语音信号的采集与时频域分析系统的设计

合集下载

语音信号的采集和频谱分析

语音信号的采集和频谱分析

语音信号的采集和频谱分析:[y,fs,bits]=wavread('voice'); %读取音频信息(双声道,16位,频率44100Hz)sound(y,fs,bits); %回放该音频Y=fft(y,4096); %进行傅立叶变换subplot(211);plot(y);title('声音信号的波形');subplot(212)plot(abs(Y));title('声音信号的频谱');窗函数设计低通滤波器:fp=1000;fc=1200;as=100;ap=1;fs=22000;wp=2*fp/fs;wc=2*fc/fs;N=ceil((as-7.95)/(14.36*(wc-wp)/2))+1;beta=0.1102*(as-8.7);window=Kaiser(N+1,beta);b=fir1(N,wc,window);freqz(b,1,512,fs);结果:滤波:[y,fs,bits]=wavread('voice');d=filter(b,a,y);D=fft(d);subplot(211)plot(d);title('滤波后的声音波形')subplot(212)plot(abs(D))title('滤波后的声音频谱')回放:sound(d,fs,bits)与滤波之前相比,噪音明显降低了许多。

过零率的计算要用下面的代码:zcr = zeros(size(y,1)1);delta= 0.02;for i=1:size(y,1)x=y(i,:);for j=1;length(x)-1if x(j)*x(j+1)<0 &abs(x(j)-x(j+1))>deltazcr(i)=zcr(i)+1;endendend其中设置了门限delta=0.02。

这是个经验值,可以进行细微的调整。

【毕业设计】语音信号的采集与分析

【毕业设计】语音信号的采集与分析

【毕业设计】语音信号的采集与分析河南农业大学本科生毕业论文(设计)任务书论文(设计)题目语音信号的采集与分析学院专业班级学号姓名2009年月日语音信号的采集与分析作者:123 指导老师:456摘要语音信号的采集与分析技术是一门涉及面很广的交叉科学,它的应用和发展与语音学、声音测量学、电子测量技术以及数字信号处理等学科紧密联系。

其中语音采集和分析仪器的小型化、智能化、数字化以及多功能化的发展越来越快,分析速度较以往也有了大幅度的高。

本文简要介绍了语音信号采集与分析的发展史以及语音信号的特征、采集与分析方法,并通过PC机录制自己的一段声音,运用Matlab进行仿真分析,最后加入噪声进行滤波处理,比较滤波前后的变化。

关键词:语音信号,采集与分析,MatlabAudio signal acquisition and analysisAuthor:zhuyousong Teacher guidance:lifuqiangAbstractSpeech signal acquisition and analysis techniques are a wide range of cross-scientific,Its application and development of voice study, sound measurement study, electronic measuring technology, and digital signal processing disciplines, such as close contact。

Collection and analysis of voice one of the small-scale equipment, intelligence, digital and multi-functional development of more and more quickly, faster than the previous analysis has been substantially high。

语音信号的采集与分析

语音信号的采集与分析

南昌工程学院《语音信号的采集与分析》课程设计题目语音信号的采集与分析课程名称语音信号处理系院信息工程学院专业通信工程班级 10通信工程2班学生姓名刘敏学号 2010103362设计地点电子信息楼指导教师邹宝娟设计起止时间:2013年12月9日至2013年12月20日目录一、需求分析 (4)1.1选题背景及意义 (4)1.2设计要求 (4)二、系统总体设计 (4)2.1 系统设计思路 (4)2.2 功能结构图及功能说明 (4)2.3 工作原理 (6)三、系统详细设计 (6)3.1 语音信号的matlab仿真的数据分析 (6)3.2 程序代码分析 (12)四、调试与维护 (14)4.1 调试过程的问题与维护 (14)五、结束语 (15)六、参考文献 (16)七、指导教师评阅(手写) (17)一、需求分析1.1选题背景及意义该设计主要是介绍语音信号的采集与分析方法,通过PC机录制自己的一段声音,运用Matlab提供的函数进行仿真分析,并画出采样后语音信号的时域波形和频谱图,对所采集的语音信号加入干扰随机高斯噪声,对加入噪声的信号进行播放,并进行时域和频谱分析;对比加噪前后的时域图和频谱图,分析讨论采用什么样的滤波器进行滤除噪声。

1.2设计要求(1)通过PC机录制自己的一段声音“南昌工程学院刘敏”;(2)运用MATLAB中信号处理相关的函数对语音信号进行时域、频域上的分析,如短时能量,短时平均过零率,语谱图等;(3)运用MATLAB对语音信号进行综合与分析,包括语音信号的调制,叠加,和滤波等。

二、系统总体设计2.1 系统设计思路系统的整体设计思路包括语音信号的录制,语音信号的采集,语音信号的分析,其中语音信号的分析又包括了语音信号的时域分析和频域分析,语音信号的加噪处理和滤噪设计分析。

2.2 功能结构图及功能说明实际工作中,我们可以利用windows自带的录音机录制语音文件,声卡可以完成语音波形的A/D转换,获得WAVE文件,为后续的处理储备原材料。

语音信号的采集与频谱分析(附代码)

语音信号的采集与频谱分析(附代码)
First,I compare the file generated by myself with that of thesame song sang by a famous singer.The emphasis is generally laid on analysing the difference in frequncy domain,but time domain will be included too.
After that,two noise signals are added to the original signal respectively and let them pass a filter to analyse it.In the two process mentioned before,I make comparison between the before and after frequency domain.
本设计给信号加了两种噪声并通过观察加噪后的频谱和试听回放效果比较加噪前后的差别,
最后,设计了FIR数字低通滤波器和带通滤波器,分析滤波前后的频谱。再次试听回放效果,得出结论。
关键词:语音、FFT、频谱图、噪声、滤波器
Abstract
This design is based on the general function of Matlaband Adobeedition to deal with Audio signals. The original signals are collected by iPhone’s built-in recording equipment.
Sampling Theorem is the base of my design.It is by sampling we can get discrete signals from the original one and draw the image in time domain.Also,fast fourier transform is employed(FFT)to get the signals in frequency domain.The ayalysis of frequency domain is the highlight of this design.

语音信号的采集与频谱分析(附代码)

语音信号的采集与频谱分析(附代码)

《信号与系统》大作业语音信号的采集与频谱分析——基于Matlab的语音信号处理学生姓名:学号:专业班级:电子工程学院卓越班指导老师:2015年6月22日摘要本设计用苹果手机自带的录音设备采集了原始语音,并导入了电脑转成wav格式,然后用MATLAB和Adobe audition对其进行时域分析。

接着利用傅里叶变换进行了频域分析,绘制频谱图,再录制一段加上歌曲的伴奏的语音与原唱进行了对比分析,得出了我与歌星在频域上的差别。

本设计给信号加了两种噪声并通过观察加噪后的频谱和试听回放效果比较加噪前后的差别,最后,设计了FIR数字低通滤波器和带通滤波器,分析滤波前后的频谱。

再次试听回放效果,得出结论。

关键词:语音、FFT、频谱图、噪声、滤波器AbstractThis design is based on the general function of Matlab and Adobe edition to deal with Audio signals. The original signals are collected by iPhone’s built-in recording equipment.First,I compare the file generated by myself with that of thesame song sang by a famous singer.The emphasis is generally laid on analysing the difference in frequncy domain,but time domain will be included too.After that,two noise signals are added to the original signal respectively and let them pass a filter to analyse it.In the two process mentioned before,I make comparison between the before and after frequency domain.Sampling Theorem is the base of my design.It is by sampling we can get discrete signals from the original one and draw the image in time domain.Also,fast fourier transform is employed(FFT)to get the signals in frequency domain.The ayalysis of frequency domain is the highlight of this design.Through this design,I can deepen my comprehension of principles of audio signals and I have learnt how to deal with it.Through met with much hindrance,I improved my skills finally.Keywords: audio signal、TTT、noise、filter1 绪论1.1课题的研究意义语音信号处理属于信息科学的一个重要分支,它是研究用数字信号处理技术对语音信号进行处理的一门新兴学科,同时又是综合性的多学科领域和涉及面很广的交叉学科,因此我们进行语言信号处理具有时代的意义。

语音信号采集与时频域分析正文

语音信号采集与时频域分析正文

第一章引言语音信号是一种非平稳的时变信号,它携带着各种信息。

在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。

语音信号分析的目的就在与方便有效的提取并表示语音信号所携带的信息。

语音信号分析可以分为时域和频域等处理方法。

语音信号可以认为在短时间内(一般认为在 10~30ms 的短时间内)近似不变,因而可以将其看作是一个准稳态过程, 即语音信号具有短时平稳性。

任何语音信号的分析和处理必须建立在“短时”的基础上, 即进行“短时分析”。

时域分析:直接对语音信号的时域波形进行分析,提取的特征参数有短时能量,短时平均过零率,短时自相关函数等。

频域分析:对语音信号采样,并进行傅里叶变换来进行频域分析。

主要分析的特征参数:短时谱、倒谱、语谱图等。

本文采集作者的声音信号为基本的原始信号。

对语音信号进行时频域分析后,进行加白噪声处理并进行了相关分析,设计滤波器并运用所设计的滤波器对加噪信号进行滤波, 绘制滤波后信号的时域波形和频谱。

整体设计框图如下图所示:图1.1时频域分析设计图图1.2加噪滤波分析流程图第二章 语音信号时域分析语音信号的时域分析可直接对语音信号进行时域波形分析,在此只只针对语音信号的短时能量、短时平均过零率、短时自相关函数进行讨论。

2.1窗口选择由人类的发生机理可知,语音信号具有短时平稳性,因此在分析讨论中需要对语音信号进行加窗处理进而保证每个短时语音长度为10~30ms 。

通常选择矩形窗和哈明窗能得到较理想的“短时分析”设计要求。

两种窗函数的时域波形如下图2.1所示:samplew (n )samplew (n )图2.1 矩形窗和Hamming 窗的时域波形矩形窗的定义:一个N 点的矩形窗函数定义为如下{1,00,()n Nw n ≤<=其他(2.1)哈明窗的定义:一个N 点的哈明窗函数定义为如下0.540.46cos(2),010,()n n NN w n π-≤<-⎧⎨⎩其他= (2.2)这两种窗函数都有低通特性,通过分析这两种窗的频率响应幅度特性可以发现(如图2.2):矩形窗的主瓣宽度小(4*pi/N ),具有较高的频率分辨率,旁瓣峰值大(-13.3dB ),会导致泄漏现象;哈明窗的主瓣宽8*pi/N ,旁瓣峰值低(-42.7dB ),可以有效的克服泄漏现象,具有更平滑的低通特性。

声音信号的采集与时域、频域分析

声音信号的采集与时域、频域分析

信号与系统实验报告实验二:声音信号的采集与时域、频域分析一、实验目的:1、熟悉MATLAB软件环境及界面组成;2、掌握运用傅里叶级数,在MATLAB里,通过运用傅里叶级数的展开,进行编写程序;3、用matlab实现采集到的WA V文件播放、显示其波形,并对男生女生的时域图、频谱图进行分析;4、能够在理论学习的基础上,进一步地理解和掌握语音信号的时域、频域特性。

二、实验原理:语音波形是时间的连续函数,所以语音信号的特性是随时间而变化的,其幅值随着时间有很显著的变化,即使是传递相同信息的语音信号,其基音频率也是不同的,语音信号的这些时变特性在波形图中都能很明显地观察出来,其中一定时宽的语音信号,男生发音时,其语音能量约集中于较低频率,而女生发音时,多数能量出现在较高频率上。

三、实验仪器:微型计算机Matlab软件环境麦克风四、实验内容:1、用麦克风录制一段自己的声音以及一位男同学声音,录制声音为“谢谢”(使用windows的录音机录制,并存储为WA V文件)2、用Matlab语言完成采集到的语音信号的读写程序3、用Matlab语言编写录制的女生声音信号、男生声音信号的频谱图程序4.依据时域以及频域曲线对语音进行比较分析,得出结论。

五、实验前准备1.预习课本有关内容,理解和掌握语音信号的时域、频域特性。

2.参考Matlab有关资料,设计并编写出具有上述功能的程序。

六、运行结果七、实验程序[x]=wavread('C:\ matlab6p5\work\girl.wav');N=size(x);figure;subplot(2,2,1);plot(x);ylabel('幅度');legend('女生生语音信号时域波形');y=abs(fft(x));subplot(2,2,2)plot(y)ylabel('频谱');legend('女生语音信号频谱图');hold on;[y]=wavread(' C:\ matlab6p5\work\boy.wav');N=size(y);figure;subplot(2,2,3);plot(x);ylabel('幅度');legend('男生生语音信号时域波形');y=abs(fft(y));subplot(2,2,4)plot(y)ylabel('频谱');legend('男生语音信号频谱图');hold off;八、实验分析实验的声音信号为“谢谢”,从上图中可以看出,其对称性很高,主要的差别在于时域的幅度以及频域的频率。

基于MATLAB的语音信号的时、频域分析课程设计

基于MATLAB的语音信号的时、频域分析课程设计

摘要用MATLAB对于语音信号进行分析和处理,采集语音信号后,在MATLAB软件平台进行频谱分析;并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。

本次设计介绍了基于MATLAB的对语音信号的采集,处理及滤波器的设计,并使之实现的过程。

关键词:MATLAB;语音信号;滤波器;加噪;除噪目录摘要 (1)1 设计原理 (1)1.1 理论原理 (1)1.1.1采样频率 (1)1.1.2采样位数 (1)1.1.3采样定理 (1)1.1.4时域信号的FFT分析 (2)1.1.5数字信号的滤波器原理和方法 (2)1.1.6 各种不同类型滤波器的性能比较 (3)1.1.7离散傅立叶变换 (3)2 信号采集及读取 (4)3 构造受干扰信号并对其进行FFT频谱分析 (6)4 数字滤波器设计 (8)4.1 用窗函数法设计IIR带通滤波器 (8)4.2 用窗函数法设计FIR低通滤波器 (10)5信号处理 (12)5.1 IIR带通滤波 (12)5.2 FIR低通滤波 (14)6心得体会 (16)7 参考文献: (16)1设计原理1.1 理论原理1.1.1 采样频率也称为采样速度或者采样率,定义了每秒从连续信号中提取并组成离散信号的采样个数,它用赫兹(Hz)来表示。

采样频率只能用于周期性采样的采样器,对于非周期性采样的采样器没有规则限制。

通俗的讲采样频率是指计算机每秒钟采集多少个声音样本,是描述声音文件的音质、音调,衡量声卡、声音文件的质量标准。

采样频率越高,即采样的间隔时间越短,则在单位时间内计算机得到的声音样本数据就越多,对声音波形的表示也越精确。

1.1.2采样位数即采样值或取样值,用来衡量声音波动变化的参数,是指声卡在采集和播放声音文件时所使用数字声音信号的二进制位数。

1.1.3采样定理在进行模拟/数字信号的转换过程中,当采样频率fs.max 大于信号中最高频率fmax的2倍时(fs.max>=2fmax),采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5~10倍;采样定理又称奈奎斯特定理。

《信号与系统》课程设计——数字语音信号的采样和重建

《信号与系统》课程设计——数字语音信号的采样和重建

《信号与系统》课程设计——数字语⾳信号的采样和重建《信号与系统》课程设计——数字语⾳信号的采样和重建【设计题⽬】数字语⾳信号的采样和重建【设计⽬标】尝试对语⾳信号的时频域分析及采样和重建处理【设计⼯具】MATLAB【设计原理】通过MATLAB的函数wavread()可以读⼊⼀个.wav格式的⾳频⽂件,并将该⽂件保存到指定的数组中。

例如下⾯的语句(更详细的命令介绍可以⾃⼰查阅MATLAB的帮助)中,将.wav读⼊后存放到矩阵y中。

[y, Fs] = wavread('Q2.wav');对于单声道的⾳频⽂件,y只有⼀⾏,即⼀个向量;对于双声道的⾳频⽂件,y 有两⾏,分别对应了两个声道的向量。

我们这⾥仅对⼀个声道的⾳频进⾏分析和处理即可。

在获得信号向量y的同时,还可以获得该信号的采样频率,即Fs。

注意:.wav⽂件的采样频率为44.1KHz,采样后的量化精度是16位,不过我们不⽤关⼼其量化精度,因为在MATLAB读⼊后,已将其转换成double型的浮点数表⽰,范围在-1到+1之间。

因此,所有处理后的语⾳信号的幅度如果超过了1,在播放时会被⾃动处理为最⼤幅度,-1或者+1。

【设计内容】⼀、基本要求:1、语⾳信号的基本时频域分析:对语⾳信号进⾏时频域分析,绘制语⾳信号的时域波形图、频域频谱图。

其中,时域波形图的横轴要求为时间,频域频谱图的横轴要求为频率(注意,不是⾓频率)。

找到语⾳信号的主要频谱成分所在的带宽,验证为何电话可以对语⾳信号采⽤8KHz 的采样速率。

2、语⾳信号的降采样:对该语⾳信号进⾏五分之⼀的降采样,⽅法是对数组y中的数据,每间隔5个保留1个,这样得到的新的语⾳信号的采样频率为44.1/5KHz,即8.8KHz,通过wavpaly()播放降采样后的语⾳信号。

同时,对⽐降采样前后的语⾳信号的时域波形图、频域频谱图。

3、语⾳信号的先滤波再降采样:在MATLAB中先对数组y中的语⾳信号使⽤⼀个带宽为8.8KHz的理想低通滤波器进⾏滤波后,再对其进⾏五分之⼀的降采样,再次播放该语⾳信号,并与第2步的结果进⾏对⽐。

语音信号处理实验报告

语音信号处理实验报告

通信与信息工程学院信息处理综合实验报告班级:电子信息工程1502班指导教师:设计时间:2018/10/22-2018/11/23评语:通信与信息工程学院二〇一八年实验题目:语音信号分析与处理一、实验内容1. 设计内容利用MATLAB对采集的原始语音信号及加入人为干扰后的信号进行频谱分析,使用窗函数法设计滤波器滤除噪声、并恢复信号。

2.设计任务与要求1. 基本部分(1)录制语音信号并对其进行采样;画出采样后语音信号的时域波形和频谱图。

(2)对所录制的语音信号加入干扰噪声,并对加入噪声的信号进行频谱分析;画出加噪后信号的时域波形和频谱图。

(3)分别利用矩形窗、三角形窗、Hanning窗、Hamming窗及Blackman 窗几种函数设计数字滤波器滤除噪声,并画出各种函数所设计的滤波器的频率响应。

(4)画出使用几种滤波器滤波后信号时域波形和频谱,对滤波前后的信号、几种滤波器滤波后的信号进行对比,分析信号处理前后及使用不同滤波器的变化;回放语音信号。

2. 提高部分(5)录制一段音乐信号并对其进行采样;画出采样后语音信号的时域波形和频谱图。

(6)利用MATLAB产生一个不同于以上频段的信号;画出信号频谱图。

(7)将上述两段信号叠加,并加入干扰噪声,尝试多次逐渐加大噪声功率,对加入噪声的信号进行频谱分析;画出加噪后信号的时域波形和频谱图。

(8)选用一种合适的窗函数设计数字滤波器,画出滤波后音乐信号时域波形和频谱,对滤波前后的信号进行对比,回放音乐信号。

二、实验原理1.设计原理分析本设计主要是对语音信号的时频进行分析,并对语音信号加噪后设计滤波器对其进行滤波处理,对语音信号加噪声前后的频谱进行比较分析,对合成语音信号滤波前后进行频谱的分析比较。

首先用PC机WINDOWS下的录音机录制一段语音信号,并保存入MATLAB软件的根目录下,再运行MATLAB仿真软件把录制好的语音信号用audioread函数加载入MATLAB仿真软件的工作环境中,输入命令对语音信号进行时域,频谱变换。

数字信号课程设计:语音信号的采集、分析与处理

数字信号课程设计:语音信号的采集、分析与处理

数字信号课程设计:语音信号的采集、分析与处理长沙学院《数字信号处理》课程设计说明书题目数字信号处理课程设计系(部)电子与通信工程系专业(班级)10级通信2班姓名周斌学号2010043205指导老师李广柱、刘光灿、陈威兵黄飞江、张刚林、冯璐起止日期2013.4.15-2013.4.26目录1.绪论····························- 6 -2.设计作品名称························- 7 -3.课程设计内容························- 7 -3.1 设计思想······················- 7 -3.2设计原理······················- 8 -3.2.1 无限脉冲响应数字滤波器设计············- 8 -3.2.1.1 巴特沃斯滤波器设计:···········- 8 -3.1.1.2 巴特沃斯滤波器的特性:··········- 9 -3.1.1.3 双线性变换法:·············- 11 -3.2.2 有限脉冲响应数字滤波器设计···········- 14 -4. 课程设计设计步骤及结果分析················- 18 -4.1 语音信号的采集及其时域、频域分析·········- 18 -4.1.1程序···················- 18 -4.1.2 图像··················- 19 -4.2 设计数字滤波器和画出其频率相映··········- 19 -4.2.1 无限低通数字滤波器··············- 20 -4.2.1.1 程序·················- 20 -4.2.1.2 图像·················- 21 -4.2.2 无限高通数字滤波器··············- 21 -4.2.2.1 程序·················- 21 -4.2.2.2 图像·················- 22 -4.2.3 有限低通数字滤波器··············- 22 -4.2.3.1程序··················- 22 -4.2.3.2 图像·················- 23 -4.2.4 有限高通数字滤波器··············- 23 -4.2.4.1 程序·················- 23 -4.2.4.2 图像·················- 24 -4.3 用滤波器对信号进行滤波并比较前后波形·······- 24 -4.3.1 经过低通IIR ··············- 25 -4.3.2 经过高通IIR ··············- 26 -4.3.3 经过低通FIR ··············- 27 -4.3.4 经过高通FIR ··············- 28 -4.4 编制实现上述任务的相应的总程序·········- 28 -4.4.1 信号经过低通IIR ·············- 28 -4.4.2 信号经过高通IIR ·············- 30 -4.4.3 信号经过低通FIR ·············- 31 -4.4.4 信号经过高通 FIR·············- 32 -4.5 撰写5000-8000字课程设计报告···········- 34 -5. 总结···························- 34 -6. 存在的建议及不足·····················- 35 -7. 参考文献·························- 36 -摘要对一段语音信号进行采样;画出采样后语音信号的时域波形和频谱图;给定滤波器的性能指标,采用窗函数法和双线性变换设计滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化;回放语音信号;最后,设计一个信号处理系统界面。

实时声音频率分析系统的设计研究

实时声音频率分析系统的设计研究

实时声音频率分析系统的设计研究一、前言在现代社会,声音是人与人交流最基本的媒介,而声音也是一种重要的信号,它可以传递各种信息。

由于各种原因,人们需要对声音进行分析和处理,得到有用的信息,比如语音信号处理、音频信号处理等等。

因此,设计一种实时声音频率分析系统是非常有必要的。

二、声音频率分析系统的概述声音频率分析系统是一种用于分析声音的信号处理系统。

它能够将声音信号转换成频域信号,得到声音信号中各个频率分量的强度信息。

该系统由音频采集模块、信号处理模块、频域转换模块、数据显示模块等组成。

三、系统硬件设计系统硬件设计包括音频采集模块和数据显示模块的设计。

1.音频采集模块音频采集模块是系统最重要的组成部分之一。

它负责接收声音信号,并将其转换成数字信号,供后续的处理、分析等操作使用。

音频采集模块通常由音频输入、A/D转换器和缓存等多个部分组成。

在设计音频输入时,需要考虑到信号源的类型、灵敏度和接口等。

常见的音频输入接口有模拟输入和数字输入两种。

A/D 转换器负责将模拟信号转换成数字信号。

缓存是为了保证系统的实时性。

2.数据显示模块数据显示模块用于将处理后的数据显示出来。

常见的实现方式有显示屏、指示灯、LED等。

四、系统软件设计系统软件设计包括信号处理模块、频域转换模块、数据显示模块的设计。

1.信号处理模块信号处理模块主要用于实现滤波、放大等数字信号处理功能。

对于滤波器,常见的类型有低通滤波器、高通滤波器等。

滤波操作可以有效地去除杂音和无用频率分量。

对于放大操作,可以使用放大器将信号增益。

同时,由于声音信号的幅值较小,需要进行放大以提高信噪比。

2.频域转换模块频域转换模块主要用于将时域信号转换成频域信号,以便进行频率分析。

常用的频域转换算法有傅里叶变换、快速傅里叶变换等。

频域转换后,可以得出各个频率分量的强度信息。

3.数据显示模块数据显示模块用于显示处理后的数据。

将处理后的数据以直观和易于理解的方式显示出来,便于用户观察和分析。

实验1 语音信号时域与频域分析

实验1 语音信号时域与频域分析
• 首先对语音信号序列进行成对采样地查对采样 以确定是否发生过零 ,若发生符号变化 , 则表 示有一次过零 ,而后进行一阶差分计算 ,再求 取绝对值 , 最后进行低通滤波。
例: 任选一段语音信号 ,对其进行采样 , 画出采 样以后的时域波形。
[x1,fs]=wavread ( "c :\wang .wav ") ; %读取语音信 号
x),FrameLen4, FrameInc)), 2) ; subplot (5, 1,5) ;plot (amp) ; title ( " 短 时 平 均 能 量 图 "
四 、实验报告要求
1 、简述实验目的和实验原理; 2 、matlab程序清单及结果图形; 3 、实验结果分析
添加:VOICEBOX工具箱
MATLAB\r2007b\toolbox\ voicebox")) • 检验是否成功设置的方法:
which activlev.m
N太小 , 滤波器的通带变宽 , 短时能量随时间有剧烈 变化 , 不能得到平滑的能量函数。
• 窗口的选择(长度的确定)又需相对不同的基 音周期来选择 。通常情况下 , 一个语音帧内应 含有1—7个基音周期 。然而不同的人其基音周 期变化范围很大 , 因此窗口宽度(N) 的选择 有一个折衷选择为100—200(即10—20ms持续 时间) 。
语音信号特性是随时间而变化的 , 是一个非平稳 的随机过程 。但从另一方面 , 在一个相对短时间范 围内其特性基本保持不变 。对于这种特点是语音信 号处理的一个重要出发点 。 因此我们可以采用平稳 过程的分析处理方法来处理语音。
时域分析
• 时域分析是语音分析中最早使用 ,应用范围最 广的一种方法。
x),FrameLen 1, FrameInc)), 2) ; subplot (5, 1,2) ;plot (amp) ; title ( " 短 时 平 均 能 量 图 "

语音信号处理 实验报告

语音信号处理 实验报告

实验一、语音信号采集与分析一、实验目的:1)了解语音信号处理基本知识:语音信号的生成的数学模型。

2)在理论学习的基础上,进一步地理解和掌握语音信号的读入、回放、波形显示。

语音信号时域和频域分析方法。

二、实验原理一定时宽的语音信号,其能量的大小随时间有明显的变化。

其中清音段(以清音为主要成份的语音段),其能量比浊音段小得多。

短时过零数也可用于语音信号分析中,发浊音时,其语音能量约集中于3kHz以下,而发清音时,多数能量出现在较高频率上,可认为浊音时具有较低的平均过零数,而清音时具有较高的平均过零数,因而,对一短时语音段计算其短时平均能量及短时平均过零数,就可以较好地区分其中的清音段和浊音段,从而可判别句中清、浊音转变时刻,声母韵母的分界以及无声与有声的分界。

这在语音识别中有重要意义。

FFT在数字通信、语音信号处理、图像处理、匹配滤波以及功率谱估计、仿真、系统分析等各个领域都得到了广泛的应用。

本实验通过分析加噪的语音信号频谱,可以作为分离信号和噪声的理论基础。

三、实验内容:Matlab编程实验步骤:1.新建M文件,扩展名为“.m”,编写程序;2.选择File/Save命令,将文件保存在F盘中;3.在Command Window窗中输入文件名,运行程序;程序一、用MATLAB对原始语音信号进行时域分析,分析短时平均能量及短时平均过零数。

程序二、用MATLAB对原始语音信号进行频域分析,画出它的时域波形和频谱给原始的语音信号加上一个高频余弦噪声,频率为5kHz。

画出加噪后的语音信号时域和频谱图。

程序1.a=wavread(' D:\II.wav'); %读取语音信号的数据,赋给变量x1,这里的文件的全路径和文件名由个人设计n=length(a);N=320;subplot(3,1,1),plot(a);h=linspace(1,1,N);%形成一个矩形窗,长度为NEn=conv(h,a.*a);%求卷积得其短时能量函数Ensubplot(3,1,2),plot(En);for i=1:n-1if a(i)>=0b(i)= 1;elseb(i) = -1;endif a(i+1)>=0b(i+1)=1;elseb(i+1)=-1;endw(i)=abs(b(i+1)-b(i));end%求出每相邻两点符号的差值的绝对值k=1;j=0;while (k+N-1)<nZm(k)=0;for i=0:N-1;Zm(k)=Zm(k)+w(k+i);endj=j+1;k=k+160; %每次移动半个窗endfor w=1:jQ(w)=Zm(160*(w-1)+1)/640;%短时平均过零率endsubplot(3,1,3),plot(Q);实验结果打印粘贴到右侧:程序2:fs=22050; %语音信号采样频率为22050x1=wavread('D:\II.wav'); %读取语音信号的数据,赋给变量x1sound(x1,22050); %播放语音信号f=fs*(0:511)/1024;t=0:1/22050:(size(x1)-1)/22050; %将所加噪声信号的点数调整到与原始信号相同Au=0.03;d=[Au*cos(2*pi*5000*t)]'; %噪声为5kHz的余弦信号x2=x1+d;sound(x2,22050); %播放加噪声后的语音信号y2=fft(x2,1024); %对信号做1024点FFT变换figure(1)subplot(2,1,1);plot(x1) %做原始语音信号的时域图形title('原始语音信号');xlabel('time n');ylabel('幅值 n');subplot(2,1,2);plot(t,x2)title('加噪后的信号');xlabel('time n');ylabel('幅值 n');figure(2)subplot(2,1,1);plot(f,abs(x1(1:512)));title('原始语音信号频谱');xlabel('Hz');ylabel('幅值');subplot(2,1,2);plot(f,abs(y2(1:512)));title('加噪后的信号频谱');xlabel('Hz'); ylabel('幅值');实验结果打印粘贴到右侧:050010001500200025003000350040004500原始语音信号time n幅值 n加噪后的信号time n幅值 n020004000600080001000012000原始语音信号频谱Hz幅值加噪后的信号频谱Hz幅值四、实验分析加入噪声后音频文件可辨性下降,波形的平缓,频谱图上看,能量大部分集中在2000HZz到4000Hz之间。

语音信号的采集与时频域分析系统的设计

语音信号的采集与时频域分析系统的设计

语音信号的采集与时频域分析系统的设计目录1. 内容简述 (2)1.1 研究背景与意义 (3)1.2 国内外研究现状 (4)1.3 本文的研究内容与结构安排 (5)2. 语音信号的特点 (6)2.1 语音信号的物理性质 (7)2.2 语音信号的时域特性 (8)2.3 语音信号的频域特性 (9)3. 语音信号的采集 (10)3.1 采样的原理与方法 (13)3.2 麦克风的类型与选择 (14)3.3 采样的设备与系统设计 (16)3.4 采样的常见问题与解决方案 (16)4. 语音信号与时频域的分析 (17)5. 时频分析方法 (19)5.1 短时能量分析 (20)5.2 短时傅里叶变换 (21)5.3 连续倒谱分析 (22)5.4 线性预测 (23)5.5 波束形成 (24)6. 系统实现 (26)6.1 硬件设计 (27)6.2 软件设计 (29)6.3 数据处理流程 (31)6.4 误差分析与优化 (31)7. 应用实例 (33)7.1 语音识别系统 (34)7.2 语音增强系统 (35)7.3 语音情绪分析系统 (36)7.4 语音信号处理的其他应用 (37)8. 展望与结论 (38)8.1 本文研究的不足之处 (40)8.2 未来的研究方向 (42)8.3 对相关领域的启示与建议 (43)1. 内容简述在本文档中,我们将详细探索及设计一个专门用于语音信号采集及其随后的时频域分析的系统。

该系统旨在通过精确的信号采集和深入的数据分析,提供丰富且准确的语音信息,为进一步的语音识别、情感分析或其他语音处理任务奠定坚实基础。

该文档首先会介绍语音信号采集的基本原理,涵盖麦克风的选择、采样频率及噪声控制等关键因素。

通过这些基础环节的详细说明,读者能理解如何保证采集到的语音信号质量。

接下来,我们将深入探讨语音信号的时频域分析。

时域分析是一种直接分析语音信号随时间变化的分析方法,允许研究人员直接观察信号的瞬态和稳态特性。

语音信号采集与处理系统的设计

语音信号采集与处理系统的设计

音频信号采样与处理系统方案设计**:**学号: ***********专业:电子信息工程学院:电子工程学院***师:**目录第1章理论依据21.1音频信号的介绍21.2采样频率21.1 TMS320VC5402介绍21.2 TLC320AD50介绍 6 第2章系统方案设计82.1 DSP核心模块的设计82.2 A/D转换模块9 第3章硬件设计103.1 DSP芯片103.2 电源设计103.3复位电路设计113.4 时钟电路设计123.5 程序存储器扩展设计123.6数据存储器扩展设计133.7 JTAG接口设计133.8 A/D接口电路设计14 第4章软件设计15 第5章总结17 参考文献18 致谢19 附录20摘要在研究数字信号处理的基础上,提出了一个基于DSP TMS320VC5402和A/D转换芯片TLC320AD50的音频信号采集系统的设计。

给出了该系统的总体设计方案,具体硬件电路,包括系统电源设计、复位电路设计、时钟电路设计、存储器设计、A/D接口电路设计、JTAG接口设计、DSP与A/D芯片的连接等,以及软件流程图。

关键词:音频信号数据采集DSP TLC320AD50ABSTRACTOn the basis of studying digital signal processing, The design of A audio signal acquisition system based on DSP TMS320VC5402 and A/D conversion chip TLC320AD50 is proposed. Overall design scheme of the system is given, and the specific hardware circuit, including the system power supply design, design of reset circuit, clock circuit design, design of memory, A/D interface circuit, JTAG interface, DSP and the connection of A/D chip, and software flow chart.Key words: audio signal data collection DSP TLC320AD50绪论1.1 选题背景及意义语言是人类特有的功能,它是创造和记载几千年人类文明史的根本手段,没有语言就没有今天的人类文明。

语音信号的采集与分析 毕业设计

语音信号的采集与分析 毕业设计

本科生毕业论文(设计)任务书论文(设计)题目语音信号的采集与分析学院专业班级学号姓名2009年月日语音信号的采集与分析作者:123 指导老师:456摘要语音信号的采集与分析技术是一门涉及面很广的交叉科学,它的应用和发展与语音学、声音测量学、电子测量技术以及数字信号处理等学科紧密联系。

其中语音采集和分析仪器的小型化、智能化、数字化以及多功能化的发展越来越快,分析速度较以往也有了大幅度的高。

本文简要介绍了语音信号采集与分析的发展史以及语音信号的特征、采集与分析方法,并通过PC机录制自己的一段声音,运用Matlab进行仿真分析,最后加入噪声进行滤波处理,比较滤波前后的变化。

关键词:语音信号,采集与分析, MatlabAudio signal acquisition and analysisAuthor:zhuyousong Teacher guidance:lifuqiangAbstractSpeech signal acquisition and analysis techniques are a wide range of cross-scientific,Its application and development of voice study, sound measurement study, electronic measuring technology, and digital signal processing disciplines, such as close contact。

Collection and analysis of voice one of the small-scale equipment, intelligence, digital and multi-functional development of more and more quickly, faster than the previous analysis has been substantially high。

语音信号采集系统设计

语音信号采集系统设计

本科毕业设计(论文)学院:信息科学与工程学院课题名称:语音信号采集系统设计专业(方向):电子信息工程(应用)班级:学生:指导教师:日期:桂林理工大学毕业设计(论文)独创性声明本人声明所呈交的设计(论文)是我个人在指导教师指导下进行的研究工作及取得的研究成果。

尽我所知,除了设计(论文)中特别加以标注和致谢的地方外,设计(论文)中不包含其他人或集体已经发表或撰写的研究成果,也不包含为获得桂林理工大学或其它教育机构的学位或证书而使用过的材料。

对设计(论文)的研究成果做出贡献的个人和集体,均已作了明确的标明。

本人完全意识到本声明的法律后果由本人承担。

设计(论文)作者签名:日期:年月日桂林理工大学毕业设计(论文)使用授权声明本设计(论文)作者完全了解学校有关保留、使用设计(论文)的规定,同意学校保留并向国家有关部门或机构送交设计(论文)的复印件和电子版,允许设计(论文)被查阅或借阅。

本人授权桂林工学院可以将本设计(论文)的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本设计(论文)。

设计(论文)作者签名:日期:年月日指导教师签名:日期:年月日摘要人机用语言进行交流,是人们多年的梦想,在提高工业系统,计算机系统智能化水平时,人机语言对话就是最好的信息交换的手段,而人机语言对话的关键就是语言采集。

本文介绍了一种用单片机作为核心控制单元,用驻极体话筒进行语音采集,而采集到的语音信号将会转变成电信号,将其用运放电路放大,并通过二阶低通滤波器进行滤波,用AD转换器进行模数转换,并通过单片机的串口与个人电脑连接,之后将采集到的语音在PC机上将其波形显示出来。

这个系统的单片机AT89C52微处理器,实现对系统的控制和数据处理。

AT89C52内部有一个小内存,可以短暂的存储语音信息。

同时,外围电路的语音采集,增益、功放电路,二阶低通滤波器电路和模数转换电路等,这些电路用来确保高质量的信息存储。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

燕山大学课程设计说明书题目:语音信号的采集与时频域分系统的设计学院(系):电气工程学院年级专业: 09精仪一班学号: 0901********学生姓名:乔召杰指导教师:刘永红教师职称:副教授目录引言 (2)第1章语音信号时域分析 (3)1、1 窗口选择 (3)1、2 短时能量 (4)1、3短时平均过零率 (5)1、4 短时自相关函数 (6)1、5 时域分析方法的应用 (7)第2章语音信号频域分析 (8)2、1 短时傅里叶变换 (8)2、2 语谱图 (9)2、3 复倒谱和倒谱 (9)第3章加噪与滤波处理 (11)3、1 原始信号加噪处理 (11)3、2 加噪信号滤波处理 (12)第4章总结 (13)参考文献 (14)附录 (15)引言语音信号是一种非平稳的时变信号,它携带着各种信息。

在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。

语音信号分析的目的就在与方便有效的提取并表示语音信号所携带的信息。

语音信号分析可以分为时域和频域等处理方法。

语音信号可以认为在短时间内(一般认为在 10~30ms 的短时间内)近似不变,因而可以将其看作是一个准稳态过程, 即语音信号具有短时平稳性。

任何语音信号的分析和处理必须建立在“短时”的基础上, 即进行“短时分析”。

时域分析:直接对语音信号的时域波形进行分析,提取的特征参数有短时能量,短时平均过零率,短时自相关函数等。

频域分析:对语音信号采样,并进行傅里叶变换来进行频域分析。

主要分析的特征参数:短时谱、倒谱、语谱图等。

本文采集作者的声音信号为基本的原始信号。

对语音信号进行时频域分析后,进行加白噪声处理并进行了相关分析,设计滤波器并运用所设计的滤波器对加噪信号进行滤波, 绘制滤波后信号的时域波形和频谱。

整体设计框图如下图所示:图0.1时频域分析设计图图0.2加噪滤波分析流程图第一章 语音信号时域分析语音信号的时域分析可直接对语音信号进行时域波形分析,在此只只针对语音信号的短时能量、短时平均过零率、短时自相关函数进行讨论。

1.1窗口选择由人类的发生机理可知,语音信号具有短时平稳性,因此在分析讨论中需要对语音信号进行加窗处理进而保证每个短时语音长度为10~30ms 。

通常选择矩形窗和哈明窗能得到较理想的“短时分析”设计要求。

两种窗函数的时域波形如下图2.1所示:矩形窗samplew (n )hanming 窗samplew (n )图1.1 矩形窗和Hamming 窗的时域波形矩形窗的定义:一个N 点的矩形窗函数定义为如下{1,00,()n Nw n ≤<=其他(1.1)哈明窗的定义:一个N 点的哈明窗函数定义为如下0.540.46cos(2),010,()n n NN w n π-≤<-⎧⎨⎩其他= (1.2)这两种窗函数都有低通特性,通过分析这两种窗的频率响应幅度特性可以发现(如图1.2):矩形窗的主瓣宽度小(4*pi/N ),具有较高的频率分辨率,旁瓣峰值大(-13.3dB ),会导致泄漏现象;哈明窗的主瓣宽8*pi/N ,旁瓣峰值低(-42.7dB ),可以有效的克服泄漏现象,具有更平滑的低通特性。

因此在语音频谱分析时常使用哈明窗,在计算短时能量和平均幅度时通常用矩形窗。

表1.1对比了这两种窗函数的主瓣宽度和旁瓣峰值。

图1.2 矩形窗和哈明窗的频率响应 表1.1 矩形窗和哈明窗的主瓣宽度和旁瓣峰值1.2短时能量短时能量主要分析语音信号能量随时间的变化,由于语音信号的清音和浊音之间能量有较大的差距,进而可通过短时能量对语音的清浊音进行分析。

定义短时能量为:221[()()][()()]nn m m n N E x m w n m x m w n m ∞=-∞=-+=-=-∑∑(1.3)其中N 为窗长,当选用矩形窗时则有:2()n m E x m ∞=-∞=∑ (1.4)由式(2.3)能量函数反应语音信号的幅度,同时由图2.3~2.4可知窗长对能量函数起着决定性作用。

窗长太大,不能反应能量n E 的变化,窗长太小,不能得到平滑的能量函数。

短时能量函数的应用:1)可用于区分清音段与浊音段。

n E 值大对应于浊音段,n E 值小对应于清音段。

2)可用于区分浊音变为清音或清音变为浊音的时间(根据n E 值的变化趋势)。

3)对高信噪比的语音信号,也可以用来区分有无语音(语音信号的开始点或终止点)。

无信号(或仅有噪声能量)时,n E 值很小,有语音信号时,能量显著增大。

图1.3 不同矩形窗长的短时能量函数图1.4 不同哈明窗长的短时能量函数1.3短时平均过零率短时过零率可以粗略估计语音的频谱特性。

高频率对应着高过零率,低频率对应着低过零率,那么过零率与语音的清浊音就存在着对应关系:清音的过零率高,浊音的过零率低。

定义短时平均过零率: s g n [[]s g n [(1)]()n m Z x m x m w n m ∞=-∞=---∑(1.5)其中sgn[]为符号函数,{1,()01,()0sgn ()x n x n x n ≥-=。

在矩形窗条件下,可以简化为:11sgn[()sgn[(1)]2nn m n N Z x m x m N=-+=--∑(1.6)图1.5 矩形窗(N=320)条件下的短时平均过零率由图1.5可知为某一语音在矩形窗条件下求得的短时能量和短时平均过零率。

分析可知:清音的短时能量较低,过零率高,浊音的短时能量较高,过零率低。

清音的过零率为0.5左右,浊音的过零率为0.1左右,两但者分布之间有相互交叠的区域,所以单纯依赖于平均过零率来准确判断清浊音是不可能的,在实际应用中往往是采用语音的多个特征参数进行综合判决短时平均过零率的应用:1)区别清音和浊音。

例如,清音的过零率高,浊音的过零率低。

此外,清音和浊音的两种过零分布都与高斯分布曲线比较吻合。

2)从背景噪声中找出语音信号。

语音处理领域中的一个基本问题是,如何将一串连续的语音信号进行适当的分割,以确定每个单词语音的信号,亦即找出每个单词的开始和终止位置。

3)在孤立词的语音识别中,可利用能量和过零作为有话无话的鉴别。

1.4短时自相关函数自相关函数用于衡量信号自身时间波形的相似性。

浊音的时间波形呈现出一定的周期性,波形之间相似性较好;清音的时间波形呈现出随机噪声的特性,样点间的相似性较差。

因此,我们用短时自相关函数来测定语音的相似特性。

短时自相关函数定义为: ()()()()()n m R k x m w n m x m k w n m k ∞=-∞=-+--∑ (1.7)令'm n m =+´,并且'()()w m w m -=,可以得到:''()[()()][()()]n m R k x n m w m x n m k w m k ∞=-∞=++++∑ (1.8)进而则有:1''0()[()()][()()]N kn m R k x n m w m x n m k w m k --==++++∑(1.9)自相关函数常用来作以下两种语音信号特征的估计: 1) 区分语音是清音还是浊音:清音的短时自相关函数不具有周期性,浊音是周期信号 2)估计浊音语音信号的基音周期。

图1.6语音信号的自相关函数与平均过零率图(1.6)给出了语音采集信号N=460的短时自相关函数波形和平均过零率。

短时自相关函数波形分析可知:浊音是周期信号,浊音的短时自相关函数呈现明显的周期性,自相关函数的周期就是浊音信号的周期,根据这个性质可以判断一个语音信号是清音还是浊音,还可以判断浊音的基音周期。

浊音语音的周期可用自相关函数中第一个峰值的位置来估算。

反之,清音接近于随机噪声,清音的短时自相关函数不具有周期性,也没有明显突起的峰值,且随着延时k 的增大迅速减小。

1.5时域分析方法的应用 1)基音频率的估计a) 可利用时域分析判定某一语音有效的清音和浊音段。

b) 针对浊音段,可直接利用短时自相关函数估计基音频率。

2)语音端点的检测与估计可利用时域分析判定某一语音信号的端点,尤其在有噪声干扰时,如何准确检测语音信号的端点,这在语音处理中是富有挑战性的一个课题。

第二章 语音信号频域分析语音信号的频域分析主要应用傅立叶变换来分析,由于语音信号是随着时间变化的,因此一般标准的傅立叶表示虽然适用于周期及平稳随机信号的表示,但不能直接用于语音信号。

由于语音信号可以认为在短时间内,近似不变,因而可以采用短时分析法。

2.1 短时傅立叶变换由于语音信号是短时平稳的随机信号,某一语音信号帧的短时傅立叶变换的定义为:()()()jwjwmn m X e x m w n m e∞-=-∞=-∑ (2.1)其中w(n-m)是实窗口函数序列,n 表示某一语音信号帧。

令n-m=k',则得到(')'()(')(')jwjw n k n k X e w k x n k e∞--=-∞=-∑ (2.2)于是可以得到:()()()jw jwnjwkn k X e ew k x n k e∞-=-∞=-∑ (2.3)假定:()()()jwjwkn k X e w k x n k e∞=-∞=-∑ (2.4)则可以得到:()()jw jwn jwn n X e e X e -= (2.5)同样,不同的窗口函数,将得到不同的傅立叶变换式的结果。

由上式可见,短时傅立叶变换有两个变量:n 和ω,所以它既是时序n 的离散函数,又是角频率ω的连续函数。

与离散傅立叶变换逼近傅立叶变换一样,如令ω=2πk/N ,则得离散的短时傅立叶吧如下:2/2/()()()(),(01)j k N n n j km Nm X e X k x m w n m ek N ππ∞-=-∞==-≤≤-∑ (2.6)2.2 语谱图语谱图反映了语音信号的动态频率特性,在语音分析中具有重要的实用价值。

被成为可视语言。

语谱图的时间分辨率和频率分辨率是由窗函数的特性决定的。

时间分辨率高,可以看出时间波形的每个周期及共振峰随时间的变化,但频率分辨率低,不足以分辨由于激励所形成的细微结构,称为宽带语谱图;而窄带语谱图正好与之相反。

宽带语谱图可以获得较高的时间分辨率,反映频谱的快速时变过程;窄带语谱图可以获得较高的频率分辨率,反映频谱的精细结构。

两者相结合,可以提供带两与语音特性相关的信息。

语谱图上因其不同的灰度,形成不同的纹路,称之为“声纹”。

声纹因人而异,因此可以在司法、安全等场合得到应用。

语音采集信号的的语谱图如下图(2.1)所示图2.1语音信号的语谱图2.3复倒谱和倒谱复倒谱^()x n 是()x n 的Z 变换取对数后的逆Z 变换,其表达式如下:^1[ln [()]]x Z Z x n -= (2.7)倒谱()c n 定义为()x n 取Z 变换后的幅度对数的逆Z 变换,即1()[ln |()|]c n z X z -= (2.8)在时域上,语音产生模型实际上是一个激励信号与声道冲激响应的卷积。

相关文档
最新文档