宏基因组学的一般研究策略
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宏基因组学的一般研究策略
摘要: 宏基因组学是目前微生物基因工程的一个重要方向与热点。它把微生物的总群体特性与基因组学实验手段结合了起来,包括从环境样品中提取总DNA、再用可培养的宿主微生物建立文库及筛选目的克隆和基因。该法是研究不可培养微生物、寻找新的基因和开发新活性产物的重要新途径。它避开了微生物分离、纯化和培养的步骤,大大扩展了微生物资源的利用范围。本文旨在介绍宏基因组学的一般研究方法并结合我们的实验情况,对这一崭新领域中的最新研究策略进行了简要综述。
关键词: 宏基因组学, 不可培养微生物, 文库构建, 文库筛选,研究策略
Strategies for accessing metagenomics for desired applications
Abstract: Metagenomics is a new field of microbial genetic engineering. It has the characteristics of microbial ecology and the methodology of genomics. Metagenomics includes genomic DNA isolation, library construction and screening strategies, and can be used in the discovery of new gene and biocatalysts and in the study of uncultured microorganism. Metagenomics can overcome the advantages of isolation and cultivation procedures in traditional microbial method, and thus greatly broaden the space of microbial resource utilization. In this paper, we mainly reviewed the metagenomic methodology, together with the latest advances and novel strategy in this research field.
Keywords:Metagenomics; Uncultured microorganism;Library construction;Library screening Research strategies
大自然中蕴藏着无数具有重要价值的微生物及其活性产物,也是新基因及生物学资源的重要源泉,对其进行研究成为微生物学和分子生物学研究的一个重要方向。然而人们现在能够培养与利用的不到环境中总微生物的1%[1]。宏基因组学(metagenomics)是直接从环境样品中提取全部微生物的总DNA, 避开了分离、纯化和培养微生物的过程来构建宏基因组文库,用基因组学的研究策略来研究环境样品中的总微生物的组成及其在群落中的功能等。现在,宏基因组学技术方法已在微生物多样性,微生物细胞间的相互作用,新基因和新型生物催化剂的开发,新的抗生素的开发及环境生态等方面得到了广泛应用[2]。本文旨在介绍宏基因组学的一般实验方法并结合我们的研究情况,对这一崭新领域中的最新研究策略进行了简要综述。深化了我们对这一学科的认识,促进了该学科的进步。
1 宏基因组学研究策略
1.1宏基因组学概要
宏基因组学是Handelsman等于1998年提出的[3], 可见是一门很新的学科,其随着基因组实验手段,生物信息学和测序技术等的日新月异也迅猛发展了起来,这个新学科是以环境样品的总微生物基因组为实验对象,通过测序分析、文库评价、产活性物质及其基因的克隆的获取和基因功能的鉴别,对微生物种群组成与生物量、生态学关系、生物化学关系与环境关系以及功能活性进行研究[4]。其主要过程包括样品和基因的富集和提取; 宏基因组文库的构建; 目的基因的筛选; 目的基因活性产物的表达(图1)。
1.2 微生物及其基因的富集
在文库筛选过程中由于目的基因比例较小, 对环境中微生物的富集不但可提高基因总量,有利于基因的提取,还可增加目的基因的比例,如Kouker 等用橄榄油富集产脂肪酶的微生物收到了很好的效果[5 ],橄榄油不仅可作为底物,还可诱导脂肪酶的合成。目前富集技术主要分为细胞水平和基因水平。其中细胞水平主要是用选择培养基来富集某些微生物, 常
图 1 环境微生物宏基因组学研究策略[6]
Fig. 1 General process of metagenomic strategie[6]
用的就是上面例子中的底物选择法[5]。
每一个事物都有其两面性,富集培养虽然扩大了基因的总量,却很容易使部分微生物及其携带的基因丢失。基因水平富集中的稳定同位素探针技术(SIP)很有代表性, 它是用稳定同位素标记底物, 用相对量较大的原子掺入到具有活性的核酸里,采用密度梯度离心法将其分开, 标记的核酸可作为PCR的模板,用来构建宏基因组文库[7]。目前,SIP与宏基因组学结合的报道还不多,但其潜力与优势很明显,利用SIP可提高新基因发现的几率。
1.3 环境中总DNA的提取
宏基因组学要分析的样品成分复杂,要获得高浓度、大片段、无偏好的总DNA是宏基因组学技术的难点,也是其重点。现在提取DNA的方法大体有两种: 其一是直接提取法, 又称原位提取法,它用化学和物理方法直接裂解样品中的微生物使DNA得以释放,再抽提总DNA,并对DNA进行纯化。其中以Zhou法[8]和Tsai[9]法最为常用。该法操作简便、省时、成本低,能代表某一生境的微生物群落多样性。其缺点是会出现细胞裂解不完全或DNA 与样品杂质共沉淀而难以分离, 故一般要再进行DNA纯化这一步,它所提取的DNA片段较小(1 kb~50 kb), 适合小片段文库的构建; 其二是间接提取法, 即异位提取法,是采用差速离心等方法将细胞从样品中分离出,再提取DNA, 该法获得的DNA纯度高、DNA 片段大(20 kb~500 kb), 适合构建大片段的基因文库。但操作繁琐、成本高、DNA 产率低且有偏嗜性, 其