数f x =x2+a ln ex.(1)讨论f x 的单调性;(2)若存在x∈1,e,使得f x -ax-a≤2,求实数a的最小值.2(2023上·黑龙江齐齐哈尔·高三统考阶段练习)已知函数f x =a ln x+1-a2x2-x a∈R.(1)若a=2,求函数f x 的单调区间;(2)若存在x0≥1,使得f x0<aa-1,求a的取值范围.题型07“能”成立求参:双变量型【解题攻略】一般地,已知函数y =f x ,x ∈a ,b ,y =g x ,x ∈c ,d(1)相等关系记y =f x ,x ∈a ,b 的值域为A , y =g x ,x ∈c ,d 的值域为B ,①若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 =g x 2 成立,则有A ⊆B ;②若∃x 1∈a ,b ,∀x 2∈c ,d ,有f x 1 =g x 2 成立,则有A ⊇B ;③若∃x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 =g x 2 成立,故A ∩B ≠∅;(2)不等关系(1)若∀x 1∈a ,b ,∀x 2∈c ,d ,总有f x 1 <g x 2 成立,故f x max <g x min ;(2)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,故f x max <g x max ;(3)若∃x 1∈a ,b ,∀x 2∈c ,d ,有f x 1 <g x 2 成立,故f x min <g x min ;(4)若∃x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,故f x min <g x max .1(2022·江西上饶·高三校联考阶段练习)已知函数f (x )=2ax -e x +2,其中a ≠0.(1)若a =12,讨论函数f (x )的单调性;(2)是否存在实数a ,对任意x 1∈[0,1],总存在x 2∈[0,1],使得f x 1 +f x 2 =4成立?若存在,求出实数a 的值;若不存在,请说明理由.2(2023上·辽宁沈阳·高三沈阳二十中校考阶段练习)已知函数f x =a ln x +1xx >0 .(1)讨论函数f x 的单调性;(2)若存在x 1,x 2满足0<x 1<x 2,且x 1+x 2=1,f x 1 =f x 2 ,求实数a 的取值范围.【变式训练】1(2023·全国·高三专题练习)已知函数f x =ax 2-2+5a x +5ln x a ∈R ,g x =x 2-52x .(1)若曲线y =f x 在x =3和x =5处的切线互相平行,求a 的值;(2)求f x 的单调区间;(3)若对任意x 1∈0,52 ,均存在x 2∈0,52,使得f x 1 <g x 2 ,求a 的取值范围.2(2023上·重庆·高三校联考阶段练习)已知函数f (x )=ax +ln x (a ∈R ),g (x )=x 2-2x +2.(1)当a =-12时,求函数f (x )在区间[1,e ]上的最大值和最小值;(2)若对任意的x 1∈[-1,2],均存在x 2∈(0,+∞),使得g x 1 <f x 2 ,求a 的取值范围.题型08“能”成立求参:正余弦型1(2017·江苏淮安·高三江苏省淮安中学阶段练习)函数f (x )=a cos x -x +b (a >0,b >0).(1)求证:函数f (x )在区间0,a +b 内至少有一个零点;(2)若函数f (x )在x =-π6处取极值,且∃x ∈0,π2 ,使得f (x )<3cos x -sin x 成立,求实数b 的取值范围.2(2023·全国·高三专题练习)已知函数f (x )=x +2-2cos x(1)求函数f (x )在-π2,π2 上的最值:(2)若存在x ∈0,π2使不等式f (x )≤ax 成立,求实数a 的取值范围【变式训练】1(2020·四川泸州·统考二模)已知函数f (x )=sin x x,g (x )=(x -1)m -2ln x .(1)求证:当x ∈(0,π]时,f (x )<1;(2)求证:当m >2时,对任意x 0∈(0,π],存在x 1∈(0,π]和x 2∈(0,π](x 1≠x 2)使g (x 1)=g (x 2)=f (x 0)成立.2(2023·全国·高三专题练习)已知函数f x =ln1+x-a sin x,a∈R.(1)若y=f x 在0,0处的切线为x-3y=0,求a的值;(2)若存在x∈1,2,使得f x ≥2a,求实数a的取值范围.题型09零点型求参:常规型【解题攻略】零点常规型求参基础:1.分类讨论思想与转化化归思想2.数形结合与单调性的综合应用:一个零点,则多为所求范围内的单调函数,或者“类二次函数”切线处(极值点处)3.注意“找点”难度,对于普通学生,可以用极限思维代替“找点思维”。
2023北京高考数学 20题导数
![2023北京高考数学 20题导数](https://img.taocdn.com/s3/m/fa0cfca6e109581b6bd97f19227916888486b9c9.png)
2023北京高考数学 20题导数一、导数的概念和性质导数是微积分的基本概念之一,用于描述函数在某一点上的变化率。
在数学高考中,导数是一个非常重要的考点。
理解导数的概念和性质对于解题和应用非常关键。
1. 导数的定义导数的定义是函数在某一点上的变化率,即函数在该点的斜率。
对于函数y=f(x),在点x=a处的导数定义为:f'(a) = lim(Δx→0) [f(a+Δx) - f(a)] / Δx其中,lim表示极限,Δx表示x的增量。
2. 导数的几何意义导数的几何意义是函数图像在某一点的切线的斜率。
函数的导数越大,表示函数的变化越快,切线的斜率越陡峭。
3. 导数的性质导数的性质包括线性性、乘积法则、商法则和链式法则等。
线性性:对于常数k和函数f(x),有f'(k) = 0和[kf(x)]' = kf'(x)。
乘积法则:对于函数u(x)和v(x),有[u(x)v(x)]' = u'(x)v(x) + u(x)v'(x)。
商法则:对于函数u(x)和v(x),有[u(x)/v(x)]' = [u'(x)v(x) - u(x)v'(x)] / [v(x)]^2。
链式法则:对于复合函数y = f(g(x)),有y' = f'(g(x))g'(x)。
二、导数的计算方法导数的计算方法包括基本函数的导数、常用函数的导数和隐函数的导数等。
1. 基本函数的导数常用的基本函数有常数函数、幂函数、指数函数、对数函数和三角函数等。
这些函数的导数可以通过基本导数公式和导数的性质进行计算。
常数函数的导数为0,幂函数的导数可以通过公式y = x^n的导数公式计算,指数函数的导数为其本身的导数,对数函数的导数可以通过公式y = log(x)的导数公式计算,三角函数的导数可以通过公式y = sin(x)和y = cos(x)的导数公式计算。
2023北京高考数学 20题导数
![2023北京高考数学 20题导数](https://img.taocdn.com/s3/m/ea5d4857c381e53a580216fc700abb68a982ad06.png)
2023北京高考数学 20题导数2023年的北京高考数学卷中,涉及到导数的题目达到了20道。
导数作为数学中的重要概念,在高考中一直是重点考察的内容之一。
让我们一起来看看这些20道导数相关的题目,了解一下考点和解题技巧。
第一题是一道基础的导数定义题目。
给定函数f(x) = x^2,求f'(3)的值。
这是一道直接应用导数定义的题目,根据定义直接计算即可,答案是6。
第二题是一道求导法则的题目。
给定函数f(x) = 2x^3 - 4x^2 + 3x - 1,求f'(x)的值。
这是一道多项式函数求导的题目,根据求导法则逐项求导即可,答案是6x^2 - 8x + 3。
接下来的几道题目涉及到了导数的应用。
第三题是一道最值问题。
给定函数f(x) = x^3 - 3x^2 + 2x + 1,在区间[-1, 2]上找出f(x)的最大值和最小值。
这是一道典型的最值问题,通过求导并找出临界点,再对端点进行计算,可以得到最大值和最小值。
第四题是一道函数图像判断题。
给定函数f(x) = x^3 - 3x^2 + 2x + 1,判断f(x)的图像在[-∞, +∞]上的变化趋势。
这是一道根据函数的导数来判断函数图像的题目,根据导数的正负性可以判断出函数图像的上升和下降区间。
第五题是一道极值问题。
给定函数f(x) = x^3 - 3x^2 + 2x + 1,在区间[-1, 2]上找出f(x)的极大值和极小值。
这是一道求极值的题目,通过求导并找出临界点,再进行二阶导数的判断,可以得到极值点和极值。
第六题是一道曲线的切线问题。
给定曲线y = x^3 - 3x^2 + 2x + 1,求曲线在点(1,1)处的切线方程。
这是一道直接应用导数求切线的题目,先求出函数的导数,再代入给定的点求出切线的斜率,最后带入切点的坐标即可得到切线方程。
第七题是一道函数的单调性问题。
给定函数f(x) = x^3 - 3x^2 + 2x + 1,判断f(x)在[-∞, +∞]上的单调性。
导数大题方法总结
![导数大题方法总结](https://img.taocdn.com/s3/m/92f601c6b9f67c1cfad6195f312b3169a451ea1a.png)
一般来说,一到比较温和的导数题的会在第一问设置这样的问题:若 f(x)在 x =k 时取得极值,试求所给函数中参数的值;或者是 f(x)在(a , f(a)) 处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。
虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。
这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是:先求出所给函数的导函数,然后利用题目所给的已知条件,以上述第一种情形为例:令 x = k,f(x)的导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。
注意:①导函数一定不能求错,否则不只第一问会挂,整个题目会一并挂掉。
保证自己求导不会求错的最好方法就是求导时不要光图快,一定要小心谨慎,另外就是要将导数公式记牢,不能有马虎之处。
②遇到例子中的情况,一道要记得检验,尤其是在求解出来两个解的情况下,更要检验,否则有可能会多解,造成扣分,得不偿失。
所以做两个字来概括这一类型题的方法就是:淡定。
别人送分,就不要客气。
③求切线时,要看清所给的点是否在函数上,若不在,要设出切点,再进行求解。
切线要写成一般式。
一般这一类题都是在函数的第二问,有时也有可能在第一问,依照题目的难易来定。
这一类题问法都比较的简单,一般是求 f(x)的单调(增减)区间或函数的单调性,以及函数的极大(小)值或是笼统的函数极值。
一般来说,由于北京市高考不要求二阶导数的计算,所以这类题目也是送分题,所以做这类题也要淡定。
这类问题的方法是:首先写定义域,求函数的导函数,并且进行通分,变为假分式形式。
往下一般有两类思路,一是走一步看一步型,在行进的过程中,一点点发现参数应该讨论的范围,一步步解题。
这种方法个人认为比较累,而且容易丢掉一些情况没有进行讨论,所以比较推荐第二种方法,就是所谓的一步到位型,先通过观察看出我们要讨论的参数的几个必要的临介值,然后以这些值为分界点,分别就这些临界点所分割开的区间进行讨论,这样不仅不会漏掉一些对参数必要的讨论,而且还会是自己做题更有条理,更为高效。
导数大题方法总结
![导数大题方法总结](https://img.taocdn.com/s3/m/11f55f4d9a6648d7c1c708a1284ac850ad02041f.png)
导数大题方法总结导数大题方法总结总结是指对某一阶段的工作、学习或思想中的经验或情况进行分析研究,做出带有规律性结论的书面材料,它可以促使我们思考,让我们一起认真地写一份总结吧。
那么总结要注意有什么内容呢?以下是小编整理的导数大题方法总结,欢迎大家分享。
一、总论一般来说,导数的大题有两到三问。
每一个小问的具体题目虽然并不固定,但有相当的规律可循,所以在此我进行了一个答题方法的总结。
二、主流题型及其方法(1)求函数中某参数的值或给定参数的值求导数或切线一般来说,一到比较温和的导数题的会在第一问设置这样的问题:若f(x)在x=k时取得极值,试求所给函数中参数的值;或者是f(x)在(a,f(a))处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。
虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。
这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是:先求出所给函数的导函数,然后利用题目所给的已知条件,以上述第一种情形为例:令x=k,f(x)的导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。
注意:①导函数一定不能求错,否则不只第一问会挂,整个题目会一并挂掉。
保证自己求导不会求错的最好方法就是求导时不要光图快,一定要小心谨慎,另外就是要将导数公式记牢,不能有马虎之处。
②遇到例子中的情况,一道要记得检验,尤其是在求解出来两个解的情况下,更要检验,否则有可能会多解,造成扣分,得不偿失。
所以做两个字来概括这一类型题的方法就是:淡定。
别人送分,就不要客气。
③求切线时,要看清所给的点是否在函数上,若不在,要设出切点,再进行求解。
切线要写成一般式。
(2)求函数的单调性或单调区间以及极值点和最值一般这一类题都是在函数的第二问,有时也有可能在第一问,依照题目的难易来定。
这一类题问法都比较的简单,一般是求f(x)的单调(增减)区间或函数的单调性,以及函数的极大(小)值或是笼统的函数极值。
2014北京高考数学:18题 导数专题
![2014北京高考数学:18题 导数专题](https://img.taocdn.com/s3/m/9fb5fdf1f705cc1755270977.png)
18.(朝阳区2011本小题共13分)设函数.,)(ln )(2R a a x x x f ∈-+=(I)若a=0,求函数)(x f 在[1,e]上的最小值;(Ⅱ)若函数)(x f 在]2,21[上存在单调递增区间,试求实数a 的取值范围; (Ⅲ)求函数)(x f 的极值点. 18.(朝阳区2011本小题共13分)已知函数>-+=a x a xZ x f (2ln )().0(I)若曲线)(x f y =在点))1(,1(f P 处的切线与直线2+=x y 垂直,求函数)(x f y =的单调区间; (Ⅱ)若对于),0(+∞∈∀x 都有)1(2)(->a x f 成立,试求a 的取值范围;(Ⅲ)记).()()(R b b x x f x g ∈-+=当1=a 时,函数)(x g 在区间].,[1e e -上有两个零点,求实数b的取值范围.18.(朝阳区2012本小题共13分)已知函数a x xx a x f (ln 2)1()(--=).R ∈(I)若a=2,求曲线)(x f y =在点))1(,1(f 处的切线方程; (Ⅱ)求函数)(x f 的单调区间; (Ⅲ)设函数,)(xax g -=若至少存在一个],,1[0e x ∈使得)()(00x g x f >成立,求实数a 的取值范围. 18.(朝阳区2012本小题共14分)已知函数=/++=a x x a x a x f (22ln )().0(I)若曲线)(x f y =在点))1(,1(f 处的切线与直线-x 02=y 垂直,求实数a 的值; (Ⅱ)讨论函数)(x f 的单调性;(Ⅲ)当)0,(-∞∈a 时,记函数)(x f 的最小值为),(a g 求证:.21)(2e a g ≤ 18.(朝阳区2012本小题共13分)设函数R a x e x f ax∈+=,1)(2(I)当a=l 时,求曲线)(x f y =在点))0(,0(f 处的切线方程; (Ⅱ)求函数)(x f 的单调区间. 18.(朝阳区2013本小题共13分)已知函数),0(11)(2=/++=m x mx x f ).()(2R a e x x g ax∈= (I)求函数)(x f 的单调区间;(Ⅱ)当m>0时,若对任意)()(],2,0[,2121x g x f x x ≥∈恒成立,求a 的取值范围. 18.(朝阳区2013本小题共13分)已知函数x a x a x x f ln )2()(2++-=,22++a 其中.2≤a(I)求函数)(x f 的单调区间;(Ⅱ)若函数)(x f 在(0,2]上有且只有一个零点,求实数a 的取值范围. 18.(东城区2011本小题共14分)已知函数x e x x g x x x f ==)(,ln )(⋅-e2 (I)求)(x f 在区间[1,3]上的最小值;(Ⅱ)证明:对任意),,0(,+∞∈n m 都有)()(n g m f ≥成立. 18.(东城区2011本小题共13分)已知函数).(ln )(2R a x a x x f ∈-=(I)若a=2,求证:)(x f 在区间),1(+∞上是增函数; (Ⅱ)求)(x f 在区间[1,e]上的最小值, 18.(东城区2012本小题共13分)已知,R a ∈函数.1ln )(-+=x xa x f(I)当a=l 时,求曲线)(x f y =在点))2(,2(f 处的切线方程; (Ⅱ)求)(x f 在区间(O ,e]上的最小值. 19.(东城区2012本小题共13分)已知函数xx au x f 1ln )1()(++=).1(>-a x(I)试讨论)(x f 在区间(O ,1)上的单调性;(Ⅱ)当],3[+∞∈a 时,曲线)(x f y =上总存在相异两点)),(,()),(,(2211x f x Q x f x P 使得曲线)(x f y =在点P ,Q 处的切线互相平行,求证:⋅>+5621x x 18.(东城区2013本小题共14分)已知函数x e ex x x f ln 3221)(22-+=)0,(0x b 在-处的切线斜率为零.(I)求0x 和b 的值;(Ⅱ)求证:在定义域内0)(≥x f 恒成立; (Ⅲ)若函数xax f x F +=)()(/有最小值m ,且,2e m >求实数a 的取值范围. 18.(东城区2013本小题共14分)已知函数).0(ln )(>+=a xax x f(I)求)(x f 的单调区间;(Ⅱ)如果),(00y x P 是曲线)(x f y =上的任意一点,若以),(00y x P 为切点的切线的斜率21≤k 恒成立,求实数a 的最小值;(Ⅲ)讨论关于x 的方程212)(2)(3-++=x a bx x x f 的实根情况. 18.(东城区普通高中示范校2012本小题共13分)已知函数:x a x a x x f -+-=ln )1()(.21)(),(2x x xe e x x g R a -+=∈ (I)当],1[e x ∈时,求)(x f 的最小值;(Ⅱ)当a<l 时,若存在],,[21e e x ∈使得对任意的∈2x )()(],0,2[21x g x f <-恒成立,求a 的取值范围.18.(东城区普通高中示范校2013本小题共13分)设.22131)(23ax x x x f ++-=(I)若)(x f 在),32(+∞上存在单调递增区间,求a 的取值范围; (Ⅱ)当20<<a 时,)(x f 在[l ,4]上的最小值为,316-求)(x f 在该区间上的最大值. 19.(东城区普通高中示范校2013本小题共13分)已知函数22ln )42()(x x ax x x f +-=).0(>a(I)求函数)(x f 的单调区间;(Ⅱ)对),,1[+∞∈∀x 不等式x x a x ->-ln )42(恒成立,求a 的取值范围. 18.(丰台区2011本小题共13分)已知函数-+-=a ax x x f (ln )(2.)2x(I)若)(x f 在1=x 处取得极值,求a 的值; (Ⅱ)求函数].,[)(2a a xE x f y =上的最大值. 18.(丰台区2011本小题共13分)已知函数+++=x ax x x f 232131)()(),0(x f a b ≥为函数)(x f 的导函数.(I)设函数)(x f 的图象与x 轴交点为A ,曲线)(x f y =在A 点处的切线方程是,33-=x y 求a ,b 的值;(Ⅱ)若函数),()(/x f e x g ax⋅=-求函数)(x g 的单调区间.18.(丰台区2012本小题共13分)已知函数++-=x a ax x f )2()(2.ln x(I)当a=l 时,求曲线)(x f y =在点))1(,1(f 处的切线方程;(Ⅱ)当a>0时,若)(x f 在区间[1,e]上的最小值为-2,求a 的取值范围;(Ⅲ)若对任意<+<+∞∈1121212)(,),,0(,x x f x x x x 222)(x x f +恒成立,求a 的取值范围.18.(丰台区2013本小题共13分)已知函数-+=221ln 2)(ax x x f ).()12(R a x a ∈+(I )当21-=a 时,求函数],1[)(e E x f =/上的最大值和 最小值; (Ⅱ)若a>0,讨论)(x f 的单调性. 18.(丰台区2013本小题共13分)已知函数2)(,1)(bx x g ax x f =+=.3x + (I)若曲线)()()(x g x f x h -=在点(1,O)处的切线斜率为O ,求a ,b 的值; (Ⅱ)当),,3[+∞∈a 且ab=8时,求函数)()()(x f x g x =ϕ的单调区间,并求函数)(x ϕ在区间[-2,-1]上的 最小值. 18.(海淀区2011本小题共14分)已知函数--=x x ax x f ln )()(2).(212R a x ax ∈+(I)当a=0时,求曲线)(x f y =在(e ,f(e))处的切线方程(e=2.718…); (Ⅱ)求函数f(x)的单调区间. 18.(海淀区2011本小题共13分)已知函数=-=)(,ln )(x g x a x x f ).(1R a xa ∈+-(I)若a=l ,求函数)(x f 的极值;(Ⅱ)设函数),()()(x g x f x h -=求函数)(x h 的单调区间;(Ⅲ)若区间)718.2](,1[ =⋅e e 上存在一点,0x 使得)()(00x g x f <成立,求a 的取值范围. 18.(海淀区2012本小题共13分)已知函数⋅-=1)(x e x f ax(I )当a=l 时,求曲线)(x f 在))0(,0(f 处的切线方程; (Ⅱ)求函数)(x f 的单调区间. 19.(海淀区2012本小题共14分)已知函数+--=221)ln()(x a x a x f ).0(<a x(I)求)(x f 的单调区间;(Ⅱ)若),12(ln 21-<<-a 求证:函数)(x f 只有一个零点,0x 且;210+<<+a x a (Ⅲ)当54-=a 时,记函数)(x f 的零点为,0x 若对任意],0[,021x x x ∈且,112=-x x 都有|)()(|12x f x f -m ≥成立,求实数m 的最大值.(本题可参考数据:≈≈≈59ln ,8.049ln ,7.02ln )59.0 18.(海淀区2012本小题共13分)已知函数<-+=-k kx x e x f h )(1()2().0(I)求f(x)的单调区间.(Ⅱ)是否存在实数k ,使得函数f(x)的极大值等于?23-e 若存在,求出五的值;若不存在,请说明理由. 18.(海淀区2013本小题共13分)已知函数,)(x e x f =点A(a ,O)为一定点,直线)(a t t x =/=分别与函数)(x f 的图象和x 轴交于点M ,N ,记△AMN 的面积为).(t s (I)当a=0时,求函数S(t)的单调区间;(Ⅱ)当a>2时,若],2,0[0∈∃t 使得,)(0e t S ≥求实数a 的取值范围, 18.(石景山区2011本小题共13分)已知函数a x x a x f (ln )21()(2+-=)R ∈(I)当1=a 时,求)(x f 在区间[1,e]上的最大值和最小值;(Ⅱ)若在区间),1(+∞上,函数)(x f 的图象恒在直线y ax 2=下方,求a 的取值范围. 18.(石景山区2012本小题共14分)已知函数.ln 2)(2x a x x f +=-(I)若函数)(x f 的图象在点))2(,2(f 处的切线斜率为1,求实数a 的值; (Ⅱ)求函数)(x f 的单调区间; (Ⅲ)若函数)(2)(x f xx g +=在区间[1,2]上是减函数,求实数a 的取值范围. 18.(石景山区2013本小题共13分)已知函数.,ln 1)(R a x ax x f ∈--=(I)讨论函数)(x f 的单调区间;(Ⅱ)若函数1)(=x x f 在处取得极值,对,0(∈∀x 2)(),-≥∞+bx x f 恒成立,求实数b 的取值范围.18.(西城区2011本小题共14分)已知函数),0()1()(>-=x e xa x f x 其中e 为自然对数的底数.(I)当a=2时,求曲线)(x f y =在点(1,,(1))处的切线与坐标轴围成的面积;(Ⅱ)若函数)(x f 存在一个极大值点和一个极小值点,且极大值与极小值的积为,5e 求a 的值.18.(西城区2011本小题共14分)已知函数,)1()(2xx a x f -=其中.0>a (I)求函数)(x f 的单调区间;(Ⅱ)若直线01=--y x 是曲线)(x f y =的切线,求实数a 的值;(Ⅲ)设),(ln )(2x f x x x x g -=求)(x g 在区间[1,e]上的最大值.(其中e 为自然对数的底数) 18.(西城区2012本小题共13分)已知函数,)(2bx xx f +=其中.R b ∈ (I)求)(x f 的单调区间;(Ⅱ)设b>0.若],43,41[∈∃x 使,1)(≥x f 求b 的取值范围. 19.(西城区2012本小题共14分)已知函数,112)(22+-+=x a ax x f 其中a .R ∈ (I)当a=l 时,求曲线)(x f y =在原点处的切线方程; (Ⅱ)求)(x f 的单调区间;(Ⅲ)若)(x f 在区间),0[+∞上存在最大值和最小值,求a 的取值范围. 18.(西城区2012本小题共13分)已知函数),1.()(++=a xa e x f ax 其中.1-≥a(I)当a=l 时,求曲线y=f(x)在点(1,f(1))处的切线方程; (Ⅱ)求f(x)的单调区间. 19.(西城区2013本小题共14分)已知函数x a x x x f )2(232)(23-+-=,1+其中R ∈a(I)若a=2,求曲线)(x f y =在点))1(,1(f ⋅处的切线方程; (Ⅱ)求函数)(x f 在区间[2,3]上的最大值和最小值. 18.(2009年北京本小题共13分)设函数).0()(=/=k xe x f h(I)求曲线)(x f y =在点))0(,0(f 处的切线方程; (Ⅱ)求函数)(x f 的单调区间;(Ⅲ)若函数)(x f 在区间(-1,1)内单调递增,求k 的取值范围.18.(2010年北京本小题共13分)已知函数22)1ln()(x k x x x f +-+=).0(≥k(I)当k=2时,求曲线)(x f y =在点))1(,1(f 处的切线方程; (Ⅱ)求)(x f 的单调区间.18.((2011年北京本小题共13分)已知函数.)()(2kxe k x xf -=(I)求)(x f 的单调区间;(Ⅱ)若对于任意的),,0(+∞∈x 都有,1)(ex f ≤求k 的取值范围. 18.(2012年北京本小题共13分)已知函数)(),0(1)(2x g a ax x f >+=.3bx x +=(I)若曲线)(x f y =与曲线)(x g y =在它们的交点(1,c)处具有公共切线,求a ,b 的值; (Ⅱ)当b a 42=时,求函数)()(x g x f +的单调区间,并求其在区间]1,(--∞上的最大值.18.(2013年北京本小题满分13分)设L为曲线x xy C ln: 在点(1,O)处的切线.(I)求L的方程;(Ⅱ)证明:除切点(1,O)之外,曲线C在直线L的下方.。
北京高考导数题分类
![北京高考导数题分类](https://img.taocdn.com/s3/m/8fff0714c850ad02de8041b9.png)
导数大题分类一、含参数单调区间的求解步骤:①确定定义域(易错点)②求导函数)('x f③对)('x f 进行整理,能十字交叉的十字交叉分解,若含分式项,则进行通分整理.④)('x f 中x 的最高次系数是否为0,为0时求出单调区间.例1:x x a x a x f ++-=23213)(,则)1)(1()('--=x ax x f 要首先讨论0=a 情况 ⑤)('x f 最高次系数不为0,讨论参数取某范围的值时,若0)('≥x f ,则)(x f 在定义域内单调递增;若0)('≤x f ,则)(x f 在定义域内单调递减. 例2:x x a x f ln 2)(2+=,则)('x f =)0(,12>+x x ax ,显然0≥a 时0)('>x f ,此时)(x f 的单调区间为),0(+∞.⑥)('x f 最高次系数不为0,且参数取某范围的值时,不会出现0)('≥x f 或者0)('≤x f 的情况 求出)('x f =0的根,(一般为两个)21,x x ,判断两个根是否都在定义域内.如果只有一根在定义域内,那么单调区间只有两段.若两根都在定义域内且一根为常数,一根含参数.则通过比较两根大小分三种情况讨论单调区间,即212121,,x x x x x x =<>. 例3:若)0(,ln )1(2)(2≠++-=a x x a x a x f ,则x x ax x f )1)(1()('--=,)0(>x 解方程0)('=x f 得a x x 1,121== 0<a 时,只有11=x 在定义域内.0>a 时,比较两根要分三种情况:1,10,1><<=a a a用所得的根将定义域分成几个不同的子区间,讨论)('x f在每个子区间内的正负,求得)(x f的单调区间。
北京考生专用 导数大题(含答案)
![北京考生专用 导数大题(含答案)](https://img.taocdn.com/s3/m/45e1ed3110661ed9ad51f3d2.png)
(18)(本小题满分13分)已知函数22()3x af x x a+=+(0a ≠,a ∈R ). (Ⅰ)求函数()f x 的单调区间;(Ⅱ)当1a =时,若对任意12,[3,)x x ∈-+∞,有12()()f x f x m -≤成立,求实数m 的最小值.(18)(本小题满分13分) 解:222()(3)'()(3)x a x a f x x a --+=+.令'()0f x =,解得x a =或3x a =-. ……………………………………2分 (Ⅰ)当0a >时,'()f x ,()f x 随着x 的变化如下表函数()f x 的单调递增区间是(3,)a a -,函数()f x 的单调递减区间是(,3)a -∞-,(,)a +∞. ……………………………………4分当0a <时,'()f x ,()f x 随着x 的变化如下表函数()f x 的单调递增区间是(,3)a a -,函数()f x 的单调递减区间是(,)a -∞,(3,)a -+∞. ……………………………………6分(Ⅱ)当1a =时,由(Ⅰ)得()f x 是(3,1)-上的增函数,是(1,)+∞上的减函数.又当1x >时,21()03x f x x +=>+. ……………………………………8分 所以 ()f x 在[3,)-+∞上的最小值为1(3)6f -=-,最大值为1(1)2f =.……………………………………10分 所以 对任意12,[3,)x x ∈-+∞,122()()(1)(3)3f x f x f f -≤--=. 所以 对任意12,[3,)x x ∈-+∞,使12()()f x f x m -≤恒成立的实数m 的最小值为23. ……………………………………13分 18.(本小题满分14分)已知函数2()2ln f x x a x =+.(Ⅰ)若函数()f x 的图象在(2,(2))f 处的切线斜率为1,求实数a 的值; (Ⅱ)求函数()f x 的单调区间; (Ⅲ)若函数2()()g x f x x=+在[1,2]上是减函数,求实数a 的取值范围. 18.(本小题满分14分)解:(Ⅰ)2222'()2a x a f x x x x+=+= …………1分 由已知'(2)1f =,解得3a =-. …………3分(II )函数()f x 的定义域为(0,)+∞.(1)当0a ≥时, '()0f x >,()f x 的单调递增区间为(0,)+∞;……5分(2)当0a <时'()f x =当x 变化时,'(),()f x f x 的变化情况如下:由上表可知,函数()f x 的单调递减区间是;单调递增区间是)+∞. …………8分 (II )由22()2ln g x x a x x =++得222'()2ag x x x x=-++,…………9分 由已知函数()g x 为[1,2]上的单调减函数,则'()0g x ≤在[1,2]上恒成立,即22220ax x x -++≤在[1,2]上恒成立. 即21a x x≤-在[1,2]上恒成立. …………11分令21()h x x x =-,在[1,2]上2211'()2(2)0h x x x x x=--=-+<,所以()h x 在[1,2]为减函数. min 7()(2)2h x h ==-,所以72a ≤-. …………14分(18)(本小题共13分)已知1=x 是函数()(2)e xf x ax =-的一个极值点. (Ⅰ)求实数a 的值;(Ⅱ)当1x ,[]20,2x ∈时,证明:12()()e f x f x -≤.(Ⅰ)解:'()(2)e xf x ax a =+-, …………2分由已知得)1('=f ,解得1=a . …………4分当1a =时,()(2)e xf x x =-,在1x =处取得极小值.所以1a =. …………5分 (Ⅱ)证明:由(Ⅰ)知,()(2)e xf x x =-,'()(1)e xf x x =-.当[]1,0∈x 时,0)1()('≤-=x e x x f ,)(x f 在区间[]0,1单调递减;当(]1,2x ∈时,'()(1)0xf x x e =->,)(x f 在区间(]1,2单调递增. …………8分所以在区间[]0,2上,()f x 的最小值为(1)e f =-, 又(0)2f =-,(2)0f =, 所以在区间[]0,2上,()f x 的最大值为(2)0f =. …………12分对于[]12,0,2x x ∈,有12max min ()()()()f x f x f x f x -≤-.所以12()()0(e)e f x f x -≤--=. …………13分18.(本小题共14分)已知函数2()(1)2ln ,f x a x x =-+()2g x ax =,其中1a > (Ⅰ)求曲线()y f x =在(1,(1))f 处的切线方程; (Ⅱ)设函数()()()h x f x g x =-,求()h x 的单调区间. 18.(本小题共14分)解:(Ⅰ)当1x =时,(1)1f a =-,'2()2(1)f x a x x=-+∴'(1)2f a =,∴(1)2(1)y a a x --=-所求切线方程为210ax y a ---=__________5分 (Ⅱ)2()()()(1)22ln h x f x g x a x ax x =-=--+∴[]'2(1)(1)12()2(1)2x a x h x a x a x x---=--+=,__________6分 根1211,1x x a ==-,(1a >)__________8分 当111a >-,即12a <<时, 在()10,1,(,)1a +∞-上'()0f x >,在1(1,)1a -上'()0f x < ∴()f x 在()10,1,(,)1a +∞-上单调递增,在1(1,)1a -上单调递减;__________10分当111a ≤-,即2a ≥时, 在1(0,),(1,)1a +∞-上'()0f x >,在1(,1)1a -上'()0f x <∴()f x 在()10,1,(,)1a +∞-上单调递增,在1(1,)1a -上单调递减. __________14分18.(本小题满分14分)设函数22()ln (0)a f x a x a x=+≠. (Ⅰ)已知曲线()y f x =在点(1,(1))f 处的切线l 的斜率为23a -,求实数a 的值; (Ⅱ)讨论函数()f x 的单调性;(Ⅲ)在(Ⅰ)的条件下,求证:对于定义域内的任意一个x ,都有()3f x x ≥-. (18)(本小题满分14分)解:(Ⅰ)()f x 的定义域为{|0}x x >, . ………1分222()a a f x x x'=-. ………2分根据题意,(1)23f a '=-, 所以2223a a a -=-,即2210a a -+=,解得1a =. .………4分(Ⅱ)2222(2)()a a a x a f x x x x -'=-=.(1)当0a <时,因为0x >,所以20x a ->,(2)0a x a -<,所以()0f x '<,函数()f x 在(0,)+∞上单调递减. ………6分 (2)当0a >时,若02x a <<,则(2)0a x a -<,()0f x '<,函数()f x 在(0,2)a 上单调递减; 若2x a >,则(2)0a x a ->,()0f x '>,函数()f x 在(2,)a +∞上单调递增. …8分 综上所述,当0a <时,函数()f x 在(0,)+∞上单调递减;当0a >时,函数()f x 在(0,2)a 上单调递减,在(2,)a +∞上单调递增. ………9分(Ⅲ)由(Ⅰ)可知2()ln f x x x=+. 设()()(3)g x f x x =--,即2()ln 3g x x x x=++-. 2222122(1)(2)()1(0)x x x x g x x x x x x+--+'=-+==>. ………10分 当x 变化时,()g x ',()g x 的变化情况如下表:1x =是()g x 在(0,)+∞上的唯一极值点,且是极小值点,从而也是()g x 的最小值点.可见()(1)0g x g ==最小值, .………13分 所以()0g x ≥,即()(3)0f x x --≥,所以对于定义域内的每一个x ,都有()3f x x ≥-.18. (本题满分14分)已知函数()2()1e x f x ax =-⋅,a ∈R .(Ⅰ)若函数()f x 在1x =时取得极值,求a 的值; (Ⅱ)当0a ≤时,求函数()f x 的单调区间. (18)(本小题满分14分)解:(Ⅰ)()2()21e x f x ax ax '=+-⋅.x ∈R ……………………2分 依题意得(1)(31)e =0f a '=-⋅,解得13a =. 经检验符合题意. ………4分 (Ⅱ)()2()21e x f x ax ax '=+-⋅,设2()21g x ax ax =+-,(1)当0a =时,()e xf x =-,()f x 在(),-∞+∞上为单调减函数. ……5分(2)当0a <时,方程2()21g x ax ax =+-=0的判别式为244a a ∆=+,令0∆=, 解得0a =(舍去)或1a =-.1°当1a =-时,22()21(1)0g x x x x =---=-+≤, 即()2()21e 0xf x ax ax '=+-⋅≤,且()f x '在1x =-两侧同号,仅在1x =-时等于0,则()f x 在(),-∞+∞上为单调减函数. ……………………7分 2°当10a -<<时,0∆<,则2()210g x ax ax =+-<恒成立,即()0f x '<恒成立,则()f x 在(),-∞+∞上为单调减函数. ……………9分 3°1a <-时,2440a a ∆=+>,令()0g x =, 方程2210ax ax +-=有两个不相等的实数根11x a =-+,21x a =--,作差可知11-->-+则当1x <-+时,()0g x <,()0f x '<,()f x 在(,1-∞-上为单调减函数;当11x a a -+<<--时,()0g x >,()0f x '>,()f x 在(11-+-上为单调增函数;当1x >-时,()0g x <,()0f x '<,()f x 在(1)--+∞上为单调减函数. ……………………………………………………………………13分综上所述,当10a -≤≤时,函数()f x 的单调减区间为(),-∞+∞;当1a <-时,函数()f x的单调减区间为(,1a -∞-+,(1)a --+∞,函数()f x 的单调增区间为(1,1a a-+--18.已知函数,)1()(23bx x b x x f ++-=R b ∈.(Ⅰ)若函数)(x f 在点())1,1(f 处的切线与直线03=-+y x 平行,求b 的值; (Ⅱ)在(Ⅰ)的条件下,求)(x f 在区间]3,0[上的最值.18.解:(Ⅰ)b x b x x f ++-=')1(23)(2∵函数)(x f 在点())1,1(f 处的切线与直线03=-+y x 平行 ∴()()11231-=++-='b b f ,解得2=b ………………4分(Ⅱ)由(Ⅰ)知x x x x f 23)(23+-=,263)(2+-='x x x f ,令0263)(2=+-='x x x f ,解得331,33121+=-=x x . ………………7分 在区间]3,0[上,x ,)(x f ',)(x f 的变化情况如下:………………11分 所以当=x 3时,6)(max =x f ;当331+=x 时,=min )(x f 932-. ………………13分(18)(本小题满分13分)已知函数211()ln (0)22f x a x x a a =-+∈≠且R . (Ⅰ)求()f x 的单调区间;(Ⅱ)是否存在实数a ,使得对任意的[)1,x ∈+∞,都有()0f x ≤?若存在,求a 的取值范围;若不存在,请说明理由.(18)(本小题满分13分)解:(Ⅰ)()f x 的定义域为(0,)+∞.2'()a x af x x x x-+=-=. ………………………………………2分当0a <时,在区间(0,)+∞上,'()0f x <.所以 ()f x 的单调递减区间是(0,)+∞. ………………………………………3分当0a >时,令'()0f x =得x =x =.函数()f x ,'()f x 随x 的变化如下:所以 ()f x 的单调递增区间是,单调递减区间是)+∞.………………………………………6分综上所述,当0a <时, ()f x 的单调递减区间是(0,)+∞;当0a >时,()f x 的单调递增区间是,单调递减区间是)+∞. (Ⅱ)由(Ⅰ)可知:当0a <时, ()f x 在[1,)+∞上单调递减.所以()f x 在[1,)+∞上的最大值为(1)0f =,即对任意的[1,)x ∈+∞,都有()0f x ≤. ………………………………………7分当0a >时,① 1≤,即01a <≤时,()f x 在[1,)+∞上单调递减.所以()f x 在[1,)+∞上的最大值为(1)0f =,即对任意的[1,)x ∈+∞,都有()0f x ≤. ………………………………………10分② 1>,即1a >时,()f x 在上单调递增,所以 (1)f f >.又 (1)0f =,所以 0f >,与对于任意的[1,)x ∈+∞,都有()0f x ≤矛盾.………………………………………12分综上所述,存在实数a 满足题意,此时a 的取值范围是(,0)(0,1]-∞.………………………………………13分18.(本小题满分13分)设a ∈R ,函数233)(x ax x f -=.(Ⅰ)若2=x 是函数)(x f y =的极值点,求实数a 的值;(Ⅱ)若函数()()xg x e f x =在]2,0[上是单调减函数,求实数a 的取值范围.18.(本小题满分13分)解:(Ⅰ)2()363(2)f x ax x x ax '=-=-.因为2x =是函数()y f x =的极值点,所以(2)0f '=,即6(22)0a -=,所以1a =.经检验,当1a =时,2x =是函数()y f x =的极值点. 即1a =.---------------6分(Ⅱ)由题设,'322()(336)xg x e ax x ax x =-+-,又0xe >,所以,(0,2]x ∀∈,3223360ax x ax x -+-≤,这等价于,不等式2322363633x x x a x x x x ++≤=++对(0,2]x ∈恒成立. 令236()3x h x x x+=+((0,2]x ∈),则22'22223(46)3[(2)2]()0(3)(3)x x x h x x x x x ++++=-=-<++,---------------------------10分 所以()h x 在区间0,2](上是减函数,所以()h x 的最小值为6(2)5h =. ---------------12分 所以65a ≤.即实数a 的取值范围为6(,]5-∞.-----------------------------------13分18.(本小题共13分)已知函数321()13f x x ax =-+ ()a R ∈. (Ⅰ)若曲线y =f (x )在(1,f (1))处的切线与直线x +y +1=0平行,求a 的值; (Ⅱ)若a >0,函数y =f (x )在区间(a ,a 2-3)上存在极值,求a 的取值范围; (Ⅲ)若a >2,求证:函数y =f (x )在(0,2)上恰有一个零点. 18.解:(Ⅰ)2()2f x x ax '=-, ……………………1分(1)12f a '=-, ……………………2分因为曲线y =f (x )在(1,f (1))处的切线与直线x +y +1=0平行 所以121a -=-, ……………………3分所以1a =. ……………………4分(Ⅱ)令()0f x '=, ……………………5分即()(2)0f x x x a '=-=,所以x =或2x a =. ……………………6分因为a >0,所以0x =不在区间(a ,a 2-3)内,要使函数在区间(a ,a2-3)上存在极值,只需223a a a <<-. ……………………7分所以3a >. ……………………9分(Ⅲ)证明:令()0f x '=,所以 0x =或2x a =.因为a >2,所以2a >4, ……………………10分所以()0f x '<在(0,2)上恒成立,函数f (x )在(0,2)内单调递减. 又因为(0)10f =>,1112(2)03af -=<, ……………………11分 所以f (x )在(0,2)上恰有一个零点. ……………………13分18.(本题13分)已知函数f (x )=ln x -x 2. (I )求函数f (x )的单调递增区间;(II )求函数f (x )在(]0,a (a >0)上的最大值. 18. (Ⅰ)因为函数()2ln f x x x =-,0>x所以()12.f x x x'=- 令()0f x '>,所以211220.x x x x--=>所以02x <<所以函数()f x 的单调递增区间是⎪⎪⎭⎫⎝⎛22,0. ………………………… 5分 (Ⅱ) 由(Ⅰ)知函数在⎪⎪⎭⎫⎝⎛22,0为增函数, 同理可得函数()x f 在⎪⎪⎭⎫⎝⎛+∞,22为减函数. ………………………… 6分所以当02a <<时,函数()x f 在(]0,a 上单调递增, 所以函数()x f 的最大值为()2ln f a a a =-; ………………………… 9分当2a ≥时,函数()x f在0,2⎛ ⎝⎭上单调递增,在,2a ⎛⎫ ⎪ ⎪⎝⎭上单调递减, 所以函数()x f最大值为1.2f =-⎝⎭………………………… 12分综上所述,当0a <<时,函数()x f 的最大值为()2ln f a a a =-;当2a ≥时,函数()x f最大值为1ln .222f ⎛⎫=- ⎪ ⎪⎝⎭………………………… 13分18.(本小题满分13分)已知函数2221()1ax a f x x +-=+,其中a ∈R . (Ⅰ)当1a =时,求曲线()y f x =在原点处的切线方程; (Ⅱ)求)(x f 的单调区间.18.(本小题满分13分) (Ⅰ)解:当1a =时,22()1xf x x =+,22(1)(1)()2(1)x x f x x +-'=-+. ………………2分 由 (0)2f '=, 得曲线()y f x =在原点处的切线方程是20x y -=.…………4分 (Ⅱ)解:2()(1)()21x a ax f x x +-'=-+. ………………6分① 当0a =时,22()1xf x x '=+.所以()f x 在(0,)+∞单调递增,在(,0)-∞单调递减. ………………7分当0a ≠,21()()()21x a x a f x a x +-'=-+.② 当0a >时,令()0f x '=,得1x a =-,21x a =,()f x 与()f x '的情况如下:故)(x f 的单调减区间是(,)a -∞-,1(,)a +∞;单调增区间是1(,)a a-.………10分 ③ 当0a <时,()f x 与()f x '的情况如下:所以()f x 的单调增区间是1(,)a -∞;单调减区间是1(,)a a--,(,)a -+∞. ………………13分 综上,0a >时,()f x 在(,)a -∞-,1(,)a+∞单调递减;在1(,)a a-单调递增.0a =时,()f x 在(0,)+∞单调递增,在(,0)-∞单调递减;0a <时,()f x 在1(,)a-∞,(,)a -+∞单调递增;在1(,)a a-单调递减.19.(本小题满分14分)已知函数axx x x f -+=1ln )(,其中a 为常数,且+∈R a . (Ⅰ)若函数)(x f 在区间),1[+∞内调递增,求a 的取值范围; (Ⅱ)当0>a 时,求函数)(x f 在区间],1[e 上的最小值. 解: 19.(本小题满分13分)解:(Ⅰ))0(1)(2>-='x axax x f . ……………………………2分 令0)(='x f ,得ax 1=. ………………………………………………3分∴在]1,0(a 上0)(≤'x f ,在),1[+∞a上0)(≥'x f .∴)(x f 在]1,0(a 上单调递减,在),1[+∞a上单调递增. ……………………5分∵ 函数)(x f 在区间),1[+∞内调递增,∴11≤a.∵0>a ,∴1≥a . ∴所求实数a 的取值范围为),1[+∞……………………………………………7分 (Ⅱ)当1≥a 时,∵在),1(e 上0)(>'x f ,)(x f 在],1[e 上为增函数,∴0)1()(min ==f x f . ……………………………………………9分当11<<a e 时,在]1,0(a 上0)(≤'x f ,在),1[+∞a上0)(≥'x f )(x f 在]1,0(a上为减函数,在),1[+∞a 上为增函数.∴a a a f x f 111ln )1()(min -+==. ……………………………………11分当ea 10≤<,在),1(e 上0)(<'x f ,)(x f 在],1[e 上为减函数.∴aeee f x f -+==11)()(min . …………………………………………13分18.(本小题共13分) 设函数3221()23()3f x x ax a x a a R =-+-+∈. (Ⅰ)当1=a 时,求曲线)(x f y =在点())3(,3f 处的切线方程; (Ⅱ)求函数)(x f 的单调区间和极值;(Ⅲ)若对于任意的∈x (3,)a a ,都有()1f x a <+,求a 的取值范围. 18.(本小题共13分)解:(I )∵当1=a 时,13231)(23+-+-=x x x x f ,………………………1分 34)(2-+-='x x x f …………………………………2分当3=x 时,1)3(=f ,=')3(f 0 …………………………………3分 ∴曲线)(x f y =在点())3(,3f 处的切线方程为01=-y ………………………4分(II )22()4-3()(3)f x x ax a x a x a '=-+=--- ……………………………5分 0a =时,()0f x '≤,(,)-∞∞是函数的单调减区间;无极值;……………6分 0a >时,在区间(,),(3,)a a -∞∞上,()0f x '<; 在区间(,3)a a 上,()0f x '>, 因此(,),(3,)a a -∞∞是函数的单调减区间,(,3)a a 是函数的单调增区间,函数的极大值是(3)f a a =;函数的极小值是34()3f a a a =-;………………8分 0a <时,在区间(,3),(,)a a -∞∞上,()0f x '<; 在区间(3,)a a 上,()0f x '>,因此(,3),(,)a a -∞∞是函数的单调减区间,(3,)a a 是函数的单调增区间函数的极大值是34()3f a a a =-,函数的极小值是(3)f a a = ………………10分 (III) 根据(II )问的结论,(3,)x a a ∈时,34()()3f x f a a a <=-………………11分因此,不等式()1f x a <+在区间(3,)a a 上恒成立必须且只需:⎪⎩⎪⎨⎧<+≤-01343a a a a ,解之,得a ⎡⎫∈⎪⎢⎪⎣⎭ ……………………13分18.(本小题满分13分)已知函数ax xx x f ++=1ln )((a 为实数). (I )当0=a 时, 求)(x f 的最小值;(II )若)(x f 在),2[+∞上是单调函数,求a 的取值范围.18.(本小题满分13分)解:(Ⅰ) 由题意可知:0>x ……1分 当0=a 时21)(xx x f -=' …….2分 当10<<x 时,0)(<'x f 当1>x 时,0)(>'x f ……..4分 故1)1()(min ==f x f . …….5分(Ⅱ) 由222111)(x x ax a x x x f -+=+-='① 由题意可知0=a 时,21)(xx x f -=',在),2[+∞时,0)(>'x f 符合要求 …….7分 ② 当0<a 时,令1)(2-+=x ax x g 故此时)(x f 在),2[+∞上只能是单调递减0)2(≤'f 即04124≤-+a 解得41-≤a …….9分 当0>a 时,)(x f 在),2[+∞上只能是单调递增 0)2(≥'f 即,04124≥-+a 得41-≥a故0>a …….11分综上),0[]41,(+∞⋃--∞∈a …….13分18.(本小题满分14分)设函数3221()231,0 1.3f x x ax a x a =-+-+<< (I )求函数)(x f 的极大值;(II )若[]1,1x a a ∈-+时,恒有()a f x a '-≤≤成立(其中()f x '是函数()f x 的导函数),试确定实数a 的取值范围. 18.(本小题满分14分)解:(I )∵2234)(a ax x x f -+-=',且01a <<,…………………………………1分当0)(>'x f 时,得a x a 3<<;当0)(<'x f 时,得a x a x 3><或; ∴)(x f 的单调递增区间为(,3)a a ;)(x f 的单调递减区间为),(a -∞和),3(+∞a .…………………………………3分故当3x a =时,)(x f 有极大值,其极大值为()31f a =. …………………4分 (II )∵()()2222432f x x ax a x a a '=-+-=--+,当103a <<时,12a a ->, ∴()f x '在区间[]1,1a a -+内是单调递减.…………………………………………6分 ∴[]()[]()2max min 861,21f x f a a a f x f a a ''''==-+-==-()1-()1+.∵()a f x a '-≤≤,∴2861,21.a a a a a ⎧-+-≤⎨-≥-⎩此时,a ∈∅.…………………………………………………………………………9分 当113a ≤<时,[]()2max 2f x f a a ''==(). ∵()a f x a '-≤≤,∴22,21,861.a a a a a a a ⎧≤⎪-≥-⎨⎪-+-≥-⎩即01,1,3a a a ⎧⎪≤≤⎪⎪≥⎨≤≤ ……11分此时,17316a ≤≤.……………………………………………………………13分 综上可知,实数a的取值范围为13⎡⎢⎣⎦.…………………………………14分18.(本小题满分14分) 已知函数2()2ln f x x a x =+.(Ⅰ)若函数()f x 的图象在(2,(2))f 处的切线斜率为1,求实数a 的值;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)若函数2()()g x f x x=+在[1,2]上是减函数,求实数a 的取值范围.16. (本小题满分13分)已知函数1)(23-++=bx ax x x f 在1=x 处有极值1-.(I )求实数b a ,的值;(II )求函数x ax x g ln )(+=的单调区间. 16. (本小题满分13分) 已知函数1)(23-++=bx ax x x f 在1=x 处有极值-1. (I )求实数b a ,的值;(II )求函数x ax x g ln )(+=的单调区间.解(I )求导,得 b ax x x f ++='23)(2 ……2分 由题意⎩⎨⎧='-=0)1(1)1(f f ,解得12=-=b a ,……6分 (II )函数x ax x g ln )(+=的定义域是}0|{>x x ,……9分 xx g 12)(+-='……11分解012>+-x 且}0|{>x x , 得210<<x , 所以函数)(x g 在区间)21,0(上单调递增;……12分解012<+-x 得21>x , 所以函数)(x g 在区间),21(+∞上单调递减。
三年高考(2021-2021)(理)真题分类解析:专题06-导数的几何意义
![三年高考(2021-2021)(理)真题分类解析:专题06-导数的几何意义](https://img.taocdn.com/s3/m/0ad85df752d380eb63946d92.png)
专题06 导数的几何意义考纲解读明方向考点内容解读要求常考题型预测热度1.导数的概念与几何意义1.了解导数概念的实际背景2.理解导数的几何意义Ⅱ选择题、填空题★★★2.导数的运算1.能根据导数定义求函数y=C(C为常数),y=x,y=,y=x2,y=x3,y=的导数2.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数Ⅲ选择题、解答题本部分主要是对导数概念及其运算的考查,以导数的运算公式和运算法则为基础,以导数的几何意义为重点.1.导数的几何意义最常见的是求过曲线上某点的切线的斜率、方程、斜率与倾斜角的关系、切点的坐标,或以平行、垂直直线的斜率间的关系为载体求字母的取值等.2.导数的运算是每年必考的内容,一般不单独考查,而在考查导数的应用时与单调性、极值与最值结合出题考查.3.本节内容在高考中分值为5分左右,属于容易题.2022年高考全景展示1.【2022年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为A. B. C. D.【答案】D点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果.2.【2022年全国卷Ⅲ理】曲线在点处的切线的斜率为,则________.【答案】【解析】分析:求导,利用导数的几何意义计算即可。
详解:,则,所以,故答案为-3.点睛:本题主要考查导数的计算和导数的几何意义,属于基础题。
3.【2022年理数全国卷II】曲线在点处的切线方程为__________.【答案】【解析】分析:先求导数,再根据导数几何意义得切线斜率,最后根据点斜式求切线方程.详解:点睛:求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点.4.【2022年理数天津卷】已知函数,,其中a>1.(I)求函数的单调区间;(II)若曲线在点处的切线与曲线在点处的切线平行,证明;(III)证明当时,存在直线l,使l是曲线的切线,也是曲线的切线.【答案】(Ⅰ)单调递减区间,单调递增区间为;(Ⅱ)证明见解析;(Ⅲ)证明见解析.【解析】分析:(I)由题意可得.令,解得x=0.据此可得函数的单调递减区间,单调递增区间为.(II)曲线在点处的切线斜率为.曲线在点处的切线斜率为.原问题等价于.两边取对数可得.(III)由题意可得两条切线方程分别为l1:.l2:.则原问题等价于当时,存在,,使得l1和l2重合.转化为当时,关于x1的方程存在实数解,构造函数,令,结合函数的性质可知存在唯一的x0,且x0>0,使得,据此可证得存在实数t,使得,则题中的结论成立.详解:(I)由已知,,有.令,解得x=0.由a>1,可知当x变化时,,的变化情况如下表:x00+极小值所以函数的单调递减区间,单调递增区间为.(II)由,可得曲线在点处的切线斜率为.由,可得曲线在点处的切线斜率为.因为这两条切线平行,故有,即.两边取以a为底的对数,得,所以.(III)曲线在点处的切线l1:.曲线在点处的切线l2:.要证明当时,存在直线l,使l是曲线的切线,也是曲线的切线,只需证明当时,存在,,使得l1和l2重合.即只需证明当时,方程组有解,由①得,代入②,得. ③因此,只需证明当时,关于x1的方程③存在实数解.设函数,即要证明当时,函数存在零点.,可知时,;时,单调递减,又,,故存在唯一的x0,且x0>0,使得,即.由此可得在上单调递增,在上单调递减.在处取得极大值.因为,故,所以.下面证明存在实数t,使得.由(I)可得,当时,有,所以存在实数t,使得,因此,当时,存在,使得.所以,当时,存在直线l,使l是曲线的切线,也是曲线的切线.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.5.【2022年理北京卷】设函数=[].(Ⅰ)若曲线y= f(x)在点(1,)处的切线与轴平行,求a;(Ⅱ)若在x=2处取得极小值,求a的取值范围.【答案】(1) a的值为1 (2) a的取值范围是(,+∞)(Ⅱ)由(Ⅰ)得f ′(x)=[ax2–(2a+1)x+2]e x=(ax–1)(x–2)e x.若a>,则当x∈(,2)时,f ′(x)<0;当x∈(2,+∞)时,f ′(x)>0.所以f (x)<0在x=2处取得极小值.若a ≤,则当x ∈(0,2)时,x –2<0,ax –1≤x –1<0,所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是(,+∞).点睛:利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.2021年高考全景展示1.【2021山东,理20】已知函数()22cos f x x x =+,()()cos sin 22x g x e x x x =-+-,其中2.71828e =是自然对数的底数.(Ⅰ)求曲线()y f x =在点()(),f ππ处的切线方程;(Ⅱ)令()()()()h x g x af x a R =-∈,讨论()h x 的单调性并判断有无极值,有极值时求出极值.【答案】(Ⅰ)222y x ππ=--.(Ⅱ)综上所述:当0a ≤时,()h x 在(),0-∞上单调递减,在()0,+∞上单调递增,函数()h x 有极小值,极小值是()021h a =--;当01a <<时,函数()h x 在(),ln a -∞和()0,ln a 和()0,+∞上单调递增,在()ln ,0a 上单调递减,函数()h x 有极大值,也有极小值,极大值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦极小值是()021h a =--;当1a =时,函数()h x 在(),-∞+∞上单调递增,无极值;当1a >时,函数()h x 在(),0-∞和()ln ,a +∞上单调递增,在()0,ln a 上单调递减,函数()h x 有极大值,也有极小值,极大值是()021h a =--;极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.试题解析:(Ⅰ)由题意()22f ππ=-又()22sin f x x x '=-,所以()2f ππ'=, 因此 曲线()y f x =在点()(),f ππ处的切线方程为()()222y x πππ--=-, 即 222y x ππ=--.(Ⅱ)由题意得 2()(cos sin 22)(2cos )x h x e x x x a x x =-+--+, 因为()()()()cos sin 22sin cos 222sin x x h x e x x x e x x a x x '=-+-+--+--()()2sin 2sin x e x x a x x =---()()2sin x e a x x =--, 令()sin m x x x =-则()1cos 0m x x '=-≥所以()m x 在R 上单调递增.因为(0)0,m = 所以 当0x >时,()0,m x >当0x <时,()0m x <(1)当0a ≤时,x e a -0>当0x <时,()0h x '<,()h x 单调递减,当0x >时,()0h x '>,()h x 单调递增,所以 当0x =时()h x 取得极小值,极小值是 ()021h a =--;(2)当0a >时,()()()ln 2sin x a h x e e x x '=--由 ()0h x '=得 1ln x a =,2=0x ①当01a <<时,ln 0a <,当(),ln x a ∈-∞时,()ln 0,0x a e e h x '-<>,()h x 单调递增; 当()ln ,0x a ∈时,()ln 0,0x a e e h x '-><,()h x 单调递减;当()0,x ∈+∞时,()ln 0,0x a e e h x '->>,()h x 单调递增.所以 当ln x a =时()h x 取得极大值.极大值为()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦,当0x =时()h x 取到极小值,极小值是 ()021h a =--;②当1a =时,ln 0a =, 所以 当(),x ∈-∞+∞时,()0h x '≥,函数()h x 在(),-∞+∞上单调递增,无极值; ③当1a >时,ln 0a >所以 当(),0x ∈-∞时,ln 0x a e e -<,()()0,h x h x '>单调递增; 当()0,ln x a ∈时,ln 0x a e e -<,()()0,h x h x '<单调递减;当()ln ,x a ∈+∞时,ln 0x a e e ->,()()0,h x h x '>单调递增;所以 当0x =时()h x 取得极大值,极大值是()021h a =--;当ln x a =时()h x 取得极小值.极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.综上所述:当0a ≤时,()h x 在(),0-∞上单调递减,在()0,+∞上单调递增, 函数()h x 有极小值,极小值是()021h a =--;当01a <<时,函数()h x 在(),ln a -∞和()0,ln a 和()0,+∞上单调递增,在()ln ,0a 上单调递减,函数()h x 有极大值,也有极小值,极大值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦极小值是()021h a =--;当1a =时,函数()h x 在(),-∞+∞上单调递增,无极值; 当1a >时,函数()h x 在(),0-∞和()ln ,a +∞上单调递增,在()0,ln a 上单调递减,函数()h x 有极大值,也有极小值,极大值是()021h a =--;极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.【考点】1.导数的几何意义.2.应用导数研究函数的单调性、极值.3.分类讨论思想.【名师点睛】1.函数f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点P (x 0,y 0)处的切线的斜率.相应地,切线方程为y −y 0=f ′(x 0)(x −x 0).注意:求曲线切线时,要分清在点P 处的切线与过点P的切线的不同. 2. 本题主要考查导数的几何意义、应用导数研究函数的单调性与极值、分类讨论思想.本题覆盖面广,对考生计算能力要求较高,是一道难题.解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全面、不彻底、不恰当,或因复杂式子变形能力差,而错漏百出.本题能较好的考查考生的逻辑思维能力、基本计算能力、分类讨论思想等.2.【2021北京,理19】已知函数()e cos x f x x x =-.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值.【答案】(Ⅰ)1y =;(Ⅱ)最大值1;最小值2π-.【解析】(Ⅱ)设()e (cos sin )1x h x x x =--,则()e (cos sin sin cos )2e sin x x h x x x x x x '=---=-. 当π(0,)2x ∈时,()0h x '<, 所以()h x 在区间π[0,]2上单调递减. 所以对任意π(0,]2x ∈有()(0)0h x h <=,即()0f x '<.所以函数()f x 在区间π[0,]2上单调递减. 因此()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为ππ()22f =-. 【考点】1.导数的几何意义;2.利用导数求函数的最值. 【名师点睛】这道导数题并不难,比一般意义上的压轴题要简单很多,第二问比较有特点是需要求二阶导数,因为()f x '不能判断函数的单调性,所以需要再求一次导数,设()()h x f x '= ,再求()h x ',一般这时就可求得函数()h x '的零点,或是()h x '恒成立,这样就能知道函数()h x 的单调性,根据单调性求最值,从而判断()y f x =的单调性,求得最值. 2021年高考全景展示1. 【2021高考山东理数】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( )(A )sin y x = (B )ln y x =(C )e x y = (D )3y x = 【答案】A【解析】试题分析:由函数的图象在两点处的切线互相垂直可知,存在两点处的切线斜率的积,即导函数值的乘积为负一.当sin y x =时,cos y x '=,有cos0cos 1π⋅=-,所以在函数sin y x =图象存在两点0,x x π==使条件成立,故A 正确;函数3ln ,,x y x y e y x ===的导数值均非负,不符合题意,故选A. 考点:1.导数的计算;2.导数的几何意义.【名师点睛】本题主要考查导数的计算、导数的几何意义及两直线的位置关系,本题给出常见的三角函数、指数函数、对数函数、幂函数,突出了高考命题注重基础的原则.解答本题,关键在于将直线的位置关系与直线的斜率、切点处的导数值相联系,使问题加以转化,利用特殊化思想解题,降低难度.本题能较好的考查考生分析问题解决问题的能力、基本计算能力及转化与化归思想的应用等.2. 【2021年高考四川理数】设直线l 1,l 2分别是函数f (x )= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△P AB 的面积的取值范围是( )(A )(0,1) (B )(0,2) (C )(0,+∞) (D )(1,+∞)【答案】A【解析】试题分析:设()()111222,ln ,,ln P x x P x x -(不妨设121,01x x ><<),则由导数的几何意义易得切线12,l l 的斜率分别为121211,.k k x x ==-由已知得12122111,1,.k k x x x x =-∴=∴=∴切线1l 的方程分别为()1111ln y x x x x -=-,切线2l 的方程为()2221ln y x x x x +=--,即1111ln y x x x x ⎛⎫-=-- ⎪⎝⎭.分别令0x =得()()110,1ln ,0,1ln .A x B x -++又1l 与2l 的交点为2111221121,ln 11x x P x x x ⎛⎫-+ ⎪++⎝⎭,11x >,21122112111211PAB A B P x x S y y x x x ∆+∴=-⋅=<=++,01PAB S ∆∴<<.故选A .考点:1.导数的几何意义;2.两直线垂直关系;3.直线方程的应用;4.三角形面积取值范围.【名师点睛】本题首先考查导数的几何意义,其次考查最值问题,解题时可设出切点坐标,利用切线垂直求出这两点的关系,同时得出切线方程,从而得点,A B 坐标,由两直线相交得出P 点坐标,从而求得面积,题中把面积用1x 表示后,可得它的取值范围.解决本题可以是根据题意按部就班一步一步解得结论.这也是我们解决问题的一种基本方法,朴实而基础,简单而实用.3.【2021高考新课标3理数】已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x = 在点(1,3)-处的切线方程是_______________.【答案】21y x =--考点:1、函数的奇偶性与解析式;2、导数的几何意义.【知识拓展】本题题型可归纳为“已知当0x >时,函数()y f x =,则当0x <时,求函数的解析式”.有如下结论:若函数()f x 为偶函数,则当0x <时,函数的解析式为()y f x =-;若()f x 为奇函数,则函数的解析式为()y f x =--.4.【2021年高考北京理数】设函数()a x f x xe bx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(1)4y e x =-+,(1)求a ,b 的值;(2)求()f x 的单调区间.【答案】(Ⅰ)2a =,b e =;(2))(x f 的单调递增区间为(,)-∞+∞.【解析】试题分析:(1)根据题意求出()f x ',根据(2)22f e =+,(2)1f e '=-,求a ,b 的值;(2)由题意知判断)(x f ',即判断11)(-+-=x e x x g 的单调性,知()0g x >,即()0f x '>,由此求得()f x 的单调区间.所以,当)1,(-∞∈x 时,0)(<'x g ,)(x g 在区间)1,(-∞上单调递减;当),1(+∞∈x 时,0)(>'x g ,)(x g 在区间),1(+∞上单调递增.故1)1(=g 是)(x g 在区间),(+∞-∞上的最小值,从而),(,0)(+∞-∞∈>x x g .综上可知,0)(>'x f ,),(+∞-∞∈x ,故)(x f 的单调递增区间为),(+∞-∞.考点:导数的应用.【名师点睛】用导数判断函数的单调性时,首先应确定函数的定义域,然后在函数的定义域内,通过讨论导数的符号,来判断函数的单调区间.在对函数划分单调区间时,除了必须确定使导数等于0的点外,还要注意定义区间内的间断点.。
北京高考核心荟萃--导数--教师版
![北京高考核心荟萃--导数--教师版](https://img.taocdn.com/s3/m/a1ebdc08814d2b160b4e767f5acfa1c7ab00824a.png)
北京高考核心荟萃--导数2.已知函数()(1)ln ()af x a x a x=--∈R . (Ⅰ) 若1,a =-求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ) 曲线()y f x =在直线2y x =-的上方,求实数a 的取值范围. 解:(I )1a =-时,2112()2ln ,'()f x x f x x x x=-+=+. '(1)3,(1)1,f f ==-所以曲线()y f x =在点(1,(1))f 处的切线方程为13(1),y x +=-即340x y --=.(II )只需求满足0,x ∀>(1)ln 2aa x x x-->-恒成立的实数a 的取值范围. 设()(1)ln 2,ag x a x x x=--+-其中0x >. 2222(1)(1)(1)()'()1.a a x a x a x x a g x x x x x----+-=--+== ①若0,a ≤'()0,()g x g x >在(0,)+∞上单调递增. 因为(1)10,g a =-<所以0a ≤不满足条件. ②若0,a >令'()0,.g x x a ==当(0,)x a ∈时,'()0,()g x g x <在(0,)+∞上单调递减, 当(,)x a ∈+∞时,'()0,()g x g x >在(0,)+∞上单调递增, 所以min ()()1(1)ln 2(1)(1ln ).g x g a a a a a a ==--+-=-- 令min ()(1)(1ln )0g x a a =-->,解得1 e.a << 综上,实数a 的取值范围为(1,e).4.已知函数()2ln ln f x x x a =--,0a >.(Ⅰ)求曲线()y f x =在(1,(1))f 处切线的斜率; (Ⅱ)求函数()f x 的极大值;(Ⅲ)设2()=e x g x a x -,当(1,e)a ∈时,求函数()g x 的零点个数,并说明理由. 解:(Ⅰ)()f x 定义域为(0,)+∞ 2()xf x x-'=,(1)1f '=, 所以曲线()y f x =在()1,(1)f 处切线的斜率为1. (Ⅱ)()2ln ln f x x x a =--,则2()xf x x-'=. 令()0f x '=得2x =.当02x <<时,()0f x '>,()f x 单调递增;当2x >时,()0f x '<,()f x 单调递减.所以函数()f x 的极大值为(2)f =24lne a . (Ⅲ)()e 2(1e)x g x a x a '=-<<,当(],0x ∈-∞时,()0g x '>,所以函数()g x 在(],0x ∈-∞时单调递增. 而(0)0g a =>,(1)10eag -=-<. 所以方程()0g x =在()1,0x ∈-时有且只有一个根,即方程()0g x =在(],0x ∈-∞时有且只有一个根. 当0x >时,讨论函数()g x 的零点个数即讨论方程2e x a x =根的个数,即研究 方程ln 2ln a x x += (1e >0)a x <<,的根的个数,即研究函数()f x =2ln ln x x a --(1e >0)a x <<,的零点个数. 当1e a <<时,22e e a >,2244(2)lnln 0e e f a =<<,则函数()f x 在(0,)+∞上无零点. 综上,当(1,e)a ∈时,函数()g x 有且仅有一个零点.5.已知函数()sin cos f x x x x =+.(I )当(0)x π∈,时,求函数()f x 的单调区间;(Ⅱ)设函数2()2g x x ax =-+若对任意1[,]x ππ∈-,存在2 [0,1]x ∈,使得()()1212f x g x π成立,求实数a 的取值范围. 解:(Ⅰ)因为()sin cos f x x x x =+, 所以()sin cos sin cos f x x x x x x x '=+-=.当x (0,∈π)时,()f x '与()f x 的变化情况如表所示:所以当x (0,∈π)时,函数()f x 的单调递增区间为(0,)2,函数()f x 的单调递减区间为()2π,π.(Ⅱ)当[,]x ∈-ππ时,()()f x f x -=,所以函数()f x 为偶函数. 所以当[,]x ∈-ππ时,函数()f x 的单调递增区间为()2π-π,-,(0,)2π,函数()f x 的单调递减区间为(,0)2π-,()2π,π,所以函数()f x 的最大值为()()222f f πππ-==.设1()()2h x f x =π,则当[,]x ∈-ππ时,max 11()224h x π=⋅=π. 对任意1[,]x ∈-ππ,存在2[0,1]x ∈,使得12()()h x g x ≤成立, 等价于max max ()()h x g x ≤.(1) 当0a ≤时,函数()g x 在区间[0,1]上的最大值为(0)0g =,不合题意. (2) 当01a <<时,函数()g x 在区间[0,1]上的最大值为2()g a a =, 则214a ≥,解得12a ≥或12a ≤-,所以112a <≤.(3) 当1a ≥时,函数()g x 在区间[0,1]上的最大值为(1)21g a =-, 则1214a -≥,解得58a ≥,所以1a ≥.综上所述,a 的取值范围是1[,)2+∞.6.已知()e xf x x a =-,a ∈R .(Ⅰ)若曲线()y f x =在点()()1,1f 处的切线与x 轴重合,求a 的值; (Ⅱ)若函数()f x 在区间()1,+∞上存在极值,求a 的取值范围; (Ⅲ)设()()2g x fx =-,在(Ⅱ)的条件下,试判断函数()g x 在区间()1,+∞上的单调性,并说明理由.解:(Ⅰ)()1e x f x a '=-,因为曲线()y f x =在点(1,(1))f 处的切线与x 轴重合, 所以(1)1e =0f a '=-. 所以1=ea , 经检验符合题意. (Ⅱ)①当0a 时,()e 10x f x a '=-+>,函数()f x 在区间(,)-∞+∞上单调递增,所以()f x 在区间(1,)+∞上无极值. 所以0a 不合题意.②当0a >时,令()e 10x f x a '=-+=,解得1=ln x a. 当1<ln x a 时,()0f x '>,函数()f x 在区间1(,ln )a -∞上单调递增; 当1>lnx a 时,()0f x '<,函数()f x 在区间1(ln ,)a+∞上单调递减. 所以当1=ln x a时,函数()f x 取得极大值. 令1ln1a>,解得10<e a <.所以a 的取值范围是1(0,)e.(Ⅲ)由题可知,2()(2)2e x g x f x x a -=-=--,10<ea <. 则2()e 1x g x a -'=-.令()0g x '=,即2e 10x a --=,解得=2+ln x a . 因为10<ea <,则ln 1a <-,所以2+ln 1a <. 当(1,)x ∈+∞,()0g x '<,所以函数()g x 在区间(1,)+∞上单调递减.7.已知22()ln ()a f x x a x a x=++∈R . (I )当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(Ⅱ)当[,)x e ∈+∞时,曲线()y f x =在x 轴的上方,求实数a 的取值范围.解:函数()f x 的定义域为(0)+∞,. (Ⅰ)当1a =时,2()+ln f x x x x =+,221()1f x x x'=-+. 所以(1)3f =,(1)0f '=.所以曲线()y f x =在点(1,(1))f 处的切线方程为3y =.(Ⅱ)当0a ≥时,由[)e,x ∈+∞有()0f x >,故曲线()y f x =在x 轴的上方.当0a <时,2222()(2)()1a a x a x a f x x x x -+'=-+=.令()0f x '=得2=-x a 或=x a (舍去). 当x 变化时,()f x ',()f x 变化情况如下:当2e a -≤,即e02a -<≤时, ()f x 在区间[)e,+∞上单调递增,则2222e 7()(e)e ()e 0e e 48f x f a a a ≥=++=++>,即曲线()y f x =在x 轴的上方.当2e a ->,即e2a <-时,()f x 在区间[)e,2a -上单调递减,在区间(2,)a -+∞上单调递增,则()(2)3ln(2)f x f a a a a ≥-=-+-.由[)e,x ∈+∞时,曲线()y f x =在x 轴的上方,有3ln(2)0a a a -+->,解得 3e 2a >-.所以 3e e22a -<<-.综上,实数a 的取值范围为3e (,)2-+∞.解:(Ⅰ)函数()f x 的定义域为()(),11,1(1,)-∞--+∞.由2()1-=-x a f x x 得22221()(1)x ax f x x -+-'=-. 则45(2)19a f -'==-,解得1a =-. (Ⅱ)22221()(1)x ax f x x -+-'=-.令2()21g x x ax =-+-(1)x >,① 当0a ≤时,20ax ≤,因此2()210g x x ax =-+-<恒成立, 所以22221()0(1)x ax f x x -+-'=<-.所以()f x 在(1,)+∞上单调递减,没有最大值.② 当01a <≤时,2()21(1)0g x x ax g =-+-<≤恒成立, 所以22221()0(1)x ax f x x -+-'=<-.所以()f x 在(1,)+∞上单调递减,没有最大值. ③ 当1a >时,方程2210x ax -+-=的两个根为1x a =2x a =由1a >得101x <<,且21a x <<. 当(1,)x ∈+∞时有函数()f x在=x a 综上,a 的取值范围为(1)+∞,.9.已知函数2()1f x x =-,函数x a x g ln )(=,其中2a ≤.(Ⅰ)如果曲线()y f x =与()y g x =在1x =处具有公共的切线,求a 的值及切线方程; (Ⅱ)如果曲线()y f x =与()y g x =有且仅有一个公共点,求a 的取值范围. (Ⅰ)()2,()(0)a f x x g'x x x'==>由题意,公共切线的斜率(1)(1)k f g ''==,即2a = 又因为(1)0f =,所以切线方程为220x y --=.(Ⅱ)设函数2()()()1ln (0)h x f x g x x a x x =-=-->.“曲线()y f x =与()y g x =有且仅有一个公共点”等价于“函数()h x 有且仅有一个零点”.22'()2a x a h x x x x -=-=① 当0a ≤时,当(0,)x ∈+∞时,()0h x '>,所以()h x 在(0,)+∞单调递增. 又因为(1)0h =,所以()y h x =有且仅有一个零点1,符合题意.② 当2a =时,令 , 解得1x = ()h x '与()h x 的变化情况如下:所以()h x 在(0,1)上单调递减,在(1,)+∞上单调递增, 所以当1x =时,min()(1)0h x h ==,故()y h x =有且仅有一个零点1,符合题意. ③ 当02a <<时, 令()0h x '=,解得x =()h x '与()h x 的变化情况如下:()0h x '=所以()h x 在上单调递减,在∞)上单调递增,所以当x =min ()h x h =因为(1)0h =1<,且()h x 在∞)上单调递增,所以(1)0h h <= 又因为存在1e (0,1)a-∈ ,使得1212(e)e1ln(e)e0a aa ah a ----=--=>所以存在0(0,1)x ∈使得0()0h x =, 所以函数()y h x =存在两个零点0,1x ,与题意不符综上,曲线()y f x =与()y g x =有且仅有一个公共点时,a 的范围是{|0a a ≤或2}a =.10.已知函数()(ln )x f x x a e =-.(Ⅰ)当0a =时,求曲线()y f x =在1x =处的切线方程; (Ⅱ)若()f x 在区间(]0,e 存在极小值,求a 的取值范围. (Ⅰ)当a =0 时,()ln (0)xf x x e x =⋅> 则1()(ln )x f x x e x'=+. 所以(1)f e '=,(1)0f =所以曲线()y f x =在x =1处的切线方程为(1)y e x =- (Ⅱ)11()(ln )(ln )()(ln )(ln )x x x x x f x x a e x a e e x a e x a e x x'''=-+-=+-=+- 令(]1()ln ,0,g x x a x e x=+-∈. 则22111()x g x x x x-'=-=.解()0g x '=,得1x =. g '(x )与g (x )的变化情况如下:所以函数g (x )在区间(0, e ]上的最小值为g (1)=1-a方法 1:①当a ≤1时,g (1) =1-a ≥0,所以g (x ) ≥0恒成立,即f'(x )≥0恒成立, 所以函数f (x )在区间 (0, e ]上是增函数,无极值,不符合要求. ② 当1<a <1+1e 时,因为g (1)=1-a <0, g (e ) =1+1e-a >0, 所以存在0(1,)x e ∈,使得0()0g x =.所以函数f (x )在区间(1, e )上存在极小值f (x 0),符合要求 ③当11a e ≥+时,因为1(1)10,()10g a g e a e=-<=+-< 所以函数f (x )在区间(1, e )上无极值. 取1(0,1)x ae =∈,则1()ln 1(1)1(2)0g ae a a ae a a a e ae=---≥----=->. 所以存在0(0,1)x ∈,使得0()0g x =.易知,x 0为函数f (x )在区间(0,1)上的极大值点.所以函数f (x )在区间(0, e )上有极大值,无极小值,不符合要求 综上,实数 a 的取值范围是(11,1e+). 方法 2:“ f (x )在区间(0, e ]上存在极小值”当且仅当“(1)0()0g g e <⎧⎨>⎩”,解得111a e <<+.证明如下: 当111a e<<+时, 因为(1)0()0g g e <⎧⎨>⎩,所以存在x 0,使得g (x 0) =0.所以函数f (x )在区间(1, e )上存在极小值. 所以实数a 的取值范围是(11,1e+).11.已知函数2()ln (f x x a x a =-∈R 且0)a ≠.(Ⅰ) 当1a =时,求曲线()y f x =在点(1(1))f ,处的切线方程; (Ⅱ)若()0f x ≥恒成立,求的取值范围. 解:(Ⅰ)当1a =时,因为2()ln f x x x =-, 所以1()2f x x x'=-,(1)1f '=. 又因为(1)1f =,所以曲线()y f x =在点(1(1))f ,处的切线方程为11y x -=-.即0x y -=. (Ⅱ)因为2()ln (f x x a x a =-∈R 且0)a ≠,所以22()2(0).a x af x x x x x-'=-=∈+∞,,当0a <时,()0f x '>,所以()f x 在(0)+∞,上单调递增. 取1e ax =,则112(e )(e )10aa f =-<,不符合题意. 当0a >时,令()=0f x ',解得x =x =(舍).当(0x ∈时,()0f x '<,所以()f x在区间(0上单调递减.当)x ∈+∞时,()0f x '>,所以()f x在区间)+∞上单调递增. 所以()f x 在(0)+∞,上的最小值为(1ln )222a a af a =-=-. 若()0f x ≥恒成立,只需0f ≥,解得02e a <≤. 综上可知,a 的取值范围是(02e],.a12.已知函数221()(2)ln 22f x x ax x x ax =--+()a ∈R . (Ⅰ)若0a =,求()f x 的最小值; (Ⅱ)求函数()f x 的单调区间.解:(Ⅰ)函数()f x 的定义域为(0,)+∞. 若0a =,则221()ln 2f x x x x =-,()2ln f 'x x x =, 令()0f 'x =,得1x =,随x 的变化,()f 'x ,()f x 的变化情况如下表所示所以0a =时,()f x 的最小值为(1)2f =-. (Ⅱ)因为()2()ln (0)f 'x x a x x =->, 当0a ≤时,0x a ->,令()0f 'x >,得ln 0x >,所以1x >,()f x 在区间(1,)+∞上单调递增, 令()0f 'x <,得ln 0x >,所以01x <<,()f x 在区间(0,1)上单调递减. 当01a <<时,令()0f 'x =,得1x =或x a =, 随x 的变化,()f 'x ,()f x 的变化情况如下表所示所以()f x 在区间(0,)a 上单调递增,在区间(,1)a 上单调递减,在区间 (1,)+∞上单调递增. 当1a =时,因为()2(1)ln 0f 'x x x =-≥,当且仅当1x =时,()0f 'x =, 所以()f x 在区间(0,)+∞上单调递增. 当1a >时,令()0f 'x =,得1x =或x a =, 随x 的变化,()f 'x ,()f x 的变化情况如下表所示所以()f x 在区间(0,1)上单调递增,在区间(1,)a 上单调递减,在区间 (,)a +∞上单调递增. 综上所述,当0a ≤时,()f x 的单调递增区间为(1,)+∞,单调递减区间为(0,1);当01a <<时,()f x 的单调递增区间为(0,)a ,(1,)+∞,单调递减区间为(,1)a ; 当1a =时,()f x 的单调递增区间为(0,)+∞,无单调递减区间;当1a >时,()f x 的单调递增区间为(0,1),(,)a +∞,单调递减区间为(1,)a . 13.已知函数()f x =(Ⅰ)当1a =时,求曲线()y f x =的斜率为1的切线方程; (Ⅱ)若函数2()()3ag x f x =-恰有两个不同的零点,求a 的取值范围. 解:(Ⅰ)当1a =时,()1)f x x =≤,所以()f x '=令()1f x '=,解得0x =.因为(0)0f =,所以切点坐标为(00),. 故切线方程为y x =.(Ⅱ)因为2()3ag x =()x a ≤,所以()g x '=令()0g x '=,解得23a x =. 当0a ≤时,由x a ≤,得230a x a --≥≥, 所以()0g x '≥,则在定义域(]a -∞,上是增函数. 故()g x 至多有一个零点,不合题意,舍去.当0a >时,随x 变化()g x '和()g x 的变化情况如下表:故()g x 在区间2()3a -∞,上单调递增,在区间2()3aa ,上单调递减, 当23a x =时,()g x 取得最大值2()3a g=.若03a <≤时,2()03a g ,此时()g x 至多有一个零点;()gx若3a >时,2()03a g >,又2(0)()03ag g a ==-<, 由零点存在性定理可得()g x 在区间2(0)3a ,和区间2()3aa ,上各有一个零点,所以函数()g x 恰有两个不同的零点,符合题意. 综上所述,a 的取值范围是(3)+∞,. 14.函数()e sin 2x f x a x x =-+.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0a ≥时,求函数()f x 在[0,1]上的最小值; (Ⅲ)直接写出a 的一个值,使()f x a ≤恒成立,并证明. 解:(Ⅰ)因为()e sin 2x f x a x x =-+, 所以(0)f a =且'()e cos 2x f x a x =-+, 所以'(0)121f a a =-+=+,所以曲线()y f x =在点(0,(0))f 处的切线方程为(1)(0)y a a x -=+-, 即(1)y a x a =++. (Ⅱ)当0a ≥,[0,1]x ∈时,因为'()e cos 202cos 0x f x a x x =-++->≥, 所以()f x 在[0,1]上单调递增,所以()f x 在[0,1]上的最小值为(0)f a =.(Ⅲ)取1a =-,以下证明()e sin 21x f x x x =--+-≤恒成立. 令()e sin 21x g x x x =+--,即证()0g x ≥恒成立. (1)当(,0]x ∈-∞时,有e 1x ≤, cos [1,1]x ∈-, 所以'()e cos 20x g x x =+-≤, 所以()g x 在(,0]-∞上单调递减, 所以()(0)0g x g =≥在(,0]-∞上恒成立.(2)当(0,)x ∈+∞时,令()'()e cos 2x G x g x x ==+-. 因为e 1x >, sin (0,1]x ∈,所以'()e sin 0x G x x =->, 所以()'()e cos 2x G x g x x ==+-在(0,)+∞上单调递增, 所以'()'(0)0g x g >=在(0,)+∞上恒成立.所以()g x 在(0,)+∞上单调递增, 所以()(0)0g x g =≥在(0,)+∞上恒成立. 综上,()0g x ≥恒成立,所以()f x a ≤恒成立.15.已知函数1()ln2x af x x-=+. (Ⅰ)当0a =时,求曲线()y f x =在(1,(1))f --处的切线方程;(Ⅱ)当12a =-时,求函数()f x 的单调区间;(Ⅲ)当0x <时,1()2f x ≥恒成立,求a 的取值范围.解:(Ⅰ)当0a =时,()1ln 2xf x -=,()11f x x '=-.所以()10f -=,()112f '-=-.所以曲线()y f x =在点(1,(1))f --处的切线方程为:()1012y x -=-+, 即1122y x =--.(Ⅱ)()y f x =的定义域为()(),00,1-∞, 当12a =-时,()()()()22211111221x x f x x x x x --+-'=+=--, 令()0f x '=,得1x =-或12x =. '()f x 与()f x 的情况如下:所以()y f x =的单调增区间为()1,0-,10,2⎛⎫ ⎪⎝⎭,单调减区间为(),1-∞-,1,12⎛⎫ ⎪⎝⎭.(Ⅲ)法1:“()112f a -=-≥”是“0x <时,1()2f x ≥恒成立”的必要条件.当12a -≤,0x <时,()111ln ln 222x a x f x x x--=+-≥. 设()11ln22x g x x-=-, 由(Ⅱ)知,()y g x =在(),0-∞上满足1()(1)2g x g -=≥,所以,当12a -≤,0x <时,()11ln ()22x a f x g x x -=+≥≥, 所以a 的取值范围是1(,]2-∞-.法2:因为0x <时,()12f x ≥恒成立,所以1ln 22x xa x --≤. 令()()1ln ,022x xg x x x -=-<. 所以()11111lnln 221212x x x g x x x --'=--=-----, 分析解析式发现()10g '-=. 令()()111ln 212x h x g x x -'==----, 所以()()()221120111x h x x x x -'=-+=>---. 所以()()h x g x '=单调递增. '()g x 与()g x 的情况如下:所以()()min 112g x g =-=-,所以a 的取值范围是1(,]2-∞-. 法3:()21'1a f x x x=--, ①当0a ≥时,因为0x <,所以()11ln ln 22x a xf x x --=+≤ 取1x =-,得1(1)(1)ln02f ---=≤,不合题意; ②当0a <时,()2221(1)'1(1)a x a x f x x x x x --=-=--, 显然20x ax a -+=存在唯一负实数根0x ,且在0(,)x -∞上'()0f x <,在0(,0)x 上'()0f x >, 所以()f x 在0(,)x -∞上递减,在0(,0)x 上递增,所以0()()f x f x ≥, 由()02001'01a f x x x =-=-得2001x a x =-,所以00001()ln 21x x f x x -=+-, 满足000011()ln212x x f x x -=+-≥成立即可满足题意,设1()ln21x xg x x -=+-,则22112'()01(1)(1)x g x x x x --=+=<---,0x < 所以()g x 在0x <时单调递减,又1(1)2g -=,所以01x -≤, 设2()1x h x x =-,则2(2)'()0(1)x x h x x -=>-在0x >时成立,所以()h x 在(,0)-∞单调递增, 所以2001(1)12x a h x =-=--≤时1()2f x ≥恒成立.16.已知函数2()e 1)(x f x ax x =-+.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线的方程; (Ⅱ)若函数()f x 在0x =处取得极大值,求a 的取值范围; (Ⅲ)若函数()f x 存在最小值,直接写出a 的取值范围.16.已知()sin 2f x k x x =+.(Ⅰ)当2k =时,判断函数()f x 零点的个数; (Ⅱ)求证: πsin 2ln(1)((0,))2x x x x -+>+∈;(Ⅲ)若()ln(1)f x x >+在π(0,)2x ∈恒成立,求k 的最小值.解:(Ⅰ)当2k =时,()2cos 20f x x '=+≥,()2sin 2f x x x =+单调递增,(0)0f =,()f x 只有一个零点0x =; (Ⅱ)设1()2sin ln(1)()2cos 0()1g x x x x g x x g x x '=--+⇒=-->⇒+增,()(0)0g x g >=. (Ⅲ)解法一:当1≥k -时,由(Ⅱ)得()sin 2ln(1)f x x x x ≥-+>+,恒成立. 当1k <-时,设211()()ln(1)()2cos ()sin 01(1)h x f x x h x k x h x k x x x '''=-+⇒=+-⇒=-+>++. ()h x '增,(0)10h k '=+<,π1()20π212h '=->+由零点定理,0()0h x '=,所以()h x 在0(0,)x 上减,0()(0)0h x h <=不恒成立,所以k 的最小值为1-.解法二:设1()()ln(1)()2cos 1h x f x x h x k x x '=-+⇒=+-+. ①当1≥k -时,1()cos 201h x k x x '=+->+,()h x 在π(0,)2增,()(0)0h x h >=,()ln(1)f x x >+在π(0,)2x ∈恒成立.②当1k <-时,设211()()ln(1)()2cos ()sin 01(1)h x f x x h x k x h x k x x x '''=-+⇒=+-⇒=-+>++.()h x '增,(0)10h k '=+<,π1()20π212h '=->+由零点定理,0()0h x '=,所以()h x 在0(0,)x 上减,0()(0)0h x h <=不恒成立,所以k 的最小值为1-.17.设函数()()()R a x x ln a x f ∈++=21 (Ⅰ)当4-=a 时,① 求曲线在点()()00f ,处的切线方程; ② 求函数()f x 的最小值.(Ⅱ)设函数()1-=ax x g ,证明:当2≤a 时,函数()()()x g x f x H -=至多有一个零点.解:(Ⅰ)函数()f x 定义域为()+∞-,1,()1222+++=x ax x x f '当4-=a 时()()()112214222+-+=+-+=x x x x x x x f '①()()4000-=='f ,f所以曲线在点()()00f ,处的切线方程是x y 4-=.②令()10==x x f',,且(),x f ,x '011<<<-即函数()f x 递减区间()11,-;(),x f ,x '01>>即函数()f x 递增区间()+∞,1 ,所以函数()f x 的最小值()2411ln f -=.(Ⅱ)因为()()122+-+=x a x x x H '()1->x,令()0=x H ',12021-==a x ,x①2=a 时,()0≥x H ',函数()x H 在定义域()+∞-,1上单调递增,至多有一个零点; ②0≤a 时,112-≤-a,令()0>x H ',得0>x ,令()0<x H ',得01<<-x 所以函数()x H 在区间()01,-单调递减,在区间()+∞,0单调递增 则函数()x H 在0=x 时有最小值()010>=H ,此时函数()x H 无零点.③20<<a 时,0121<-<-a ,令()0>x H ',得,x a x 0121>-<<-或令()0<x H ',得012<<-x a所以函数()x H 在区间()+∞⎪⎭⎫ ⎝⎛--,,a ,0121单调递增,在区间⎪⎭⎫ ⎝⎛-012,a 单调递减 因为函数()010>=H ,所以012>⎪⎭⎫⎝⎛-a H ,且()0>x H 在区间⎪⎭⎫⎝⎛∞+-,12a 上恒成立. 所以函数()x H 在区间⎪⎭⎫⎝⎛--121a ,上至多有一个零点. 综上,当2≤a 时,函数()()()x g x f x H -=至多有一个零点.()y f x =()y f x =18.已知函数21()e xax x f x -+-=.(Ⅰ)求曲线()y f x =在点(01)-,处的切线方程; (Ⅱ)当0a >时,求()f x 的单调区间;(Ⅲ)求证:当a ≤1-时,()f x ≥e -. 解:(Ⅰ)2222(1)e (1)(e )(21)2()e )e x x x x ax x ax x ax a x f x ''-+-⋅--+-⋅-++'==((1)(2)e xax x --=因为(0)2f '=,(0)1f =-,所以曲线()y f x =在点01-(,)处的切线方程为21y x =-. (Ⅱ)由(Ⅰ)知:(1)(2)()xax x f x e --'=,(x ∈R )因为0a >,令()0f x '=,所以1x a=或2x =, 当102a <<时,12a>,则()()x f x f x ',,的变化情况如下表:当12a =时,12a =,则 ()0f x '≥恒成立,()f x 在R 内恒增; 当12a >时,102a<<,则 ()()x f x f x ',,的变化情况如下表:综上,当102a <<时,单调递增区间是(2)-∞,和1()a +∞,,单调递减区间是1(2)a,; 当12a =时,单调递增区间是∞∞(-,+),无单调递减区间; 当12a >时,单调递增区间是1()a -∞,和 (2)+∞,,单调递减是1(2)a,. (Ⅲ)当1a -≤时,令()0f x '=,得1x a =或2x =,易知1[10)a∈-, 则()()x f x f x ',,的变化情况如下表:所以当1x a =时,()f x 取得极小值1()f a111e e a a-=-=-由于1a -≤,则1[10)a ∈-,,1(01]a-∈,,1e (1e]a -∈,,1e [e 1)a --∈-, 所以由极小值定义及()f x 的单调性可知:当2x <时,()e f x -≥. 接下来,研究()f x 在2x ≥的变化情况.因为e 0x >恒成立,设2()1(21)g x ax x x a =-+--,≥,≤ 对称轴102x a=<,140a ∆=->,(2)140g a =-> 所以由二次函数的性质可知:当2x ≥时,()(2)0g x g >>恒成立 所以()0f x >在2x ≥时恒成立. 综上所述:当1a -≤时,()e f x -≥.19.设函数2()ln(1)()f x x m x m =++∈R .(Ⅰ)若1=-m ,(ⅰ)求曲线()f x 在点(0(0))f ,处的切线方程; (ⅱ)当(1)x ∈+∞,时,求证:3()<f x x .(Ⅱ)若函数()f x 在区间(01),上存在唯一零点,求实数m 的取值范围. 解:(Ⅰ)1=-m ,所以2()ln(1)=-+f x x x . (ⅰ)1()21'=-+f x x x ,(0)1'==-k f . 又(0)0=f ,所以()f x 在(0(0))f ,点处的切线方程为=-y x . (ⅱ)令323()()ln(1)=-=-+-F x f x x x x x ,3232213213(1)()23111--+----'=--==+++x x x x x F x x x x x x ,(1)x ∈+∞,时,()0'<F x ,()F x 在(1)+∞,上单调递减,所以()(1)ln 20<=-<F x F , 所以当(1)x ∈+∞,时,3()<f x x .(Ⅱ)2()ln(1)=++f x x m x ,()f x 的定义域为(1)-+∞,,222()2011++'=+==++m x x mf x x x x ,即2220++=x x m .当48-m ≤0即m ≥12时,()'f x ≥0,()f x 在(1,)-+∞上单调递增,又(0)0=f ,所以在(01),上无零点,不合题意; 当480->m 即12<m 时2220++=x x m 有两根1212()x x x x <,; 当22(1)2(1)0⨯-+⨯-+>m 即102<<m 时,11(1)2x ∈--,,21(0)2x ∈-,,此时()f x 在2()x +∞,上单调递增,又(0)0=f ,所以在(01),上无零点,不合题意; 当0=m 时2()=f x x ,此时()f x 在(01),上无零点,不合题意; 当0<m 时1(1)x ∈-∞-,,2(0)x ∈+∞,,此时()f x 在2(0)x ,上单调递减,在2()x +∞,上单调递增,(0)0=f ,所以2()0<f x ,()f x 在区间(01),上存在唯一零点,即(1)0>f 即可.解得1ln 2>-m . 综上,若()f x 在区间(01),上存在唯一零点,则1(0)ln 2m ∈-,.解:()I 当1a =时,11()22f x x x=-, 求导可得,211()22f x x'=+, f '(1)11122=+=,f (1)0=, 所以曲线()y f x =在点(1,f (1))处的切线方程为01y x -=-, 即10x y --=()II 若()f x lnx 在[1,)+∞ 上恒成立, 即12022a ax lnx x -+- 在[1,)+∞ 上恒成立, 可设12(),[1,)22a g x ax lnx x x-=+-∈+∞,则222(2)()2ax x a g x x ---'=2(1)[(2)],0,[1,)2x ax a a x x ---=>∈+∞令()0g x '> 可解得2ax a-> 讨论:(1)当21aa-时,即1a 时,()0g x '>在[1x ∈,)+∞上恒成立 所以()g x 在[1x ∈,)+∞上单调递增,()min g x g =(1)1a =-, 又1a所以g (1)0 恒成立,即1a 时满足, (2)当21aa->,即01a <<时, ()g x 在2[1,)a x a -∈上单调递减,在2(,)aa-+∞上单调递增, 此时,()min g x g <(1),又01a <<时,g (1)10a =-<,即()0min g x <, 不满足()0g x 恒成立,故舍去,综上可知:实数a 的取值范围是[1,)+∞.21.已知函数2()e (1)x f x x ax =++.(Ⅰ)若0a =,求()f x 在点(0,(0))f 处的切线方程;(Ⅱ)若()f x 在(1,1)-上恰有一个极小值点,求实数a 的取值范围;(Ⅲ)若对于任意(0]2x π∈,,2()e (cos 1)x f x x x >+恒成立,求实数a 的取值范围.解:(Ⅰ)当0a =时,2()e (1)x f x x =+,2()e (21)x f x x x '=++, 所以(0)1f '=,(0)1f =, 所以切线方程为1y x =+.(Ⅱ)由2()e (1)x f x x ax =++,得2()e [(2)1]x f x x a x a '=++++. 令()0f x '=,得11x a =--,21x =-.①若12x x ≤,则0a ≥,()0f x '≥在(1,1)-上恒成立, 因此,()f x 在(1,1)-上单调递增,无极值,不符合题意. ②若12x x >,则0a <,()f x '与()f x 的情况如下:因此,()f x 在(若()f x 在(1,1)-上有且只有一个极小值点,则需111a -<--<, 所以20a -<<.综上,a 的取值范围是(2,0)-. (Ⅲ)因为e 0x >,所以22()e (1)e (cos 1)x x f x x ax x x =++>+,即22cos x ax x x +>. 又因为0x >,所以22cos x ax x x +>,即cos a x x x >-.令()cos g x x x x =-,所以()cos sin 1(cos 1)sin g x x x x x x x '=--=--.因为(0,]2x π∈, 所以cos 10x -<,又sin 0x x >, 所以()0g x '<,所以()g x 为(0,]2π上减函数, 所以()(0)0g x g <=,所以0a ≥综上,实数a 的取值范围为[0,)+∞.22.己知函数ln ()1x af x x +=+ (1)若1(1)4f '=,求a 的值; (Ⅱ)当2a >时, ①求证:()f x 有唯一的极值点1x ;②记()f x 的零点为0x ,是否存在a 使得立210e x x ?说明理由.解:(Ⅰ)若,则,. ①在处,,. 所以曲线在处的切线方程为. ②令()e 1e x x g x x =+-,,在区间(0,)+∞上,,则在区间(0,)+∞上是减函数. 又(1)10,g =>2(2)e 10,g =-+<,所以在(0,)+∞上有唯一零点. ()'f x 与()f x 的情况如下:所以在(0,)+∞上有唯一极大值点.(Ⅱ)e ()e x xax a f x a--=+,令,则. ①若,则,在上是增函数.因为,,所以恰有一个零点.令,得.代入,得,解得.所以当时,的唯一零点为0,此时无零点,符合题意. ②若,此时的定义域为.当时,,在区间(,ln )a -∞上是减函数; 当时,,在区间(ln ,+)a ∞上是增函数. 所以. 又,由题意,当,即时,无零点,符合题意. 综上,的取值范围是.1a =()1e 1x x f x =-+2e 1e ()(e 1)x xx x f x +-'=+0x =2111(0)(11)2f +'==+(0)1f =-()y f x =0x =112y x =-()e xg x x '=-()0g x '<()g x ()g x 0x ()f x 0()e x h x a ax =+-()e xh x a '=-0a <()0h x '>()h x R 11(e 1)0a h a a ⎛⎫=-+< ⎪⎝⎭(1)e 0h =>()h x 0x 0e 0xa +=0ln()x a =-0()0h x =ln()0a a a a -+--=1a =-1a =-()h x ()f x 0a >()f x R ln x a <()0h x '<()h x ln x a >()0h x '>()h x min ()(ln )2ln h x h a a a a ==-(0)10h a =+>2ln 0a a a ->20e a <<()f x a 2{1}(0,e )-。
完整版)导数的综合大题及其分类
![完整版)导数的综合大题及其分类](https://img.taocdn.com/s3/m/36154e79e418964bcf84b9d528ea81c759f52e7a.png)
完整版)导数的综合大题及其分类.导数在高考中是一个经常出现的热点,考题难度比较大,多数情况下作为压轴题出现。
命题的主要热点包括利用导数研究函数的单调性、极值、最值,不等式,方程的根以及恒成立问题等。
这些题目体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用。
题型一:利用导数研究函数的单调性、极值与最值这类题目的难点在于分类讨论,包括函数单调性和极值、最值综合问题。
1.单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,将函数定义域分段,在各段上讨论导数的符号。
如果不能确定导数等于零的点的相对位置,还需要对导数等于零的点的位置关系进行讨论。
2.极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点。
3.最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的。
在极值和区间端点函数值中最大的为最大值,最小的为最小值。
例题:已知函数f(x)=x-,g(x)=alnx(a∈R)。
x1.当a≥-2时,求F(x)=f(x)-g(x)的单调区间;2.设h(x)=f(x)+g(x),且h(x)有两个极值点为x1,x2,其中h(x1)=h(x2),求a的值。
审题程序]1.在定义域内,依据F′(x)=0的情况对F′(x)的符号进行讨论;2.整合讨论结果,确定单调区间;3.建立x1、x2及a间的关系及取值范围;4.通过代换转化为关于x1(或x2)的函数,求出最小值。
规范解答]1.由题意得F(x)=x-x/(x2-ax+1)-alnx,其定义域为(0,+∞)。
则F′(x)=(x2-ax+1)-x(2ax-2)/(x2-ax+1)2.令m(x)=x2-ax+1,则Δ=a2-4.①当-2≤a≤2时,Δ≤0,从而F′(x)≥0,所以F(x)的单调递增区间为(0,+∞);②当a>2时,Δ>0,设F′(x)=0的两根为x1=(a+√(a2-4))/2,x2=(a-√(a2-4))/2,求h(x1)-h(x2)的最小值。
北京高考模块复习—导数
![北京高考模块复习—导数](https://img.taocdn.com/s3/m/940397a2aef8941ea76e0565.png)
导数综合复习一、 高考要求二、 知识点梳理1.导数的有关概念(1)导数:如果当 0→∆x 时,xy∆∆有极限,就说函数)(x f y =在0x x =处可导,并把这个极限叫做)(x f在0x x =处的导数.记作)(0'x f ,即xx f x x f x yx f x x ∆-∆+=∆∆=→∆→∆)()(lim lim)(00000'.(2)导函数:如果函数)(x f 在开区间),(b a 内每一点都可导,其导数值在),(b a 内构成一个新的函数,叫做)(x f 在区间),(b a 内的导函数,记作)('x f 或'y . 2.导数的几何意义几何意义:函数 )(x f 在0x 处的导数值就是曲线)(x f y =在点))(,(00x f x 处的切线的斜率. 3.常见函数的导数1.0='C 2.1)(-='n n nx x3.x x cos )(sin =' 4.x x sin )(cos -='5.x x e e =')( 6.1(ln )x x'=7.a a a xx ln )(=' 8.ax e x x a a ln 1log 1)(log ==' 4.导数的四则运算(1)和差:()u v u v '''±=±(2)积:v u v u uv '+'=')((3)商: 2)(v v u v u v u '-'=')0(≠v 5.复合函数的导数运算法则:[])(x u f y =的导数为'''x u u y y ∙=. 6.利用导数的符号判断函数的单调性 (1)导数的单调性)(x f 在区间),(b a 内可导,若)('x f 在),(b a 的任意子区间内都不恒等于0,则 )(0)('x f x f ⇒≥在),(b a 上单调递增. )(0)('x f x f ⇒≤在),(b a 上单调递减.7.函数的极值(1)设函数)(x f 在点0x 附近有定义,如果对0x 附近的所有点都有)()(0x f x f <,则)(0x f 是函数)(x f 的一个极大值,记作)(f )(0x x f =极大值;如果对0x 附近的所有点都有)()(0x f x f >,则)(0x f 是函数)(x f 的一个极小值,记作)(f )(0x x f =极小值.(2)判断)(0x f 是极值的方法一般地,当函数)(x f 在0x x =处连续时,如果在0x 附近左侧0)('<x f ,右侧0)('>x f ,那么)(0x f 是极小值. 如果在0x 附近左侧0)('>x f ,右侧0)('<x f ,那么)(0x f 是极大值. 8.函数的最值(1) 在闭区间[]b a ,上的连续函数)(x f 在[]b a ,上必有最大值与最小值.(2)设函数)(x f 在区间[]b a ,上连续,在),(b a 内可导,先求)(x f 在),(b a 内的极值;再将各极值与)(a f ,)(b f 比较,其中最大的一个是最大值,最小的一个是最小值.9.定积分概念:如果函数)(x f 在区间[]b a ,上连续,用分点b x x x x x a n n =<<<<<=-1210 将区间[]b a ,等分成n 个小区间,在每个小区间[]i i x x ,1-上任取一点),3,2,1(n i i =ε作和式)()(11i ni ni i f nab x f εε∑∑==-=∆,当∞→n 时,上述和式无限接近某个常数,这个常数叫做函数)(x f 在区间[]b a ,上的定积分. 10.微积分基本定理:一般地,如果)(x f 在区间[]b a ,上连续,并且)()('x f x F =,那么⎰-=baa Fb F dx x f )()()(,这个结论叫做微积分基本定理,又叫牛顿-莱布尼茨公式. 11.常见求定积分公式:1. ⎰=ba b a C Cx Cdx 是常数)(| 2. )1|111-≠+=+⎰n x n dx x ba n ban ( 3. ⎰-=b ab a x xdx |cos sin 4. ⎰=baba x xdx |sin cos5. ⎰=baba x dx x|ln 1 6. ⎰=b a b a x x e dx e | 三、导数小题练习导数的概念及几何意义1. 设曲线)1ln(+-=x ax y 在点)0,0(处的切线方程为x y 2=,则=a _____.2. 曲线1-=x xe y 在)1,1(处的切线斜率等于_________.3. 设曲线ax y e =在点(01),处的切线与直线210x y ++=垂直,则a = .4. 经过原点O 作函数233)(x x x f +=的图像的切线,则切线方程为_____________________________.5. 如果函数()y f x =的图象如图,那么导函数()y f x '=的图象可能是( )D积分的运算1.定积分⎰=+1)2(x ex__________.2.直线xy4=与曲线3xy=在第一象限内围成的封闭图形的面积为_____________.3.若dxxS⎰=2121,dxxS⎰=2121,dxeS x⎰=213,则1S,2S,3S的大小关系是__________________.4.若函数)(),(xgxf满足⎰-=11)()(dxxgxf,则称)(x f与)(x g为区间[]1,1-上的一组正交函数.下列三组函数中在区间[]1,1-为正交函数的序号是_________________.①2sin)(xxf=,2cos)(xxg=②1)(+=xxf,1)(-=xxg③xxf=)(,2)(xxg=5.定积分由直线xyyxx sin2,32,0====与π所围成的图形的面积等于___________.函数的极值、最值1. 函数()f x的导函数图象如下图所示,则函数()f x在图示区间上()A.无极大值点,有四个极小值点 B.有三个极大值点,两个极小值点C.有两个极大值点,两个极小值点 D.有四个极大值点,无极小值点2.如果函数()y f x=的导函数的图象如下图所示,给出下列判断:①函数()y f x=在区间1(3,)2--内单调递增;②函数()y f x=在区间1(,3)2-内单调递减;③函数()y f x=在区间(4,5)内单调递增;④当2x=时,函数()y f x=有极小值;⑤ 当12x =-时,函数()y f x =有极大值.则上述判断中正确的是____________.3.函数()f x 的定义域为开区间()a b ,,导函数()f x '在()a b ,内的图象如图所示,则函数()f x 在开区间()a b ,内有极小值点( )A .1个B .2个C .3个D .4个4.函数1)6()(23++++=x a ax x x f 有极大值和极小值,则a 的取值范围是( ) A .21<<-a B .63<<-a C .3-<a 或6>a D .1-<a 或2>a5.下列四个函数,在0=x 处取得极值的函数是( )①3x y = ②12+=x y ③||x y = ④x y 2= A.①②B.②③C.③④D.①③6.函数y=2x 3-3x 2-12x+5在[0,3]上的最大值与最小值分别是( ) A.5 , -15 B.5 , 4 C.-4 , -15 D.5 , -16 7.函数)1()(2x x x f -=在[0,1]上的最大值为( )A. 932 B. 922 C. 923 D. 838.下列说法正确的是( )A.当)(0'x f =0时,则)(0x f 为)(x f 的极大值B.当)(0'x f =0时,则)(0x f 为)(x f 的极小值C.当)(0'x f =0时,则)(0x f 为)(x f 的极值D.当)(0x f 为函数)(x f 的极值且)(0'x f 存在时,则有)(0'x f =0 单调性1.设有时则当且上可导在函数,),()(],[)(),(b x a x g x f ,b a x g x f <<'>'( ))()()()(. )()()()(. )()(. )()(. b f x g b g x f D a f x g a g x f C x g x f B x g x f A +>++>+<> 2.知函数2()cos f x x x =-,对于ππ22⎡⎤-⎢⎥⎣⎦,上的任意12x x ,,有如下条件:①12x x >;②2212x x >; ③12x x >.其中能使12()()f x f x >恒成立的条件序号是 .3.若)(x f 在],[b a 上连续,在),(b a 内可导,且),(b a x ∈时,)(0'x f >0,又)(a f <0,则( ) A. )(x f 在],[b a 上单调递增,且)(b f >0 B. )(x f 在],[b a 上单调递增,且)(b f <0C. )(x f 在],[b a 上单调递减,且)(b f <0D. )(x f 在],[b a 上单调递增,但)(b f 的符号无法判断 4.函数y=(x+1)(x 2-1)的单调递减区间为______________________.四、含参数单调区间的求解步骤(导数问题的核心):①确定定义域(易错点) ②求导函数)('x f③对)('x f 进行整理,能十字交叉的十字交叉分解,若含分式项,则进行通分整理. ④)('x f 中x 的最高次系数是否为0,为0时求出单调区间. 例1:x x a x a x f ++-=23213)(,则)1)(1()('--=x ax x f 要首先讨论0=a 情况 ⑤)('x f 最高次系数不为0,讨论参数取某范围的值时,若0)('≥x f ,则)(x f 在定义域内单调递增;若0)('≤x f ,则)(x f 在定义域内单调递减.例2:x x a x f ln 2)(2+=,则)('x f =)0(,12>+x x ax ,显然0≥a 时0)('>x f ,此时)(x f 的单调区间为),0(+∞.⑥)('x f 最高次系数不为0,且参数取某范围的值时,不会出现0)('≥x f 或者0)('≤x f 的情况 求出)('x f =0的根,(一般为两个)21,x x ,判断两个根是否都在定义域内.如果只有一根在定义域内,那么单调区间只有两段.若两根都在定义域内且一根为常数,一根含参数.则通过比较两根大小分三种情况讨论单调区间,即212121,,x x x x x x =<>.例3:若)0(,ln )1(2)(2≠++-=a x x a x a x f ,则xx ax x f )1)(1()('--=,)0(>x 解方程0)('=x f 得a x x 1,121==0<a 时,只有11=x 在定义域内.0>a 时,比较两根要分三种情况:1,10,1><<=a a a用所得的根将定义域分成几个不同的子区间,讨论)('x f 在每个子区间内的正负,求得)(x f 的单调区间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数大题分类一、含参数单调区间的求解步骤:①确定定义域(易错点)②求导函数)('x f③对)('x f 进行整理,能十字交叉的十字交叉分解,若含分式项,则进行通分整理. ④)('x f 中x 的最高次系数是否为0,为0时求出单调区间.例1:x x a x a x f ++-=23213)(,则)1)(1()('--=x ax x f 要首先讨论0=a 情况 ⑤)('x f 最高次系数不为0,讨论参数取某范围的值时,若0)('≥x f ,则)(x f 在定义域内单调递增;若0)('≤x f ,则)(x f 在定义域内单调递减. 例2:x x a x f ln 2)(2+=,则)('x f =)0(,12>+x x ax ,显然0≥a 时0)('>x f ,此时)(x f 的单调区间为),0(+∞.⑥)('x f 最高次系数不为0,且参数取某范围的值时,不会出现0)('≥x f 或者0)('≤x f 的情况求出)('x f =0的根,(一般为两个)21,x x ,判断两个根是否都在定义域内.如果只有一根在定义域内,那么单调区间只有两段.若两根都在定义域内且一根为常数,一根含参数.则通过比较两根大小分三种情况讨论单调区间,即212121,,x x x x x x =<>. 例3:若)0(,ln )1(2)(2≠++-=a x x a x a x f ,则x x ax x f )1)(1()('--=,)0(>x 解方程0)('=x f 得a x x 1,121== 0<a 时,只有11=x 在定义域内.0>a 时,比较两根要分三种情况:1,10,1><<=a a a用所得的根将定义域分成几个不同的子区间,讨论)('x f 在每个子区间内的正负,求得)(x f的单调区间。
(1)求函数的单调区间1.已知函数22)1ln()(x k x x x f +-+= )0(≥k (Ⅰ)当2=k 时,求曲线)(x f y =在点))1(,1(f 处的切线方程.(Ⅱ)求)(x f 得单调区间.2. 已知函数2()4ln f x ax x =-,a ∈R . (Ⅰ)当12a =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)讨论()f x 的单调性.3.已知函数()()sin cos ,(0,)f x x a x x x π=-+∈. (Ⅰ)当π2a =时,求函数()f x 值域; (Ⅱ)当π2a >时,求函数()f x 的单调区间. 4.已知函数12e ()44x f x ax x +=++,其中a ∈R . (Ⅰ)若0a =,求函数()f x 的极值;(Ⅱ)当1a >时,试确定函数()f x 的单调区间.(二)求函数在给定的区间的最值问题5.已知函数1)(2+=ax x f )0(>a ,bx x x g +=3)(.(Ⅰ)若曲线)(x f 与)(x g 在它们的交点),1(c 处具有公切线,求b a ,的值.(Ⅱ)当b a 42=时,求函数)()(x g x f +的单调区间,并求其在)1,(--∞上的最大值.6.已知函数21()ln 2f x ax x =-,a ∈R . (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()f x 在区间[1,e]的最小值为1,求a 的值.7.已知函数bx ax x x f ++=2ln )((其中b a ,为常数且0≠a )在1=x 处取得极值.(Ⅰ)当1a =时,求函数()f x 的单调区间;(Ⅱ)若函数)(x f 在区间[0,e]上的最大值为1,求a 的值.8.已知函数)1ln(21)(2x ax x x f +--=,其中a ∈R . (Ⅰ)若2x =是)(x f 的极值点,求a 的值;(Ⅱ)求)(x f 的单调区间;(Ⅲ)若)(x f 在[0,)+∞上的最大值是0,求a 的取值范围.9.已知21()ln(1)2f x ax x x =-+-+,其中0>a . (Ⅰ)若函数()f x 在点(3,(3))f 处切线斜率为0,求a 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)若()f x 在[)0,+∞上的最大值是0,求a 的取值范围.10.设函数()x f x e ax =-,x R ∈.(Ⅰ)当2a =时,求曲线()f x 在点(0,(0))f 处的切线方程;(Ⅱ)在(Ⅰ)的条件下,求证: ()0f x >;(Ⅲ)当1a >时,求函数()f x 在[0,]a 上的最大值.二、恒成立问题的几种问法:1.对于()b a x ,∈∀,k x f ≥)(恒成立,等价于函数)(x f 在()b a ,上的最小值k x f ≥min )(.诉讼2.对于()b a x ,∈∀,a x f ≤)(恒成立,等价于函数)(x f 在()b a ,上的最大值k x f ≤max )(.3.对于[]b a x x ,,21∈∀,)()(21x g x f ≥,等价于)(x f 在区间[]b a ,上的最小值min )(x f ,大于等于)(x g在区间[]b a ,上的最大值max )(x g ,即max min )()(x g x f ≥.4. 对于[]b a x x ,,21∈∀,)()(21x g x f ≤,等价于)(x f 在区间[]b a ,上的最大值max )(x f ,小于等于)(x g在区间[]b a ,上的最小值min )(x g ,即min max )()(x g x f ≤.5.对于[]b a x ,∈∀,)()(x g x f ≥,等价于构造函数)()()(x g x f x h -=,)(x h 在区间[]b a ,上的最小值0)(min ≥x h .6.对于[]b a x ,∈∀,)()(x g x f ≤,等价于构造函数)()()(x g x f x h -=,)(x h 在区间[]b a ,上的最大值0)(max ≤x h .7.)(x f 在区间[]b a ,上单调递增,等价于[]b a x x f ,,0)(min '∈≥. 8.)(x f 在区间[]b a ,上单调递减,等价于[]b a x x f ,,0)(max '∈≤.1.已知函数k x e k x x f 2)()(-=.(Ⅰ)求)(x f 的单调区间.(Ⅱ)若对于任意的),0(+∞∈x ,都有e x f 1)(≤,求k 的取值范围. 2.设l 为曲线C:xx y ln =在点)0,1(处的切线. (Ⅰ)求l 的方程.(Ⅱ)证明:除切点外,曲线C 在直线l 下方.3.已知函数x x x x f sin cos )(-=,⎥⎦⎤⎢⎣⎡∈2,0πx (Ⅰ)求证:0)(≤x f (Ⅱ)若b x x a <<sin 在⎪⎭⎫ ⎝⎛2,0π上恒成立,求a 的最大值和b 的最小值. 5.已知0a >,函数2()21ax f x a x =++,()ln g x a x x a =-+. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)求证:对于任意的12,(0,e)x x ∈,都有12()()f x g x >.6.已知函数21()e 1x f x ax +=-+,a ∈R .(Ⅰ)若曲线()y f x =在点(0,(0))f 处的切线与直线e 10x y ++=垂直,求a 的值;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)设32e a <,当[0,1]x ∈时,都有()f x ≥1成立,求实数a 的取值范围.7.已知函数R a x a x x f ∈-=,ln )()((Ⅰ)当0=a 时求)(x f 的极小值 .(Ⅱ) 若函数)(x f 在区间),0(+∞上为增函数,求a 得取值范围8. 已知3)(,ln )(2-+-==ax x x g x x x f .(I )求函数)(x f 在)0](2,[>+t t t 上的最小值;(II )对一切)()(2),,0(x g x f x ≥+∞∈恒成立,求实数a 的取值范围. 9.已知函数2()ln ,.f x x ax x a =-+∈R(I )若函数()f x 在(1,(1))f 处的切线垂直于y 轴,求实数a 的值;(II) 在(I )的条件下,求函数()f x 的单调区间;(III) 若1,()0x f x >>时恒成立,求实数a 的取值范围.10.已知函数,其中a ∈ R .⑴ 当 时,求 f (x )的单调区间;⑵ 当a > 0时,证明:存在实数m > 0,使得对于任意的实数x ,都有| f (x )|≤m 成立.三、存在性问题的几种问法:1.()b a x ,0∈∃,使得k x f ≥)(成立,等价函数)(x f 在()b a ,上的最大值k x f ≥max )(.2.()b a x ,0∈∃,使得k x f ≤)(成立,等价函数)(x f 在()b a ,上的最小值k x f ≤min )(.3.[]b a x x ,,21∈∃,使得)()(21x g x f ≥成立,等价于)(x f 在区间[]b a ,上的最大值max )(x f ,大于等于)(x g 在区间[]b a ,上的最小值min )(x g ,即min max )()(x g x f ≥.4.[]b a x x ,,21∈∃,使得)()(21x g x f ≤,等价于)(x f 在区间[]b a ,上的最小值min )(x f ,小于等于)(x g在区间[]b a ,上的最大值max )(x g ,即max min )()(x g x f ≤.5.[]b a x ,∈∃,使得)()(x g x f ≥,等价于构造函数)()()(x g x f x h -=,)(x h 在区间[]b a ,上的最大值0)(max ≥x h .6. []b a x ,∈∃,使得)()(x g x f ≤,等价于构造函数)()()(x g x f x h -=,)(x h 在区间[]b a ,上的最小值0)(min ≤x h .7.)(x f 在区间()b a ,上存在单调递增区间,等价于)('x f的最大值0)(max '>x f . 8.)(x f 在区间()b a ,上存在单调递减区间,等价于)('x f的最小值0)(min '<x f .1.已知曲线()x f x ax e =-(0)a ≠. (Ⅰ)求曲线在点(0,(0)f )处的切线方程;(Ⅱ)若存在0x 使得0()0f x ≥,求a 的取值范围.2.已知函数1()()2ln ()f x a x x a x=--∈R . (Ⅰ)若2a =,求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)设函数()a g x x=-.若至少存在一个0[1,e]x ∈,使得00()()f x g x >成立,求实数a 的取值范围.3.已知函数1()ln (0,)f x a x a a x=+≠∈ R (Ⅰ)若1a =,求函数()f x 的极值和单调区间;(Ⅱ) 若在区间[1,e]上至少存在一点0x ,使得0()0f x <成立,求实数a 的取值范围.4.已知函数()ex f x x a -=+⋅. (Ⅰ)当2e a =时,求()f x 在区间[1,3]上的最小值;(Ⅱ)求证:存在实数0[3,3]x ∈-,有0()f x a >.四、切线问题1.已知函数()f x =ln ,x a x a +∈R .(Ⅰ)求函数()f x 的单调区间;(Ⅱ)当[]1,2x ∈时,都有()0f x >成立,求a 的取值范围;(Ⅲ)试问过点(13)P ,可作多少条直线与曲线()y f x =相切?并说明理由.2.已知函数3()f x x x =-.(I )求曲线()y f x =在点(())M t f t ,处的切线方程;(II )设0a >,如果过点()a b ,可作曲线()y f x =的三条切线, 证明:()a b f a -<<.五、特殊问题1.已知函数21ln ()x f x x -=. (Ⅰ)求函数()f x 的零点及单调区间; (Ⅱ)求证:曲线ln x y x=存在斜率为6的切线,且切点的纵坐标01y <-. 六、构造函数模型 1.设函数1)(--=x ae x f x ,R ∈a .(Ⅰ)当1a =时,求()f x 的单调区间;(Ⅱ)当),0(+∞∈x 时,0)(>x f 恒成立,求a 的取值范围;(Ⅲ)求证:当),0(+∞∈x 时,21ln x x e x >-.。