2021年九年级数学中考复习专题之圆:切割线定理综合运用(一)
2021年九年级数学中考复习专题之圆的综合(考察切线证明、长度、面积、动点问题等)(含答案)
![2021年九年级数学中考复习专题之圆的综合(考察切线证明、长度、面积、动点问题等)(含答案)](https://img.taocdn.com/s3/m/2853845a5ef7ba0d4b733b70.png)
2021年九年级数学中考复习专题之圆的综合(考察切线证明、长度、面积、动点问题等)1.如图,AB为⊙O的直径,直线CD切⊙O于点D,AM⊥CD于点M,BN⊥CD于N.(1)求证:∠ADC=∠ABD;(2)求证:AD2=AM•AB;(3)若AM=,sin∠ABD=,求线段BN的长.2.如图,在直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣),点D在劣弧上,连接BD交x轴于点C,且∠COD=∠CBO.(1)求⊙M的半径;(2)求证:BD平分∠ABO;(3)在线段BD的延长线上找一点E,使得直线AE恰好为⊙M的切线,求此时点E的坐标.3.如图,PB为⊙O的切线,B为切点,过B作OP的垂线BA,垂足为C,交⊙O于点A,连接PA、AO,并延长AO交⊙O于点E,与PB的延长线交于点D.(1)求证:PA是⊙O的切线;(2)若=,且OC=4,求PA的长和tan D的值.4.如图,AB是⊙O的直径,OD⊥弦BC于点F,交⊙O于点E,连结CE、AE、CD,若∠AEC=∠ODC.(1)求证:直线CD为⊙O的切线;(2)若AB=5,BC=4,求线段CD的长.5.如图,在Rt△ABC中,∠ACB=90°,E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE(1)求证:△ABC∽△CBD;(2)求证:直线DE是⊙O的切线.6.如图,△ABC内接于⊙O,AB=AC,BD为⊙O的弦,且AB∥CD,过点A作⊙O的切线AE与DC的延长线交于点E,AD与BC交于点F.(1)求证:四边形ABCE是平行四边形;(2)若AE=6,CD=5,求OF的长.7.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.8.如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状: ;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.9.如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)10.如图,△ABC中,∠C=90°,点G是线段AC上的一动点(点G不与A、C重合),以AG为直径的⊙O交AB于点D,直线EF垂直平分BD,垂足为F,EF交BC于点E,连结DE.(1)求证:DE是⊙O的切线;(2)若cos A=,AB=8,AG=2,求BE的长;(3)若cos A=,AB=8,直接写出线段BE的取值范围.答案1.(1)证明:连接OD,∵直线CD切⊙O于点D,∴∠CDO=90°,∵AB为⊙O的直径,∴∠ADB=90°,∴∠1+∠2=∠2+∠3=90°,∴∠1=∠3,∵OB=OD,∴∠3=∠4,∴∠ADC=∠ABD;(2)证明:∵AM⊥CD,∴∠AMD=∠ADB=90°,∵∠1=∠4,∴△ADM∽△ABD,∴,∴AD2=AM•AB;(3)解:∵sin∠ABD=,∴sin∠1=,∵AM=,∴AD=6,∴AB=10,∴BD==8,∵BN⊥CD,∴∠BND=90°,∴∠DBN+∠BDN=∠1+∠BDN=90°,∴∠DBN=∠1,∴sin∠NBD=,∴DN=,∴BN==.2.解:(1)∵⊙M经过O、A、B三点,且∠AOB=90°,∴AB为直径∵点A为(,0),点B为(0,﹣),∴OA=,OB=,∴AB==2,∴⊙M的半径为:;(2)∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(3)如图,过点A作AE⊥AB,垂足为A,交BD的延长线于点E,过点E作EF⊥OA 于点F,即AE是切线,∵在Rt△AOB中,tan∠OAB===,∴∠OAB=30°,∴∠ABO=90°﹣∠OAB=60°,∴∠ABC=∠OBC=∠ABO=30°,∴OC=OB•tan30°=×=,∴AC=OA﹣OC=,∴∠ACE=∠ABC+∠OAB=60°,∴∠EAC=60°,∴△ACE是等边三角形,∴AE=AC=,∴AF=AE=,EF=AE=,∴OF=OA﹣AF=,∴点E的坐标为:(,).3.(1)证明:连接OB,则OA=OB,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB,在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS)∴∠PBO=∠PAO,PB=PA,∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)连接BE,∵=,且OC=4,∴AC=6,∴AB=12,在Rt△ACO中,由勾股定理得:AO==2,∴AE=2OA=4,OB=OA=2,在Rt△APO中,∵AC⊥OP,∴AC2=OC•PC,解得:PC=9,∴OP=PC+OC=13,在Rt△APO中,由勾股定理得:AP==3,∴PB=PA=3,∵AC=BC,OA=OE,∴OC=BE,OC∥BE,∴BE=2OC=8,BE∥OP,∴△DBE∽△DPO,∴,即,解得:BD=,在Rt△OBD中,tan∠D===.(补充方法:可以证明△DBE∽△DAB,可得===,由此解决问题,可以简单一些)4.(1)证明:连接OC,∵∠CEA=∠CBA,∠AEC=∠ODC,∴∠CBA=∠ODC,又∵∠CFD=∠BFO,∴∠DCB=∠BOF,∵CO=BO,∴∠OCF=∠B,∵∠B+∠BOF=90°,∴∠OCF+∠DCB=90°,∴直线CD为⊙O的切线;(2)解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠DCO=∠ACB,又∵∠D=∠B∴△OCD∽△ACB,∵∠ACB=90°,AB=5,BC=4,∴AC=3,∴=,即=,解得;DC=.5.(1)证明:∵AC为⊙O的直径,∴∠ADC=90°,∴∠BDC=90°,又∵∠ACB=90°,∴∠ACB=∠BDC,又∵∠B=∠B,∴△BCD∽△BAC;(2)连结DO,如图,∵∠BDC=90°,E为BC的中点,∴DE=CE=BE,∴∠EDC=∠ECD,又∵OD=OC,∴∠ODC=∠OCD,而∠OCD+∠DCE=∠ACB=90°,∴∠EDC+∠ODC=90°,即∠EDO=90°,∴DE⊥OD,∴DE与⊙O相切.6.(1)证明:∵AE与⊙O相切于点A,∴∠EAC=∠ABC,∵AB=AC∴∠ABC=∠ACB,∴∠EAC=∠ACB,∴AE∥BC,∵AB∥CD,∴四边形ABCE是平行四边形;(2)解:如图,连接AO,交BC于点H,双向延长OF分别交AB,CD与点N,M,∵AE是⊙O的切线,由切割线定理得,AE2=EC•DE,∵AE=6,CD=5,∴62=CE(CE+5),解得:CE=4,(已舍去负数),∵AB∥CD,∴∠BAD=∠ADC,∴=,∴AC=BD,∴AB=AC=BD=CE=4,又根据对称性和垂径定理,得AO垂直平分BC,MN垂直平分AB,DC,设OF=x,OH=Y,FH=z,∵AB=4,BC=6,CD=5,∴BF=BC﹣FH=3﹣z,DF=CF=BC+FH=3+z,易得△OFH∽△DFM∽△BFN,∴,,即,①②,①+②得:,①÷②得:,解得,∵x2=y2+z2,∴,∴x=,∴OF=.7.(1)证明:连接OD,∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DF是⊙O的切线,∴DF⊥OD,∴DF⊥AC.(2)解:连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°,∵OA=OE,∴∠AOE=90°,∵⊙O的半径为4,∴S扇形AOE=4π,S△AOE=8 ,∴S阴影=4π﹣8.8.证明:(1)△ABC是等边三角形.证明如下:在⊙O中∵∠BAC与∠CPB是所对的圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;(2)在PC上截取PD=AP,如图1,又∵∠APC=60°,∴△APD是等边三角形,∴AD=AP=PD,∠ADP=60°,即∠ADC=120°.又∵∠APB=∠APC+∠BPC=120°,∴∠ADC=∠APB,在△APB和△ADC中,,∴△APB≌△ADC(AAS),∴BP=CD,又∵PD=AP,∴CP=BP+AP;(3)当点P为的中点时,四边形APBC的面积最大.理由如下,如图2,过点P作PE⊥AB,垂足为E.过点C作CF⊥AB,垂足为F.∵S△APB=AB•PE,S△ABC=AB•CF,∴S四边形APBC=AB•(PE+CF),当点P为的中点时,PE+CF=PC,PC为⊙O的直径,∴此时四边形APBC的面积最大.又∵⊙O的半径为1,∴其内接正三角形的边长AB=,∴S四边形APBC=×2×=.9.解:(1)直线BC与⊙O相切;连结OD,∵OA=OD,∴∠OAD=∠ODA,∵∠BAC的角平分线AD交BC边于D,∴∠CAD=∠OAD,∴∠CAD=∠ODA,∴OD∥AC,∴∠ODB=∠C=90°,即OD⊥BC.又∵直线BC过半径OD的外端,∴直线BC与⊙O相切.(2)设OA=OD=r,在Rt△BDO中,∠B=30°,∴OB=2r,在Rt△ACB中,∠B=30°,∴AB=2AC=6,∴3r=6,解得r=2.(3)在Rt△ACB中,∠B=30°,∴∠BOD=60°.∴.∵∠B=30°,OD⊥BC,∴OB=2OD,∴AB=3OD,∵AB=2AC=6,∴OD=2,BD=2S △BOD=×OD•BD=2,∴所求图形面积为.10.(1)证明:连接OD,如图,∵△ABC中,∠C=90°,∴∠A+∠B=90°,∵直线EF垂直平分BD,∴ED=EB,∴∠B=∠EDB,∵OA=OD,∴∠A=∠ODA,∴∠ODA+∠EDB=90°,∴∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:连接GD,∵AG为直径,∴∠ADG=90°,∵cos A=,∴∠A=60°,∴∠AGD=30°,∴AD=AG=,∵AB=8,∴BD=AB﹣AD=8﹣=7,∵直线EF垂直平分BD,∴BF=BD=,在Rt△BEF中,∠B=30°,∴EF=BF=,∴BE=2EF=7;(3)解:∵cos A=,∴∠A=60°,∴∠B=30°,∴AC=AB=4,由(2)得AD=AG,BF =(AB﹣AD)=4﹣AG,在Rt△BEF中,∠B=30°,∴EF=BF,∴BE=2EF=BF=(4﹣AG)=8﹣AG,∵0<AG<AC,即0<AG<4,∴6<BE<8.。
2021年九年级数学中考复习专题之圆:切割线定理综合运用(二)
![2021年九年级数学中考复习专题之圆:切割线定理综合运用(二)](https://img.taocdn.com/s3/m/d8ce51517cd184254a35353d.png)
2021年九年级数学中考复习专题之圆:切割线定理综合运用(二)一.选择题1.如图,点P是⊙O直径AB的延长线上一点,PC切⊙O于点C,已知OB=3,PB=2.则PC 等于()A.2 B.3 C.4 D.52.如图,以OB为直径的半圆与半圆O交于点P,A、O、C、B在同一条直线上,作AD⊥AB 与BP的延长线交于点D,若半圆O的半径为2,∠D的余弦值是方程3x2﹣10x+3=0的根,则AB的长等于()A.B.C.8 D.53.如图,两圆相交于C、D,AB是两圆的一条外公切线,A、B为切点,CD的延长线交AB 于M,若CD=9,MD=3,则AB的长为()A.18 B.12 C.13.5 D.6√34.如图:PAB、PCD为⊙O的两条割线,若PA•PB=30,PC=3,则CD的长为()A.10 B.7 C.D.35.如图,点C、O在线段AB上,且AC=CO=OB=5,过点A作以BC为直径的⊙O切线,D 为切点,则AD的长为()A.5 B.6 C.D.106.如图,已知AB、AC分别为⊙O的直径和弦,D为的中点,DE垂直于AC的延长线于E,连接BC,若DE=6cm,CE=2cm,下列结论一定错误的是()A.DE是⊙O的切线B.直径AB长为20cmC.弦AC长为16cm D.C为的中点7.如图,圆O1与圆O2相交于A、B,过A作圆O1的切线交圆O2于C,连CB并延长交圆O1于D,连AD,AB=2,BD=3,BC=5,则AD的长为()A.B.C.D.28.如图,已知PA是⊙O的切线,A为切点,PC与⊙O相交于B、C两点,PB=2cm,BC=8cm,则PA的长等于()A.4cm B.16cm C.20cm D.2cm9.如图,Rt△ABC中,∠C=90°,AC=6,BC=8,CD为直径的⊙O与AB相切于E,则⊙O 的半径是()A.2 B.2.5 C.3 D.410.如图,PA,PB为⊙O的切线,A,B分别为切点,∠APB=60°,点P到圆心O的距离OP =2,则⊙O的半径为()A.B.1 C.D.2二.填空题11.如图,PT是⊙O的切线,T为切点,PA是割线,交⊙O于A、B两点,与直径CT交于点D.已知CD=2,AD=3,BD=4,那PB=.12.如图,PE是⊙O的切线,E为切点,PAB、PCD是割线,AB=35,CD=50,AC:DB=1:2,则PA=.13.如图,某机械传动装置在静止状态时,连杆PA与点A运动所形成的⊙O交于B点,现测得PB=4cm,AB=5cm,⊙O的半径R=4.5cm,此时P点到圆心O的距离是cm.14.如图,PA切⊙O于A,PBC是⊙O的割线,如果PB=2,PC=4,则PA的长为.15.如图,PA、PB与⊙O分别相切于点A、点B,AC是⊙O的直径,PC交⊙O于点D,已知∠APB=60°,AC=2,那么CD的长为.三.解答题16.如图,已知矩形ABCD,以A为圆心,AD为半径的圆交AC、AB于M、E,CE的延长线交⊙A于F,CM=2,AB=4.(1)求⊙A的半径;(2)求CE的长和△AFC的面积.17.如图,已知点P是⊙O外一点,PS,PT是⊙O的两条切线,过点P作⊙O的割线PAB,交⊙O于A、B两点,并交ST于点C.求证:.18.如图1,A为⊙O的弦EF上的一点,OB是和这条弦垂直的半径,垂足为H,BA的延长线交⊙O于点C,过点C作⊙O的切线与EF的延长线相交于点D.(1)求证:DA=DC;(2)当DF:EF=1:8,且DF=时,求AB•AC的值;(3)将图1中的EF所在直线往上平行移动到⊙O外,如图2的位置,使EF与OB,延长线垂直,垂足为H,A为EF上异于H的一点,且AH小于⊙O的半径,AB的延长线交⊙O 于C,过C作⊙O的切线交EF于D.试猜想DA=DC是否仍然成立?并证明你的结论.19.如图,从⊙O外一点A作⊙O的切线AB、AC,切点分别为B、C,且⊙O直径BD=6,连接CD、AO.(1)求证:CD∥AO;(2)设CD=x,AO=y,求y与x之间的函数关系式,并写出自变量x的取值范围;(3)若AO+CD=11,求AB的长.20.如图,OB是以(O,a)为圆心,a为半径的⊙O1的弦,过B点作⊙O1的切线,P为劣弧上的任一点,且过P作OB、AB、OA的垂线,垂足分别是D、E、F.(1)求证:PD2=PE•PF;.(2)当∠BOP=30°,P点为的中点时,求D、E、F、P四个点的坐标及S△DEF参考答案一.选择题1.解:∵PC、PB分别为⊙O的切线和割线,∴PC2=PB•PA,∵OB=3,PB=2,∴PA=8,∴PC2=PB•PA=2×8=16,∴PC=4.故选:C.2.解:∵3x2﹣10x+3=0,∴x=3(不合题意,舍去)或x=.∴cos D=AD:BD=1:3,设AD=x,则BD=3x.∴AB==2x,BC=2x﹣4.∴(2x)2=(2x﹣4)•x.∴x=0(舍去),或x=2.∴AB=2×2=8.故选:C.3.解:∵AB是两圆的一条外公切线,∴MA2=MD•MC,MB2=MD•MC,∵CD=9,MD=3,∴MA=MB=6,∴AB=12,故选:B.4.解:∵PA•PB=PC•PD,PA•PB=30,PC=3,∴PD==10,∴CD=10﹣3=7.故选:B.5.解:∵AD是⊙O的切线,ACB是⊙O的割线,∴AD2=AC•AB,又AC=5,AB=AC+CO+OB=15,∴AD2=5×15=75,∴AD=5.(AD=﹣5不合题意舍去).故选:C.6.解:连接OD,OC.∵D是弧BC的中点,则OD⊥BC,∴DE是圆的切线.故A正确;∴DE2=CE•AE即:36=2AE∴AE=18,则AC=AE﹣CE=18﹣2=16cm.故C正确;∵AB是圆的直径.∴∠ACB=90°,∵DE垂直于AC的延长线于E.D是弧BC的中点,则OD⊥BC,∴四边形CFDE是矩形.∴CF=DE=6cm.BC=2CF=12cm.在直角△ABC中,根据勾股定理可得:AB===20cm.故B正确;在直角△ABC中,AC=16,AB=20,则∠ABC≠30°,而D是弧BC的中点.∴弧AC≠弧CD.故D错误.故选:D.7.解:∵AC是圆O的切线,1∴∠CAB=∠D,又∵∠C=∠C,∴△ACD∽△BCA,∴∴AC2=BC•CD,∵AB=2,BD=3,BC=5,∴AC2=40,AC=2,∵,∴AD=故选:C.8.解:∵PB=2cm,BC=8cm,∴PC=10cm,∵PA2=PB•PC=20,∴PA=2,故选:D.9.解:∵AC,AE为⊙O的切线,∴AC=AE=6,根据勾股定理可知AB=10,∴BE=4;根据切割线定理有,BE2=BD×BC可得,BD=2,∴CD=6,∴⊙O半径为3.故选:C.10.解:连接OA∵PA为⊙O的切线∴PA⊥OA∵∠APO=∠APB=30°∴OA=OP×sin∠APO=2×=1∴⊙O的半径为1故选:B.二.填空题(共5小题)11.解:∵AD•BD=CD•DT,∴TD=,∵CD=2,AD=3,BD=4,∴TD=6,∵PT是⊙O的切线,PA是割线,∴PT2=PA•PB,∵CT为直径,∴PT2=PD2﹣TD2,∴PA•PB=PD2﹣TD2,即(PB+7)PB=(PB+4)2﹣62,解得PB=20.故答案为:20.12.解:设PA=x,∵∠PAC=∠D,∴△PAC∽△PDB,∴=,∵AC:DB=1:2,∴PD=2PA,∴由切割线定理得,PA•PB=PC•PD,即x(x+35)=2x(2x﹣35),解得x=45,故答案为45.13.解:连接PO交圆于C,并延长PO交圆于D;∵PB=4cm,AB=5cm,∴PA=9cm;由割线定理,得:PB•PA=PC•PD;设点P到圆心的距离是xcm,则有:(x﹣4.5)(x+4.5)=36,解得x=7.5cm.故P到O点的距离为7.5cm.14.解:∵PA切⊙O于A,PBC是⊙O的割线,PB=2,PC=4,∴PA2=PB×PC,∴PA==2.故答案为:2.15.解:连接AD,OB,OP;∵PA、PB与⊙O分别相切于点A、点B,∴∠OAP=∠OBP=90°,∠AOB=180°﹣∠P=120°,∴∠AOP=60°,AP=AO tan60°=,∴PC=;∵PA2=PD•PC,∴PD=,∴CD=.三.解答题(共5小题)16.解:(1)四边形ABCD为矩形,AB=4;∴CD=4.在Rt△ACD中,AC2=CD2+AD2;∴(2+AD)2=42+AD2;解得AD=3.(2)过A点作AG⊥EF于G;∵BC=3,BE=AB﹣AE=4﹣3=1.∴CE===.由CE•CF=CD2,得:CF===.又∵∠B=∠AGE=90°,∠BEC=∠GEA,∴△BCE∽△GAE;∴,即=.∴AG=.∴S=CF•AG=××=.△AFC17.证明:连PO交ST于点D,则PO⊥ST;连SO,作OE⊥PB于E,则E为AB中点,于是因为C、E、O、D四点共圆,所以PC•PE=PD•PO又因为Rt△SPD∽Rt△OPS所以即PS2=PD•PO而由切割线定理知PS2=PA•PB所以即18.(1)证明:连接OC,则OC⊥DC,(1分)∴∠DCA=90°﹣∠ACO=90°﹣∠B.∵∠DAC=∠BAE=90°﹣∠B,∴∠DAC=∠DCA.∴DA=DC.(2)解:∵DF:EF=1:8,∵DF=,∴EF=8DF=8.∵DC为⊙O的切线,∴DC2=DF•DE=×9=18.∵DC=3,∴AF=2,AE=6.∴AB•AC=AE•AF=24.(3)解:结论DA=DC仍然成立.理由如下:延长BO交⊙O于K,连接CK,则∠KCB=90°;∵DC为⊙O的切线,∴∠DCA=∠CKB=90°﹣∠CBK.∵∠CBK=∠HBA,∴∠BAH=90°﹣∠HBA=90°﹣∠CBK.∴∠DCA=∠BAH.∴DA=DC.19.(1)证明:连接BC交OA于E点,∵AB、AC是⊙O的切线,∴AB=AC,∠1=∠2.∴AE⊥BC.∴∠OEB=90°.∵BD是⊙O的直径,∴∠DCB=90°.∴∠DCB=∠OEB.∴CD∥AO.(2)解:∵CD∥AO,∴∠3=∠4.∵AB是⊙O的切线,DB是直径,∴∠DCB=∠ABO=90°.∴△BDC∽△AOB.∴=.∴=.∴y=.∴0<x<6.(3)解:由已知和(2)知:,(8分)把x、y看作方程z2﹣11z+18=0的两根,解这个方程得z=2或z=9,∴(舍去).∴AB===.20.(1)证明:连接PB,OP,∵PE⊥AB,PD⊥OB,∴∠BEP=∠PDO=90°,∵AB切⊙O1于B,∠ABP=∠BOP,∴△PBE∽△POD,∴=,同理,△OPF∽△BPD∴=,∴=,∴PD2=PE•PF;(2)解:连接O1B,O1P,∵AB切⊙O1于B,∠POB=30°,∴∠ABP=30°,∴∠O1BP=90°﹣30°=60°,∵O1B=O1P,∴△O1BP为等边三角形,∴O1B=BP,∵P为弧BO的中点,∴BP=OP,即△O1PO为等边三角形,∴O1P=OP=a,∴∠O1OP=60°,又∵P为弧BO的中点,∴O1P⊥OB,在△O1DO中,∵∠O1OP=60°O1O=a,∴O1D=a,OD=a,过D作DM⊥OO1于M,∴DM=OD=a,OM=DM=a,∴D(﹣a,a),∵∠O1OF=90°,∠O1OP=60°∴∠POF=30°,∵PE⊥OA,∴PF=OP=a,OF=a,∴P(﹣a,),F(﹣a,0),∵AB切⊙O1于B,∠POB=30°,∴∠ABP=∠BOP=30°,∵PE⊥AB,PB=a,∴∠EPB=60°∴PE=a,BE=a,∵P为弧BO的中点,∴BP=PO,∴∠PBO=∠BOP=30°,∴∠BPO=120°,∴∠BPE+∠BPO=120°+60°=180°,即OPE三点共线,∵OE=a+a=a,于O,过E作EM⊥x轴于M,∵AO切⊙O1∴∠EOA=30°,∴EM=OE=a,OM=a,∴E(﹣a,a),∵E(﹣a,a),D(﹣a,a),∴DE=﹣a﹣(﹣a)=a,DE边上的高为:a,=×a×a=a2.∴S△DEF故答案为:D(﹣a,a),E(﹣a,a),F(﹣a,0),P(﹣a,);S=a2.△DEF。
2021年数学九年级中考复习专题之圆的综合(考察切线证明、长度、面积、动点问题等)(五)
![2021年数学九年级中考复习专题之圆的综合(考察切线证明、长度、面积、动点问题等)(五)](https://img.taocdn.com/s3/m/f63e8ac47fd5360cbb1adb50.png)
2021年数学九年级中考复习专题之圆的综合(考察切线证明、长度、面积、动点问题等)(五)1.如图,⊙O是△ABC外接圆,AB是⊙O的直径,弦DE⊥AB于点H,DE与AC相交于点G,DE、BC的延长线交于点F,P是GF的中点,连接PC.(1)求证:PC是⊙O的切线;(2)若⊙O的半径是1,=,∠ABC=45°,求OH的长.2.如图,⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.(1)求证:EA是⊙O的切线;(2)已知点B是EF的中点,求证:以A、B、C为顶点的三角形与△AEF相似;(3)已知AF=4,CF=2.在(2)条件下,求AE的长.3.阅读资料:小明是一个爱动脑筋的好学生,他在学习了有关圆的切线性质后,意犹未尽,又查阅到了与圆的切线相关的一个问题:如图1,已知PC是⊙O的切线,AB是⊙O的直径,延长BA交切线PC与P,连接AC、BC、OC.因为PC是⊙O的切线,AB是⊙O的直径,所以∠OCP=∠ACB=90°,所以∠1=∠2.又因为∠B=∠1,所以∠B=∠2.在△PAC与△PCB中,又因为:∠P=∠P,所以△PAC∽△PCB,所以=,即PC2=PA•PB.问题拓展:(Ⅰ)如果PB不经过⊙O的圆心O(如图2)等式PC2=PA•PB,还成立吗?请证明你的结论;综合应用:(Ⅱ)如图3,⊙O是△ABC的外接圆,PC是⊙O的切线,C是切点,BA的延长线交PC于点P;(1)当AB=PA,且PC=12时,求PA的值;(2)D是BC的中点,PD交AC于点E.求证:=.4.在平面直角坐标系xOy中,点M(,),以点M为圆心,OM长为半径作⊙M.使⊙M与直线OM的另一交点为点B,与x轴,y轴的另一交点分别为点D,A(如图),连接AM.点P是上的动点.(1)写出∠AMB的度数;(2)点Q在射线OP上,且OP•OQ=20,过点Q作QC垂直于直线OM,垂足为C,直线QC交x轴于点E.①当动点P与点B重合时,求点E的坐标;②连接QD,设点Q的纵坐标为t,△QOD的面积为S.求S与t的函数关系式及S的取值范围.5.如图,△ABC为⊙O的内接三角形,P为BC延长线上一点,∠PAC=∠B,AD为⊙O 的直径,过C作CG⊥AD交AD于E,交AB于F,交⊙O于G.(1)判断直线PA与⊙O的位置关系,并说明理由;(2)求证:AG2=AF•AB;(3)若⊙O的直径为10,AC=2,AB=4,求△AFG的面积.6.如图,在⊙O中,直径AB平分弦CD,AB与CD相交于点E,连接AC、BC,点F是BA延长线上的一点,且∠FCA=∠B.(1)求证:CF是⊙O的切线.(2)若AC=4,tan∠ACD=,求⊙O的半径.7.如图①,已知等腰梯形ABCD的周长为48,面积为S,AB∥CD,∠ADC=60°,设AB=3x.(1)用x表示AD和CD;(2)用x表示S,并求S的最大值;(3)如图②,当S取最大值时,等腰梯形ABCD的四个顶点都在⊙O上,点E和点F 分别是AB和CD的中点,求⊙O的半径R的值.8.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.9.如图1,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,扇形纸片DOE的顶点O 与边AB的中点重合,OD交BC于点F,OE经过点C,且∠DOE=∠B.(1)证明△COF是等腰三角形,并求出CF的长;(2)将扇形纸片DOE绕点O逆时针旋转,OD,OE与边AC分别交于点M,N(如图2),当CM的长是多少时,△OMN与△BCO相似?10.如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF =90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.(1)试判断BE与FH的数量关系,并说明理由;(2)求证:∠ACF=90°;(3)连接AF,过A、E、F三点作圆,如图2,若EC=4,∠CEF=15°,求的长.参考答案1.解:(1)如图,连接OC,∵AB是⊙O的直径,∴∠ACB=∠FCG=90°,∵P是GF的中点,∴PC=PF=PG,∴∠PCG=∠PGC,∵∠PGC=∠HGA,DE⊥AB∴∠A+∠HGA=90°,∴∠A+∠PGC=90°,∵∠A=∠ACO,∴∠ACO+∠HGA=90°,∴∠PCO=90°,∴PC是⊙O的切线;(2)如图2,连接OE,交AC于点M,∵AB是⊙O的直径,弦DE⊥AB,∴,∵=,∴,∴OE⊥AC,∴∠OMA=90°,∵∠ACB=90°,∠ABC=45°,∴∠AOM=45°,∵AO=1,∴OM=,∵=,∴AC=DE,OH=OM,∴OH=OM=.2.(1)证明:如图1,连接CD,∵AC是⊙O的直径,∴∠ADC=90°,∴∠ADB+∠EDC=90°,∵∠BAC=∠EDC,∠EAB=∠ADB,∴∠EAC=∠EAB+∠BAC=90°,∴EA是⊙O的切线.(2)证明:如图2,连接BC,∵AC是⊙O的直径,∴∠ABC=90°,∴∠CBA=∠ABC=90°∵B是EF的中点,∴在RT△EAF中,AB=BF,∴∠BAC=∠AFE,∴△EAF∽△CBA.(3)解:∵△EAF∽△CBA,∴=,∵AF=4,CF=2.∴AC=6,EF=2AB,∴=,解得AB=2.∴EF=4,∴AE===4,3.解:(Ⅰ)当PB不经过⊙O的圆心O时,等式PC2=PA•PB仍然成立.证法一:如图2﹣1,连接PO并延长交⊙O于点D,E,连接BD、AE,∴∠B=∠E,∠BPD=∠APE,∴△PBD∽△PEA,∴,即PA•PB=PD•PE,由图1知,PC2=PD•PE,∴PC2=PA•PB.证法二:如图2﹣2,过点C作⊙O的直径CD,连接AD,BC,AC,∵PC是⊙O的切线,∴PC⊥CD,∴∠CAD=∠PCD=90°,即∠1+∠2=90°,∠D+∠1=90°,∴∠D=∠2.∵∠D=∠B,∴∠B=∠2,∠P=∠P,∴△PBC∽△PCA,所以,即PC2=PA•PB.(Ⅱ)由(1)得,PC2=PA•PB,PC=12,AB=PA,∴PC2=PA•PB=PA(PA+AB)=2PA2,∴2PA2=144,∴PA=±6(负值无意义,舍去).∴PA=6.(2)证法一:过点A作AF∥BC,交PD于点F,∴=,=.∵D为BC的中点,∴BD=CD,∴=,∴=.∵PC2=PA•PB,∴===,即=.证法二:过点A作AG∥DP,交BC于点G,∴=,=.∵D为BC的中点,∴BD=CD,∴=,∴=.∵PC2=PA•PB,∴===,即=.4.解:(1)过点M作MH⊥OD于点H,∵点M(,),∴OH=MH=,∴∠MOD=45°,∵∠AOD=90°,∴∠AOM=45°,∵OM=AM,∴∠OAM=∠AOM=45°,∴∠AMO=90°,∴∠AMB=90°;(2)①∵OH=MH=,MH⊥OD,∴OM==2,OD=2OH=2,∴OB=4,∵动点P与点B重合时,OP•OQ=20,∴OQ=5,∵∠OQE=90°,∠POE=45°,∴OE=5,∴E点坐标为(5,0)②∵OD=2,Q的纵坐标为t,∴S=.如图2,当动点P与B点重合时,过点Q作QF⊥x轴,垂足为F点,∵OP=4,OP•OQ=20,∴OQ=5,∵∠OFC=90°,∠QOD=45°,∴t=QF=,此时S=;如图3,当动点P与A点重合时,Q点在y轴上,∴OP=2,∵OP•OQ=20,∴t=OQ=5,此时S=;∴S的取值范围为5≤S≤10.5.(1)PA与⊙O相切.理由:连接CD,∵AD为⊙O的直径,∴∠ACD=90°,∴∠D+∠CAD=90°,∵∠B=∠D,∠PAC=∠B,∴∠PAC=∠D,∴∠PAC+∠CAD=90°,即DA⊥PA,∵点A在圆上,∴PA与⊙O相切.(2)证明:如图2,连接BG,∵AD为⊙O的直径,CG⊥AD,∴=,∴∠AGF=∠ABG,∵∠GAF=∠BAG,∴△AGF∽△ABG,∴AG:AB=AF:AG,∴AG2=AF•AB;(3)解:如图3,连接BD,∵AD是直径,∴∠ABD=90°,∵AG2=AF•AB,AG=AC=2,AB=4,∴AF==,∵CG⊥AD,∴∠AEF=∠ABD=90°,∵∠EAF=∠BAD,∴△AEF∽△ABD,∴,即,解得:AE=2,∴EF==1,∵EG==4,∴FG=EG﹣EF=4﹣1=3,∴S△AFG=FG•AE=×3×2=3.6.(1)证明:连接CO,∵AB是⊙O的直径,∴∠BCA=90°,∴∠ACO+∠OCB=90°,∵OB=CO,∴∠B=∠OCB,∵∠FCA=∠B,∴∠BCO=∠ACF,∴∠OCA+∠ACF=90°,即∠OCF=90°,∴CF是⊙O的切线;(2)解:∵直径AB平分弦CD,∴AB⊥DC,∴=,∵AC=4,tan∠ACD=,∴tan∠B=tan∠ACD==,∴=,∴BC=8,∴在Rt△ABC中,AB===4,则⊙O的半径为:2.7.解:(1)作AH⊥CD于H,BG⊥CD于G,如图①,则四边形AHGB为矩形,∴HG=AB=3x,∵四边形ABCD为等腰梯形,∴AD=BC,DH=CG,在Rt△ADH中,设DH=t,∵∠ADC=60°,∴∠DAH=30°,∴AD=2t,AH=t,∴BC=2t,CG=t,∵等腰梯形ABCD的周长为48,∴3x+2t+t+3x+t+2t=48,解得t=8﹣x,∴AD=2(8﹣x)=16﹣2x,CD=8﹣x+3x+8﹣x=16+x;(2)S=(AB+CD)•AH=(3x+16+x)•(8﹣x)=﹣2x2+8x+64,∵S=﹣2(x﹣2)2+72,∴当x=2时,S有最大值72;(3)连结OA、OD,如图②,当x=2时,AB=6,CD=16+2=18,等腰梯形的高为×(8﹣2)=6,则AE=3,DF=9,∵点E和点F分别是AB和CD的中点,∴直线EF为等腰梯形ABCD的对称轴,∴EF垂直平分AB和CD,EF为等腰梯形ABCD的高,即EF=6,∴等腰梯形ABCD的外接圆的圆心O在EF上,设OE=a,则OF=6﹣a,在Rt△AOE中,∵OE2+AE2=OA2,∴a2+32=R2,在Rt△ODF中,∵OF2+DF2=OD2,∴(6﹣a)2+92=R2,∴a2+32=(6﹣a)2+92,解得a=5,∴R2=(5)2+32=84,∴R=2.8.解:(1)∵∠PBC=∠D,∠PBC=∠C,∴∠C=∠D,∴CB∥PD;(2)连结OC,OD.∵AB是⊙O的直径,弦CD⊥AB于点E,∴=,∵∠PBC=∠DCB=22.5°,∴∠BOC=∠BOD=2∠C=45°,∴∠AOC=180°﹣∠BOC=135°,∴劣弧AC的长为:=.9.解:(1)∵∠ACB=90°,点O是AB的中点,∴OC=0B=OA=5.∴∠OCB=∠B,∠ACO=∠A.∵∠DOE=∠B,∴∠FOC=∠OCF.∴FC=FO.∴△COF是等腰三角形.过点F作FH⊥OC,垂足为H,如图1,∵FC=FO,FH⊥OC,∴CH=OH=,∠CHF=90°.∵∠HCF=∠B,∠CHF=∠BCA=90°,∴△CHF∽△BCA.∴=.∵CH=,AB=10,BC=6,∴CF=.∴CF的长为.(2)①若△OMN∽△BCO,如图2,则有∠NMO=∠OCB.∵∠OCB=∠B,∴∠NMO=∠B.∵∠A=∠A,∴△AOM∽△ACB.∴=.∵∠ACB=90°,AB=10,BC=6,∴AC=8.∵AO=5,AC=8,AB=10,∴AM=.∴CM=AC﹣AM=.②若△OMN∽△BOC,如图3,则有∠MNO=∠OCB.∵∠OCB=∠B,∴∠MNO=∠B.∵∠ACO=∠A,∴△CON∽△ACB.∴==.∵BC=6,AB=10,AC=8,CO=5,∴ON=,CN=.过点M作MG⊥ON,垂足为G,如图3,∵∠MNO=∠B,∠MON=∠B,∴∠MNO=∠MON.∴MN=MO.∵MG⊥ON,即∠MGN=90°,∴NG=OG=.∵∠MNG=∠B,∠MGN=∠ACB=90°,∴△MGN∽△ACB.∴=.∵GN=,BC=6,AB=10,∴MN=.∴CM=CN﹣MN=﹣=.∴当CM的长是或时,△OMN与△BCO相似.10.解:(1)BE=FH.证明:∵∠AEF=90°,∠ABC=90°,∴∠HEF+∠AEB=90°,∠BAE+∠AEB=90°,∴∠HEF=∠BAE,在△ABE和△EHF中,,∴△ABE≌△EHF(AAS)∴BE=FH.(2)由(1)得BE=FH,AB=EH,∵BC=AB,∴BE=CH,∴CH=FH,∴∠HCF=45°,∵四边形ABCD是正方形,∴∠ACB=45°,∴∠ACF=180°﹣∠HCF﹣∠ACB=90°.(3)由(2)知∠HCF=45°,∴CF=FH.∠CME=∠HCF﹣∠CEF=45°﹣15°=30°.如图2,过点C作CP⊥EF于P,则CP=CF=FH.∵∠CEP=∠FEH,∠CPE=∠FHE=90°,∴△CPE∽△FHE.∴,即,∴EF=4.∵△AEF为等腰直角三角形,∴AF=8.取AF中点O,连接OE,则OE=OA=4,∠AOE=90°,∴的弧长为:=2π.方法二:连OC,则∠COF=2∠CEF=2*15度=30度,易知三角形AEF为等腰直角三角形,由∠EOF=90度,推出角EOC=60度,三角形OCE为等边三角形,推出半径OE=EC=4即可;。
2021年九年级数学中考复习专题之圆:切线长定理综合运用(一)
![2021年九年级数学中考复习专题之圆:切线长定理综合运用(一)](https://img.taocdn.com/s3/m/af440bb21ed9ad51f11df242.png)
2021年九年级数学中考复习专题之圆:切线长定理综合运用(一)一.选择题1.如图所示,P是⊙O外一点,PA,PB分别和⊙O切于A,B两点,C是上任意一点,过C作⊙O的切线分别交PA,PB于D,E.若△PDE的周长为12,则PA的长为()A.12 B.6 C.8 D.42.如图,△MBC中,∠B=90°,∠C=60°,MB=,点A在MB上,以AB为直径作⊙O与MC相切于点D,则CD的长为()A.B.C.2 D.33.如图中,CA,CD分别切圆O1于A,D两点,CB、CE分别切圆O2于B,E两点.若∠1=60°,∠2=65°,判断AB、CD、CE的长度,下列关系何者正确()A.AB>CE>CD B.AB=CE>CD C.AB>CD>CE D.AB=CD=CE4.如图,AB、AC是⊙O的切线,B、C为切点,∠A=50°,点P是圆上异于B、C,且在上的动点,则∠BPC的度数是()A.65°B.115°C.115°或65°D.130°或65°5.如图,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC、CD、DA相切,若BC=2,DA=3,则AB的长()A.等于4 B.等于5 C.等于6 D.不能确定6.如图,已知PA,PB分别切⊙O于点A、B,∠P=60°,PA=8,那么弦AB的长是()A.4 B.8 C.4D.87.如图所示,PA,PB是⊙O的切线,且∠APB=40°,下列说法不正确的是()A.PA=PB B.∠APO=20°C.∠OBP=70°D.∠AOP=70°8.如图,⊙O是△ABC的内切圆,点D、E分别为边AC、BC上的点,且DE为⊙O的切线,若△ABC的周长为25,BC的长是9,则△ADE的周长是()A.7 B.8 C.9 D.169.如图,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA相切,若AB=10,BC=4,则AD的长()A.4 B.5 C.6 D.710.已知:如图,以定线段AB为直径作半圆O,P为半圆上任意一点(异于A、B),过点P作半圆O的切线分别交过A、B两点的切线于D、C,连接OC、BP,过点O作OM∥CD分别交BC与BP于点M、N.下列结论:①S四边形ABCD=AB•CD;②AD=AB;③AD=ON;④AB为过O、C、D三点的圆的切线.其中正确的个数有()A.1个B.2个C.3个D.4个二.填空题11.如图,⊙O是四边形ABCD的内切圆,连接OA、OB、OC、OD.若∠AOB=108°,则∠COD的度数是.12.一个菱形的周长是20cm,两对角线之比是4:3,则该菱形的内切圆的半径是cm.13.如图,P是⊙O的直径AB的延长线上一点,PC、PD切⊙O于点C、D.若PA=6,⊙O的半径为2,则∠CPD=.14.如图,已知:PA、PB、EF分别切⊙O于A、B、D,若PA=10cm,那么△PEF周长是cm.若∠P=35°,那么∠AOB=,∠EOF=.15.如图,P是⊙O外的一点,PA、PB分别与⊙O相切于点A、B,C是上的任意一点,过点C的切线分别交PA、PB于点D、E,若△PDE的周长是10,则PA=.三.解答题16.已知:如图,PA、PB是⊙O的切线,切点分别是A、B,Q为AB上一点,过Q点作⊙O的切线,交PA、PB于E、F点,已知PA=12cm,求△PEF的周长.17.如图,AC是⊙O的直径,∠ACB=60°,连接AB,分别过A、B作圆O的切线,两切线交于点P,若已知⊙O的半径为1,求△PAB的周长.18.如图,点B在⊙O外,以B点为圆心,OB长为半径画弧与⊙O相交于两点C,D,与直线OB相交A点.当AC=5时,求AD的长.19.如图所示,在梯形ABCD中,AD∥BC,AB⊥BC,以AB为直径的⊙O与DC相切于E.已知AB=8,边BC比AD大6.(1)求边AD、BC的长;(2)在直径AB上是否存在一动点P,使以A、D、P为顶点的三角形与△BCP相似?若存在,求出AP的长;若不存在,请说明理由.20.如图,P是⊙O外的一点,PA、PB分别与⊙O相切于点A、B,C是上的任意一点,过点C的切线分别交PA、PB于点D、E.(1)若PA=4,求△PED的周长;(2)若∠P=40°,求∠AFB的度数.参考答案一.选择题1.解:∵PA,PB分别和⊙O切于A,B两点,∴PA=PB,∵DE是⊙O的切线,∴DA=DC,EB=EC,∵△PDE的周长为12,即PD+DE+PE=PD+DC+EC+PE=PD+AD+EB+PE=PA+PB=2PA=12,∴PA=6.故选:B.2.解:在直角△BCM中,tan60°==,得到BC==2,∵AB为圆O的直径,且AB⊥BC,∴BC为圆O的切线,又CD也为圆O的切线,∴CD=BC=2.故选:C.3.解:∵∠1=60°,∠2=65°,∴∠ABC=180°﹣∠1﹣∠2=180°﹣60°﹣65°=55°,∴∠2>∠1>∠ABC,∴AB>BC>AC,∵CA,CD分别切圆O1于A,D两点,CB、CE分别切圆O2于B,E两点,∴AC=CD,BC=CE,∴AB>CE>CD.故选:A.4.解:如图,连接OB、OC,∵AB、AC是⊙O的切线,∴∠OBA=∠OCA=90°,∵∠A=50°,∴∠BOC=130°,∵∠BOC=2∠P,∴∠BPC=65°;故选:C.5.解:如图,连接OC,OD,设⊙O的半径为r,∵BC、CD、DA与半⊙O相切,∴AD边上的高和AO边上的高都为r,∴AO=AD,同理BO=BC,∴AB=AO+BO=AD+BC=2+3=5.故选:B.6.解:∵PA,PB分别切⊙O于点A、B,∴PA=PB,又∠P=60°,∴△APB是等边三角形,∴AB=PA=8.故选:B.7.解:∵PA,PB是⊙O的切线,且∠APB=40°,∴PA=PB,∠APO=∠BPO,∠A=∠B=90°,∴∠OBP=∠OAP,∴C是错误的.故选:C.8.解:∵AB、AC、BC、DE都和⊙O相切,∴BI=BG,CI=CH,DG=DF,EF=EH.∴BG+CH=BI+CI=BC=9,∴C△ADE=AD+AE+DE=AD+AE+DF+EF=AD+DG+EH+AE=AG+AH=C△ABC﹣(BG+EH+BC)=25﹣2×9=7.故选:A.9.解:连接OC,OD,设⊙O的半径为r,∵BC、CD、DA与半⊙O相切,∴AD和AO的高为r,∴AO=AD,同理BO=BC,∴AB=AO+BO=AD+BC,又知AB=10,BC=4,故知AD=6,故选:C.10.解:连接OD、AP,∵DA、DP、BC分别是圆的切线,切点分别是A、P、B,∴DA=DP,CP=CB,∠A=90°=∠B=∠DPO,∴AD+BC=DP+CP=CD,∴S四边形ABCD=(AD+BC)•AB=AB•CD,∴①正确;∵AD=DP<OD,∵四边形ODPN是平行四边形,得到OD=NP<BP<AB,则AD<AB,∴②错误;∵AB是圆的直径,∴∠APB=90°,∵DP=AD,AO=OP,∴D、O在AP的垂直平分线上,∴OD⊥AP,∵∠DPO=∠APB=90°,∴∠OPB=∠DPA=∠DOP,∵OM∥CD,∴∠POM=∠DPO=90°,在△DPO和△NOP中∠PON=∠DPO,OP=OP,∠DOP=∠OPN,∴△DPO≌△NOP,∴ON=DP=AD,∴③正确;∵AP⊥OD,OA=OP,∴∠AOD=∠POD,同理∠BOC=∠POC,∴∠DOC=×180°=90°,∴△CDO的外接圆的直径是CD,∵∠A=∠B=90°,取CD的中点Q,连接OQ,∵OA=OB,∴AD∥OQ∥BC,∴∠AOQ=90°,∴④正确.故选:C.二.填空题(共5小题)11.解:如图所示:连接圆心与各切点,在Rt△DEO和Rt△DFO中,∴Rt△DEO≌Rt△DFO(HL),∴∠1=∠2,同理可得:Rt△AFO≌Rt△AMO,Rt△BMO≌Rt△BNO,Rt△CEO≌Rt△CNO,∴∠3=∠4,∠5=∠7,∠6=∠8,∴∠5+∠6=∠7+∠8=108°,∴2∠2+2∠3=360°﹣2×108°,∴∠2+∠3=∠DOC=72°.故答案为:72°.12.解:如图所示:菱形ABCD,对角线AC,BD,可得菱形内切圆的圆心即为对角线交点,设AB与圆相切于点E,可得OE⊥AB,∵一个菱形的周长是20cm,两对角线之比是4:3,∴AB=5cm,设BO=4x,则AO=3x,故(4x)2+(3x)2=25,解得:x=1,则AO=3,BO=4,故EO•AB=AO•BO,解得:EO=.故答案为:.13.解:∵PA=6,⊙O的半径为2,∴PB=PA﹣AB=6﹣4=2,∴OP=4,∵PC、PD切⊙O于点C、D.∴∠OPC=∠OPD,∴CO⊥PC,∴sin∠OPC==,∴∠OPC=30°,∴∠CPD=60°,故答案为:60°.14.解:∵PA、PB、EF分别切⊙O于A、B、D.∴AE=ED,DF=FR∴△PEF周长是PE+PF+EF=PE+EA+PF+FR=PA+PR=2PA=20cm;∵PA、PB、EF分别切⊙O于A、B∴∠PAO=∠PRO=90°∴∠AOB=360°=90°﹣90°﹣35°=145°;∴∠EOF=∠AOB=72.5°故答案是:20,145°,72.5°.15.解:∵DA,DC都是圆O的切线,∴DC=DA,同理EC=EB,PA=PB,∴△PDE的周长=PD+PE+DE=PD+DC+PE+BE=PA+PB=2PA=10,∴PA=5;故答案为5.三.解答题(共5小题)16.解:∵PA、PB是⊙O的切线,切点分别是A、B,∴PA=PB=12,∵过Q点作⊙O的切线,交PA、PB于E、F点,∴EB=EQ,FQ=FA,∴△PEF的周长是:PE+EF+PF=PE+EQ+FQ+PF,=PE+EB+PF+FA=PB+PA=12+12=24,答:△PEF的周长是24.17.解:∵PA,PB是圆O的切线.∴PA=PB,∠PAB=60°∴△PAB是等边三角形.在直角△ABC中,AB=AC•sin60°=2×=∴△PAB的周长为PA+PB+AB=3.18.解:连接OC、OD.∵OA是⊙B的直径,∴∠OCA=∠ODA=90°,∴AC、AD都是⊙O的切线.∴AD=AC=5.19.解:(1)方法1:过D作DF⊥BC于F,在Rt△DFC中,DF=AB=8,FC=BC﹣AD=6,∴DC2=62+82=100,即DC=10.(1分)设AD=x,则DE=AD=x,EC=BC=x+6,∴x+(x+6)=10.∴x=2.∴AD=2,BC=2+6=8.(4分)方法2:连OD、OE、OC,由切线长定理可知∠DOC=90°,AD=DE,CB=CE,设AD=x,则BC=x+6,由射影定理可得:OE2=DE•EC.(2分)即:x(x+6)=16,解得x1=2,x2=﹣8,(舍去)∴AD=2,BC=2+6=8.(4分)(2)存在符合条件的P点.设AP=y,则BP=8﹣y,△ADP与△BCP相似,有两种情况:①△ADP∽△BCP时,∴y=;(6分)②△ADP∽△BPC时,∴y=4.(7分)故存在符合条件的点P,此时AP=或4.(8分)20.解:(1)∵DA,DC都是圆O的切线,∴DC=DA,同理EC=EB,∵P是⊙O外的一点,PA、PB分别与⊙O相切于点A、B∴PA=PB,∴三角形PDE的周长=PD+PE+DE=PD+DC+PE+BE=PA+PB=2PA=8,即三角形PDE的周长是8;(2)连接AB,∵PA=PB,∴∠PAB=∠PBA,∵∠P=40°,∴∠PAB=∠PBA=(180﹣40)=70°,∵BF⊥PB,BF为圆直径∴∠ABF=∠PBF=90°﹣70°=20°∴∠AFB=90°﹣20°=70°.答:(1)若PA=4,△PED的周长为8;(2)若∠P=40°,∠AFB的度数为70°.。
2021年九年级数学中考复习专题之圆:切割线定理综合运用(一)
![2021年九年级数学中考复习专题之圆:切割线定理综合运用(一)](https://img.taocdn.com/s3/m/14d727cac5da50e2534d7f50.png)
2021年九年级数学中考复习专题之圆:切割线定理综合运用(一)一.选择题1.P是⊙O外一点,PA切⊙O于A,割线PBC交⊙O于点B、C,若PB=BC=3,则PA的长是()A.9 B.3 C.D.182.如图,PA切⊙O于点A,PBC是⊙O的一条割线,且PA=2,BC=2PB,那么PB 的长为()A.2 B.C.4 D.3.如图,⊙O的两条割线PAB,PCD分别交⊙O于点A,B和点C,D.已知PA=6,AB=4,PC=5,则CD=()A.B.C.7 D.244.如图,已知P为⊙O外一点,PO交⊙O于点A,割线PBC交⊙O于点B、C,且PB =BC,若OA=7,PA=4,则PB的长等于()A.B.C.6 D.5.如图,PA切⊙O于点A,PBC是⊙O的割线,如果PB=2,PC=8,那么PA的长为()A.2 B.4 C.6 D.6.如图,在▱ABCD中,过A、B、C三点的圆交AD于E,且与CD相切.若AB=4,BE =5,则DE的长为()A.3 B.4 C.D.7.如图,在以O为圆心的两个同心圆中,A为大圆上任意一点,过A作小圆的割线AXY,若AX•AY=4,则图中圆环的面积为()A.16πB.8πC.4πD.2π8.如图,A、B、C、D为⊙O上的点,直线BA与DC相交于点P,PA=2,PC=CD=3,则PB=()A.6 B.7 C.8 D.99.以半圆中的一条弦BC(非直径)为对称轴将弧BC折叠后与直径AB交于点D,若,且AB=10,则CB的长为()A.B.C.D.410.如图,从圆O外一点P引圆O的两条切线PA,PB,切点分别为A,B.如果∠APB =60°,PA=8,那么点P与O间的距离是()A.16 B.C.D.二.填空题11.如图,⊙O的半径为,A、B两点在⊙O上,切线AQ和BQ相交于Q,P是AB 延长线上任一点,QS⊥OP于S,则OP•OS=.12.如图,过点P引圆的两条割线PAB和PCD,分别交圆于点A,B和C,D,连接AC,BD,则在下列各比例式中,①;②;③,成立的有(把你认为成立的比例式的序号都填上).13.如图,割线PAB与⊙O交于点A、B,割线PCD与⊙O交于点C、D,PA=PC,PB=3cm,则PD=cm.14.如图,过⊙O外一点P作两条割线,分别交⊙O于A,B和C,D.已知PA=2,PB =5,PD=8,则PC的长是.15.如图,AC为⊙O的直径,PA是⊙O的切线,切点为A,PBC是⊙O的割线,∠BAC 的平分线交BC于D点,PF交AC于F点,交AB于E点,要使AE=AF,则PF应满足的条件是(只需填一个条件).三.解答题16.如图,AB是⊙O的直径,C是AB延长线上的一点,CD是⊙O的切线,D为切点,过点B作⊙O的切线交CD于点E.若AB=CD=2,求CE的长.17.如图所示,⊙O的内接△ABC的AB边过圆心O,CD切⊙O于C,BD⊥CD于D,交⊙O于F,CE⊥AB于点E,FE交⊙O于G.解答下列问题:(1)若BC=10,BE=8,求CD的值;(2)求证:DF•DB=EG•EF.18.如图1,已知Rt△ABC的直角边AC的长为2,以AC为直径的⊙O与斜边AB交于点D,过D点作⊙O的切线(1)求证:BE=DE;(2)延长DE与AC的延长线交于点F,若DF=,求△ABC的面积;(3)从图1中,显然可知BC<AC.试分别讨论在其它条件不变,当BC=AC(图2)和BC>AC(图3)时,直线DE与直线AC还会相交吗?若不能相交,请简要说明理由;若能相交,设交点为F'且DF'=,请再求出△ABC的面积.19.已知:如图,PF是⊙O的切线,PE=PF,A是⊙O上一点,直线AE、AP分别交⊙O 于B、D,直线DE交⊙O于C,连接BC,(1)求证:PE∥BC;(2)将PE绕点P顺时针旋转,使点E移到圆内,并在⊙O上另选一点A,如图2.其他条件不变,在图2中画出完整的图形.此时PE与BC是否仍然平行?证明你的结论.20.如图PAB、PCD是⊙O的两条割线,AB是⊙O的直径.(1)如图甲,若PA=8,PC=10,CD=6.①求sin∠APC的值;②sin∠BOD=;(2)如图乙,若AC∥OD.①求证:CD=BD;②若,试求cos∠BAD的值.参考答案一.选择题1.解:∵PB=BC=3,∴PC=6,∵PA2=PB•PC=18,∴PA=3,故选:C.2.解:设PB=x,则PC=3x,∵PA2=PB•PC,PA=2,BC=2PB,∴x•3x=12,∴x=2.故选:A.3.解:由于PAB、PCD都是⊙O的割线,根据切割线定理可得:PA•PB=PC•PD,即PA•(PA+PB)=PC•PD,∵PA=6,AB=4,PC=5,∴PD=12,即CD=PD﹣PC=7;故选:C.4.解:延长PO交圆于D;设PB=BC=x,∵PB•PC=PA•PD,PB=BC,OA=7,PA=4,∴x•2x=72,∴x=6.故选:C.5.解:∵PA切⊙O于点A,PBC是⊙O的割线,∴PA2=PB•PC=16,即PA=4;故选:B.6.解:连接CE;∵,∴∠BAE=∠EBC+∠BEC;∵∠DCB=∠DCE+∠BCE,由弦切角定理知:∠DCE=∠EBC,由平行四边形的性质知:∠DCB=∠BAE,∴∠BEC=∠BCE,即BC=BE=5,∴AD=5;由切割线定理知:DE=DC2÷DA=,故选:D.7.解:过点A作圆的切线AD,切点是D,∵AD2=AX•AY,AX•AY=4,∴AD=2,∴圆环的面积=πAD2=4π.故选:C.8.解:∵PB,PD是⊙O的割线,∴PA•PB=PC•PD,∵PA=2,PC=CD=3,∴2PB=3×6解得:PB=9.故选:D.9.解:如图,若,且AB=10,∴AD=4,BD=6,作AB关于直线BC的对称线段A′B,交半圆于D′,连接AC、CA′,可得A、C、A′三点共线,∵线段A′B与线段AB关于直线BC对称,∴AB=A′B,∴AC=A′C,AD=A′D′=4,A′B=AB=10.而A′C•A′A=A′D′•A′B,即A′C•2A′C=4×10=40.则A′C2=20,又∵A′C2=A′B2﹣CB2,∴20=100﹣CB2,∴CB=4.故选:A.10.解:连接OA,OP∵PA,PB是⊙O的切线,∠APB=60°,∴∠OPA=∠APB=30°,OA⊥OP,∴OP===,∴点P与O间的距离是.故选:B.二.填空题(共5小题)11.解:连接OQ交AB于M,则OQ⊥AB,连接OA,则OA⊥AQ.∵∠QMP=∠QSP=90°,∴S,P,Q,M四点共圆,故OS•OP=OM•OQ.又∵OM•OQ=OA2=2,∴OS•OP=2.故答案为:2.12.解:∵四边形ABCD是圆内接四边形∴∠PAD=∠C,∠PAD=∠B∴△PAD∽△PCB根据相似三角形的对应边的比相等,得到②③是正确的.13.解:∵PA•PB=PC•PD,PA=PC,PB=3cm∴PB=PD=3cm.14.解:∵PA•PB=PC•PD,PA=2,PB=5,PD=8∴PC==.15.解:∵∠PAC=90°,∠ABC=90°,∴90°﹣∠AFP=90°﹣∠BEP,∴∠APF=∠CPF,∴PF平分∠APC.三.解答题(共5小题)16.解:如图,由切割线定理,得CD2=CB•CA,(2分)CD2=CB(AB+CB),CB2+2CB﹣4=0,解得CB=(负数舍去)连接OD,则OD⊥CD,又EB与⊙O相切,∴EB⊥OC,∴Rt△ODC∽Rt△EBC,(6分)于是,即∴CE=.17.(1)解:∵AB为直径,BD⊥CD∴∠ABC+∠A=90°,∠CBD+∠BCD=90°∵CD为⊙O切线∴∠BCD=∠A∴∠ABC=∠BCD∵CD⊥BD,CE⊥BE∴CE=CD∴CE==6∴CD=6(2)证明:∵CD为切线,BD为割线∴CD2=DF•DB①∵∠ACB=90°,CE⊥AB∴RT△ACE∽RT△CBE∴CE2=EA•EB②∵EG•EF=EA•EB③由①②③及CD=CE得DF•DB=EG•EF.18.(1)证明:连接OD,∴OD⊥DE,∴∠ADO+∠BDE=90°,∵OA=OD,∴∠A=∠ADO,∵∠ACB=90°,∴∠B+∠A=90°,∴∠B=∠BDE,∴BE=DE;(2)解:在直角三角形ODF中,OD=1,DF=,∴∠OFD=30°,∴OF=2,AF=3.∴tan∠A=,∴BC=AC•tan∠A=2×tan30°=.S△ABC=AC•BC=×2×=;(3)解:如图,当BC=AC时,直线DE与直线AC平行;当BC>AC时,在直角三角形ODF′中,OD=1,DF′=,∴∠OF′D=30°,∴OF′=2,AF=1,∴CF′=3,∠BAC=60°,∴tan∠BAC=,∴BC=AC•tan∠BAC=2×tan60°=2.S △ABC=AC•BC=×2×2=2.19.(1)证明:∵PF与⊙O相切,∴PF2=PD•PA.∵PE=PF,∴PE2=PD•PA.∴PE:PD=PA:PE.∵∠APE=∠APE,∴△EPD∽△APE.∴∠PED=∠A.∵∠ECB=∠A,∴∠PED=∠ECB.∴PE∥BC.(2)解:PE与BC仍然平行.证明:画图如图,∵△EPD∽△APE,∴∠PEA=∠D.∵∠B=∠D,∴∠PEA=∠B.∴PE∥BC.20.解:(1)作OE⊥CD于E,连接OC,作DF⊥PB于F.①根据垂径定理,得CE=3.设圆的半径是r.根据勾股定理,得OP2﹣PE2=OC2﹣CE2,(8+r)2﹣169=r2﹣9,解得r=6.则OE=3.则sin∠APC==;②设OF=x.根据勾股定理,得PD2﹣PF2=OD2﹣OF2,256﹣(14+x)2=36﹣x2,解得x=.所以DF=.所以sin∠BOD===.(2)①∵AC∥OD,∴∠1=∠2.又OA=OD,∴∠2=∠3.∴∠1=∠3.所以弧CD=弧BD,所以CD=BD;②∵AC∥OD,∴=.又CD=BD,AB=2OA,∴=.∴cos∠BAD==.。
备战中考数学专题练习圆的切线长定理一(含解析)
![备战中考数学专题练习圆的切线长定理一(含解析)](https://img.taocdn.com/s3/m/96c10bb277232f60dccca189.png)
2021备战中考数学专题练习-圆的切线长定理一〔含解析〕一、单项选择题1.如图,从圆O外一点P引圆O的两条切线PA,PB,切点分别为A,B.假如∠APB=60°,PA=8,那么点P与O间的间隔是〔〕A.16B.C.D.2.如图,以直角梯形ABCD的腰CD为直径的半圆O与梯形的上底AD、下底BC以及腰AB 均相切,切点分别是D、C、E.假设半圆O的半径为2,梯形的腰AB为5,那么该梯形的周长是〔〕.A.9B.10C.12D.143.如图,PA,PB切∠O于点A,B,PA=8,CD切∠O于点E,交PA,PB于C,D两点,那么∠PCD的周长是〔〕A.8B.18C.16D.144.如图,PA,PB,CD与∠O相切于点为A,B,E,假设PA=7,那么∠PCD的周长为〔〕A.7B.14C.10.5D.105.Rt∠ABC中,∠C=90°,AB=5,内切圆半径为1,那么三角形的周长为〔〕A.15B.12C.13D.146.如图,从圆O外一点P引圆O的两条切线PA,PB,切点分别为A,B.假如∠APB=60°,PA=8,那么弦AB的长是()A.4B.8C.D.7.如图,Rt∠ABC的内切圆∠O与两直角边AB,BC分别相切于点D,E,过劣弧〔不包括端点D,E〕上任一点P作∠O的切线MN与AB,BC分别交于点M,N,假设∠O的半径为r,那么Rt∠MBN的周长为〔〕A.rB.rC.2rD.r8.如图,AB为半圆O在直径,AD、BC分别切∠O于A、B两点,CD切∠O于点E,连接OD、OC,以下结论:①∠DOC=90°,②AD+BC=CD,③S∠AOD:S∠BOC=AD2:AO2 ,④OD:OC=DE:EC,⑤OD2=DE•CD,正确的有〔〕A.2个B.3个C.4个D.5个9.如图,∠ABC是一张周长为17cm的三角形的纸片,BC=5cm,∠O是它的内切圆,小明准备用剪刀在∠O的右侧沿着与∠O相切的任意一条直线MN剪下∠AMN,那么剪下的三角形的周长为〔〕A.12cmB.7cmC.6cmD.随直线MN的变化而变化二、填空题10.如图,AB、AC、BD是∠O的切线,P、C、D为切点,假如AB=5,AC=3,那么BD的长为________.11.PA、PB分别切∠O于点A、B,假设PA=3cm,那么PB=________cm.12.如图,PA、PB切∠O于点A、B,PA=6,CD切∠O于点E,交PA、PB于C、D两点,那么∠PCD的周长是________.13.如图,AB为半∠O的直径,C为半圆弧的三等分点,过B,C两点的半∠O的切线交于点P,假设AB的长是2a,那么PA的长是________.14.如图,PA、PB是∠O的两条切线,A、B是切点,假设∠APB=60°,PO=2,那么∠O的半径等于________.15.如图,一圆内切于四边形ABCD,且AB=16,CD=10,那么四边形ABCD的周长为________.16.如图,PA,PB是∠O的切线,A,B分别为切点,AC是∠O的直径,∠P=40°,那么∠BAC=________.三、解答题17.如图,以Rt∠ABC的直角边AB为直径作∠O,与斜边AC交于点D,过点D作∠O的切线交BC边于点E.求证:EB=EC=ED18.如图,PA、PB切∠O于A、B,假设∠APB=60°,∠O半径为3,求阴影局部面积.四、综合题19.如图,:射线PO与∠O交于A、B两点,PC、PD分别切∠O于点C、D.〔1〕请写出两个不同类型的正确结论;〔2〕假设CD=12,tan∠CPO= ,求PO的长.20.如图,AB是∠O的直径,AM、BN分别与∠O相切于点A、B,CD交AM、BN于点D、C,DO平分∠ADC.〔1〕求证:CD是∠O的切线;〔2〕设AD=4,AB=x (x > 0),BC=y (y > 0). 求y关于x的函数解析式.21.如图,AB是半圆O的直径,AB=2,射线AM、BN为半圆O的切线.在AM上取一点D,连接BD交半圆于点C,连接AC.过O点作BC的垂线OE,垂足为点E,与BN相交于点F.过D点作半圆O的切线DP,切点为P,与BN相交于点Q.〔1〕假设∠ABD∠∠BFO,求BQ的长;〔2〕求证:FQ=BQ答案解析局部一、单项选择题1.【答案】B【考点】等边三角形的性质,勾股定理,切线长定理【解析】【解答】解:连接OA,OP∠PA,PB是∠O的切线,∠APB=60°,∠∠OPA= ∠APB=30°,OA∠OP,∠OP= = = ,∠点P与O间的间隔是.应选B.【分析】作辅助线,连接OA,OP,根据切线长定理可知:∠OPA= ∠APB,由PA与∠O相切,可知:OA∠AP,根据条件可将OP的长求出.2.【答案】D【考点】直角梯形,切线长定理【解析】【解答】根据切线长定理,得AD=AE,BC=BE,所以梯形的周长是5×2+4=14.应选D.【分析】由切线长定理可知:AD=AE,BC=BE,因此梯形的周长=2AB+CD,了AB和∠O的半径,由此可求出梯形的周长.3.【答案】C【考点】切线长定理【解析】【解答】解:∠PA,PB切∠O于点A,B,CD切∠O于点E∠PA=PB=8,AC=CE,DB=DE∠PCD的周长为:PC+CE+DE+PD=PC=CA+DB+PD=PA+PB=8+8=16故答案为:C【分析】利用切线长定理可得出PA=PB=8,AC=CE,DB=DE,从而可求∠PCD的周长就转化为求PA+PB的值。
部编数学九年级下册专项21切线的判定与性质的综合应用(解析版)含答案
![部编数学九年级下册专项21切线的判定与性质的综合应用(解析版)含答案](https://img.taocdn.com/s3/m/913ab53e001ca300a6c30c22590102020740f20e.png)
专项21 切线的判定与性质的综合应用ìïìïííîïïî圆的切线的性质--三角形内切圆应用:d=r 圆的切线的判定判定定理圆的切线性质与判定综合应用【类型一: 有公共点:连半径,证垂直】【典例1】(2021秋•吉林期末)已知:如图,△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点P ,PD ⊥AC 于点D .(1)求证:PD 是⊙O 的切线;(2)若∠CAB =120°,AB =6,求BC 的值.【解答】(1)证明:∵AB =AC ,∴∠B =∠C ,∵OP =OB ,∴∠B =∠OPB ,∴∠OPB =∠C ,∴OP ∥AC ,∵PD ⊥AC ,∴OP ⊥PD ,∴PD 是⊙O的切线;(2)解:连接AP,如图,∵AB为直径,∴∠APB=90°,∴BP=CP,∵∠CAB=120°,∴∠BAP=60°,在Rt△BAP中,AB=6,∠B=30°,∴AP=AB=3,∴BP=AP=3,∴BC=2BP=6.【变式1-1】(2021秋•西城区校级期中)如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=10,CD=8,求CE的长.【解答】(1)证明:连接OD,如图,∵BD为∠ABC平分线,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,∴AC是⊙O的切线;(2)解:过O作OG⊥BC,连接OE,则四边形ODCG为矩形,∴GC=OD=OB=10,OG=CD=8,在Rt△OBG中,利用勾股定理得:BG=6,∵OG⊥BE,OB=OE,∴BE=2BG=12.解得:BE=12,∵AC是⊙O的切线,∴CD2=CE•CB,即82=CE(CE+12),解得:CE=4或CE=﹣16(舍去),即CE的长为4.【变式1-2】(2021秋•温岭市期末)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)若AC=8,CD=12,求半径的长度.【解答】(1)证明:连接OD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵∠CDA=∠CBD,∴∠DAB+∠CDA=90°,∵OD=OA,∴∠DAB=∠ADO,∴∠CDA+∠ADO=90°,∴∠CDO=90°,∵OD是⊙O的半径,∴CD是⊙O的切线;(2)解:在Rt△CDO中,CD2+OD2=OC2,∴122+r2=(8+r)2,∴r=5,∴半径的长度为5.【典例2】(2020•中宁县一模)如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=1,求⊙O的直径.【解答】(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)设该圆的半径为x.在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴1+x=2x,解得:x=1∴OA=PD=1,所以⊙O的直径为2【变式2-1】(2021秋•甘井子区期末)如图,△ABC中,AB=AC,以AB为直径的⊙O与AC,BC分别交于点D和点E,过点E作EF⊥AC,垂足为F.(1)求证:EF是⊙O的切线;(2)若CD=4,EF=3,求⊙O半径.【解答】(1)证明:连接OE,∵EF⊥AC,∴∠EFD=∠EFC=90°,∵AB=AC,∴∠B=∠C,∴∠B=∠OEB,∴∠OEB=∠C,∴OE∥AC,∴∠OEF=∠EFC=90°,∵OE是⊙O的半径,∴EF是⊙O的切线;(2)解:过点O作OG⊥AD,垂足为G,∴∠OGF=90°,∵∠OEF=∠EFG=90°,∴四边形OEFG是矩形,∴OG=EF=3,设⊙O的半径为x,∴AB=AC=2x,∵CD=4,∴AD=AC﹣CD=2x﹣4,∵OG⊥AD,∴AG=AD=x﹣2,在Rt△OAG中,AG2+OG2=OA2,∴(x﹣2)2+9=x2,∴x=,∴⊙O的半径为.【变式2-2】(2021秋•天津期末)如图,已知AB是⊙O的直径,AC是弦,∠BAC的角平分线交⊙O于点D,DE⊥AC于E.(1)求证:DE是⊙O的切线;(2)若AB=10,AC=6,求ED的长.【解答】(1)证明:连接OD,∵DE⊥AE,∴∠AED=90°,∵AD平分∠BAE,∴∠CAD=∠DAB,∵OA=OD,∴∠ADO=∠DAB,∴∠CAD=∠ADO,∴AC∥DO,∴∠EDO=180°﹣∠E=90°,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ECB=180°﹣∠ACB=90°,∵∠E=∠EDO=90°,∴四边形ECFD是矩形,∴DE=CF,∠CFD=90°,∵AB=10,AC=6,∴BC===8,∵OD⊥BC,∴CF=BC=4,∴DE=CF=4,∴ED的长为4【典例3】(2022•东明县一模)已知,在Rt△ABC中,∠BAC=90°,以AB为直径的⊙O 与BC相交于点E,在AC上取一点D,使得DE=AD,(1)求证:DE是⊙O的切线.(2)当BC=10,AD=4时,求⊙O的半径.【解答】(1)证明:连接OE、OD,在△AOD和△EOD中,,∴△AOD≌△EOD(SSS),∴∠OED=∠BAC=90°,∴DE是⊙O的切线;(2)解:∵△AOD≌△EOD,∵OB=OE,∴∠B=∠OEB,∵∠AOE=∠B+∠OEB,∴∠BEO=∠EOD,∴OD∥BC,又AO=BO,∴OD=BC=5,由勾股定理得,AO==3,则⊙O的半径为3.【变式3-1】(2021秋•金湖县期末)如图,四边形OAEC是平行四边形,以O为圆心,OC 为半径的圆交CE于D,延长CO交⊙O于B,连接AD、AB,AB是⊙O的切线.(1)求证:AD是⊙O的切线.(2)若⊙O的半径为4,AB=8,求平行四边形OAEC的面积.【解答】(1)证明:连接OD,∵AB与⊙O相切于点B,∴∠OBA=90°,∵四边形OAEC是平行四边形,∴AO∥EC,∴∠AOD=∠ODC,∠AOB=∠OCD,∵OD=OC,∴∠ODC=∠OCD,又∵OA=OA,OD=OB,∴△AOB≌△AOD(SAS),∴∠OBA=∠ODA,∴∠ODA=90°,∵OD是⊙O的半径,∴AD为⊙O的切线;(2)解:∵OB=4,AB=8,∴S=AB•OB=×4×8=16,△ABO∵△AOB≌△AOD,∴S=16,△AOD=32.∴平行四边形OAEC的面积=2S△AOD【类型一:没有公共点:作垂直,证半径】【典例4】(2020•八步区一模)如图,在Rt△ABC中,∠BAC的角平分线交BC于点D,E 为AB上一点,DE=DC,以D为圆心,DB的长为半径作⊙D,AB=5,BE=3.(1)求证:AC是⊙D的切线;(2)求线段AC的长.【解答】(1)证明:过点D作DF⊥AC于F;∵AB为⊙D的切线,∴∠B=90°,∴AB⊥BC,∵AD平分∠BAC,DF⊥AC,∴BD=DF,∴AC与⊙D相切;(2)解:在△BDE和△DCF中;,∴Rt△BDE≌Rt△DCF(HL),∴EB=FC.∵AB=AF,∴AB+EB=AF+FC,即AB+EB=AC,∴AC=5+3=8.【变式4-1】(2021秋•莆田期末)如图,半圆O的直径是AB,AD、BC是两条切线,切点分别为A、B,CO平分∠BCD.(1)求证:CD是半圆O的切线.(2)若AD=20,CD=50,求BC和AB的长.【解答】(1)证明:过点O作OE⊥CD,垂足为点E,∵BC是半圆O的切线,B为切点,∴OB⊥BC,∵CO平分∠BCD,∴OE=OB,∵OB是半圆O的半径,∴CD是半圆O的切线;(2)解:过点D作DF⊥BC,垂足为点F,∴∠DFB=90°,∵AD是半圆O的切线,切点为A,∴∠DAO=90°,∵OB⊥BC,∴∠OBC=90°,∴四边形ADFB是矩形,∴AD=BF=20,DF=AB,∵AD,CD,BC是半圆O的切线,切点分别为A、E、B,∴DE=AD=20,EC=BC,∵CD=50,∴EC=CD﹣DE=50﹣20=30,∴BC=30,∴CF=BC﹣BF=10,在Rt△CDF中,由勾股定理得:DF===20,∴AB=DF=20,∴BC的长为30,AB的长为20.1.(2021秋•龙沙区期末)如图,以点O为圆心,AB长为直径作圆,在⊙O上取一点C,延长AB至点D,连接DC,∠DCB=∠DAC,过点A作AE⊥AD交DC的延长线于点E.(1)求证:CD是⊙O的切线;(2)若CD=4,DB=2,求AE的长.【解答】(1)证明:连接OC,OE,如图,∵AB为直径,∴∠ACB=90°,即∠BCO+∠1=90°,又∵∠DCB=∠CAD,∵∠CAD=∠OCA,∴∠OCA=∠DCB,∴∠DCB+∠BCO=90°,即∠DCO=90°,∵OC是⊙O的半径,∴CD是⊙O的切线;(2)解:∵∠DCO=90°,OC=OB,∴OC2+CD2=OD2,∴OB2+42=(OB+2)2,∴OB=3,∴AB=6,∵AE⊥AD,AB是⊙O的直径,∴AE是⊙O的切线,∵CD是⊙O的切线;∴AE=CE,∵AD2+AE2=DE2,∴(6+2)2+AE2=(4+AE)2,解得AE=6.2.(2021秋•聊城期末)如图,点C在以AB为直径的⊙O上,AC平分∠BAD,且AD⊥CD 于点D.(1)求证:DC是⊙O的切线;(2)若AD=4,CD=2,求⊙O的半径.【解答】(1)证明:如图中,连接OC.∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠DAC=∠CAB=∠ACO,∴AD∥OC,∵AD⊥CD,∴OC⊥DC,∵OC是⊙O的半径,∴CD是⊙O的切线;(2)解:如图,过点O作OE⊥AD于点E,得矩形OEDC,∴OE=CD=2,DE=OC,∴AE=AD﹣DE=4﹣OC=4﹣OA,在Rt△AEO中,根据勾股定理,得OA2=AE2+OE2,∴OA2=(4﹣OA)2+22,解得OA=.∴⊙O的半径为.3.(2022春•长兴县月考)如图,已知等边△ABC的边长为6,点O是AB边上的一点,以OA为半径的⊙O与边AC,AB分别交于点D,E,过点D作DF⊥BC于点F.(1)求证:DF是⊙O的切线;(2)连结EF,当EF是⊙O的切线时,求⊙O的半径.【解答】(1)证明:连结OD,如图所示:∵△ABC是等边三角形,∴∠BAC=∠C=∠B=60°,∵∠DAO=60°,OD=OA,∴△DOA是等边三角形,∴∠ODA=∠C=60°,∴OD∥BC,又∵∠DFC=90°,∴∠ODF=90°,∴OD⊥DF,∵OD是⊙O的半径,∴DF是⊙O的切线;(2)解:设半径为r,等边△ABC的边长为6,由(1)可知:AD=r,则CD=6﹣r,BE=6﹣2r在Rt△CFD中,∠C=60°,CD=6﹣r,∴CF=(6﹣r),∴BF=a﹣(6﹣r),又∵EF是⊙O的切线,∴△FEB是直角三角形,且∠B=60°,∠EFB=30°,∴BF=2BE,∴6﹣(6﹣r)=2(6﹣2r),解得:r=2,∴⊙O的半径为2.4.(2022•西湖区校级开学)如图,已知AB是⊙O的直径,⊙O过BC的中点D,且DE⊥AC.(1)求证:DE是⊙O的切线.(2)若∠C=30°,CD=10cm,求⊙O的半径.【解答】(1)证明:连接OD.∵D是BC的中点,O是AB的中点,∴OD∥AC,∴∠CED=∠ODE,∵DE⊥AC,∴∠CED=∠ODE=90°,∴OD⊥DE,∵OD是圆的半径,∴DE是⊙O的切线;(2)解:∵AB是⊙O的直径,∴∠ADB=90°,∵D是BC的中点,∴AB=AC,∵∠C=30°,∴∠B=30°,∴AB=2AD,∵CD=10cm,∴BD=10cm,设AD=xcm,则AB=2xcm,∴x2+102=4x2,∴x=或x=﹣(舍去),∴AD=(cm),AB=(cm),∴⊙O的半径为cm.5.(2021秋•曲靖期末)如图,在Rt△ABC中,∠C=90°,点D是AC上一点,DQ⊥AB,DQ=DC,点O在AB上,以点O为圆心,OB长为半径的圆经过点D,交BC于点E、交AB于点F.(1)求证:AC是⊙O的切线;(2)若⊙O的半径为5,CD=4,求CE的长.【解答】(1)证明:如图,连接OD,∵OD=OB,∴∠ODB=∠OBD,∵∠C=90°,DQ⊥AB,DQ=DC,∴BD是△ABC的角平分线,∴∠OBD=∠DBC,∴∠ODB=∠DBC,∴OD∥BC,∴∠ODA=∠C=90°,∵AC经过⊙为的半径OD的端点D,且AC⊥OD,∴AC是⊙O的切线;(2)解:如图,作OG⊥BE于点G,则BG=EG,∠OGB=90°,∵∠ODC=∠C=∠OGC=90°,∴四边形ODCG是矩形,∵CD=4,OB=OD=5,∴OG=CD=4,GC=OD=5,在Rt△BOG中,OB2=OG2+BG2,∴BG===3,∴EG=3,∴CE=GC﹣EG=5﹣3=2.6.(2021秋•海淀区期末)如图,AB为⊙O的直径,弦CD⊥AB于E,连接AC,过A作AF⊥AC,交⊙O于点F,连接DF,过B作BG⊥DF,交DF的延长线于点G.(1)求证:BG是⊙O的切线;(2)若∠DFA=30°,DF=4,求FG的长.【解答】(1)证明:∵C,A,D,F在⊙O上,∠CAF=90°,∴∠D=∠CAF=90°.∵AB⊥CE,BG⊥DF,∴∠BED=∠G=90°.∴四边形BEDG中,∠ABG=90°.∴半径OB⊥BG.∴BG是⊙O的切线.(2)解:连接CF,∵∠CAF=90°,∴CF是⊙O的直径.∴OC=OF.∵直径AB⊥CD于E,∴CE=DE.∴OE是△CDF的中位线.∴OE==2.∵=,∠AFD=30°,∴∠ACD=∠AFD=30°.∴∠CAE=90°﹣∠ACE=60°.∵OA=OC,∴△AOC是等边三角形.∵CE⊥AB,∴E为AO的中点,∴OA=2OE=4,OB=4.∴BE=OB+OE=6.∵∠BED=∠D=∠G=90°,∴四边形BEDG是矩形.∴DG=BE=6.∴FG=DG﹣DF=2.7.(2021秋•淮安区期末)如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,过点D作DE⊥AC,交AC于点E.(1)求证:DE是⊙O的切线;(2)若⊙O的直径为5,BC=8,求DE的长.【解答】(1)证明:如图1,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵DE⊥AC,∴DE⊥半径OD,∴DE是⊙O的切线;(2)解:如图2,连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵AB=AC,∴BD=CD==4,∴AD==3,∵DE⊥AC,∴S=,△ACD∴5•DE=3×4,∴DE=,∴DE的长是.8.(2021秋•平罗县期末)如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交于点D,过点D作DE∥BC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)若DE=2,CE=1,求BD的长度.【解答】(1)证明:如图,连接OD,CD,则∠OAD=∠ODA.∵AD平分∠CAB,∴∠OAD=∠EAD.∴∠ODA=∠EAD.∴OD∥AE,∵AB为直径,∴∠ACB=90°.∵DE∥BC,∴∠E=90°,∴∠ODE=90°,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:∵AD平分∠CAB,∴=,∴CD=BD,在Rt△CDE中,DE=2,CE=1,根据勾股定理,得CD===,∴BD=.9.(2021秋•博白县期末)如图,在△ABC中,AB=AC,以AC边为直径作⊙O交BC边于点D,过点D作DE⊥AB于点E,ED、AC的延长线交于点F.(1)求证:EF是⊙O的切线;(2)若AC=10,CD=6,求DE的长.【解答】(1)证明:连接OD,如图所示:∵AB=AC,∴∠B=∠ACD,∵OC=OD,∴∠ODC=∠OCD,∴∠B=∠ODC,∴OD∥AB,∵DE⊥AB,∴EF⊥OD,又∵OD是⊙O的半径,∴EF是⊙O的切线;(2)解:连接AD,∵AC为⊙O的直径,∴AD⊥BC,∵AB=AC,∴BD=CD=6.在Rt△ACD中,AC=10,CD=6,∴AD===8,又∵DE⊥AB,AB=AC=10,=AB•DE=AD•BD,∴S△ABD即×10×DE=×8×6,∴DE=4.8.10.(2022•任城区三模)如图,△ABC内接于⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连接AF;(1)判断AF与⊙O的位置关系并说明理由.(2)若⊙O的半径为4,AF=3,求AC的长.【解答】(1)解:AF是⊙O的切线,理由如下:连接OC,如图所示:∵AB是⊙O直径,∴∠BCA=90°,∵OF∥BC,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF⊥AC,∵OC=OB,∴∠B=∠1,∴∠3=∠2,在△OAF和△OCF中,,∴△OAF≌△OCF(SAS),∴∠OAF=∠OCF,∵PC是⊙O的切线,∴∠OCF=90°,∴∠OAF=90°,∴FA⊥OA,∴AF是⊙O的切线;(2)∵⊙O的半径为4,AF=3,∠OAF=90°,∴OF===5∵FA⊥OA,OF⊥AC,∴AC=2AE,△OAF的面积=AF•OA=OF•AE,∴3×4=5×AE,解得:AE=,∴AC=2AE=.。
2021年数学九年级中考复习专题之圆的综合(考察切线证明、长度、面积、动点问题等)(一)
![2021年数学九年级中考复习专题之圆的综合(考察切线证明、长度、面积、动点问题等)(一)](https://img.taocdn.com/s3/m/b76aa9f4a5e9856a5712602c.png)
2021年数学九年级中考复习专题之圆的综合(考察切线证明、长度、面积、动点问题等)(一)1.如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为G,OG:OC=3:5,AB=8.(1)求⊙O的半径;(2)点E为圆上一点,∠ECD=15°,将沿弦CE翻折,交CD于点F,求图中阴影部分的面积.2.已知AB是⊙O的直径,点C在⊙O上,点D在半径OA上(不与点O,A重合).(1)如图1,若∠COA=60°,∠CDO=70°,求∠ACD的度数.(2)如图2,点E在线段OD上(不与O,D重合),CD、CE的延长线分别交⊙O 于点F、G,连接BF,BG,点P是CO的延长线与BF的交点,若CD=1,BG=2,∠OCD=∠OBG,∠CFP=∠CPF,求CG的长.3.如图,点A是⊙O直径BD延长线上的一点,C在⊙O上,AC=BC,AD=CD (1)求证:AC是⊙O的切线;(2)若⊙O的半径为2,求△ABC的面积.4.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,AB=8.(1)利用尺规,作∠CAB的平分线,交⊙O于点D;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD,OD,若AC=CD,求∠B的度数;(3)在(2)的条件下,OD交BC于点E,求由线段ED,BE,所围成区域的面积.(其中表示劣弧,结果保留π和根号)5.(1)如图1,在菱形ABCD中,CE=CF,求证:AE=AF.(2)如图2,AB是⊙O的直径,PA与⊙O相切于点A,OP与⊙O相交于点C,连接CB,∠OPA=40°,求∠ABC的度数.6.如图,在Rt△ABC中,∠BAC=90°,O是AB边上的一点,以OA为半径的⊙O与边BC相切于点E.(1)若AC=5,BC=13,求⊙O的半径;(2)过点E作弦EF⊥AB于M,连接AF,若∠F=2∠B,求证:四边形ACEF是菱形.7.如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.(1)求证:∠ACD=∠B;(2)如图2,∠BDC的平分线分别交AC,BC于点E,F;①求tan∠CFE的值;②若AC=3,BC=4,求CE的长.8.如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;(2)若DH=6﹣3,求EF和半径OA的长.9.已知:如图,⊙O是△ABC的外接圆,=,点D在边BC上,AE∥BC,AE=BD.(1)求证:AD=CE;(2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE 是平行四边形.10.如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E在AB的延长线上,∠AED=∠ABC.(1)求证:DE与⊙O相切;(2)若BF=2,DF=,求⊙O的半径.参考答案1.解:(1)连接AO,如右图1所示,∵CD为⊙O的直径,AB⊥CD,AB=8,∴AG==4,∵OG:OC=3:5,AB⊥CD,垂足为G,∴设⊙O的半径为5k,则OG=3k,∴(3k)2+42=(5k)2,解得,k=1或k=﹣1(舍去),∴5k=5,即⊙O的半径是5;(2)如图2所示,将阴影部分沿CE翻折,点F的对应点为M,∵∠ECD=15°,由对称性可知,∠DCM=30°,S阴影=S弓形CBM,连接OM,则∠MOD=60°,∴∠MOC=120°,过点M作MN⊥CD于点N,∴MN=MO•sin60°=5×,∴S阴影=S扇形OMC﹣S△OMC==,即图中阴影部分的面积是:.2.解:(1)∵OA=OC,∠COA=60°,∴△ACO为等边三角形,∴∠CAD=60°,又∵∠CDO=70°,∴∠ACD=∠CDO﹣∠CAD=10°.(2)连接AG,延长CP交BG于点Q,交⊙O于点H,令CG交BF于点R,如图所示.在△COD和△BOQ中,,∴△COD≌△BOQ(ASA),∴BQ=CD=1,∠CDO=∠BQO.∵BG=2,∴OQ⊥BG,∴∠CQG=90°.∵∠CGQ+∠GCQ+∠CQG=180°,∠RCP+∠CPR+∠CRP=180°,∠CGQ=∠CFP=∠CPF,∴∠CRP=∠CQG=90°,∵∠CFP=∠CPF,∴∠FCG=∠HCG,∴=.∵∠OCD=∠OBG,∠FCG=∠FBG,∴∠ABF=∠GCH,∴=.∵∠CDO=∠BQO=90°,∴,∴点G为中点,∴△AGB、△OQB为等腰直角三角形.∵BQ=1,∴OQ=BQ=1,OB=BQ=.在Rt△CGQ中,GQ=1,CQ=CO+OQ=+1,∴CG==.3.解:(1)连接OC.∵AC=BC,AD=CD,OB=OC,∴∠A=∠B=∠1=∠2.∵∠ACO=∠DCO+∠2,∴∠ACO=∠DCO+∠1=∠BCD,又∵BD是直径,∴∠BCD=90°,∴∠ACO=90°,又C在⊙O上,∴AC是⊙O的切线;(2)由题意可得△DCO是等腰三角形,∵∠CDO=∠A+∠2,∠DOC=∠B+∠1,∴∠CDO=∠DOC,即△DCO是等边三角形.∴∠A=∠B=∠1=∠2=30°,CD=AD=2,在直角△BCD中,BC===2.又AC=BC,∴AC=2.作CE⊥AB于点E.在直角△BEC中,∠B=30°,∴CE=BC=,∴S △ABC=AB•CE=×6×=3.4.解:(1)如图1所示,AP即为所求的∠CAB的平分线;(2)如图2所示:∵AC=CD,∴∠CAD=∠ADC,又∵∠ADC=∠B,∴∠CAD=∠B,∵AD平分∠CAB,∴∠CAD=∠DAB=∠B,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠B=90°,∴3∠B=90°,∴∠B=30°;(3)由(2)得:∠CAD=∠BAD,∠DAB=30°,又∵∠DOB=2∠DAB,∴∠BOD=60°,∴∠OEB=90°,在Rt△OEB中,OB=AB=4,∴OE=OB=2,∴BE===2,∴△OEB的面积=OE•BE=×2×2=2,扇形BOD的面积==,∴线段ED,BE,所围成区域的面积=﹣2.5.证明:(1)∵四边形ABCD是菱形,∴AB=BC=CD=AD,∠B=∠D∵CE=CF,∴BE=DF在△ABE与△ADF中,,∴△ABE≌△ADF.∴AE=AF;(2)∵AB是⊙O的直径,直线PA与⊙O相切于点A,∴∠PAO=90°.又∵∠OPA=40°,∴∠POA=50°,∴∠ABC=∠POA=25°.6.(1)解:连接OE,设圆O半径为r,在Rt△ABC中,BC=13,AC=5,根据勾股定理得:AB==12,∵BC与圆O相切,∴OE⊥BC,∴∠OEB=∠BAC=90°,∵∠B=∠B,∴△BOE∽△BCA,∴=,即=,解得:r=;(2)∵=,∠F=2∠B,∴∠AOE=2∠F=4∠B,∵∠AOE=∠OEB+∠B,∴∠B=30°,∠F=60°,∵EF⊥AD,∴∠EMB=∠CAB=90°,∴∠MEB=∠F=60°,CA∥EF,∴CB∥AF,∴四边形ACEF为平行四边形,∵∠CAB=90°,OA为半径,∴CA为圆O的切线,∵BC为圆O的切线,∴CA=CE,∴平行四边形ACEF为菱形.7.(1)证明:如图1中,连接OC.∵OA=OC,∴∠1=∠2,∵CD是⊙O切线,∴OC⊥CD,∴∠DCO=90°,∴∠3+∠2=90°,∵AB是直径,∴∠1+∠B=90°,∴∠3=∠B.(2)解:①∵∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB,∵∠CDE=∠FDB,∠ECD=∠B,∴∠CEF=∠CFE,∵∠ECF=90°,∴∠CEF=∠CFE=45°,∴tan∠CFE=tan45°=1.②在RT△ABC中,∵AC=3,BC=4,∴AB==5,∵∠CDA=∠BDC,∠DCA=∠B,∴△DCA∽△DBC,∴===,∵∠CDE=∠BDF,∠DCE=∠B,∴△DCE∽△DBF,∴==,设EC=CF=x,∴=,∴x=.∴CE=.8.解:(1)连接OB,∵OA=OB=OC,∵四边形OABC是平行四边形,∴AB=OC,∴△AOB是等边三角形,∴∠AOB=60°,∵∠FAD=15°,∴∠BOF=30°,∴∠AOF=∠BOF=30°,∴OF⊥AB,∵CD∥OF,∴CD⊥AD,∵AD∥OC,∴OC⊥CD,∴CD是半圆O的切线;(2)∵BC∥OA,∴∠DBC=∠EAO=60°,∴BD=BC=AB,∴AE=AD,∵EF∥DH,∴△AEF∽△ADH,∴,∵DH=6﹣3,∴EF=2﹣,∵OF=OA,∴OE=OA﹣(2﹣),∵∠AOE=30°,∴==,解得:OA=2.9.证明:(1)在⊙O中,∵=,∴AB=AC,∴∠B=∠ACB,∵AE∥BC,∴∠EAC=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,,∴△ABD≌△CAE(SAS),∴AD=CE;(2)连接AO并延长,交边BC于点H,∵=,OA为半径,∴AH⊥BC,∴BH=CH,∵AD=AG,∴DH=HG,∴BH﹣DH=CH﹣GH,即BD=CG,∵BD=AE,∴CG=AE,∵CG∥AE,∴四边形AGCE是平行四边形.10.(1)证明:连接OD,∵AB是⊙O的直径,∴∠ACB=90°,∴∠A+∠ABC=90°,∵∠BOD=2∠BCD,∠A=2∠BCD,∴∠BOD=∠A,∵∠AED=∠ABC,∴∠BOD+∠AED=90°,∴∠ODE=90°,即OD⊥DE,∴DE与⊙O相切;(2)解法一:连接BD,过D作DH⊥BF于H,延长DO交⊙O于G,连接BG,则∠G=∠DCB,∵∠G+∠GDB=90°,∵DE与⊙O相切,∴∠GDB+∠BDE=90°,∴∠G=∠BDE,∴∠BDE=∠BCD,∵∠AED=∠ABC,∴∠AFC=∠DBF,而∠AFC=∠ABC+∠BCD,∠DBF=∠AED+∠BDE,∵∠AFC=∠DFB,∴△FDB是等腰三角形,∴FH=BH=BF=1,则FH=1,∴HD==3,在Rt△ODH中,OH2+DH2=OD2,即(OD﹣1)2+32=OD2,∴OD=5,∴⊙O的半径是5.解法二:连接BD,OD,∵∠A=2∠BCD,∴∠BOD=∠BDF,∵∠OBD=∠DBF,∴△BOD∽△BDF,∴==,∵OB=OD,∴BD=DF=,∴OD===5.。
2021年中考数学复习讲义:第九章 圆 模型(三十五)——圆幂定理模型
![2021年中考数学复习讲义:第九章 圆 模型(三十五)——圆幂定理模型](https://img.taocdn.com/s3/m/fd58a61b4693daef5ff73ddf.png)
第九章.圆模型(三十五)——圆幂定理模型模型讲解一、相交弦定理【结论1】如图,⊙O中,弦AB、CD相交于点P,半径为r,则①AP·BP=CP·DP, ②AP·BP=CP·DP=r2-OP2.【证明】①②二、切割线定理【结论2】如图,PBC是⊙O的一条割线,PA是⊙O的一条切线,切点为A,半径为r,则①PA2=PB·PC,②PA2=PB·PC=PO2-r2【证明】①②三、割线定理【结论3】如图,PAB、PCD是⊙O的两条割线,半径为r,则①PA·PB=PC·PD, ②PA·PB=PC·PD=OP2-r2【证明】口诀从两线交点处引出的共线线段的乘积相等小试牛刀典例1 ☆☆☆☆☆如图,在⊙O中,弦 AB与半径 OC 相交于点M,且 OM=MC,若 AM=1.5,BM=4,则 OC的长为().A.2B.C.2D.2【答案】D【解析】如图,延长 CO,交OO于D,则CD为OO的直径.∵OM=MC,∴OC=2MC=2OM,DM=3OM=3MC.由相交弦定理得 DM·MC=AM·BM,即 3MC2=1.5×4,解得 MC =. ∴OC=2MC=2.故选 D.典例2 ☆☆☆☆☆如图,⊙O的弦AB,CD相交于点E,若 CE∶BE=2∶3,则 AE∶ DE 的值为(A. B. C.D.【答案】A【解析】∶∵⊙O的弦AB,CD 相交于点E,根据相交弦定理得 AE·BE=CE·DE,∴AE: DE=CE: BE=2:3.故选 A.典例3 ☆☆☆☆☆如图,过点 P作⊙O的两条割线分别交⊙O于点A,B和点C,D,已知PA=3,AB=PC=2,则 PD的长是( )A.3B.7.5C.5D.5.5【答案】B【解析】∵PA=3,AB=PC=2,∴PB=5,根据割线定理得 PA·PB=PC·PD,∴PD=7.5.故选 B.小试牛刀1.(★★☆☆☆)如图,过点P引圆的两条割线PAB 和PCD.分别交圆于点 A,B和C,D,连接 AC,BD ,则在比例式①=,②==中,正确的个数为( )A.3B.2C.1D.02.(★★☆☆☆)如图,已知⊙O中,弦 AB=25,M是AB上一点, OA=13,OM=5,则AM=()A.16B.20C.20或9D.16或93.(★★☆☆☆)如图,在⊙O中,P为弦AB上一点,PO⊥PC,PC交⊙O于C,那么()A.OP²=PA·PB,B.PC²=PA·PBC.PA²=PB·PC,D.PB²=PA·PC直击中考1.如图,在⊙O中,弦 AB=CD,AB⊥CD于点E.已知 CE·ED=3,BE=1,则⊙O的直径是()A.2B.C.2D.52.如图,半圆O的直径 BC=7,延长 CB到A,直线 AD交半圆于点E,D,且AE=ED=3,则AB的长为( ).A. B.2 C.D.9同幂定理是一个非常重要的定理,在计算过程中,如果涉及计算某条线段的长度,用普通的垂径定理,勾股定理,也能够得到答案,但是速记圆幂定理可以让我们更能看到图形的本质。
2021年九年级数学中考复习专题之圆的考察:切割线定理的运用(一)
![2021年九年级数学中考复习专题之圆的考察:切割线定理的运用(一)](https://img.taocdn.com/s3/m/c5fbd6349b89680202d82530.png)
2021年数学中考复习专题之圆的考察:切割线定理的运用(一)一.选择题1.如图,PA切⊙O于A,PBC是⊙O的割线,如果PB=2,PC=4,则PA的长为()A.2 B.2C.4 D.22.如图,点P是⊙O外一点,PAB为⊙O的一条割线,且PA=AB,PO交⊙O于点C,若OC =3,OP=5,则AB长为()A.B.C.D.3.如图,在Rt△ABC中,AC=5,BC=12,⊙O分别与边AB,AC相切,切点分别为E,C,则⊙O的半径是()A.B.C.D.4.如图,PAB为⊙O的割线,且PA=AB=3,PO交⊙O于点C,若PC=2,则⊙O的半径的长为()A.B.C.D.75.如图,Rt△ABC中,∠C=90°,O为AB上一点,以O为圆心,OA为半径作圆O与BC相切于点D,分别交AC、AB于E、F,若CD=2CE=4,则⊙O的直径为()A.10 B.C.5 D.126.如图,两圆相交于C、D,AB是两圆的一条外公切线,A、B为切点,CD的延长线交AB 于M,若CD=9,MD=3,则AB的长为()A.18 B.12 C.13.5 D.6√37.如图,点C、O在线段AB上,且AC=CO=OB=5,过点A作以BC为直径的⊙O切线,D 为切点,则AD的长为()A.5 B.6 C.D.108.如图,从点P向⊙O引两条切线PA,PB,切点为A,B,BC为⊙O的直径,若∠P=60°,PA=3,则⊙O的直径BC的长为()A.B.C.3 D.9.以正方形ABCD的BC边为直径作半圆O,过点D作直线切半圆于点F,交AB边于点E.则三角形ADE和直角梯形EBCD周长之比为()A.3:4 B.4:5 C.5:6 D.6:710.如图,已知PA是⊙O的切线,A为切点,PC与⊙O相交于B、C两点,PB=2cm,BC=8cm,则PA的长等于()A.4cm B.16cm C.20cm D.2cm二.填空题11.已知直角梯形ABCD的四条边长分别为AB=2,BC=CD=10,AD=6,过B、D两点作圆,与BA的延长线交于点E,与CB的延长线交于点F,则BE﹣BF的值为.12.如图,PT是⊙O的切线,T为切点,PA是割线,交⊙O于A、B两点,与直径CT交于点D.已知CD=2,AD=3,BD=4,那PB=.13.如图,AB,AC分别是⊙O的切线和割线,且∠C=45°,∠BDA=60°,CD=,则切线AB的长是.14.如图,⊙O的割线PAB交⊙O于点A、B,PA=7cm,AB=5cm,PO=10cm,则⊙O的半径为.15.如图,已知PA为⊙O的切线,PBC为⊙O的割线,PA=,PB=BC,⊙O的半径OC =5,那么弦BC的弦心距OM=.16.如图,过点P引圆的两条割线PAB和PCD,分别交圆于点A,B和C,D,连接AC,BD,则在下列各比例式中,①;②;③,成立的有(把你认为成立的比例式的序号都填上).三.解答题17.如图,OB是以(O,a)为圆心,a为半径的⊙O1的弦,过B点作⊙O1的切线,P为劣弧上的任一点,且过P作OB、AB、OA的垂线,垂足分别是D、E、F.(1)求证:PD2=PE•PF;(2)当∠BOP=30°,P点为的中点时,求D、E、F、P四个点的坐标及S△DEF.18.如图,AB、AC分别是⊙O的直径和弦,D是劣弧AC的中点,DE⊥AB于H,交⊙O于点E,交AC于点F.(1)图中有哪些必相等的线段?(要求:不要标注其它字母,找结论的过程中所作的辅助线不能出现在结论中,不必写出推理过程.)(2)若过C点作⊙O的切线PC交ED延长线于P点,(请补全图形),求证:PF2=PD•PE;(3)已知AH=1,BH=4,求PC的长.19.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB.(1)求证:AC是△BDE的外接圆的切线;(2)若,求BD的长.20.如图,在△ABC中,∠BAC=90度.BM平分∠ABC交AC于M,以A为圆心,AM为半径作⊙A交BM于N,AN的延长线交BC于D,直线AB交⊙A于P,K两点,作MT⊥BC于T.(1)求证:AK=MT;(2)求证:AD⊥BC;(3)当AK=BD时,求证:.参考答案一.选择题1.解:∵PA2=PB•PC=8,PB=2,PC=4,∴PA=2.故选:B.2.解:设PA=AB=x,延长PO交圆于点D.∵PA•PB=PC•PD,OC=3,OP=5,∴x•2x=16,∴x=2.故选:B.3.解:∵AE=AC=5,AC=5,BC=12,∴AB=13,∴BE=8;∵BE2=BD•BC,∴BD=,∴CD=,∴圆的半径是,故选:A.4.解法一:延长PO交圆于点D利用割线定理可知PA•PB=PC•PD,求得PD=9,所以CD=7,半径=3.5.解法二:作OD⊥AB于D,根据垂径定理和勾股定理求解.故选:A.5.解:连接OD,过O作AC的垂线,设垂足为G,∵∠C=90°,∴四边形ODCG是矩形,∵CD是切线,CEA是割线,∴CD2=CE•CA,∵CD=2CE=4,∴AC=8,∴AE=6,∴GE=3,∴OD=CG=5,∴⊙O的直径为10.故选:A.6.解:∵AB是两圆的一条外公切线,∴MA2=MD•MC,MB2=MD•MC,∵CD=9,MD=3,∴MA=MB=6,∴AB=12,故选:B.7.解:∵AD是⊙O的切线,ACB是⊙O的割线,∴AD2=AC•AB,又AC=5,AB=AC+CO+OB=15,∴AD2=5×15=75,∴AD=5.(AD=﹣5不合题意舍去).故选:C.8.解:连接OP.∵PB=PA=3,∠OPB=30°,tan∠OPB=,∴OB=,圆的直径是2.故选:A.9.解:根据切线长定理得,BE=EF,DF=DC=AD=AB=BC.设EF=x,DF=y,则在直角△AED中,AE=y﹣x,AD=CD=y,DE=x+y.根据勾股定理可得:(y﹣x)2+y2=(x+y)2,∴y=4x,∴三角形ADE的周长为12x,直角梯形EBCD周长为14x,∴两者周长之比为12x:14x=6:7.故选:D.10.解:∵PB=2cm,BC=8cm,∴PC=10cm,∵PA2=PB•PC=20,∴PA=2,故选:D.二.填空题(共6小题)11.解:延长CD交⊙O于点G,设BE,DG的中点分别为点M,N,则易知AM=DN,∵BC=CD=10,由割线定理得,CB•CF=CD•CG,∵CB=CD,∴BF=DG,∴BE﹣BF=BE﹣DG=2(BM﹣DN)=2(BM﹣AM)=2AB=4.故答案为:4.12.解:∵AD•BD=CD•DT,∴TD=,∵CD=2,AD=3,BD=4,∴TD=6,∵PT是⊙O的切线,PA是割线,∴PT2=PA•PB,∵CT为直径,∴PT2=PD2﹣TD2,∴PA•PB=PD2﹣TD2,即(PB+7)PB=(PB+4)2﹣62,解得PB=20.故答案为:20.13.解:过点A作AM⊥BD与点M.∵AB为圆O的切线∴∠ABD=∠C=45°(弦切角等于所夹弧所对的圆周角)∵∠BDA=60°∴∠BAD=75°,∠DAM=30°,∠BAM=45°设AB=x,则AM=x,在直角△AMD中,AD=x 由切割线定理得:AB2=AD•ACx2=x(x+)解得:x1=6,x2=0(舍去)故AB=6.故答案是:6.14.解:延长PO交圆于点D,由割线定理知,PA•PB=PC•PD=(PO﹣CO)(PO+CO),代入数据解得,CO=4.15.解:∵PA为⊙O的切线,PBC为⊙O的割线,∴PA2=PB•PC;设BC=x,则PB=x,PC=2x,∴2x2=72,解得x=6;∵OM⊥BC,在直角△OMC中,∵OC=5,CM=3,∴OM=4.16.解:∵四边形ABCD是圆内接四边形∴∠PAD=∠C,∠PAD=∠B∴△PAD∽△PCB根据相似三角形的对应边的比相等,得到②③是正确的.三.解答题(共4小题)17.(1)证明:连接PB,OP,∵PE⊥AB,PD⊥OB,∴∠BEP=∠PDO=90°,∵AB切⊙O1于B,∠ABP=∠BOP,∴△PBE∽△POD,∴=,同理,△OPF∽△BPD∴=,∴=,∴PD2=PE•PF;(2)解:连接O1B,O1P,∵AB切⊙O1于B,∠POB=30°,∴∠ABP=30°,∴∠O1BP=90°﹣30°=60°,∵O1B=O1P,∴△O1BP为等边三角形,∴O1B=BP,∵P为弧BO的中点,∴BP=OP,即△O1PO为等边三角形,∴O1P=OP=a,∴∠O1OP=60°,又∵P为弧BO的中点,∴O1P⊥OB,在△O1DO中,∵∠O1OP=60°O1O=a,∴O1D=a,OD=a,过D作DM⊥OO1于M,∴DM=OD=a,OM=DM=a,∴D(﹣a,a),∵∠O1OF=90°,∠O1OP=60°∴∠POF=30°,∵PE⊥OA,∴PF=OP=a,OF=a,∴P(﹣a,),F(﹣a,0),∵AB切⊙O1于B,∠POB=30°,∴∠ABP=∠BOP=30°,∵PE⊥AB,PB=a,∴∠EPB=60°∴PE=a,BE=a,∵P为弧BO的中点,∴BP=PO,∴∠PBO=∠BOP=30°,∴∠BPO=120°,∴∠BPE+∠BPO=120°+60°=180°,即OPE三点共线,∵OE=a+a=a,过E作EM⊥x轴于M,∵AO切⊙O1于O,∴∠EOA=30°,∴EM=OE=a,OM=a,∴E(﹣a,a),∵E(﹣a,a),D(﹣a,a),∴DE=﹣a﹣(﹣a)=a,DE边上的高为:a,=×a×a=a2.∴S△DEF故答案为:D(﹣a,a),E(﹣a,a),F(﹣a,0),P(﹣a,);S=a2.△DEF18.(1)解:AO=BO,DH=EH,DF=AF,AC=DE;(2)证明:连EC,AE,则∠PFC是△ECF的一个外角,于是∠PFC=∠ACE+∠FEC;∵DH⊥AB,AB是⊙O的直径,∴A是DE中点,即弧AD=弧AE,∴∠AED=∠ACE,∴∠ACE+∠FEC=∠AED+∠DEC=∠AEC,∵PC是⊙O的切线,∴∠PCA=∠AEC.∴∠PCA=∠PFC,∴PC=PF.∵PC是切线∴PC2=PD•PE,∴PF2=PD•PE;(3)解:在⊙O中,AH•HB=DH•HE=DH2,∴设AF=x,则FH=2﹣x.在Rt△AFH中,AH2+FH2=AF2∴1+(2﹣x)2=x2,∴x=,即.于是.由(1)(2)知HE=HD=2,,解得.∴PF=PD+DF=.∴PC=PF=.19.(1)证明:连接OE,∵BE平分∠ABC交AC于点E,∴∠1=∠EBC,∵∠1=∠2,∴∠2=∠CBE,∴∠AEO=∠C=90°,∴AC是⊙O的切线,∵⊙O是△BDE的外接圆,∴AC是△BDE的外接圆的切线;(2)解:∵AE是圆O的切线,AB是圆的割线,根据切割线定理:AE2=AD×AB,∵,∴()2=2×(2+BD),解得:BD=4.∴BD的长是:4.20.证明:(1)∵BM平分∠ABC,∠BAC=90°,MT⊥BC,∴AM=MT.又∵AM=AK,∴AK=MT.(2)∵BM平分∠ABC,∴∠ABM=∠CBM.∵AM=AN,∴∠AMN=∠ANM.又∵∠ANM=∠BND,∴∠AMN=∠BND.∵∠BAC=90°,∴∠ABM+∠AMB=90°.∴∠CBM+∠BND=90°.∴∠BDN=90°.∴AD⊥BC.(3)连接PN、KM∵BNM和BPK为⊙A的割线,∴BN•BM=BP•BK.∴.∵AK=BD,AK=MT,∴BD=MT.∵AD⊥BC,MT⊥BC,∴∠ADB=∠MTC=90°.∴∠C+∠CMT=90°.∵∠BAC=90°,∴∠C+∠ABC=90°.∴∠ABC=∠CMT.在△ABD和△CMT中,,∴△ABD≌△CMT.∴AB=MC.∵AK=AM,∴AB+AK=MC+AM.即BK=AC.∴.。
2021年九年级数学中考复习专题之圆:切线长定理综合运用(二)
![2021年九年级数学中考复习专题之圆:切线长定理综合运用(二)](https://img.taocdn.com/s3/m/c4959dbbb84ae45c3a358c53.png)
2021年九年级数学中考复习专题之圆:切线长定理综合运用(二)一.选择题1.如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若△PCD 的周长等于3,则PA的值是()A.B.C.D.2.如图,PA切⊙O于A,PB切⊙O于B,连接OP.若∠APO=30°,OA=2,则BP =()A.B.C.4 D.23.如图,PA、PB、分别切⊙O于A、B两点,∠P=40°,则∠C的度数为()A.40°B.140°C.70°D.80°4.如图,PA,PB分别是⊙O的切线,A,B分别为切点,点E是⊙O上一点,且∠AEB =60°,则∠P为()A.120°B.60°C.30°D.45°5.如图,⊙O为△ABC的内切圆,AC=10,AB=8,BC=9,点D,E分别为BC,AC 上的点,且DE为⊙O的切线,则△CDE的周长为()A.9 B.7 C.11 D.86.如图,PA、PB切⊙O于点A、B,直线FG切⊙O于点E,交PA于F,交PB于点G,若PA=8cm,则△PFG的周长是()A.8cm B.12cm C.16cm D.20cm7.如图,是用一把直尺、含60°角的直角三角板和光盘摆放而成,点A为60°角与直尺交点,点B为光盘与直尺唯一交点,若AB=3,则光盘的直径是()A.6B.3C.6 D.38.如图,PA、PB切⊙O于点A、B,PA=10,CD切⊙O于点E,交PA、PB于C、D 两点,则△PCD的周长是()A.10 B.18 C.20 D.229.如图,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=5,则△PCD的周长为()A.5 B.7 C.8 D.1010.如图,PA、PB是⊙O的两条切线,切点是A、B.如果OP=4,PA=2,那么∠AOB等于()A.90°B.100°C.110°D.120°二.填空题11.如图,⊙O是四边形ABCD的内切圆,连接OA、OB、OC、OD.若∠AOB=110°,则∠COD的度数是°.12.如图,PA、PB是⊙O的切线,A、B为切点,点C、D在⊙O上.若∠P=102°,则∠A+∠C=.13.如图,PA、PB切⊙O于A、B,点C在上,DE切⊙O于C,交PA、PB于D、E,已知PO=13cm,⊙O的半径为5cm,则△PDE的周长是.14.如图,四边形ABCD是⊙O的外切四边形,且AB=10,CD=15,则四边形ABCD 的周长为.15.如图,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=5,则△PCD的周长为.三.解答题16.如图,从⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,若PA=5cm,C是上的一个动点(点C与A、B两点不重合),过点C作⊙O的切线,分别交PA、PB于点D、E,求△PED的周长是多少?17.如图,PA,PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=60°.(1)求∠BAC的度数;(2)当OA=2时,求AB的长.18.如图所示,PA、PB是⊙O的切线,切点分别是A、B,Q为⊙O上一点,过Q点作⊙O的切线,交PA、PB于E、F点,已知PA=8cm,求:△PEF的周长.19.如图,AB为⊙O直径,PA、PC分别与⊙O相切于点A、C,PQ⊥PA,PQ交OC 的延长线于点Q.(1)求证:OQ=PQ;(2)连BC并延长交PQ于点D,PA=AB,且CQ=6,求BD的长.20.如图,Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D 作⊙O的切线,交BC于点E;(1)求证:BE=CE;(2)若以O、D、E、C为顶点的四边形是正方形,⊙O的半径为r,求△ABC的面积;(3)若EC=4,BD=,求⊙O的半径OC的长.参考答案一.选择题1.解:∵PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D,∴AC=EC,DE=DB,PA=PB∵△PCD的周长等于3,∴PA+PB=3,∴PA=.故选:A.2.解:∵PA、PB为圆O的两条切线,∴PA=PB,OA⊥AP,在Rt△AOP中,∠APO=30°,OA=2,∴tan∠APO=,即tan30°==,∴PA==2,则PB=PA=2.故选:D.3.解:∵PA是圆的切线.∴∠OAP=90°,同理∠OBP=90°,根据四边形内角和定理可得:∠AOB=360°﹣∠OAP﹣∠OBP﹣∠P=360°﹣90°﹣90°﹣40°=140°,∴∠ACB=∠AOB=70°.故选:C.4.解:连接OA,BO;∵∠AOB=2∠E=120°,∴∠OAP=∠OBP=90°,∴∠P=180°﹣∠AOB=60°.故选:B.5.解:设AB,AC,BC和圆的切点分别是P,N,M,CM=x,根据切线长定理,得CN=CM=x,BM=BP=9﹣x,AN=AP=10﹣x.则有9﹣x+10﹣x=8,解得:x=5.5.所以△CDE的周长=CD+CE+QF+DQ=2x=11.故选:C.6.解:根据切线长定理可得:PA=PB,FA=FE,GE=GB;所以△PFG的周长=PF+FG+PG,=PF+FE+EG+PB,=PF+FA+GB+PG,=PA+PB=16cm,故选:C.7.解:设三角板与圆的切点为C,连接OA、OB,由切线长定理知AB=AC=3,OA平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=AB tan∠OAB=3,∴光盘的直径为6,故选:A.8.解:∵PA、PB切⊙O于点A、B,CD切⊙O于点E,∴PA=PB=10,CA=CE,DE=DB,∴△PCD的周长是PC+CD+PD=PC+AC+DB+PD=PA+PB=10+10=20.故选:C.9.解:∵PA、PB为圆的两条相交切线,∴PA=PB,同理可得:CA=CE,DE=DB.∵△PCD的周长=PC+CE+ED+PD,∴△PCD的周长=PC+CA+BD+PD=PA+PB=2PA,∴△PCD的周长=10,故选:D.10.解:∵△APO≌△BPO(HL),∴∠AOP=∠BOP.∵sin∠AOP=AP:OP=2:4=:2,∴∠AOP=60°.∴∠AOB=120°.故选:D.二.填空题(共5小题)11.解:如图所示:连接圆心与各切点,在Rt△DEO和Rt△DFO中,∴Rt△DEO≌Rt△DFO(HL),∴∠1=∠2,同理可得:Rt△AFO≌Rt△AMO,Rt△BMO≌Rt△BNO,Rt△CEO≌Rt△CNO,∴∠3=∠4,∠5=∠7,∠6=∠8,∴∠5+∠6=∠7+∠8=110°,∴2∠2+2∠3=360°﹣2×110°,∴∠2+∠3=∠DOC=70°.故答案为:70°.12.解:连接AB,∵PA、PB是⊙O的切线,∴PA=PB,∵∠P=102°,∴∠PAB=∠PBA=(180°﹣102°)=39°,∵∠DAB+∠C=180°,∴∠PAD+∠C=∠PAB+∠DAB+∠C=180°+39°=219°,故答案为:219°.13.解:连接OA、OB,如下图所示:∵PA、PB为圆的两条切线,∴由切线长定理可得:PA=PB,同理可知:DA=DC,EC=EB;∵OA⊥PA,OA=5,PO=13,∴由勾股定理得:PA=12,∴PA=PB=12;∵△PDE的周长=PD+DC+CE+PE,DA=DC,EC=EB;∴△PDE的周长=PD+DA+PE+EB=PA+PB=24,故此题应该填24cm.14.解:∵四边形ABCD是⊙O的外切四边形,∴AE=AH,BE=BF,CF=CG,DH=DG,∴AD+BC=AB+CD=25,∴四边形ABCD的周长=AD+BC+AB+CD=25+25=50,故答案为:50.15.解:∵PA、PB切⊙O于A、B,∴PA=PB=5;同理,可得:EC=CA,DE=DB;∴△PDC的周长=PC+CE+DE+DP=PC+AC+PD+DB=PA+PB=2PA=10.即△PCD的周长是10.三.解答题(共5小题)16.解:∵PA、PB、DE是圆O的切线,切点分别是A、B、C,∴AP=BP,DA=DC,CE=BE,∴△PED的周长是:PD+DE+PE=PD+DC+CE+PE=PD+DA+PE+BE=PA+PB=2PA=10cm.答:△PED的周长是10cm.17.解:(1)∵PA,PB是⊙O的切线,∴AP=BP,∵∠P=60°,∴∠PAB=60°,∵AC是⊙O的直径,∴∠PAC=90°,∴∠BAC=90°﹣60°=30°.(2)连接OP,则在Rt△AOP中,OA=2,∠APO=30°,∴OP=4,由勾股定理得:,∵AP=BP,∠APB=60°,∴△APB是等边三角形,∴.18.解:∵PA、PB是⊙O的切线,切点分别是A、B,Q为⊙O上一点,过Q点作⊙O 的切线,交PA、PB于E、F点,∴PA=PB,EA=EQ,FB=FQ,∵PA=8cm,∴△PEF的周长为:PE+EF+PF=PA+PB=8+8=16(cm).19.(1)证明:连接OP.∵PA、PC分别与⊙O相切于点A,C,∴PA=PC,OA⊥PA,∵OA=OC,OP=OP,∴△OPA≌△OPC(SSS),∴∠AOP=∠POC,∵QP⊥PA,∴QP∥BA,∴∠QPO=∠AOP,∴∠QOP=∠QPO,∴OQ=PQ.(2)设OA=r.∵OB=OC,∴∠OBC=∠OCB,∵OB∥QD,∴∠QDC=∠B,∵∠OCB=∠QCD,∴∠QCD=∠QDC,∴QC=QD=6,∵QO=QP,∴OC=DP=r,∵PC是⊙O的切线,∴OC⊥PC,∴∠OCP=∠PCQ=90°,在Rt△PCQ中,∵PQ2=PC2+QC2,∴(6+r)2=62+(2r)2,r=4或0(舍弃),∴OP==4,∵OB=PD,OB∥PD,∴四边形OBDP是平行四边形,∴BD=OP=4.20.(1)证明:连接CD,由AC是直径知CD⊥AB;DE、CE都是切线,所以DE=CE,∠EDC=∠ECD;又∠B+∠ECD=90°,∠BDE+∠EDC=90°;所以∠B=∠BDE,所以BE=DE,从而BE=CE;(2)解:连接OD,当以O、D、E、C为顶点的四边形是正方形时,DE=EC=OC=OD=r;从而BE=r,即△ABC是一个等腰直角三角形;AC=AB=2r,S△ABC=2r2;(3)解:若EC=4,BD=4,则BC=8;在Rt△BDC中,cos∠CBD==;所以∠CBD=30°;在Rt△ABC中,=tan30°,即AC=BC tan30°=8×=,OC==;另解:设OC=r,AD=x;由EC=4,BD=4得BC=8,DC=4;则:,解得;即OC=.。
2021年数学中考复习专题之圆的综合(考察 切线证明、长度、面积、动点问题等)(含答案)
![2021年数学中考复习专题之圆的综合(考察 切线证明、长度、面积、动点问题等)(含答案)](https://img.taocdn.com/s3/m/a3b6b8600912a21615792935.png)
2021年数学中考复习专题之圆的综合(考察切线证明、长度、面积、动点问题等)1.如图,在Rt△ABC中,∠C=90°,点O在AB上,经过点A的⊙O与BC相切于点D,与AC,AB分别相交于点E,F,连接AD与EF相交于点G.(1)求证:AD平分∠CAB;(2)若OH⊥AD于点H,FH平分∠AFE,DG=1.①试判断DF与DH的数量关系,并说明理由;②求⊙O的半径.2.问题背景:如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC=CD.简单应用:(1)在图①中,若AC=,BC=2,则CD=.(2)如图③,AB是⊙O的直径,点C、D在⊙上,=,若AB=13,BC=12,求CD的长.拓展规律:(3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)(4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE=AC,CE=CA,点Q为AE的中点,则线段PQ与AC的数量关系是.3.如图,CD是⊙O的弦,AB是直径,且CD∥AB,连接AC、AD、OD,其中AC=CD,过点B的切线交CD的延长线于E.(1)求证:DA平分∠CDO;(2)若AB=12,求图中阴影部分的周长之和(参考数据:π=3.1,=1.4,=1.7).4.如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作⊙O,交BD于点E,连接CE,过D作DF⊥AB于点F,∠BCD=2∠ABD.(1)求证:AB是⊙O的切线;(2)若∠A=60°,DF=,求⊙O的直径BC的长.5.如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将沿CD 翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC(1)求CD的长;(2)求证:PC是⊙O的切线;(3)点G为的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交于点F(F与B、C不重合).问GE•GF是否为定值?如果是,求出该定值;如果不是,请说明理由.6.如图,△ABC中,∠BAC=120°,AB=AC=6.P是底边BC上的一个动点(P与B、C不重合),以P为圆心,PB为半径的⊙P与射线BA交于点D,射线PD交射线CA 于点E.(1)若点E在线段CA的延长线上,设BP=x,AE=y,求y关于x的函数关系式,并写出x的取值范围.(2)当BP=2时,试说明射线CA与⊙P是否相切.(3)连接PA,若S△APE=S△ABC,求BP的长.7.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交斜边AB于点M,若H是AC的中点,连接MH.(1)求证:MH为⊙O的切线.(2)若MH=,tan∠ABC=,求⊙O的半径.(3)在(2)的条件下分别过点A、B作⊙O的切线,两切线交于点D,AD与⊙O相切于N点,过N点作NQ⊥BC,垂足为E,且交⊙O于Q点,求线段NQ的长度.8.如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接CD,若OA=AE=a,写出求四边形ACDE面积的思路.9.如图,在射线BA,BC,AD,CD围成的菱形ABCD中,∠ABC=60°,AB=6,O是射线BD上一点,⊙O与BA,BC都相切,与BO的延长线交于点M.过M作EF ⊥BD交线段BA(或射线AD)于点E,交线段BC(或射线CD)于点F.以EF为边作矩形EFGH,点G,H分别在围成菱形的另外两条射线上.(1)求证:BO=2OM.(2)设EF>HE,当矩形EFGH的面积为24时,求⊙O的半径.(3)当HE或HG与⊙O相切时,求出所有满足条件的BO的长.10.如图所示,在Rt△ABC与Rt△OCD中,∠ACB=∠DCO=90°,O为AB的中点.(1)求证:∠B=∠ACD.(2)已知点E在AB上,且BC2=AB•BE.(i)若tan∠ACD=,BC=10,求CE的长;(ii)试判定CD与以A为圆心、AE为半径的⊙A的位置关系,并请说明理由.答案1.解:(1)如图,连接OD,∵⊙O与BC相切于点D,∴OD⊥BC,∵∠C=90°,∴OD∥AC,∴∠CAD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠BAD,∴AD平分∠CAB.(2)①DF=DH,理由如下:∵FH平分∠AFE,∴∠AFH=∠EFH,又∠DFG=∠EAD=∠HAF,∴∠DFG=∠EAD=∠HAF,∴∠DFG+∠GFH=∠HAF+∠HFA,即∠DFH=∠DHF,∴DF=DH.②设HG=x,则DH=DF=1+x,∵OH⊥AD,∴AD=2DH=2(1+x),∵∠DFG=∠DAF,∠FDG=∠FDG,∴△DFG∽△DAF,∴,∴,∴x=1,∵DF=2,AD=4,∵AF为直径,∴∠ADF=90°,∴AF=∴⊙O的半径为.2.解:(1)由题意知:AC+BC=CD,∴+2=CD,∴CD=3;(2)连接AC、BD、AD,∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,∵,∴AD=BD,将△BCD绕点D顺时针旋转90°到△AED处,如图③,∴∠EAD=∠DBC,∵∠DBC+∠DAC=180°,∴∠EAD+∠DAC=180°,∴E、A、C三点共线,∵AB=13,BC=12,∴由勾股定理可求得:AC=5,∵BC=AE,∴CE=AE+AC=17,∵∠EDA=∠CDB,∴∠EDA+∠ADC=∠CDB+∠ADC,即∠EDC=∠ADB=90°,∵CD=ED,∴△EDC是等腰直角三角形,∴CE=CD,∴CD=;(3)以AB为直径作⊙O,连接OD并延长交⊙O于点D1,连接D1A,D1B,D1C,如图④由(2)的证明过程可知:AC+BC=D 1C,∴D1C=,又∵D1D是⊙O的直径,∴∠DCD1=90°,∵AC=m,BC=n,∴由勾股定理可求得:AB2=m2+n2,∴D1D2=AB2=m2+n2,∵D1C2+CD2=D1D2,∴CD2=m2+n2﹣=,∵m<n,∴CD=;(4)当点E在直线AC的左侧时,如图⑤,连接CQ,PC,∵AC=BC,∠ACB=90°,点P是AB的中点,∴AP=CP,∠APC=90°,又∵CA=CE,点Q是AE的中点,∴∠CQA=90°,设AC=a,∵AE=AC,∴AE=a,∴AQ=AE=,由勾股定理可求得:CQ=a,由(2)的证明过程可知:AQ+CQ=PQ,∴PQ=a+a,∴PQ=AC;当点E在直线AC的右侧时,如图⑥,连接CQ、CP,同理可知:∠AQC=∠APC=90°,设AC=a,∴AQ=AE=,由勾股定理可求得:CQ=a,由(3)的结论可知:PQ=(CQ﹣AQ),∴PQ=AC.综上所述,线段PQ与AC的数量关系是PQ=AC或PQ=AC.3.证明:(1)∵CD∥AB,∴∠CDA=∠BAD,又∵OA=OD,∴∠ADO=∠BAD,∴∠ADO=∠CDA,∴DA平分∠CDO.(2)如图,连接BD,∵AB是直径,∴∠ADB=90°,∵AC=CD,∴∠CAD=∠CDA,又∵CD∥AB,∴∠CDA=∠BAD,∴∠CDA=∠BAD=∠CAD,∴==,又∵∠AOB=180°,∴∠DOB=60°,∵OD=OB,∴△DOB是等边三角形,∴BD=OB=AB=6,∵=,∴AC=BD=6,∵BE切⊙O于B,∴BE⊥AB,∴∠DBE=∠ABE﹣∠ABD=30°,∵CD∥AB,∴BE⊥CE,∴DE=BD=3,BE=BD×cos∠DBE=6×=3,∴的长==2π,∴图中阴影部分周长之和为2=4π+9+3=4×3.1+9+3×1.7=26.5.4.(1)证明:∵CD=CB,∴∠CBD=∠CDB,∵BC是⊙O的直径,∴∠CEB=90°,∴∠CBD+∠BCE=∠CDB+∠DCE,∴∠BCE=∠DCE,即∠BCD=2∠BCE,∵∠BCD=2∠ABD,∴∠ABD=∠BCE,∴∠CBD+∠ABD=∠CBD+∠BCE=90°,∴CB⊥AB,∵CB为直径,∴AB是⊙O的切线;(2)解:∵∠A=60°,DF=,∴在Rt△AFD中,AF===1,AD=2,∵DF⊥AB,CB⊥AB,∴DF∥BC,∴∠ADF=∠ACB,∵∠A=∠A,∴△ADF∽△ACB,∴=,设BC=x,则=,解得x=4+6.∴BC=4+6.5.(1)解:如图,连接OC,∵沿CD翻折后,点A与圆心O重合,∴OM=OA=×2=1,CD⊥OA,∵OC=2,∴CD=2CM=2=2=2;(2)证明:∵PA=OA=2,AM=OM=1,CM=CD=,∠CMP=∠OMC=90°,∴PC===2,∵OC=2,PO=2+2=4,∴PC2+OC2=(2)2+22=16=PO2,∴∠PCO=90°,∴PC是⊙O的切线;(3)解:GE•GF是定值,证明如下,连接GO并延长,交⊙O于点H,连接HF∵点G为的中点∴∠GOE=90°,∵∠HFG=90°,且∠OGE=∠FGH∴△OGE∽△FGH∴=∴GE•GF=OG•GH=2×4=8.6.解:(1)过A作AF⊥BC于F,过P作PH⊥AB于H,∵∠BAC=120°,AB=AC=6,∴∠B=∠C=30°,∵PB=PD,∴∠PDB=∠B=30°,CF=AC•cos30°=6×=3,∴∠ADE=30°,∴∠DAE=∠CPE=60°,∴∠CEP=90°,∴CE=AC+AE=6+y,∴PC==,∵BC=6,∴PB+CP=x+=6,∴y=﹣x+3,∵BD=2BH=x<6,∴x<2,∴x的取值范围是0<x<2;(2)∵BP=2,∴CP=4,∴PE=PC=2=PB,∴射线CA与⊙P相切;(3)当D点在线段BA上时,连接AP,∵S △ABC=BC•AF=××3=9,∵S△APE=AE•PE=y•×(6+y)=S△ABC=,解得:y=,代入y=﹣x+3得x=4﹣.当D点BA延长线上时,PC=EC=(6﹣y),∴PB+CP=x+(6﹣y)=6,∴y=x﹣3,∵∠PEC=90°,∴PE===(6﹣y),∴S△APE=AE•PE=y•(6﹣y)=S△ABC=,解得y=或,代入y=x﹣3得x=3或5.综上可得,BP的长为4﹣或3或5.7.解:(1)连接OH、OM,∵H是AC的中点,O是BC的中点,∴OH是△ABC的中位线,∴OH∥AB,∴∠COH=∠ABC,∠MOH=∠OMB,又∵OB=OM,∴∠OMB=∠MBO,∴∠COH=∠MOH,在△COH与△MOH中,,∴△COH≌△MOH(SAS),∴∠HCO=∠HMO=90°,∴MH是⊙O的切线;(2)∵MH、AC是⊙O的切线,∴HC=MH=,∴AC=2HC=3,∵tan∠ABC=,∴=,∴BC=4,∴⊙O的半径为2;(3)连接OA、CN、ON,OA与CN相交于点I,∵AC与AN都是⊙O的切线,∴AC=AN,AO平分∠CAD,∴AO⊥CN,∵AC=3,OC=2,∴由勾股定理可求得:AO=,∵AC•OC=AO•CI,∴CI=,∴由垂径定理可求得:CN=,设OE=x,由勾股定理可得:CN2﹣CE2=ON2﹣OE2,∴﹣(2+x)2=4﹣x2,∴x=,∴OE=,由勾股定理可求得:EN=,∴由垂径定理可知:NQ=2EN=.另解:先证明:△AOC∽△CNE,∴,由勾股定理可知:OA2=4+9=13,∴OA=,在△AOC中,CI⊥OA,CI×OA=2×3,∴CI=,∴CN=,∴=,∴NE=,∴NQ=2EN=.8.(1)证明:∵ED与⊙O相切于D,∴OD⊥DE,∵F为弦AC中点,∴OD⊥AC,∴AC∥DE.(2)解:作DM⊥OA于M,连接CD,CO,AD.首先证明四边形ACDE是平行四边形,根据S平行四边形ACDE=AE•DM,只要求出DM即可.(方法二:证明△ADE的面积等于四边形ACDE的面积的一半)∵AC∥DE,AE=AO,∴OF=DF,∵AF⊥DO,∴AD=AO,∴AD=AO=OD,∴△ADO是等边三角形,同理△CDO也是等边三角形,∴∠CDO=∠DOA=60°,AE=CD=AD=AO=DO=a,∴AO∥CD,又AE=CD,∴四边形ACDE是平行四边形,易知DM=a,∴平行四边形ACDE面积=a2.9.解:(1)如图1所示:设⊙O切AB于点P,连接OP,则∠OPB=90°.∵四边形ABCD为菱形,∴∠ABD=∠ABC=30°.∴OB=2OP.∵OP=OM,∴BO=2OP=2OM.(2)如图2所示:设GH交BD于点N,连接AC,交BD于点Q.∵四边形ABCD是菱形,∴AC⊥BD.∴BD=2BQ=2AB•cos∠ABQ=AB=18.设⊙O的半径为r,则OB=2r,MB=3r.∵EF>HE,∴点E,F,G,H均在菱形的边上.①如图2所示,当点E在AB上时.在Rt△BEM中,EM=BM•tan∠EBM=r.由对称性得:EF=2EM=2r,ND=BM=3r.∴MN=18﹣6r.∴S 矩形EFGH=EF•MN=2r(18﹣6r)=24.解得:r1=1,r2=2.当r=1时,EF<HE,∴r=1时,不合题意舍当r=2时,EF>HE,∴⊙O的半径为2.∴BM=3r=6.如图3所示:当点E在AD边上时.BM=3r,则MD=18﹣3r.MN=18﹣2(18﹣3r)=6r﹣18,EF=2EM=2×(18﹣3r)∴S 矩形EFGH=EF•MN=•(18﹣3r)(6r﹣18)=24.解得:r=4或5(舍弃),综上所述,⊙O的半径为2或4.(3)解设GH交BD于点N,⊙O的半径为r,则BO=2r.当点E在边BA上时,显然不存在HE或HG与⊙O相切.①如图4所示,点E在AD上时.∵HE与⊙O相切,∴ME=r,DM=r.∴3r+r=18.解得:r=9﹣3.∴OB=18﹣6.②如图5所示;由图形的对称性得:ON=OM,BN=DM.∴OB=BD=9.③如图6所示.∵HG与⊙O相切时,MN=2r.∵BN+MN=BM=3r.∴BN=r.∴DM=FM=GN=BN=r.∴D与O重合.∴BO=BD=18.④如图7所示:∵HE与⊙O相切,∴EM=r,DM=r.∴3r﹣r=18.∴r=9+3.∴OB=2r=18+6.综上所述,当HE或GH与⊙O相切时,OB的长为18﹣6或9或18或18+6.10.解:(1)∵∠ACB=∠DCO=90°,∴∠ACB﹣∠ACO=∠DCO﹣∠ACO,即∠ACD=∠OCB,又∵点O是AB的中点,∴OC=OB,∴∠OCB=∠B,∴∠ACD=∠B,(2)(i)∵BC2=AB•BE,∴=,∵∠B=∠B,∴△ABC∽△CBE,∴∠ACB=∠CEB=90°,∵∠ACD=∠B,∴tan∠ACD=tan∠B=,设BE=4x,CE=3x,由勾股定理可知:BE2+CE2=BC2,∴(4x)2+(3x)2=100,∴解得x=2,∴CE=6;(ii)过点A作AF⊥CD于点F,∵∠CEB=90°,∴∠B+∠ECB=90°,∵∠ACE+∠ECB=90°,∴∠B=∠ACE,∵∠ACD=∠B,∴∠ACD=∠ACE,∴CA平分∠DCE,∵AF⊥CE,AE⊥CE,∴AF=AE,∴直线CD与⊙A相切.。
初三数学切割线定理(“定理”相关文档)共7张
![初三数学切割线定理(“定理”相关文档)共7张](https://img.taocdn.com/s3/m/4ac5844a2f3f5727a5e9856a561252d380eb20ab.png)
讲课人:王兆群
复习:相交弦定理:
弦AB, CD相交于P AP•BP=CP•DP
B C
P
A
D
AP•BP=CP•DP
(2)已知:PAB是圆O的割线,
PAAP=•B4P,=CPPT=•D6P,
则PA圆=4O,的P面T积=6=,
。
A则P圆•BOP的=C面P积•D=P
。
(31)已知PATB是、圆POC的D是切圆线O,的割线,
B
PA=6 ,AB=4 ,PO=
D A O
(3)已知PT是圆O的切线,
T
PA=4, PT=6 , 则圆O的面积=
O
。
A P
C
P
P
例3 已知:弦AB 、CD相交于E,过点E作BC的平行 线PE交AD延长线于点P,PG与圆O相交于点G 求证:PG=PE
P
D G
A
B
E
C
(12)已知P:APBA、BP是C圆DO是的圆割O线的,割线,
(AP2•)BP已=知CP:•DPPAB是圆O的割线,
(3)已知PT是圆O的切线,
弦AB, CD相交于P
切割线定理的应用
例1 、 填空
B
(1)已知PAB、PCD是圆O的割线,
PA=3 , AB==5 CD=2,则PC=
(2)已知:PAB是圆O的割线,
(PA2=)4,已知PT:=6PA,B是圆O的割线,
(AP1•)BP已=知CPP•ADBP、PCD是圆O的割线,
APAP=•B4P,=CPPT=•D6P,
(PA2=)6 已,知AB:=P4A,BP是O圆=1O0的,割线,
(则3圆)O已的知面P积T=是圆O的切线,。
P(A2=)4,已知PT:=6PA,B是圆O的割线,
2021年九年级数学中考复习专题:圆的综合(考查切线证明、长度计算等)(三)
![2021年九年级数学中考复习专题:圆的综合(考查切线证明、长度计算等)(三)](https://img.taocdn.com/s3/m/f2acb685f01dc281e43af04f.png)
中考复习专题:圆的综合(考察切线证明、长度计算等)1.如图所示,AB是⊙O的直径,∠B=30°,弦BC=6,∠ACB的平分线交⊙O于D,连AD.(1)求直径AB的长.(2)求阴影部分的面积(结果保留π).2.如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E (1)求证:AC平分∠DAE;(2)若AB=6,BD=2,求CE的长.3.如图,⊙O的直径AB与弦CD相交于点E,且DE=CE,⊙O的切线BF与弦AD的延长线交于点F.(1)求证:CD∥BF;(2)若⊙O的半径为6,∠A=35°,求的长.4.如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF.(1)判断直线EF与⊙O的位置关系,并说明理由;(2)若∠A=30°,求证:DG=DA;(3)若∠A=30°,且图中阴影部分的面积等于2,求⊙O的半径的长.5.如图所示,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC于E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线.6.如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D 作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求DE的长.7.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD 交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)8.已知,如图在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于D,过D作DE⊥BD 交AB于E,经过B,D,E三点作⊙O.(1)求证:AC与⊙O相切.(2)若AD=15,AE=9,求⊙O的半径.9.如图,⊙O是△ABC外接圆,AC是直径,OF∥AB,过点B⊙O的切线相交于点D,与OF的延长线交点E.(1)求证:△ABD∽△BCD;(2)若∠C=30°,求证:△OED是等腰三角形;(3)若⊙O的半径为3,cos D=,求OF的长.10.如图,AB是⊙O的直径,C是AB延长线上一点,CD与⊙O相切于点E,AD⊥CD 于点D.(1)求证:AE平分∠DAC,(2)若AB=6,∠ABE=60°,求①AD的长,②图中阴影部分的面积.11.△ABC内接于⊙O,点D在BC上,连接AD、BO,AD=AC.(1)如图1,求证:∠DAC=2∠ABO;(2)如图2,点E在弧BC上,连接AE交BC于点F,∠CAE=3∠DAE,连接BE,DE,若∠EDC=∠EBC+60°,求∠DEA的度数:(3)如图3,在(2)的条件下,若tan∠ACB=2,AE=2+1,求半径BO的长.12.如图1,△ABC内接于⊙O,连接AO,延长AO交BC于点D,AD⊥BC.(1)求证:AB=AC;(2)如图2,在⊙O上取一点E,连接BE、CE,过点A作AF⊥BE于点F,求证:EF+CE =BF;(3)如图3在(2)的条件下,在BE上取一点G,连接AG、CG,若∠AGB+∠ABC =90°,∠AGC=∠BGC,AG=6,BG=5,求EF的长.13.如图,在Rt△ABC中,∠C=90°,O为BC边上一点,以OC为半径的圆O,交AB于D点,且AD=AC.延长DO交圆O于E点,连接AE.(1)求证:DE⊥AB;(2)若DB=4、BC=8,求AE的长.14.如图,AB是⊙C的直径,M、D两点在AB的延长线上,E是⊙C的点,且DE2=DB •DA,延长AE至F,使得AE=EF,设BF=5,cos∠BED=.(1)求证:△DEB∽△DAE;(2)求DA,DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.15.如图,AB是⊙O的直径,点C为⊙O上一点,点P是半径OB上一动点(不与O,B 重合),过点P作射线l⊥AB,分别交弦BC,于D、E两点,在射线l上取点F,使FC=FD.(1)求证:FC是⊙O的切线;(2)当点E是的中点时,①若∠BAC=60°,判断以O,B,E,C为顶点的四边形是什么特殊四边形,并说明理由;②若=,且AB=20,求OP的长.参考答案1.解:(1)∵AB为⊙O的直径,∴∠ACB=90°,∵∠B=30°,∴AB=2AC,∵AB2=AC2+BC2,∴AB2=AB2+62,∴AB=4.(2)连接OD.∵AB=4,∴OA=OD=2,∵CD平分∠ACB,∠ACB=90°,∴∠ACD=45°,∴∠AOD=2∠ACD=90°,∴S△AOD=OA•OD=•2•2=6,∴S扇形△AOD=•π•OD2=•π•(2)2=3π,∴阴影部分的面积=S扇形△AOD﹣S△AOD=3π﹣6.2.(1)证明:连接OC.∵CD是⊙O的切线,∴∠OCD=90°,∵∠AEC=90°,∴∠OCD=∠AEC,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠OAC=∠OCA,∴∠EAC=∠OAC,∴AC平分∠DAE.(2)作CF⊥AB于F.在Rt△OCD中,∵OC=3,OD=5,∴CD=4,∵•OC•CD=•OD•CF,∴CF=,∵AC平分∠DAE,CE⊥AE,CF⊥AD,∴CE=CF=.3.(1)证明:∵AB是⊙O的直径,DE=CE,∴AB⊥CD,∵BF是⊙O的切线,∴AB⊥BF,∴CD∥BF;(2)解:连接OD、OC,∵∠A=35°,∴∠BOD=2∠A=70°,∴∠COD=2∠BOD=140°,∴的长==.4.解:(1)连接OE,∵OA=OE,∴∠A=∠AEO,∵BF=EF,∴∠B=∠BEF,∵∠ACB=90°,∴∠A+∠B=90°,∴∠AEO+∠BEF=90°,∴∠OEG=90°,∴EF是⊙O的切线;(2)∵∠AED=90°,∠A=30°,∴ED=AD,∵∠A+∠B=90°,∴∠B=∠BEF=60°,∵∠BEF+∠DEG=90°,∴∠DEG=30°,∵∠ADE+∠A=90°,∴∠ADE=60°,∵∠ADE=∠EGD+∠DEG,∴∠DGE=30°,∴∠DEG=∠DGE,∴DG=DE,∴DG=DA;(3)∵AD是⊙O的直径,∴∠AED=90°,∵∠A=30°,∴∠EOD=60°,∴∠EGO=30°,∵阴影部分的面积=×r×r﹣=2﹣π.解得:r2=4,即r=2,即⊙O的半径的长为2.5.证明:(1)连接AD;∵AB是⊙O的直径,∴∠ADB=90°.又∵DC=BD,∴AD是BC的中垂线.∴AB=AC.(2)连接OD;∵OA=OB,CD=BD,∴OD∥AC.∴∠0DE=∠CED.又∵DE⊥AC,∴∠CED=90°.∴∠ODE=90°,即OD⊥DE.∴DE是⊙O的切线.6.证明:(1)连接OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O切线.(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF==4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.7.(1)证明:连接OD,∵BC是⊙O的切线,∴∠ABC=90°,∵CD=CB,∴∠CBD=∠CDB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODC=∠ABC=90°,即OD⊥CD,∵点D在⊙O上,∴CD为⊙O的切线;(2)在Rt△OBF中,∵∠ABD=30°,OF=1,∴∠BOF=60°,OB=2,BF=,∵OF⊥BD,∴BD=2BF=2,∠BOD=2∠BOF=120°,∴S阴影=S扇形OBD﹣S△BOD==.8.(1)证明:连接OD,如图所示:∵OD=OB,∴∠1=∠2,又∵BD平分∠ABC,∴∠2=∠3,∴∠1=∠3,∴OD∥BC,而∠C=90°,∴OD⊥AD,∴AC与⊙O相切于D点;(2)解:∵OD⊥AD,∴在RT△OAD中,OA2=OD2+AD2,又∵AD=15,AE=9,设半径为r,∴(r+9)2=152+r2,解方程得,r=8,即⊙O的半径为8.9.解:(1)如图1,连接BO,∵BD是⊙O的切线,∴∠OBD=90°,∴∠OBA+∠ABD=90°,∵AC是⊙O的直径,∴∠ABC=90°,∴∠CBO+∠OBA=90°,∴∠ABD=∠CBO,∵OB=OC,∴∠CBO=∠C,∴∠ABD=∠C,又∵∠D=∠D,∴△ABD∽△BCD;(2)证明:∵∠C=30°,OE∥AB,∠ABC=90°,∴∠BAO=60°=∠BOA=∠BOE,由(1)知OB⊥DE,∠EBO=∠DBO=90°,又∵OB=OB,∴△BOE≌△BOD(ASA),∴OE=OD,∴△OED是等腰三角形;(3)∵OE∥AB,CO=AO,∴CF=BF,∴OF是△ABC中位线,∴OF=AB,又∵在Rt△OBD中,cos∠D==,设BD=4x,则OD=5x,由勾股定理(5x)2=(4x)2+32,解得,x=1(取正值),∴DB=4,OD=5,如图2,过点B作BM⊥OA于M,则∠OMB=∠OBD=90°,又∵∠BOM=∠DOB,∴△OBM∽△ODB,∴==,∴==,∴BM=,OM=,∴AM=,∴AB==,∴OF=AB=.10.证明:(1)如图,连接OE,∵DC为切线,∴OE⊥CD,且AD⊥CD,∴OE∥AD,∴∠DAE=∠AEO,∵OE=OA,∴∠AEO=∠EAO,∴∠DAE=∠EAO,即AE平分∠DAC;(2)①∵∠ABE=60°,∠AEB=90°,∴∠EAB=30°,∠AOE=120°∴BE=AB=3,AE=BE=3∵AE平分∠DAC,∴∠DAE=∠BAE=30°,且∠D=90°∴DE=AE=,AD=DE=,②∵OA=OB=BE=3,∴S扇形AOE=π•OA2=3π,S△AOE=S△ABE=×AE•BE=,∴S阴影=S扇形AOE﹣S△AOE=3π﹣11.解:(1)连接OA,∵OA=OB,∴∠ABO=(180°﹣∠AOB),∵AD=AC,∴∠ADC=∠C,∴∠DAC=180°﹣2∠C,∵∠AOB=2∠C,∴∠DAC=180°﹣∠AOB,∴∠AOB=180°﹣∠DAC,∴∠ABO=(180°﹣∠AOB)=[180°﹣(180°﹣∠DAC)]=,即∠DAC=2∠ABO;(2)如图2,过点A作AH⊥BC于H,∵∠CAE=3∠DAE,∴∠CAD=4∠DAE,∵AD=AC,AH⊥BC,∴∠DAH=∠CAH=2∠DAE,∠ADH+∠DAH=90°,∴∠ADH+2∠DAE=90°,∵∠EDC=∠EBC+60°,∠EBC=∠EAC,∴∠EDC=∠EAC+60°=∠DAE+60°,∵∠AED+∠DAE+∠ADH+∠EDC=180°,∴∠DEA+∠DAE+∠DAE+60°+∠ADH=180°,∴∠DEA+90°+60°=180°,∴∠DEA=30°,(3)如图3,过点D作DG⊥AE交AH的延长线于点G,连接GC,OE,CE,过点B 作BN⊥AE于N,∵∠CAD=4∠DAE,AD=AC,AH⊥DC,∴∠DAH=∠CAH=2∠DAE,AH是CD的中垂线,∴∠DAE=∠FAH,∵DG⊥AE,∠DAE=∠FAH,∴∠ADG=∠AGD,∴AD=AG,且∠DAE=∠FAH,AE=AE,∴△ADE≌△AGE(SAS)∴∠AED=∠AEG=30°,DE=EG,∴∠DEG=60°,∴△DEG是等边三角形,∴DG=EG=DE,∠DGE=60°,∵AH是CD的中垂线,∴DG=GC,∴DG=GC=EG,∴点D,点G,点E在以点G为圆心,DG为半径的圆上,∴∠DCE=∠DCE=30°,∴∠BAE=∠BCE=30°,∴∠BOE=60°,且BO=OE,∴△BOE是等边三角形,∴BE=BO,∵∠BAE=30°,BN⊥AE,∴AN=BN∵∠ACB=∠AEB,∴tan∠ACB=tan∠AEB=2=,∴EN=BN,∵AE=EN+AN,∴2+1=BN+BN,∴BN=2,∴EN=1,∴BE===,∴BO=.12.证明:(1)∵AD⊥BC,AD过圆心O,∴BD=CD,且AD⊥BC,∴AB=AC;(2)如图2,在BF上截取FH=EF,连接AE,AH,∵AF⊥EH,EF=FH,∴AH=AE,∴∠AHE=∠AEH,∵AB=AC,∴∠ABC=∠ACB,且∠ACB=∠AEH,∴∠AEH=∠AHE=∠ABC=∠ACB,∴∠BAC=∠HAE,∴∠BAH=∠CAE,且AH=AE,AB=AC,∴△ABH≌△ACE(SAS)∴BH=CE,∴BF=EF+CE;(3)如图3,延长CG交⊙O于M,交AB于K,过点A作AP⊥CM于P,过点B作BN⊥CM于N,连接AE,AM,MB,∵∠AGB+∠ABC=90°,∴∠AGB=90°﹣∠ABC,∴∠AGB=2∠BAC,∵∠AGC=∠BGC,∴∠BGM=∠AGM=∠AGB,∴∠BGM=∠AGM=∠BAC,且∠BAC=∠BMC,∴∠BMG=∠BGM,∴BM=BG=5,∵∠AMC=∠ABC,∠AGM=∠BAC,∴∠GAM=∠ACB,∴∠AMG=∠MAG,∴MG=AG=6,∵BM=BG,BN⊥MG,∴MN=NG=3,∴BN===4,∵∠BMG=∠AGM,∴BM∥AG,∴=,∵AP∥BN,∴=,∴AP=,∴PG==,∴PN=PG﹣NG=,且∴PK=,KN=,∴AK==,BK==,∴AB=AK+BK=,∵AF2=AG2﹣GF2,AF2=AB2﹣BF2,∴AG2﹣GF2=AB2﹣(5+GF)2,∴GF=,∴BF=,∵MP=MG﹣PG=,∴MK=,∵∠AMC=∠ABC,∠MAB=∠BCM,∴△MAK∽△BCK,∴,∴CK=,∴GC﹣KC﹣KG=,∵∠BMC=∠BEC,∠BGM=∠CGE,∠BGM=∠BMG,∴∠CGE=∠CEG,∴CG=CE=,∵EF+CE=BF,∴EF=BF﹣CE==.13.(1)证明:连接AO.∵AD=AC,AO=AO,OD=OC,∴△AOD≌△AOC(SSS),∴∠ADO=∠ACO=90°,∴DE⊥AB.(2)解:设OD=OC=x,在Rt△OBD中,∵OB2=BD2+OD2,∴(8﹣x)2=x2+42,解得x=3,设AD=AC=y,在Rt△ACB中,∵AB2=AC2+BC2,∴(y+4)2=y2+82,∴y=6,在Rt△ADE中,AE===6.14.解:(1)∵DE2=DB•DA,∴=,又∵∠D=∠D,∴△DEB∽△DAE.(2)∵△DEB∽△DAE,∴∠DEB=∠DAE=α,∵AB是直径,∴∠AEB=90°,又AE=EF,∴AB=BF=5,∴∠BFE=∠BAE=α,则BF⊥ED交于点H,∵cos∠BED=,则BE=3,AE=4∴==,即:==,解得:BD=,DE=,则AD=AB+BD=,ED=.(3)由点F在B、E、M三点确定的圆上,则BF是该圆的直径,连接MF,∵BF⊥ED,∠BMF=90°,∴∠MFB=∠D=β,在△BED中,过点B作HB⊥ED于点H,设HD=x,则EH=﹣x,则9﹣(﹣x)2=()2﹣x2,解得:x=,则cosβ==,则sinβ=,MB=BF sinβ=5×=,DM=BD﹣MB=.15.证明:(1)连接OC,∵OB=OC,∴∠OBC=∠OCB,∵PF⊥AB,∴∠BPD=90°,∴∠OBC+∠BDP=90°,∵FC=FD∴∠FCD=∠FDC∵∠FDC=∠BDP∴∠OCB+∠FCD=90°∴OC⊥FC∴FC是⊙O的切线;(2)如图2,连接OC,OE,BE,CE,①以O,B,E,C为顶点的四边形是菱形.理由如下:∵AB是直径,∴∠ACB=90°,∵∠BAC=60°,∴∠BOC=120°,∵点E是的中点,∴∠BOE=∠COE=60°,∵OB=OE=OC∴△BOE,△OCE均为等边三角形,∴OB=BE=CE=OC∴四边形BOCE是菱形;②∵,∴设AC=3k,BC=4k(k>0),由勾股定理得AC2+BC2=AB2,即(3k)2+(4k)2=202,解得k=4,∴AC=12,BC=16,∵点E是的中点,∴OE⊥BC,BH=CH=8,∴S△OBE=OE×BH=OB×PE,即10×8=10PE,解得:PE=8,由勾股定理得OP===6.。
初中数学课件《切割线定理》
![初中数学课件《切割线定理》](https://img.taocdn.com/s3/m/fb642d7a590216fc700abb68a98271fe900eaf77.png)
切割线定理的相关概念介绍
为了帮助大家更好地理解切割线定理,我们在这里先来介绍一下它的相关概念。
扇形
扇形是圆心角对应的圆弧及其 圆心所组成的图形,它是切割 线重要概念。
弓形
弓形指的是圆上一个扇形所截 下来的圆弧部分,是能够帮助 我们理解切割线定理的重要概 念。
弦长
弦是连接圆上两点的线段,弦 长是线段长度,是切割线定理 中常用的量。
解决切割线定理中的常见错误和误区
学习切割线定理的时候,常见错误和误区包括对图形理解不够溜,计算公式没有掌握好,套路不熟练等 等,下面是一些错误率较高的问题。
• 画图不规范,不能很好地说明切线、割线、交点的位置关系 • 公式记忆不清,导致计算错误 • 理解不深刻,只会套用公式,难以发挥应有的思考能力
切割线定理在各国数学教育中的地位
切割线定理作为数学中非常重要的一个知识点,它在不同国家的数学教育中都占据着重要地位,是不容 忽视的。下面介绍几个国家中切割线定理的教学情况。
• 中国:在初中阶段的几何课程中必须学习切割线定理。 • 美国:在高中阶段的几何学里也会涉及切割线定理的知识点。 • 日本:从小学到高中,切割线定理都是几何学习的重点。
具体表述
具体来说,若AB与CD是两条割线,交于点E,那么∠AEB=∠CED,∠BEC=1/2∠BAD。
套路示范
判断两条线段是否相互垂直的时候,可以用切割线定理进行证明。
切割线定理的含义和意义
切割线定理是数学中一条很重要的定理。它在几何解题中的应用非常广泛,可以帮助我们更好地理 解和应用各种几何概念。
切割线定理的进阶应用
掌握好了切割线定理的基础知识之后,还可以进一步拓展应用,例如: • 推导出更复杂的几何公式 • 应用切割线定理解决更高级的几何问题 • 将切割线定理与其他定理的知识点相关联,挖掘其更多潜力
2021年九年级数中考复习专题:圆中切线的证明
![2021年九年级数中考复习专题:圆中切线的证明](https://img.taocdn.com/s3/m/de71fbc7f242336c1fb95e0b.png)
中考专题:圆中切线的证明考点速览: 考点1考点2切线:经过半径外端并且垂直于这条半径的直线是圆的切线。
符号语言∵ OA ⊥ l 于A , OA 为半径∴ l 为⊙O 的切线考点3判断直线是圆的切线的方法:①与圆只有一个交点的直线是圆的切线。
②圆心到直线距离等于圆的半径的直线是圆的切线。
③经过半径外端,垂直于这条半径的直线是圆的切线。
(请务必记住证明切线方法:有交点就连半径证垂直;无交点就做垂直证半径) 考点4切线的性质定理:圆的切线垂直于经过切点的半径。
推论1:经过圆心且垂直于切线的直线必经过切点。
推论2:经过切点且垂直于切线的直线必经过圆心。
(请务必记住切线重要用法: 见切线就要连圆心和切点得到垂直)BC经典例题:例1.如图,△ABC 内接于⊙O , AB 是 ⊙O 的直径,∠CAD = ∠ABC ,判断直线AD 与⊙O 的位置关系,并说明理由。
例2.如图,OA=OB=13cm ,AB=24cm ,⊙O 的半径为5cm ,AB 与⊙O 相切吗?为什么?例3.如图,PA 、PB 是⊙O 的切线,切点为A 、B ,C 是⊙O 上一点,若∠P =40。
, 求∠C 的度数。
例4.如图所示,ABC Rt ∆中,︒=∠90C ,以AC 为直径作⊙O 交AB 于D ,E 为BC 中点。
求证:DE 是⊙O 的切线.A BB · ABC EOD例5.如图10,以点M(-1,0)为圆心的圆与y轴、x轴分别交于点A、B、C、D,直线y=-33x-533与⊙M相切于点H,交x轴于点E,交y轴于点F.(1)请直接写出OE、⊙M的半径r、CH的长;(3分)(2)如图11,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;(3分)(3)如图12,点K为线段EC上一动点(不与E、C重合),连接BK交⊙M于点T,弦AT交x轴于点N.是否存在一个常数a,始终满足MN·MK=a,如果存在,请求出a的值;如果不存在,请说明理由.(3分)举一反三1.如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A,与大圆相交于点B,小圆的切线AC与大圆相交于点D,且CO平分∠ACB.试判断BC所在直线与小圆的位置关系,并说明理由。
中考数学复习切线的综合运用[人教版]
![中考数学复习切线的综合运用[人教版]](https://img.taocdn.com/s3/m/56dae181f78a6529647d53ae.png)
且与BC所在直线相交. C
EC DO B
四 课堂作业
1正三角形内切圆半径与外接圆 半径之比为 .
2⊿ABC内切圆半径r= 3 ,D,E,F
为切点, ∠ABC=60°,BC=8, ⊿ABC
的面积为10 3 A,求AB,AC的长. EF O
BD C
3AB是⊙ O的直径,过B作⊙ O
仆Y.曼妍米依仙女又颤起怪异;骗子电话 骗子举报 骗子 / 骗子电话 骗子举报 骗子 ;的美如竹竿一般的手臂,只见她怪异的的褐黄色鸭蛋模样的烟 花万花裤子中,突然弹出二道芝麻状的烟花,随着女奴仆Y.曼妍米依仙女的颤动,芝麻状的烟花像纽扣一样念动咒语:“二拳哄哩喂,幽灵哄哩喂,二拳幽灵哄哩喂……
复习(三)
切线的综合运用
一、复习目标
1、熟练掌握直线与圆位置关系的判别
2、深刻理解有关切线的几个重要定理 (切线的性质定理、切线的判定定理、切 线长定理、弦切角定理),提高综合运用 以上定理的能力。
3、加深对一些基本结论、基本图形(直 角三角形内切圆半径公式、三角形有关内 切圆半径的面积公式等)的理解。
的切线BC,OC交⊙ O于E,A
E的延长线交BC于D,(1)求
证:CE2=CDCB,(2)若
AB=BC=2,求CE,CD的
长.
A
OE B DC
5、如图,PA,PB是⊙O的切线, A,B是切点,∠APB=78°,点C 是⊙O上异与A,B的任一点,则 ∠ACB= 。
A PO
B
6、⊿ABC中,∠C=90°∠A=30° 点O为AB上的点,BO=m,⊙O的半 径r=0.5,当m在什么范围内取值 时,BC与⊙O相离?相切?相交?
C
A
OB
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年九年级数学中考复习专题之圆:切割线定理综合运用(一)一.选择题1.P是⊙O外一点,PA切⊙O于A,割线PBC交⊙O于点B、C,若PB=BC=3,则PA的长是()A.9 B.3 C.D.182.如图,PA切⊙O于点A,PBC是⊙O的一条割线,且PA=2,BC=2PB,那么PB 的长为()A.2 B.C.4 D.3.如图,⊙O的两条割线PAB,PCD分别交⊙O于点A,B和点C,D.已知PA=6,AB=4,PC=5,则CD=()A.B.C.7 D.244.如图,已知P为⊙O外一点,PO交⊙O于点A,割线PBC交⊙O于点B、C,且PB =BC,若OA=7,PA=4,则PB的长等于()A.B.C.6 D.5.如图,PA切⊙O于点A,PBC是⊙O的割线,如果PB=2,PC=8,那么PA的长为()A.2 B.4 C.6 D.6.如图,在▱ABCD中,过A、B、C三点的圆交AD于E,且与CD相切.若AB=4,BE =5,则DE的长为()A.3 B.4 C.D.7.如图,在以O为圆心的两个同心圆中,A为大圆上任意一点,过A作小圆的割线AXY,若AX•AY=4,则图中圆环的面积为()A.16πB.8πC.4πD.2π8.如图,A、B、C、D为⊙O上的点,直线BA与DC相交于点P,PA=2,PC=CD=3,则PB=()A.6 B.7 C.8 D.99.以半圆中的一条弦BC(非直径)为对称轴将弧BC折叠后与直径AB交于点D,若,且AB=10,则CB的长为()A.B.C.D.410.如图,从圆O外一点P引圆O的两条切线PA,PB,切点分别为A,B.如果∠APB =60°,PA=8,那么点P与O间的距离是()A.16 B.C.D.二.填空题11.如图,⊙O的半径为,A、B两点在⊙O上,切线AQ和BQ相交于Q,P是AB 延长线上任一点,QS⊥OP于S,则OP•OS=.12.如图,过点P引圆的两条割线PAB和PCD,分别交圆于点A,B和C,D,连接AC,BD,则在下列各比例式中,①;②;③,成立的有(把你认为成立的比例式的序号都填上).13.如图,割线PAB与⊙O交于点A、B,割线PCD与⊙O交于点C、D,PA=PC,PB=3cm,则PD=cm.14.如图,过⊙O外一点P作两条割线,分别交⊙O于A,B和C,D.已知PA=2,PB =5,PD=8,则PC的长是.15.如图,AC为⊙O的直径,PA是⊙O的切线,切点为A,PBC是⊙O的割线,∠BAC 的平分线交BC于D点,PF交AC于F点,交AB于E点,要使AE=AF,则PF应满足的条件是(只需填一个条件).三.解答题16.如图,AB是⊙O的直径,C是AB延长线上的一点,CD是⊙O的切线,D为切点,过点B作⊙O的切线交CD于点E.若AB=CD=2,求CE的长.17.如图所示,⊙O的内接△ABC的AB边过圆心O,CD切⊙O于C,BD⊥CD于D,交⊙O于F,CE⊥AB于点E,FE交⊙O于G.解答下列问题:(1)若BC=10,BE=8,求CD的值;(2)求证:DF•DB=EG•EF.18.如图1,已知Rt△ABC的直角边AC的长为2,以AC为直径的⊙O与斜边AB交于点D,过D点作⊙O的切线(1)求证:BE=DE;(2)延长DE与AC的延长线交于点F,若DF=,求△ABC的面积;(3)从图1中,显然可知BC<AC.试分别讨论在其它条件不变,当BC=AC(图2)和BC>AC(图3)时,直线DE与直线AC还会相交吗?若不能相交,请简要说明理由;若能相交,设交点为F'且DF'=,请再求出△ABC的面积.19.已知:如图,PF是⊙O的切线,PE=PF,A是⊙O上一点,直线AE、AP分别交⊙O 于B、D,直线DE交⊙O于C,连接BC,(1)求证:PE∥BC;(2)将PE绕点P顺时针旋转,使点E移到圆内,并在⊙O上另选一点A,如图2.其他条件不变,在图2中画出完整的图形.此时PE与BC是否仍然平行?证明你的结论.20.如图PAB、PCD是⊙O的两条割线,AB是⊙O的直径.(1)如图甲,若PA=8,PC=10,CD=6.①求sin∠APC的值;②sin∠BOD=;(2)如图乙,若AC∥OD.①求证:CD=BD;②若,试求cos∠BAD的值.参考答案一.选择题1.解:∵PB=BC=3,∴PC=6,∵PA2=PB•PC=18,∴PA=3,故选:C.2.解:设PB=x,则PC=3x,∵PA2=PB•PC,PA=2,BC=2PB,∴x•3x=12,∴x=2.故选:A.3.解:由于PAB、PCD都是⊙O的割线,根据切割线定理可得:PA•PB=PC•PD,即PA•(PA+PB)=PC•PD,∵PA=6,AB=4,PC=5,∴PD=12,即CD=PD﹣PC=7;故选:C.4.解:延长PO交圆于D;设PB=BC=x,∵PB•PC=PA•PD,PB=BC,OA=7,PA=4,∴x•2x=72,∴x=6.故选:C.5.解:∵PA切⊙O于点A,PBC是⊙O的割线,∴PA2=PB•PC=16,即PA=4;故选:B.6.解:连接CE;∵,∴∠BAE=∠EBC+∠BEC;∵∠DCB=∠DCE+∠BCE,由弦切角定理知:∠DCE=∠EBC,由平行四边形的性质知:∠DCB=∠BAE,∴∠BEC=∠BCE,即BC=BE=5,∴AD=5;由切割线定理知:DE=DC2÷DA=,故选:D.7.解:过点A作圆的切线AD,切点是D,∵AD2=AX•AY,AX•AY=4,∴AD=2,∴圆环的面积=πAD2=4π.故选:C.8.解:∵PB,PD是⊙O的割线,∴PA•PB=PC•PD,∵PA=2,PC=CD=3,∴2PB=3×6解得:PB=9.故选:D.9.解:如图,若,且AB=10,∴AD=4,BD=6,作AB关于直线BC的对称线段A′B,交半圆于D′,连接AC、CA′,可得A、C、A′三点共线,∵线段A′B与线段AB关于直线BC对称,∴AB=A′B,∴AC=A′C,AD=A′D′=4,A′B=AB=10.而A′C•A′A=A′D′•A′B,即A′C•2A′C=4×10=40.则A′C2=20,又∵A′C2=A′B2﹣CB2,∴20=100﹣CB2,∴CB=4.故选:A.10.解:连接OA,OP∵PA,PB是⊙O的切线,∠APB=60°,∴∠OPA=∠APB=30°,OA⊥OP,∴OP===,∴点P与O间的距离是.故选:B.二.填空题(共5小题)11.解:连接OQ交AB于M,则OQ⊥AB,连接OA,则OA⊥AQ.∵∠QMP=∠QSP=90°,∴S,P,Q,M四点共圆,故OS•OP=OM•OQ.又∵OM•OQ=OA2=2,∴OS•OP=2.故答案为:2.12.解:∵四边形ABCD是圆内接四边形∴∠PAD=∠C,∠PAD=∠B∴△PAD∽△PCB根据相似三角形的对应边的比相等,得到②③是正确的.13.解:∵PA•PB=PC•PD,PA=PC,PB=3cm∴PB=PD=3cm.14.解:∵PA•PB=PC•PD,PA=2,PB=5,PD=8∴PC==.15.解:∵∠PAC=90°,∠ABC=90°,∴90°﹣∠AFP=90°﹣∠BEP,∴∠APF=∠CPF,∴PF平分∠APC.三.解答题(共5小题)16.解:如图,由切割线定理,得CD2=CB•CA,(2分)CD2=CB(AB+CB),CB2+2CB﹣4=0,解得CB=(负数舍去)连接OD,则OD⊥CD,又EB与⊙O相切,∴EB⊥OC,∴Rt△ODC∽Rt△EBC,(6分)于是,即∴CE=.17.(1)解:∵AB为直径,BD⊥CD∴∠ABC+∠A=90°,∠CBD+∠BCD=90°∵CD为⊙O切线∴∠BCD=∠A∴∠ABC=∠BCD∵CD⊥BD,CE⊥BE∴CE=CD∴CE==6∴CD=6(2)证明:∵CD为切线,BD为割线∴CD2=DF•DB①∵∠ACB=90°,CE⊥AB∴RT△ACE∽RT△CBE∴CE2=EA•EB②∵EG•EF=EA•EB③由①②③及CD=CE得DF•DB=EG•EF.18.(1)证明:连接OD,∴OD⊥DE,∴∠ADO+∠BDE=90°,∵OA=OD,∴∠A=∠ADO,∵∠ACB=90°,∴∠B+∠A=90°,∴∠B=∠BDE,∴BE=DE;(2)解:在直角三角形ODF中,OD=1,DF=,∴∠OFD=30°,∴OF=2,AF=3.∴tan∠A=,∴BC=AC•tan∠A=2×tan30°=.S△ABC=AC•BC=×2×=;(3)解:如图,当BC=AC时,直线DE与直线AC平行;当BC>AC时,在直角三角形ODF′中,OD=1,DF′=,∴∠OF′D=30°,∴OF′=2,AF=1,∴CF′=3,∠BAC=60°,∴tan∠BAC=,∴BC=AC•tan∠BAC=2×tan60°=2.S△ABC=AC•BC=×2×2=2.19.(1)证明:∵PF与⊙O相切,∴PF2=PD•PA.∵PE=PF,∴PE2=PD•PA.∴PE:PD=PA:PE.∵∠APE=∠APE,∴△EPD∽△APE.∴∠PED=∠A.∵∠ECB=∠A,∴∠PED=∠ECB.∴PE∥BC.(2)解:PE与BC仍然平行.证明:画图如图,∵△EPD∽△APE,∴∠PEA=∠D.∵∠B=∠D,∴∠PEA=∠B.∴PE∥BC.20.解:(1)作OE⊥CD于E,连接OC,作DF⊥PB于F.①根据垂径定理,得CE=3.设圆的半径是r.根据勾股定理,得OP2﹣PE2=OC2﹣CE2,(8+r)2﹣169=r2﹣9,解得r=6.则OE=3.则sin∠APC==;②设OF=x.根据勾股定理,得PD2﹣PF2=OD2﹣OF2,256﹣(14+x)2=36﹣x2,解得x=.所以DF=.所以sin∠BOD===.(2)①∵AC∥OD,∴∠1=∠2.又OA=OD,∴∠2=∠3.∴∠1=∠3.所以弧CD=弧BD,所以CD=BD;②∵AC∥OD,∴=.又CD=BD,AB=2OA,∴=.∴cos∠BAD==.。