2020年中考数学专题训练-疫情专题01(有答案解析)

合集下载

专题55 新冠疫情中的中考数学(解析版)

专题55 新冠疫情中的中考数学(解析版)
解得: ,
∴y与x的函数关系式为:y=﹣100x+2400;
(2)设线上和线下月利润总和为m元,
则m=400(x﹣2﹣10)+y(x﹣10)=400x﹣4800+(﹣100x+2400)(x﹣10)=﹣100(x﹣19)2+7300,
∴当x为19元/件时,线上和线下月利润总和达到最大,此时的最大利润为7300元.
x(元/件)
12
13
14
15
16
y(件)
1200
1100
1000
900
800
(1)求y与x的函数关系式;
(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.
【答案】见解析。
【分析】(1)由待定系数法求出y与x的函数关系式即可;
所以小明和小丽从同一个测温通道通过的概率为 .
9.(2020•成都)在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y(单位:件)与线下售价x(单位:元/件,12≤x<24)满足一次函数的关系,部分数据如下表:
【答案】4
【分析】设李红出门没有买到口罩的次数是x,买到口罩的次数是y,根据买口罩的次数是10次和家里现有口罩35只,可列出关于x和y的二元一次方程组,求解即可.
【解析】设李红出门没有买到口罩的次数是x,买到口罩的次数是y,由题意得:

整理得: ,
解得: .
【例题3】(2020•齐齐哈尔)新冠肺炎疫情期间,某市防控指挥部想了解自1月20日至2月末各学校教职工参与志愿服务的情况.在全市各学校随机调查了部分参与志愿服务的教职工,对他们的志愿服务时间进行统计,整理并绘制成两幅不完整的统计图表.请根据两幅统计图表中的信息回答下列问题:

2020届山西中考考前公益大联考数学试题(含解析)

2020届山西中考考前公益大联考数学试题(含解析)

( ) C. 1 - 0.25 0 = 1 4
D. ( 2a - b )5 ÷ ( 2a - b )3 = 4a2 - 4ab + b2
7. 将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺
平 后得到图⑤,其中 FM,GN 是折痕,若正方形 EFGH 与五边形 MCNGF 面积相等,
不存在,请说明理由;
(3)抛物线 y = - 1 x2 + 3 x + 2 的对称轴与 BC 交于点 P,点 M 在对称轴上运动,过
3
3
点 P 作 PQ∥x 轴,交抛物线于点 Q,若△PQM 与△BOC 相似,请直接写出点 M 的
坐标 .
y
C D
y
M
C
Q
P
AO
EB
x
AO
B
x
图? 11
? 图2 2
卓育云卷 ⋅ 数学试题 第 6 页(共 6 页)
选择题共30分一选择题本大题共10个小题每小题3分共30在每小题所给出的四个选项中只有一项符合题目要求在疫情期间小明在手机上看到下列图标并把它们画在下面其中是中心对称图形而不是轴对称图形的是在一个不透明的袋子里装有若干个白色围棋子为了知道袋子里白棋子的个数小明的妈妈不让小明倒出来数而利用所学的数学知识解答
3
P
点 O 出发,沿 y 轴的正半轴以每秒 1 个单位长度的速度运
2
M
动,此时,过点 P 的直线 y=-x+b 也随之运动 . 若使点 M 关
1
于直线 y=-x+b 的对称点第一次落在坐标轴上,此时,点 P
O 1 2 3x
运动的时间为
秒.
(第 14 题图) AA

2020年中考数学专题训练-疫情专题03(有答案解析)

2020年中考数学专题训练-疫情专题03(有答案解析)
存在最小值,请问当直线MN在什么位置时,△MON的面积最小,并说明理由.
实际应用:如图3,若在道路OA、OB之间有一村庄Q发生疫情,防疫部门计划以公路OA、OB和经过防疫站P的一条直线MN为隔离线,建立一个面积最小的三角形隔离区△MON.若测得∠AOB=66°,∠POB=30°,OP=4km,试求△MON的面积.(结果精确到0.1km2)(参考数据:sin66°≈0.91,tan66°≈2.25, ≈1.73)
(1)该药店第一周口罩的销售袋数比医用酒精的销售瓶数多100,且第一周这两种防护用品的总销售额为9000元,求该药店第一周销售口罩多少袋?
(2)由于疫情紧张,该药店为了帮助大家共渡难关,第二周口罩售价降低了 ,销量比第一周增加了 ,医用酒精的售价保持不变,销量比第一周增加了 ,结果口罩和医用酒精第二周的总销售额比第一周增加了 ,求 的值.
10.今年年初,我国爆发新冠肺炎疫情,某省邻近县市C、D获知A、B两市分别急需救援物资200吨和300吨的消息后,决定调运物资支援.已知C市有救援物资240吨,D市有救援物资260吨,现将这些救援物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用分别为每吨15元和30元,设从C市运往A市的救援物资为x吨.
参考答案
1.A
【解析】
【分析】
将三个小区分别记为A、B、C,列举出所有等情况数和他们恰好抽到同一个小区的情况数,然后根据概率公式即可得出答案.
【详解】
将三个小区分别记为A、B、C,根据题意列表如下:
A
B
C
A
(A,A)
(B,A)
(C,A)
B
(A,B)
(B,B)
(C,B)

2020年中考数学复习专题练:《二次函数实际应用 》(含答案)

2020年中考数学复习专题练:《二次函数实际应用 》(含答案)

2020年中考数学复习专题练:《二次函数实际应用》1.金松科技生态农业养殖有限公司种植和销售一种绿色羊肚菌,已知该羊肚菌的成本是12元/千克,规定销售价格不低于成本,又不高于成本的两倍.经过市场调查发现,某天该羊肚菌的销售量y(千克)与销售价格x(元/千克)的函数关系如下图所示:(1)求y与x之间的函数解析式;(2)求这一天销售羊肚菌获得的利润W的最大值;(3)若该公司按每销售一千克提取1元用于捐资助学,且保证每天的销售利润不低于3600元,问该羊肚菌销售价格该如何确定.2.某超市以20元/千克的进货价购进了一批绿色食品,如果以30元/千克销售这些绿色食品,那么每天可售出400千克.由销售经验可知,每天的销售量y(千克)与销售单价x (元)(x≥30)存在如图所示的一次函数关系.(1)试求出y与x的函数关系式;(2)设该超市销售该绿色食品每天获得利润w元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?3.为倡导节能环保,降低能源消耗,提倡环保型新能源开发,造福社会.某公司研发生产一种新型智能环保节能灯,成本为每件40元.市场调查发现,该智能环保节能灯每件售价y(元)与每天的销售量为x(件)的关系如图,为推广新产品,公司要求每天的销售量不少于1000件,每件利润不低于5元.(1)求每件销售单价y(元)与每天的销售量为x(件)的函数关系式并直接写出自变量x的取值范围;(2)设该公司日销售利润为P元,求每天的最大销售利润是多少元?(3)在试销售过程中,受国家政策扶持,毎销售一件该智能环保节能灯国家给予公司补贴m(m≤40)元.在获得国家每件m元补贴后,公司的日销售利润随日销售量的增大而增大,则m的取值范围是(直接写出结果).4.网络销售是一种重要的销售方式.某乡镇农贸公司新开设了一家网店,销售当地农产品.其中一种当地特产在网上试销售,其成本为每千克2元.公司在试销售期间,调查发现,每天销售量y(kg)与销售单价x(元)满足如图所示的函数关系(其中2<x≤10).(1)若5<x≤10,求y与x之间的函数关系式;(2)销售单价x为多少元时,每天的销售利润最大?最大利润是多少元?5.现代城市绿化带在不断扩大,绿化用水的节约是一个非常重要的问题.如图1、图2所示,某喷灌设备由一根高度为0.64m的水管和一个旋转喷头组成,水管竖直安装在绿化带地面上,旋转喷头安装在水管顶部(水管顶部和旋转喷头口之间的长度、水管在喷灌区域上的占地面积均忽略不计),旋转喷头可以向周围喷出多种抛物线形水柱,从而在绿化带上喷灌出一块圆形区域.现测得喷的最远的水柱在距离水管的水平距离3m处达到最高,高度为1m.(1)求喷灌出的圆形区域的半径;(2)在边长为16m的正方形绿化带上固定安装三个该设备,喷灌区域可以完全覆盖该绿化带吗?如果可以,请说明理由;如果不可以,假设水管可以上下调整高度,求水管高度为多少时,喷灌区域恰好可以完全覆盖该绿化带.(以上需要画出示意图,并有必要的计算、推理过程)6.某商家在购进一款产品时,由于运输成本及产品成本的提高,该产品第x天的成本y(元/件)与x(天)之间的关系如图所示,并连续60天均以80元/件的价格出售,第x天该产品的销售量z(件)与x(天)满足关系式z=x+15.(1)第25天,该商家的成本是元,获得的利润是元;(2)设第x天该商家出售该产品的利润为w元.①求w与x之间的函数关系式;②求出第几天的利润最大,最大利润是多少?7.某品牌服装公司经过市场调査,得到某种运动服的月销量y(件)是售价x(元/件)的一次函数,其售价、月销售量、月销售利润w(元)的三组对应值如下表:注:月销售利润=月销售量×(售价一进价)售价x(元/件)130 150 180月销售量y(件)210 150 60月销售利润w(元)10500 10500 6000(1)求y关于x的函数解析式(不要求写出自变量的取值范围);(2)当售价是多少时,月销售利润最大?最大利润是多少元?(3)为响应号召,该公司决定每售出1件服装,就捐赠a元(a>0),商家规定该服装售价不得超过200元,月销售量仍满足上关系,若此时月销售最大利润仍可达9600元,求a的值.8.“武汉加油!中国加油!”疫情牵动万人心,每个人都在为抗击疫情而努力.某厂改造了10条口罩生产线,每条生产线每天可生产口罩500个.如果每增加一条生产线,每条生产线就会比原来少生产20个口罩.设增加x条生产线后,每条生产线每天可生产口罩y 个.(1)直接写出y与x之间的函数关系式;(2)若每天共生产口罩6000个,在投入人力物力尽可能少的情况下,应该增加几条生产线?(3)设该厂每天可以生产的口罩w个,请求出w与x的函数关系式,并求出增加多少条生产线时,每天生产的口罩数量最多,最多为多少个?9.九年级孟老师数学小组经过市场调查,得到某种运动服的月销量y(件)是售价x(元/件)的一次函数,其售价、月销售量、月销售利润w(元)的三组对应值如下表:售价x(元/件)130 150 180月销售量y(件)210 150 60月销售利润w(元)10500 10500 6000注:月销售利润=月销售量×(售价﹣进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围);②运动服的进价是元/件;当售价是元/件时,月销利润最大,最大利润是元.(2)由于某种原因,该商品进价降低了m元/件(m>0),商家规定该运动服售价不得低于150元/件,该商店在今后的售价中,月销售量与售价仍满足(1)中的函数关系式,若月销售量最大利润是12000元,求m的值.10.小明经过市场调查,整理出他妈妈商店里一种商品在第x(1≤x≤30)天的销售量的相关信息如下表:时间第x(天)1≤x≤20 20≤x≤30售价(元/件)x+30 50每天销量(件)160﹣4x已知该商品的进价为每件20元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于2400元?请直接写出结果.11.我市某乡镇在“精准扶贫”活动中销售农产品,经分析发现月销售量y(万件与月份x (月)的关系为:每件产品的利润z(元)与月份x(月)的关系如表:x 1 2 3 4 5 6 7 8 9 10 11 12 z19 18 17 16 15 14 13 12 10 10 10 10 (1)请你根据表格直接写出每件产品利润z(元)与月份x(月)的函数关系式;(2)若月利润w(万元)=当月销售量y(万件)x当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?12.某商品的进价为每件50元,售价为每件60元,每个月可卖出200件.若每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元),设每件商品的售价上涨x 元(x为正整数),每个月的销售量为y件.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为w元,每件商品的售价定为多少元时,每个月可获得最大利润?最大月利润是多少元?13.某超市销售一种高档蔬菜“莼菜”,其进价为16元/kg.经市场调查发现:该商品的日销售量y(kg)是售价x(元/kg)的一次函数,其售价、日销售量对应值如表:售价x(元/kg)20 30 40日销售量y(kg)80 60 40(1)求y关于x的函数解析式(不要求写出自变量的取值范围);(2)x为多少时,当天的销售利润w(元)最大?最大利润为多少?(3)由于产量日渐减少,该商品进价提高了a元/kg(a>0),物价部门规定该商品售价不得超过36元/kg,该商店在今后的销售中,日销售量与售价仍然满足(1)中的函数关系.若日销售最大利润是864元,求a的值.14.为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子的售价不能超过进价的200%.(1)请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.(2)定价为多少时每天的利润最大?最大利润是多少?15.甲船从A处起以15km/h的速度向正北方向航行,这时乙船从A的正东方向20km的B 处起以20km/h的速度向西航行,多长时间后,两船的距离最小?最小距离是多少?16.某商场经营一种海产品,进价是每千克20元,根据市场调查发现,每日的销售量y(千克)与售价x(元/千克)是一次函数关系,如图所示:(1)求y与x的函数关系式(不求自变量取值范围);(2)某日该商场出售这种海产品获得了21000元的利润,该海产品的售价是多少?(3)若某日该商场这种海产品的销售量不少于650千克,该商场销售这种海产品获得的最大利润是多少?17.某网店专售一款电动牙刷,其成本为20元/支,销售中发现,该商品每天的销售量y(支)与销售单价x(元/支)之间存在如图所示的关系.(1)请求出y与x的函数关系式;(2)该款电动牙刷销售单价定为多少元时,每天销售利润最大?最大利润是多少元?(3)近期武汉爆发了“新型冠状病毒”疫情,该网店店主决定从每天获得的利润中抽出200元捐赠给武汉,为了保证捐款后每天剩余利润不低于550元,如何确定该款电动牙刷的售单价?18.某网店专售一品牌牙膏,其成本为22元/支,销售中发现,该商品每天的销售量y(支)与销售单价x(元/支)之间存在如图所示的关系.(1)请求出y与x之间的函数关系式;(2)该品牌牙膏销售单价定为多少元时,每天销售利润最大?最大利润是多少元?(3)在武汉爆发“新型冠状病毒”疫情期间,该网店店主决定从每天获得的利润中抽出100元捐赠给武汉,为了保证捐款后每天剩余的利润不低于350元,在抗“新型冠状病毒”疫情期间,市场监督管理局加大了对线上、线下商品销售的执法力度,对商品售价超过成本价的20%的商家进行处罚,请你给该网店店主提供一个合理化的销售单价范围.19.某工艺品厂生产一款工艺品,已知这款工艺品的生产成本为60元/件.经市场调研发现,这款工艺品每天的销售量y(件)与售价x(元/件)之间存在着如表所示的一次函数关系:售价x/(元/件)…70 90 …销售量y/件…3000 1000 …(1)求销售量y(件)与售价x(元/件)之间的函数关系式.(2)求每天的销售利润w(元)与售价x(元/件)之间的函数关系式.(3)如何定价才能使该工艺品厂每天获得的销售利润为40000元?20.如图,用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长为18m.设矩形菜园的边AB的长为xm,面积为Sm2.(I)写出S关于x的函数解析式,并求出x的取值范围;(Ⅱ)当该矩形菜园的面积为72m2时,求边AB的长;(Ⅲ)当边AB的长为多少时,该矩形菜园的面积最大?最大面积是多少?参考答案1.解:(1)①当12≤x≤20时,设y=kx+b.代(12,2000),(20,400),得解得∴y=﹣200x+4400②当20<x≤24时,y=400.综上,y=(2)①当12≤x≤20时,W=(x﹣12)y=(x﹣12)(﹣200x+4400)=﹣200(x﹣17)2+5000当x=17时,W的最大值为5000;②当20<x≤24时,W=(x﹣12)y=400x﹣4800.当x=24时,W的最大值为4800.∴最大利润为5000元.(3)①当12≤x≤20时,W=(x﹣12﹣1)y=(x﹣13)(﹣2000x+4400)=﹣200(x﹣17.5)2+4050令﹣200(x﹣17.5)2+4050=3600x 1=16,x2=19∴定价为16≤x≤19②当20<x≤24时,W=400(x﹣13)=400x﹣5200≥3600 ∴22≤x≤24.综上,销售价格确定为16≤x≤19或22≤x≤24.2.解:(1)设y与x的函数关系式为y=kx+b,,得,即y与x的函数关系式是y=﹣20x+1000(30≤x≤50);(2)w=(x﹣20)y=(x﹣20)(﹣20x+1000)=﹣20x2+1400x﹣20000=﹣20(x﹣35)2+4500,故当x=35时,w取得最大值,此时w=4500,答:当销售单价为35元/千克时,每天可获得最大利润4500元.3.解:(1)设每件销售单价y(元)与每天的销售量为x(件)的函数关系式为y=kx+b,把(1500,55)与(2000,50)代入y=kx+b得,,解得:,∴每件销售单价y(元)与每天的销售量为x(件)的函数关系式为y=﹣x+70,当y≥45时,﹣x+70≥45,解得:x≤2500,∴自变量x的取值范围1000≤x≤2500;(2)根据题意得,P=(y﹣40)x=(﹣x+70﹣40)x=﹣x2+30x=﹣(x ﹣1500)2+22500,∵﹣<0,P有最大值,当x<1500时,P随x的增大而增大,∴当x=1500时,P的最大值为22500元,答:每天的最大销售利润是22500元;(3)由题意得,P=(﹣x+70﹣40+m)x=﹣x2+(30+m)x,∵对称轴为x=50(30+m),∵1000≤x≤2500,∴x 的取值范围在对称轴的左侧时P 随x 的增大而增大,50(30+m )≥2500,解得:m ≥20,∴m 的取值范围是:20≤m ≤40.故答案为:20≤m ≤40.4.解:(1)设y =kx +b ,把(5,600),(10,400)代入y =kx +b , 得解得 ∴y =﹣40x +800.(2)设每天的销售利润为w 元当2<x ≤5时,w =600(x ﹣2)=600x ﹣1200当x =5时,w max =600×5﹣1200=1800(元);当5<x ≤10时,w =(﹣40x +800)(x ﹣2)=﹣40(x ﹣11)2+3240当x =10时,w max =﹣40×1+3240=3200综上所述,当x =10时,每天的销售利润最大,最大是3200元.5.解:(1)根据题意,以水管在地面安装处为坐标原点,以该处和喷的最远的水柱落地处所在直线为x 轴,建立平面直角坐标系,则喷的最远的水柱所在的抛物线顶点为(3,1),过(0,0.64).可设该抛物线对应的函数表达式是y =a (x ﹣3) 2+1,代入(0,0.64),解得,a =﹣. 所以y =﹣ (x ﹣3) 2+1.令y =0,解得x 1=﹣2(舍),x 2=8.4 分所以,喷灌出的圆形区域的半径为8 m .(2)在边长为16 m 的正方形绿化带上按如图的位置固定安装三个该设备,如图1,喷灌出的圆形区域的半径的最小值是=,8<,这样安装不能完全覆盖;如图2,设CD=x,则BC=16﹣x,DE=8,AB=16,由勾股定理得:82+x2=(16﹣x)2+162解得:x=14∴2r==∴喷灌出的圆形区域的半径的最小值是,8<,这样安装也不能完全覆盖;<,如果喷灌区域可以完全覆盖该绿化带.则一个设备喷灌出的圆形区域的半径的最小值应为m.设水管向上调整a m,则调整后喷的最远的水柱所在的抛物线函数表达式是y=﹣(x﹣3) 2+1+a.代入(,0),解得,a=.0.64+=答:水管高度为时,喷灌区域恰好可以完全覆盖该绿化带.6.解:(1)由图象可知,此时的产量为z=25+15=40(件),设直线BC的关系为y=kx+b,∴,∴,∴y=x+10,故第25天,该商家的成本是:25+10=35(元)则第25天的利润为:(80﹣35)×40=1800(元);故答案为:35,1800;(2)①当0≤x≤20时,w=(80﹣30)(x+15)=50x+750,当20<x≤60时,w=[80﹣(x+10)](x+15)=﹣x2+55x+1050 ∴w=.②当0≤x≤20时w=(80﹣30)(x+15)=50x+750,=1750元;当x=20时,w最大当20<x≤60时,w=﹣x2+55x+1050∵﹣1<0,抛物线开口向下,对称轴为x=∴当x=27或x=28时,w=﹣272+55×27+1050=1806(元)∵1806>1750∴第27天或28天的利润最大,最大为1806元.7.解:(1)设y关于x的函数解析式为:y=kx+b(k≠0)由题意得:,解得:∴y关于x的函数解析式为y=﹣3x+600;(2)运动服的进价是:130﹣10500÷210=80(元)月销售利润w=(x﹣80)(﹣3x+600)=﹣3x2+840x﹣48000=﹣3(x﹣140)2+10800∴当售价是140元时,月销售利润最大,最大利润为10800元;(3)由题意得:w=(x﹣80﹣a)(﹣3x+600)=﹣3x2+(840+3a)x﹣48000﹣600a∴当x=140+a时,w有最大值.∵a>0,且a≤140﹣80∴140<140+a≤170<200∵商家规定该服装售价不得超过200元,此时月销售最大利润仍可达9600元,∴当x=140+a时,有,解得,a=120﹣80,或a=120+80(舍去),故a=120﹣80.8.解:(1)由题意可知该函数关系为一次函数,其解析式为:y=500﹣20x;∴y与x之间的函数关系式为y=500﹣20x(0≤x≤25,且x为整数);(2)由题意得:(10+x)(500﹣20x)=6000,整理得:x2﹣15x+50=0,解得:x1=5,x2=10,∵尽可能投入少,∴x2=10舍去.答:应该增加5条生产线.(3)w=(10+x)(500﹣20x)=﹣202+300x+5000=﹣20(x﹣7.5)2+6125,∵a=﹣20<0,开口向下,∴当x=7.5时,w最大,又∵x为整数,∴当x=7或8时,w最大,最大值为6120.答:当增加7或8条生产线时,每天生产的口罩数量最多,为6120个.9.解:(1)设y关于x的函数解析式为:y=kx+b(k≠0)由题意得:解得:∴y关于x的函数解析式为y=﹣3x+600;(2)运动服的进价是:130﹣10500÷210=80(元)月销售利润w=(x﹣80)(﹣3x+600)=﹣3x2+840x﹣48000=﹣3(x﹣140)2+10800∴当售价是140元时,月销售利润最大,最大利润为10800元.故答案为:80;140;10800;(3)由题意得:w=[x﹣(80﹣m)](﹣3x+600)=﹣3x2+(840﹣3m)x﹣48000+600m对称轴为x=140﹣∵m>0∴140﹣<140<150∵商家规定该运动服售价不得低于150元/件∴由二次函数的性质,可知当x=150时,月销售量最大利润是12000元∴﹣3×1502+(840﹣3m)×150﹣48000+600m=12000解得:m=10∴m的值为10.10.(1)当1≤x<20时,y=(160﹣4x)(x+30﹣20)=﹣4x2+120x+1600;当20≤x≤30时,y=(50﹣20)(160﹣4x)=﹣120x+4800;综上:y=(2)当1≤x<20时,y=﹣4x2+120x+1600=﹣4(x﹣15)2+2500∵a=﹣4<0∴当x=15时,y有最大值,最大值为2500元;当20≤x≤30时,y=﹣120x+4800;∵k=﹣120<0∴y随x的增大而减小∴当x=20时,y有最大值,最大值为2400元,综上可知,当x=15时,当天的销售利润最大,最大利润为2500元.(3)当1≤x<20时,令y=﹣4(x﹣15)2+2500=2400,解得:x1=10,x2=20(舍)∵a=﹣4<0∴当1≤x<20时,有10天每天销售利润不低于2400元;当20≤x≤30时,令y=﹣120x+4800=2400解得:x=20由(2)可知,2400为此时间段的最大值.综上,共有11天每天销售利润不低于2400元.11.解:(1)观察表中数据可得,当1≤x≤8时,z=﹣x+20;当9≤x≤12时,z=10.∴z与x的关系式为:z=;(2)当1≤x≤6时,w=(﹣x+20)(x+8)=﹣x2+12x+160;当7≤x≤8时,w=(﹣x+20)(﹣x+20)=x2﹣40x+400;当9≤x≤12时,w=10(﹣x+20)=﹣10x+200;∴w与x的关系式为:(3)当1≤x≤6时,w=﹣x2+12x+160=﹣(x﹣6)2+196,∴x=6时,w有最大值为196;当7≤x≤8时,w=x2﹣40x+400=(x﹣20)2,w随x增大而减小,∴x=7时,w有最大值为169;当9≤x≤12时,w=﹣10x+200,w随x增大而减小,∴x=9时,w有最大值为110;∵110<169<196,∴x=6时,w有最大值为196.12.解:(1)由题意得:y=200﹣10x∵每件售价不能高于72元∴1≤x≤12,且x为正整数;(2)由题意得:w=(60+x﹣50)(200﹣10x)=(10+x)(200﹣10x)=﹣10x2+100x+2000=﹣10(x﹣5)2+2250∴当x=5时,60+x=65时,即销售单价为65元时,每个月可获得最大利润,最大月利润是2250元.13.解:(1)①依题意设y=kx+b,则有解得:∴y关于x的函数解析式为y=﹣2x+120;(2)根据题意得,w=(﹣2x+120)×(x﹣16)=﹣2x2+152x﹣1920=﹣2(x﹣38)2+968,∴当售价是38元/件时,日销售利润最大,最大利润是968元;(3)根据题意得,w=(﹣2x+120)×(x﹣16﹣a)=﹣2x2+(152+2a)x﹣1920﹣120a∵a>0,对称轴为直线x=﹣=38+>36,又∵﹣2<0,售价不得超过36元/kg,∴当x≤36时,w随x的增大而增大,∴当x=36时,w有最大值864元,∴﹣2×362+(152+2a )×36﹣1920﹣120a =864,∴解得:a =2,∴a 的值为2.14.解:(1)设每个粽子的定价为x 元时,每天的利润为800元, 根据题意得,, 解得x 1=7,x 2=5,∵售价不能超过进价的200%,∴x ≤3×200%,即x ≤6,∴x =5,∴定价为5元时,每天的利润为800元.(2)设每个粽子的定价为m 元,则每天的利润为w ,则有: w =(m ﹣3)(500﹣10×)=(m ﹣3)(500﹣100m +400)=﹣100(m ﹣3)(m ﹣9)=﹣100(m 2﹣12m +27)=﹣100[(m ﹣6)2﹣9]=﹣100(m ﹣6)2+900∵二次项系数为﹣100<0,m ≤6,∴当定价为6元时,每天的利润最大,最大的利润是900元.15.解:根据题意画出示意图如下:设x 小时后,两船相距ykm ,根据题意,得:y2=(15x)2+(20﹣20x)2=225x2+400﹣800x+400x2=(25x﹣16)2+144∴当x=时,y2有最小值144,则y的最小值为12,答:小时后,两船的距离最小,最小距离是12km.16.解:(1)设y与x之间的函数关系式为y=kx+b,将(25,950),(40,800)代入可得:解得,∴y与x之间的函数关系式为y=﹣10x+1200.(2)根据题目信息可得:(﹣10x+1200)(x﹣20)=21000,整理可得:x2﹣140x+4500=0,解得x=50或x=90.∴该海产品的售价是50元/kg或90元/kg.(3)设所获利润为W,则根据题目信息可得:W=(﹣10x+1200)(x﹣20)=﹣10(x﹣70)2+25000.∵﹣10x+1200≥650,∴x≤55.∴当x=55时,W有最大值.W的最大值为:﹣10(55﹣70)2+25000=22750(元).∴该商场销售这种海产品获得的最大利润是22750元.17.解:(1)设y与x的函数关系式为y=kx+b,将(30,100),(35,50)代入y=kx+b,得,解得,∴y与x的函数关系式为y=﹣10x+400;(2)设该款电动牙刷每天的销售利润为w 元,由题意得 w =(x ﹣20)•y=(x ﹣20)(﹣10x +400)=﹣10x 2+600x ﹣8000=﹣10(x ﹣30)2+1000,∵﹣10<0,∴当x =30时,w 有最大值,w 最大值为1000.答:该款电动牙刷销售单价定为30元时,每天销售利润最大,最大销售利润为1000 元;(3)设捐款后每天剩余利润为 z 元,由题意可得 z =﹣10x 2+600x ﹣8000﹣200=﹣10x 2+600x ﹣8200,令z =550,即﹣10x 2+600x ﹣8200=550,﹣10(x 2﹣60x +900)=﹣250,x 2﹣60x +900=25,解得x 1=25,x 2=35,画出每天剩余利润z 关于销售单价x 的函数关系图象如解图,由图象可得:当该款电动牙刷的销售单价每支不低于25元,且不高于35元时,可保证捐款后每天剩余利润不低于550 元.18.解:(1)根据题意设y =kx +b (k ≠0),将(30,100)、(35,50)代入得, 解得,∴y与x之间的关系式为y=﹣10x+400;(2)设每天的利润为W元,则W=(x﹣22)y=(x﹣22)(﹣10x+400)=﹣10x2+620x﹣8800=﹣10(x﹣31)2+810,∴销售单价定为31元时,每天最大利润为810元.(3)﹣10x2+620x﹣8800﹣100=350,解得x=25或x=37,结合图象和二次函数的特点得出25≤x≤37,又x≤22×(1+20%),综上可得25≤x≤26.4,∴按要求网店店主的销售单价范围为大于或等于25元且小于或等于26.4元.19.解:(1)设销售量y(件)与售价x(元/件)之间的函数关系式为y=kx+b,,得,即销售量y(件)与售价x(元/件)之间的函数关系式是y=﹣100x+10000;(2)由题意可得,w=(x﹣60)y=(x﹣60)(﹣100x+10000)=﹣100x2+16000x+600000,即每天的销售利润w(元)与售价x(元/件)之间的函数关系式是w=﹣100x2+16000x+600000;(3)当w=40000时,40000=﹣100x2+16000x+600000,解得,x1=x2=80,答:当定价为80元时,才能使该工艺品厂每天获得的销售利润为40000元.20.解:(Ⅰ)∵AB=CD=xm,∴BC=(30﹣2x)m,由题意得S=x(30﹣2x)=﹣2x2+30x(6≤x<15);(Ⅱ)令s=72得:﹣2x2+30x=72,解得:x=3或x=12,当x=3时,30﹣2x=24>18,∴x取12,答:AB的长为12米.(Ⅲ)∵S=﹣2x2+30x=﹣2(x﹣7.5)2+112.5,=112.5,∴当x=7.5时,S有最大值,S最大。

山西省2020年中考数学试题(解析版)

山西省2020年中考数学试题(解析版)

山西省2020年中考数学试题第I 卷 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.计算的结果是( )1(6)3⎛⎫-÷- ⎪⎝⎭A. B. C. D. 18-2182-【答案】C【解析】【分析】根据有理数的除法法则计算即可,除以应该数,等于乘以这个数的倒数.【详解】解:(-6)÷(-)=(-6)×(-3)=18.13故选:C .【点睛】本题考查了有理数的除法,熟练掌握运算法则是解题的关键.2.自新冠肺炎疫情发生以来,全国人民共同抗疫,各地积极普及科学防控知识.下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是( )A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的概念判断即可.【详解】解:A 、不是轴对称图形;B 、不是轴对称图形;C 、不是轴对称图形;D 、是轴对称图形;故选:D .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.3.下列运算正确的是( )A. B. C. D. 2325a a a +=2842a a a -÷=()32628a a -=-3264312a a a ⋅=【答案】C【解析】【分析】利用合并同类项、单项式除法、幂的乘方、单项式乘法的运算法则逐项判定即可.【详解】解:A. ,故A 选项错误;325a a a +=B. ,故B 选项错误;2842a a a -÷=-C. ,故C 选项正确;()32628a a -=-D. ,故D 选项错误.3254312a a a ⋅=故答案为C .【点睛】本题考查了合并同类项、单项式除法、积的乘方、单项式乘法等知识点,灵活应用相关运算法则是解答此类题的关键.4.下列几何体都是由个大小相同的小正方体组成的,其中主视图与左视图相同的几何体是( )4A. B. C. D.【答案】B【解析】【分析】分别画出四个选项中简单组合体的三视图即可.【详解】、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;A、左视图为,主视图为,左视图与主视图相同,故此选项符合题意;B 、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;C、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;D故选B .【点睛】此题主要考查了简单组合体的三视图,关键是掌握左视图和主视图的画法.5.泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度。

数学中考备考-疫情相关真题汇总(含答案)

数学中考备考-疫情相关真题汇总(含答案)

数学中考备考-疫情相关真题汇总命题方向一科学记数法1.(2003淮安)截至5月22日,全国各地民政、卫生部门、红十字会、中华慈善总会等系统共接收防治非典型肺炎社会捐赠款物总计约177000万元,用科学记数法应表示为()A.1.77×104万元B.1.77×105万元C.17.7×104万元D.177×106万元2.(2003海淀区)2003年5月19日,国家邮政局特别发行“万众一心抗击‘非典’”邮票,收入全部捐赠给卫生部门,用以支持抗击“非典”斗争,其邮票发行量为12 500 000枚,用科学记数法表示正确的是()A.1.25×105枚B.1.25×106枚C.1.25×107枚D.1.25×108枚3.(2003新疆)中央电视台新闻报道:国家财政部设立专项基金20个亿(人民币),用于“非典型性肺炎”的防治工作,用科学记数法可表示为()元.A.0.2×1010B.2×109C.2×108D.20×107命题方向二方程及其应用4.(2003宁夏)甲、乙两个药品仓库共存药品45吨,为共同抗击“非典”,现从甲仓库调出库存药品的60%,从乙仓库调出40%支援疫区.结果,乙仓库所余药品比甲仓库所余药品多3吨,那么甲,乙仓库原来所存药品分别为()A.21吨,24吨B.24吨,21吨C.25吨,20吨D.20吨,25吨5.(2003哈尔滨)抗“非典”期间,个别商贩将原来每桶价格a元的过氧乙酸消毒液提高20%后出售,市政府及时采取措施,使每桶的价格在涨价后下降15%,那么现在每桶的价格是元.6.(2003娄底)为抗击传染非典型肺炎(SARS)的危害,我国对一切公共设施进行大规模消毒,抗非典消毒公司根据卫生部要求,3月份生产消毒液2万件,经技术改进后,4月、5月生产消毒液共12万件,那么4~5月生产的月平均增长率是多少?7.(2003山东)今春以来,在党和政府的领导下,我国进行了一场抗击“非典”的战斗.为了控制疫情的蔓延,某卫生材料厂接到上级下达赶制19.2万只加浓抗病毒口罩的任务,为使抗毒口罩早日到达防疫第一线,开工后每天比原计划多加工0.4万只,结果提前4天完成任务.该厂原计划每天加工多少万只口罩?命题方向三函数及其应用8.(2003烟台)开发区某消毒液生产厂家自2003年初以来,在库存为m(m>0)的情况下,日销售量与产量持平,自4月底抗“非典”以来,消毒液需求量猛增,在生产能力不变的情况下,消毒液一度脱销,以下表示2003年初至脱销期间,时间t与库存量y之间函数关系的图象是()A.B.C.D.9.(2003泸州)在抗击“非典”工作中,某医院研制了一种防治“非典”的新药,在试验药效是发现,如果成人按规定的剂量服用,那么服药后2小时血液中含药量最高,达每毫升8微克(1微克=10﹣3毫克),接着逐步衰减,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量y(微克)随时间x(小时)的变化如图所示,当成人按剂量服药后(1)分别求出x≤2和x≥2时y与x之间的函数关系式;(2)如果每毫升血液中含药量为4微克或4微克以上时对治病是有效的,那么这个有效时间是多长?10.(2003肇庆)预防“非典”期间,某种消毒液广宁需要6吨,怀柔需要8吨,正好端州储备有10吨,四会储备有4吨,市预防“非典”领导小组决定将这14吨消毒液调往广宁和怀柔,消毒液的运费价格如下表(单位:元/吨).设从端州调运x吨到广宁.(1)求调运14吨消毒液的总运费y关于x的函数关系式;(2)求出总运费最低的调运方案,最低运费的多少?终点广宁怀柔起点端州60100四会357011.(2003广西)在抗击“非典”中,某医药研究所开发了一种预防“非典”的药品,经试验这种药品的效果得知:当成人按规定剂量服用该药后1小时时,血液中含药量最高,达到每毫升5微克,接着逐步衰减,至8小时时血液中含药量为每毫升1.5微克,每毫升血液中含药量y(微克)随时间x(小时)的变化如图所示,在成人按规定剂量服药后:(1)分别求出x≤1,x≥1时,y与x之间的函数关系式;(2)如果每毫升血液中含药量为2微克或2微克以上,对预防“非典”是有效的,那么这个有效时间为多少小时?12.(2003青岛)在抗击“非典”的斗争中,某市根据疫情的发展状况,决定全市中、小学放假两周,以切实保障广大中、小学生的安全.腾飞中学初三(1)班的全体同学在自主完成学习任务的同时,不忘关心同学们的安危,两周内全班每两个同学都通过一次电话,互相勉励,共同提高.如果该班有56名同学,那么同学们之间共通了多少次电话为解决该问题,我们可把该班人数n 与通电话次数S间的关系用下列模型来表示:(1)若把n作为点的横坐标,S作为纵坐标,根据上述模型中的数据,在给出的平面直角坐标系中,描出相应各点,并用平滑的曲线连接起来;(2)根据图中各点的排列规律,猜一猜上述各点会不会在某一函数的图象上如果在,求出该函数的解析式;(3)根据(2)中得出的函数关系式,求该班56名同学间共通了多少次电话.命题方向四统计与概率13.(2003仙桃)某校在预防“非典型肺炎”过程中,坚持每日检查体温,下表是该校初三(4)班学生一天的体温数据统计表,则该班40名学生体温的中位数是()36.0 36.1 36.2 36.3 36.4 36.5 36.6 36.7 36.8 36.9 37.0体温(t℃)人数0 2 0 5 7 5 6 3 8 3 1 A.36.8℃B.36.6℃C.36.5℃D.36.4℃14.(2003北京)在抗击“非典”时期的“课堂在线”学习活动中,李老师从5月8日至5月14日在网上答题个数的记录如下表:日期5月8日5月9日5月10日5月11日5月12日5月13日5月14日68555056544868答题个数在李老师每天的答题个数所组成的这组数据中,众数和中位数依次是()A.68,55B.55,68C.68,57D.55,57 15.(2003泰安)2003年我国遭受到非典型肺炎传染性疾病(SARS)的巨大灾难,全国人民万众一心,众志成城,抗击非典,图1是根据我市某中学“献爱心,抗非典”自愿捐款活动学生捐款情况绘成的条形图,图2是该中学学生人数比例分布图,该校共有学生1 450人.(1)九年级学生共捐款多少元?(2)该校学生平均每人捐款多少元?16.(2003重庆)在举国上下众志成诚抗击“非典”的斗争中,疫情变化牵动着全国人民的心,请根据下列疫情统计图表回答问题:(1)上图是5月11日至5月29日全国疫情每天新增数据统计走势图,观察后回答:①每天新增确诊病例与新增疑似病例人数之和超过100人的天数共有天.②在本题的统计中,新增确诊病例的人数的中位数是;③本题在对新增确诊病例的统计中,样本是,样本的容量是.(2)下表是我国一段时间内全国确诊病例每天新增的人数与天数的频率统计表.(按人数分组)分组0﹣910﹣1920﹣2930﹣3940﹣4950﹣5960﹣6970﹣7980﹣8990﹣99100以上合计频数45102112013频率0.2750.10.02500.050.0250.0250.050 1.00①100人以下的分组组距是.②填写本统计表中未完成的空格.③在统计的这段时期中,每天新增确诊病例人数在80人以下的天数共有天.参考答案及考点分析1.【答案】:B2.【答案】:C3.【答案】:B【考点归纳】:以上第1.2.3三题考察知识点均为科学记数法-表示较大的数。

2020年河北省中考数学压轴卷含答案(1)

2020年河北省中考数学压轴卷含答案(1)

2020年河北省中考数学压轴卷(1)一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下如图所示为某市2020年1月7日的天气预报图,则这天的温差是()A.﹣12°C B.8°CC.﹣8°C D.12°C2. “V”字手势表达胜利,必胜的意义.它源自于英国,“V”为英文Victory(胜利)的首字母.现在“V“字手势早已成为世界用语了.如图的“V”字手势中,食指和中指所夹锐角α的度数为()A.25° B.35° C.45°D.55°3.新冠病毒(2019﹣nCoV)是一种新的Sarbecovirus亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA病毒,其遗传物质是所有RNA病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm,平均直径为100nm (纳米).1米=109纳米,100nm可以表示为()米.A.0.1×10﹣6B.10×10﹣8C.1×10﹣7D.1×10114.下列四位同学的说法正确的是()A.小明B.小红C.小英D.小聪5. 如图所示,用量角器度量一些角的度数,下列结论中错误的是()A.OA⊥OC B.∠AOD=135°C.∠AOB=∠COD D.∠BOC与∠AOD互补6.如图是一个2×2的方阵,其中每行、每列的两数和相等,则a可以是()A.﹣2B.(﹣1)﹣2C.0D.(﹣1)20197.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是()A.30B.20C.60D.408. 图,已知A(﹣3,3),B(﹣1,1.5),将线段AB向右平移5个单位长度后,点A、B恰好同时落在反比例函数(x>0)的图象上,则k等于()A.3B.4C.5D.69. 如图,△ABC的面积为12,AB=AC,BC=4,AC的垂直平分线EF分别交AB,AC边于点E,F,若点D为BC边的中点,点P为线段EF上一动点,则△PCD周长的最小值为()A.6B.8C.10D.1210. 下列四个图形:从中任取一个是中心对称图形的概率是()A.B.1C.D.11.今有五十鹿进舍,小舍容四鹿,大舍容六鹿,需舍几何?(改编自《缉古算经》)”大意为:今有50只鹿进圈舍,小圈舍可以容纳4头鹿,大圈舍可以容纳6头鹿,求所需圈舍的间数.求得的结果有()A.3种B.4种C.5种D.6种12.在课题学习中,老师要求用长为12厘米,宽为8厘米的长方形纸片制作一个无盖的长方体纸盒.三位同学分别以下列方式在长方形纸片上截去两角(图中阴影部分),然后沿虚线折成一个无盖的长方体纸盒.甲:如图1,盒子底面的四边形ABCD是正方形;乙:如图2,盒子底面的四边形ABCD是正方形;丙:如图3,盒子底面的四边形ABCD是长方形,AB=2AD.将这三位同学所折成的无盖长方体的容积按从大到小的顺序排列,正确的是()A.甲>乙>丙B.甲>丙>乙C.丙>甲>乙D.丙>乙>甲13.下面是黑板上出示的尺规作图题,横线上符号代表的内容,正确的是()如图,已知∠AOB,求作:∠DEF,使∠DEF=∠AOB.作法;(1)以点O为圆心,①为半径画弧,分别交OA,OB于点P,Q;(2)作射线EG,并以点E为圆心,②为半径画弧交EG于点D;(3)以③为圆心,④长为半径画弧交第(2)步中所画弧于点F;(4)作射线EF,∠DEF即为所求作的角.C.③表示Q D.④表示任意长14. 观察图中给出的直线y=k1x+b和反比例函数y=的图象,下列结论中错误的是()A.k2>b>k1>0B.当﹣6<x<2时,有k1x+b>C.直线y=k1x+b与坐标轴围成的△ABO的面积是4D.直线y=k1x+b与反比例函数y=的图象的交点坐标为(﹣6,﹣1),(2,3)15. 如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A'B'CD'的边A'B'与⊙O相切,切点为E,边CD'与⊙O相交于点F,则CF的长为()A.2.5B.1.5C.3D.416.老师设计了接力游戏,用合作的方式完成“求抛物线y=2x2+4x﹣4的顶点坐标”,规则如下:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成解答.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有丁B.乙和丁C.乙和丙D.甲和丁二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.计算:=.18. 设代数式A=代数式B=,a为常数.观察当x取不同值时,对应A的值,并列表如下(部分):x…123…A…456…当x=1时,B=;若A=B,则x=.19.如图,△ABC中,AC=8,∠A=30°,∠B=50°,点P为AB边上任意一点,(P不与点B、A重合),I为△BPC的内心则CP的最小值=;∠CIB的取值范围是.三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20. (本题满分8分)数学谋上,者师设计了一个数学游戏:若两个多项式相减的结果等于第三个多项式,则称这三个多项式为“友好多项式”.甲、乙、丙、丁四位同学各有一﹣张多项式卡片,下面是甲、乙、丙、丁四位同学的对话:请根据对话解答下列问题:(1)判断甲、乙、丙三位同学的多项式是否为“友好多项式”,并说明理由.(2)丁的多项式是什么?(请直接写出所有答案).21. (本题满分9分)暑假期间,为激发同学们的学习热情,王华所在的学校组织全校三好学生分别到A,B,C,D四所全国重点学校参观(每个学生只能去一处),王华很高兴她也能够前往,学校按定额购买了前往四地的车票.如图是未制作完成的车票种类和数量的条形统计图和扇形统计图.请根据以上信息回答:(1)本次参加参观的学生有100人,将条形统计图补充完整;(2)若学校采用随机抽取的方式分发车票,每人一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么王华抽到去B地的概率是多少?(3)已知A,B,C三地车票的价格如下表,去D地花费的车票总款数占全部车票总款数的,试求D地每张车票的价格.地点票价(元/张)A60B80C5022. (本题满分9分)如图,一定数量的石子可以摆成如图所示的三角形和四边形,古希腊科学家把数1,3,6,10,15,21,……称为“三角形数“;把1,4,9,16,25,……称为“正方形数“.同样,可以把数1,5,12,22,……,称为“五边形数”,将三角形、正方形、五边形都整齐的由左到右填在所示表格里:=,=,=;(2)观察表中规律,第n个“五边形数”是.23. (本题满分9分)某江水总磷污染严重.当地政府提出五条整改措施,力求在60天以内使总磷含量达标(即总磷浓度低于0.2mg/L).整改过程中,总磷浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前5天的变化规律,且线段AB所在直线的表达式为:y=﹣x+4,从第5天起,该江水总磷浓度y与时间x成反比例关系.(1)求整改全过程中总磷浓度y与时间x的函数表达式;(2)该江水中总磷的浓度能否在60天以内达标?说明理由.24. (本题满分10分)如图,在矩形ABCD中,AB=8,BC=6,E是AB上一点,现将该矩形沿CE翻折,得到△CEF.(1)作FM⊥AD,FN⊥CD,记矩形FNDM的面积为S,BE的长度为x,当x=3时,求S的值.(2)在翻折时,若点F恰好落在AD的垂直平分线上,求x的值.(3)连接AF,在整个翻折过程中,求线段AF的最小值,并求出此时x的值.25. (本题满分10分)已知抛物线y n=﹣(x﹣a n)2+a n(n为正整数,且0<a1<a2<…<a n)与x轴的交点为A n﹣1(b n﹣1,0)和A n(b n,0),当n=1时,第1条抛物线y1=﹣(x﹣a1)2+a1与x轴的交点为A0(0,0)和A1(b1,0),其他依此类推.(1)求a1,b1的值及抛物线y2的解析式;(2)抛物线y3的顶点坐标为(,);依此类推第n条抛物线y n的顶点坐标为(,);所有抛物线的顶点坐标满足的函数关系式是;(3)探究下列结论:若用A n﹣1A n表示第n条抛物线被x轴截得的线段长,直接写出A0A1的值,并求出A n﹣1A n.26. (本题满分12分)如图①,在矩形ABCD中,BC=60cm.动点P以6cm/s的速度在矩形ABCD的边上沿A→D的方向匀速运动,动点Q在矩形ABCD的边上沿A→B→C的方向匀速运动.P、Q两点同时出发,当点P到达终点D时,点Q立即停止运动.设运动的时间为t(s),△PDQ的面积为S(cm2),S与t的函数图象如图②所示.(1)AB=cm,点Q的运动速度为cm/s;(2)在点P、Q出发的同时,点O也从CD的中点出发,以4cm/s的速度沿CD的垂直平分线向左匀速运动,以点O为圆心的⊙O始终与边AD、BC相切,当点P到达终点D时,运动同时停止.①当点O在QD上时,求t的值;②当PQ与⊙O有公共点时,求t的取值范围.2020年河北省中考数学压轴卷(1)参考答案一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)每空2分,把答案写在题中横线上)17. 3 18. 1,4 19. 4 105°<∠CIB<155°三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.解:(1)∵(3x2﹣x+1)﹣(2x2﹣3x﹣2),=3x2﹣x+1﹣2x2+3x+2,=x2+2x+3,∴甲、乙、丙三位同学的多项式是“友好多项式”;…………………………3分(2)丁的多项式是﹣x2﹣2x﹣3 或x2+2x+3或5x2﹣4x﹣1. (8)分21.解:(1)C种类的数量为100﹣(30+10+40)=20(张),补全条形图如下:…………………………3分(2)王华抽到去B地的概率是=.…………………………6分(3)设D地每张车票的价格为x元,根据题意,得(60×30+80×10+50×20+40x)=40x,解得x=40.答:D地每张车票的价格为40元.…………………………9分22.解:(1)a=28.b=36.c=35.…………………………5分(2).…………………………9分23.解:(1)分情况讨论:当x>5时,设y=,把(5,2)代入得:m=10,所以y=;当0≤x≤5时,y=﹣x+4,所以整改全过程中总磷浓度y与时间x的函数表达式为:y=;…………………………7分(2)能,理由如下:当y=0.2时,有=0.2,则x=50<60,故该支流中总磷的浓度能在60天以内达标.…………………………9分24.解:(1)如图,连接BF交CE于点O,延长MF交BC于H,∵四边形ABCD是矩形,∴AB∥CD,AD∥BC,∵MF⊥AD,∴FH⊥BC,∵将该矩形沿CE翻折,得到△CEF.∴BE=EF=3,CF=BC=6,∴EC垂直平分BF,∴BO=FO,BF⊥EC,在Rt△BEC中,EC===3,∵S△BEC=×EB×BC=EC×BO∴BO=,∴BF=,∵FH2=BF2﹣BH2=FC2﹣CH2,∴﹣(6﹣CH)2=36﹣CH2,∴CH=,∴MD=∴FH===,∴DN=∴S=MD•DN=×=;…………………………4分(2)如图,连接BF,∵将该矩形沿CE翻折,得到△CEF.∴BE=EF,CF=BC=6,∠BCE=∠ECF,∵点F恰好落在AD的垂直平分线上,∴点F在BC的垂直平分线上,∴BF=BC,∴BF=BC=CF,∴△BFC是等边三角形,∴∠BCF=60°,∴∠BCE=30°,∵tan∠BCE=,∴BE=x=2;…………………………7分(3)如图,连接AC,在Rt△ABC中,AC===10,在△AFC中,AF≥AC﹣CF,∴当点F在AC上时,AF有最小值为AC﹣CF=10﹣6=4,此时,∠AFE=90°,BE=EF=x,∵AE2=EF2+AF2,∴(8﹣BE)2=BE2+16,∴BE=3=x.…………………………10分25.解:(1)∵当n=1时,第1条抛物线y1=﹣(x﹣a1)2+a1与x轴的交点为A0(0,0),∴0=﹣(0﹣a1)2+a1,解得a1=1或a1=0.由已知a1>0,∴a1=1,∴y1=﹣(x﹣1)2+1.令y1=0,即﹣(x﹣1)2+1=0,解得x=0或x=2,∴A1(2,0),b1=2.由题意,当n=2时,第2条抛物线y2=﹣(x﹣a2)2+a2经过点A1(2,0),∴0=﹣(2﹣a2)2+a2,解得a2=1或a2=4,∵a1=1,且已知a2>a1,∴a2=4,∴y2=﹣(x﹣4)2+4.∴a1=1,b1=2,y2=﹣(x﹣4)2+4.…………………………4分(2(9,9),(n2,n2).y=x.…………………………7分(3)∵A0(0,0),A1(2,0),∴A0A1=2.y n=﹣(x﹣n2)2+n2,令y n=0,即﹣(x﹣n2)2+n2=0,解得x=n2+n或x=n2﹣n,∴A n﹣1(n2﹣n,0),A n(n2+n,0),即A n﹣1A n=(n2+n)﹣(n2﹣n)=2n.…………………………10分26.解:(1)30,6;…………………………4分(2)①如图1,设AB,CD的中点分别为E,F,当点O在QD上时,QC=AB+BC﹣6t=90﹣6t,OF=4t,∵OF∥QC且点F是DC的中点,∴OF=QC,即4t=(90﹣6t),解得,t=;…………………………8分②设AB,CD的中点分别为E,F,⊙O与AD,BC的切点分别为N,G,过点Q 作QH⊥AD于H,如图2﹣1,当⊙O第一次与PQ相切于点M时,∵AH+AP=6t,AB+BQ=6t,且BQ=AH,∴HP=QH=AB=30,∴△QHP是等腰直角三角形,∵CG=DN=OF=4t,∴QM=QG=90﹣4t﹣6t=90﹣10t,PM=PN=60﹣4t﹣6t=60﹣10t,∴QP=QM+MP=150﹣20t,∵QP=QH,∴150﹣20t=30,∴t=;如图2﹣2,当⊙O第二次与PQ相切于点M时,∵AH+HP=6t,AB+BQ=6t,且BQ=AH,∴HP=QH=AB=30,∴△QHP是等腰直角三角形,∵CG=DN=OF=4t,∴QM=QG=4t﹣(90﹣6t)=10t﹣90,PM=PN=4t﹣(60﹣6t)=10t﹣60,∴QP=QM+MP=20t﹣150,∵QP=QH,∴20t﹣150=30,∴t=,综上所述,当PQ与⊙O有公共点时,t的取值范围为:≤t≤.…………………………12分。

黑龙江省牡丹江市2020年中考数学试题(解析版)

黑龙江省牡丹江市2020年中考数学试题(解析版)
A. B. C. D.
【答案】C
【解析】
【分析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号之和等于5的情况,再利用概率公式求解即可求得答案.
【详解】解:画树状图得:
∵共有12种等可能的结果,两次摸出的小球标号之和等于5的有4种情况,
∴两次摸出的小球标号之和等于5的概率是: .
【答案】16
【解析】
【分析】
根据已知条件分析,得出x和y中有一个数为21,再根据中位数得出另一个数,从而求出平均数.
【详解】解:∵一组数据21,14,x,y,9的众数和中位数分别是21和15,
若x=y=21,则该组数据的中位数为:21,不符合题意,
则x和y中有一个数为21,另一个数为15,
∴这组数据的平均数为:(9+14+15+21+21)÷5=16,
【解析】
【分析】
根据平行四边形的判定和性质添加条件证明AB=CD.
【详解】解:添加的条件:AD=BC,理由是:
∵∠ACB=∠CAD,
∴AD∥BC,
∵AD=BC,
∴四边形ABCD是平行四边形,
∴AB=CD.
【点睛】本题考查了平行四边形的判定和性质,掌握定理内容是解题的关键.
3.若一组数据21,14,x,y,9的众数和中位数分别是21和15,则这组数据的平均数为___________.
A.6B.5C.4D.3
【答案】D
【解析】
【分析】
根据所给出的图形可知这个几何体共有2层,2列,先看第一层正方体可能的最少个数,再看第二层正方体的可能的最少个数,相加即可.
【详解】解:仔细观察物体的主视图和左视图可知:该几何体的下面最少要有2个小正方体,上面最少要有1个小正方体,

中考数学专题:实际应用题带答案

中考数学专题:实际应用题带答案

1.2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.2.为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?3.为顺利通过“国家文明城市”验收,东营市政府拟对城区部分路段的人行道地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.4.小刚去超市购买画笔,第一次花60元买了若干支A型画笔,第二次超市推荐了B型画笔,但B型画笔比A型画笔的单价贵2元,他又花100元买了相同支数的B型画笔.(1)超市B型画笔单价多少元?(2)小刚使用两种画笔后,决定以后使用B型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次购买不超过20支,则每支B型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折.设小刚购买的B型画笔x 支,购买费用为y元,请写出y关于x的函数关系式.(3)在(2)的优惠方案下,若小刚计划用270元购买B型画笔,则能购买多少支B 型画笔?5.某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.甲、乙两种书柜每个的价格分别是多少元?若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.6.受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2016年利润为2亿元,2018年利润为2.88亿元.(1)求该企业从2016年到2018年利润的年平均增长率;(2)若2019年保持前两年利润的年平均增长率不变,该企业2019年的利润能否超过3.4亿元?7.为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?8.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?9.今年植树节期间,某景观园林公司购进一批成捆的A,B两种树苗,每捆A种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.10.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2) 当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3) 将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元.答案和解析1.【答案】解:(1)设生产甲、乙两种型号的防疫口罩分别是x万只和y万只,由题意可得:,解得:,答:生产甲、乙两种型号的防疫口罩分别是15万只和5万只;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a万只和(20-a)万只,利润为w万元,由题意可得:12a+4(20-a)≤216,∴a≤17,∵w=(18-12)a+(6-4)(20-a)=4a+40是一次函数,w随a的增大而增大,∴a=17时,w有最大利润=108(万元),答:安排生产甲种型号的防疫口罩17万只,乙种型号的防疫口罩3万只,最大利润为108万元.【解析】(1)设生产甲、乙两种型号的防疫口罩分别是x万只和y万只,由“某医药公司每月生产甲、乙两种型号的防疫口罩共20万只和该公司三月份的销售收入为300万元”列出方程组,可求解;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a万只和(20-a)万只,利润为w万元,由“四月份投入成本不超过216万元”列出不等式,可求a的取值范围,找出w与a的函数关系式,由一次函数的性质可求解.本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,弄清题中的等量关系是解本题的关键.2.【答案】解:设降价后的销售单价为x元,则降价后每天可售出[300+5(200-x)]个,依题意,得:(x-100)[300+5(200-x)]=32000,整理,得:x2-360x+32400=0,解得:x1=x2=180.180<200,符合题意.答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元.【解析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.设降价后的销售单价为x元,则降价后每天可售出[300+5(200-x)]个,根据总利润=每个产品的利润×销售数量,即可得出关于x的一元二次方程,解之即可得出结论.3.【答案】解:(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x 天,由题意得=解得:x=15,经检验,x=15是原分式方程的解,2x=30.答:甲工程队单独完成此项工程需15天,乙工程队单独完成此项工程需30天.(2)设甲工程队做a天,乙工程队做b天根据题意得a/15+b/30=1整理得b+2a=30,即b=30-2a所需费用w=4.5a+2.5b=4.5a+2.5(30-2a)=75-0.5a根据一次函数的性质可得,a 越大,所需费用越小,即a=15时,费用最小,最小费用为75-0.5×15=67.5(万元)所以选择甲工程队,既能按时完工,又能使工程费用最少.答:选择甲工程队,既能按时完工,又能使工程费用最少.【解析】(1)如果设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.4.【答案】解:(1)设超市B型画笔单价为a元,则A型画笔单价为(a-2)元.根据题意得,=,解得a=5.经检验,a=5是原方程的解.答:超市B型画笔单价为5元;(2)由题意知,当小刚购买的B型画笔支数x≤20时,费用为y=0.9×5x=4.5x,当小刚购买的B型画笔支数x>20时,费用为y=0.9×5×20+0.8×5(x-20)=4x+10.所以,y关于x的函数关系式为y=(其中x是正整数);(3)当4.5x=270时,解得x=60,∵60>20,∴x=60不合题意,舍去;当4x+10=270时,解得x=65,符合题意.答:若小刚计划用270元购买B型画笔,则能购买65支B型画笔.【解析】(1)设超市B型画笔单价为a元,则A型画笔单价为(a-2)元.根据等量关系:第一次花60元买A型画笔的支数=第二次花100元买B型画笔的支数列出方程,求解即可;(2)根据超市给出的优惠方案,分x≤20与x>20两种情况进行讨论,利用售价=单价×数量分别列出y关于x的函数关系式;(3)将y=270分别代入(2)中所求的函数解析式,根据x的范围确定答案.本题考查了一次函数的应用,分式方程的应用等知识,解题的关键是:(1)理解题意找到等量关系列出方程;(2)理解超市给出的优惠方案,进行分类讨论,得出函数关系式;(3)根据函数关系式中自变量的取值范围对答案进行取舍.5.【答案】(1)解:设甲种书柜单价为x元,乙种书柜的单价为y元,由题意得:,解之得:,答:甲种书柜单价为180元,乙种书柜的单价为240元.(2)解:设甲种书柜购买m个,则乙种书柜购买(20-m)个;由题意得:,解之得:8≤m≤10,因为m取整数,所以m可以取的值为:8,9,10,即:学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个,方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个.【解析】本题主要考查二元一次方程组、一元一次不等式组的综合应用能力,根据题意准确抓住相等关系或不等关系是解题的根本和关键.(1)设甲种书柜单价为x元,乙种书柜的单价为y元,根据:若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元列出方程组求解即可;(2)设甲种书柜购买m个,则乙种书柜购买(20-m)个.根据:购买的乙种书柜的数量≥甲种书柜数量且所需资金≤4320列出不等式组,解不等式组即可得不等式组的解集,从而确定方案.6.【答案】解:(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解得x1 =0.2=20%,x2 =-2.2 (不合题意,舍去).答:这两年该企业年利润平均增长率为20%.(2)如果2019年仍保持相同的年平均增长率,那么2019年该企业年利润为:2.88(1+20%)=3.456,3.456>3.4答:该企业2019年的利润能超过3.4亿元.【解析】此题考查一元二次方程的应用,根据题意寻找相等关系列方程是关键,难度不大.(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解方程即可;(2)根据该企业从2016年到2018年利润的年平均增长率来解答.7.【答案】解:(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10-a)所,由题意得:,解得,∴3≤a≤5,∵a取整数,∴a=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.【解析】(1)可根据“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元”来列出不等式组,判断出不同的改造方案.本题考查了一元一次不等式组的应用,二元一次方程组的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.8.【答案】解:(1)当售价为55元/千克时,每月销售水果=500-10×(55-50)=450千克;(2)设每千克水果售价为x元,由题意可得:8750=(x-40)[500-10(x-50)],解得:x1=65,x2=75,答:每千克水果售价为65元或75元;(3)设每千克水果售价为m元,获得的月利润为y元,由题意可得:y=(m-40)[500-10(m-50)]=-10(m-70)2+9000,∴当m=70时,y有最大值为9000元,答:当每千克水果售价为70元时,获得的月利润最大值为9000元.【解析】本题主要考查二次函数的应用,一元二次方程的应用,解题的关键是熟练掌握销售问题中关于销售总利润的相等关系,并据此列出函数解析式及熟练掌握二次函数的性质.(1)由月销售量=500-(销售单价-50)×10,可求解;(2)设每千克水果售价为x元,由利润=每千克的利润×销售的数量,可列方程,即可求解;(3)设每千克水果售价为m元,获得的月利润为y元,由利润=每千克的利润×销售的数量,可得y与x的关系式,由二次函数的性质可求解.9.【答案】解:(1)设这一批树苗平均每棵的价格是x元,根据题意列,得:,解这个方程,得x=20,经检验,x=20是原分式方程的解,并符合题意,答:这一批树苗平均每棵的价格是20元;(2)由(1)可知A种树苗每棵的价格为:20×0.9=18(元),B种树苗每棵的价格为:20×1.2=24(元),设购进A种树苗t棵,这批树苗的费用为w元,则:w=18t+24(5500-t)=-6t+132000,∵w是t的一次函数,k=-6<0,∴w随t的增大而减小,又∵t≤3500,∴当t=3500棵时,w最小,此时,B种树苗每棵有:5500-3500=2000(棵),w=-6×3500+132000=111000,答:购进A种树苗3500棵,BA种树苗2000棵时,能使得购进这批树苗的费用最低,最低费用为111000元.【解析】【试题解析】(1)设这一批树苗平均每棵的价格是x元,根据题意列方程解答即可;(2)分别求出A种树苗每棵的价格与B种树苗每棵的价格,设购进A种树苗t棵,这批树苗的费用为w元,根据题意求出w与t的函数关系式,再根据一次函数的性质解答即可.本题考查了分式方程的应用,一次函数的应用以及一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.10.【答案】解:(1)y=300-10(x-44),即y=-10x+740(44≤x≤52);(2)根据题意得(x-40)(-10x+740)=2400,解得x1=50,x2=64(舍去),答:当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)w=(x-40)(-10x+740)=-10x2+1140x-29600=-10(x-57)2+2890,而a=-10<0,且对称轴为直线x=57,当x<57时,w随x的增大而增大,而44≤x≤52,所以当x=52时,w有最大值,最大值为-10(52-57)2+2890=2640,答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.【解析】(1)销售单价每上涨1元,每天销售量减少10本,则销售单价每上涨(x-44)元,每天销售量减少10(x-44)本,所以y=300-10(x-44),然后利用销售单价不低于44元,且获利不高于30%确定x的范围;(2)利用每本的利润乘以销售量得到总利润得到(x-40)(-10x+740)=2400,然后解方程后利用x的范围确定销售单价;(3)利用每本的利润乘以销售量得到总利润得到w=(x-40)(-10x+740),再把它变形为顶点式,然后利用二次函数的性质得到x=52时w最大,从而计算出x=52时对应的w的值即可.本题考查了二次函数的应用:利用二次函数解决利润问题,解此类题的关键是通过题意,确定出二次函数的解析式,然后利用二次函数的性质确定其最大值;在求二次函数的最值时,一定要注意自变量x的取值范围.也考查了一元二次方程的应用.。

中考数学总复习之新冠肺炎相关数学题目整理

中考数学总复习之新冠肺炎相关数学题目整理

中考数学总复习之新冠肺炎相关数学题目整理(含答案解析)1.国家发改委2月7日紧急下达第二批中央预算内投资2亿元人民币,专项补助承担重症感染患者救治任务的湖北多家医院重症治疗病区建设,其中数据2亿用科学记数法表示为()2.为全力抗战疫情,响应政府“停课不停学”号召,某市教育局发布关于疫情防控期间开展在线课程教学的通知:从2月10日开始,全市中小学按照教学计划,开展在线课程教学和答疑.据互联网后台数据显示,某中学九年级七科老师2月10日在线答疑问题总个数如下表:则2月10日该中学九年级七科老师在线答疑问题总个数的平均数是()A.22B.24C.25D.263.为了防治“新型冠状病毒”,某小区购买了若干瓶消毒剂,分配给各栋楼用作楼梯道消毒。

已知使用这种消毒剂消毒时,必须先稀释,使稀释浓度不小于0.2%且不大于0.5%,若一瓶消毒剂净含量为500mL,求一瓶消毒剂稀释到最小浓度需用水多少L?4.钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但也不必恐慌,尽量少去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.”某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区居民在线参与作答《2020年新型冠状病毒防治全国统一考试(全国卷)》试卷(满分100分),社区管理员随机从甲、乙两个小区各抽取20名人员的答卷成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:收集数据整理数据分析数据应用数据(1)填空:a=,b=,c=,d=;(2)若甲小区共有800人参与答卷,请估计甲小区成绩大于90分的人数;(3)社区管理员看完统计数据,认为甲小区对新型冠状病毒肺炎防护知识掌握更好,请你写出社区管理员的理由.5.某网店专售一款电动牙刷,其成本为20元/支,销售中发现,该商品每天的销售量y(支)与销售单价x(元/支)之间存在如图所示的关系.(1)请求出y与x的函数关系式;(2)该款电动牙刷销售单价定为多少元时,每天销售利润最大?最大利润是多少元?(3)近期武汉爆发了“新型冠状病毒”疫情,该网店店主决定从每天获得的利润中抽出200元捐赠给武汉,为了保证捐款后每天剩余利润不低于550元,如何确定该款电动牙刷的销售单价?。

2020年吉林省长春市中考数学一模试卷 (解析版)

2020年吉林省长春市中考数学一模试卷 (解析版)

2020年吉林省长春市中考数学一模试卷一、选择题(共8小题).1.如图,数轴上蝴蝶所在点表示的数可能为()A.3B.2C.1D.﹣12.今年初,党中央、国务院对湖北共派遣援鄂抗役医务人员42000多人,经过全国人民的共同努力,取得了这场战役的胜利:42000这个数用科学记数法表示为()A.42×103B.4.2×104C.4.2×105D.4.2×1033.某立体图形的左视图如图所示,则该立体图形不可能()A.B.C.D.4.不等式2x﹣2≤0的解集在数轴上表示正确的是()A.B.C.D.5.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.6.在△ABC中,∠ACB=90°,用直尺和圆规在AB上确定点D,使△ACD∽△CBD,根据作图痕迹判断,正确的是()A.B.C.D.7.如图,在莲花山滑雪场滑雪,需从山脚下乘缆车上山,缆车索道与水平线所成的角为32°,缆车速度为每分钟50米,从山脚下A到达山顶B缆车需要16分钟,则山的高度BC为()A.800•sin32°B.C.800•tan32°D.8.如图,点A,B分别在反比例函数y=(x>0),y=(x<0)的图象上.若OA⊥OB,=2,则a的值为()A.﹣4B.4C.﹣2D.2二、填空题(每题3分,满分18分,将答案填在答题纸上)9.化简:﹣=.10.因式分解:m2﹣4m+4=.11.关于x的方程2x2﹣3x﹣k=0有两个相等的实数根,则k的值为.12.如图,一束平行太阳光线照射到正五边形上,则∠1=.13.图①表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A,当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10cm.图②表示当钟面显示3点45分时,A点距桌面的高度为16cm,若钟面显示3点55分时,A点距桌面的高度为cm.14.如图,在平面直角坐标系中,抛物线y=a(x+1)2+b与y=a(x﹣2)2+b+1交于点A.过点A作y轴的垂线,分别交两条抛物线于点B、C(点B在点A左侧,点C在点A右侧),则线段BC的长为.三、解答题:共78分.解答应写出文字说明、证明过程或演算步骤.15.先化简,再求值(a﹣1)2﹣2a(a﹣1)+(2a+1)(2a﹣1),其中a=.16.在一个不透明的盒子中装有三张卡片,分别标有数字为1,2,7,这些卡片除数字不同外其余均相同.洗匀后,小强从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为偶数的概率.17.今年初,某爱心人士两次购买N95口罩支援武汉,第一次花了500000元,第二次花了770000,购买了同样的N95口罩,已知第二次购买的口罩的单价是第一次的1.4倍,且比第一次多购进了10000个,求该爱心人士第一次购进口罩的单价.18.如图,E是Rt△ABC的斜边AB上一点,以AE为直径的⊙O与边BC相切于点D,交边AC于点F,连结AD.(1)求证:AD平分∠BAC.(2)若AE=2,∠CAD=25°,求的长.19.某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m的值为;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.20.图①,图②,图③均是4×4的正方形网格,每个小正方形的顶点称为格点,线段的端点均在格点上,在图①,图②,图③恰定的网格中按要求画图.(1)在图①中,画出格点C,使AC=BC,用黑色实心圆点标出点C所有可能的位置.(2)在图②中,在线段AB上画出点M,使AM=3BM.(3)在图③中,在线段AB上画出点P,使AP=2BP.(保留作图痕迹)要求:借助网格,只用无刻度的直尺,不要求写出画法.21.小明在练习操控航拍无人机,该型号无人机在上升和下落时的速度相同,设无人机的飞行高度为y(米),小明操控无人飞机的时间为x(分),y与x之间的函数图象如图所示.(1)无人机上升的速度为米/分,无人机在40米的高度上飞行了分.(2)求无人机下落过程中,y与x之间的函数关系式.(3)求无人机距地面的高度为50米时x的值.22.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN 是线段AB的垂直平分线,P是MN上任一点,连结PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点.求证:PA=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证明PA =PB(请写出完整的证明过程)请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:(1)如图②,在△ABC中,直线l、m、n分别是边AB、BC、AC的垂直平分线.求证:直线l、m、n交于一点.(2)如图③,在△ABC中,AB=BC,边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,若∠ABC=120°,AC=18,则DE的长为.23.在△ABC中,AC=5,BC=4,∠B=45°,点D在边AB上,且AD=3,动点P 从点A出发,以每秒1个单位长度的速度向终点B运动,以PD为边向上做正方形PDMN,设点P运动的时间为t秒,正方形PDMN与△ABC重叠部分的面积为S.(1)用含有t的代数式表示线段PD的长.(2)当点N落在△ABC的边上时,求t的值.(3)求S与t的函数关系式.(4)当点P在线段AD上运动时,做点N关于CD的对称点N',当N'与△ABC的某一个顶点的连线平分△ABC的面积时,求t的值.24.在平面直角坐标系中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“伴随点”.例如:点(5,6)的“伴随点”为点(5,6);点(﹣5,6)的“伴随点”为点(﹣5,﹣6).(1)直接写出点A(2,1)的“伴随点”A′的坐标.(2)点B(m,m+1)在函数y=kx+3的图象上,若其“伴随点”B′的纵坐标为2,求函数y=kx+3的解析式.(3)点C、D在函数y=﹣x2+4的图象上,且点C、D关于y轴对称,点D的“伴随点”为D′.若点C在第一象限,且CD=DD′,求此时“伴随点”D′的横坐标.(4)点E在函数y=﹣x2+n(﹣1≤x≤2)的图象上,若其“伴随点”E′的纵坐标y′的最大值为m(1≤m≤3),直接写出实数n的取值范围.参考答案一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,数轴上蝴蝶所在点表示的数可能为()A.3B.2C.1D.﹣1【分析】直接利用数轴得出结果即可.解:数轴上蝴蝶所在点表示的数可能为﹣1,故选:D.2.今年初,党中央、国务院对湖北共派遣援鄂抗役医务人员42000多人,经过全国人民的共同努力,取得了这场战役的胜利:42000这个数用科学记数法表示为()A.42×103B.4.2×104C.4.2×105D.4.2×103【分析】科学记数法表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数.10的指数n=原来的整数位数﹣1.解:42000=4.2×104,故选:B.3.某立体图形的左视图如图所示,则该立体图形不可能()A.B.C.D.【分析】找到各选项中从左面看不是所给视图的立体图形即可.解:各选项中只有选项D从左面看得到从左往右2列正方形的个数依次为2,1,1,故选:D.4.不等式2x﹣2≤0的解集在数轴上表示正确的是()A.B.C.D.【分析】利用不等式的基本性质,移项后再除以2,不等号的方向不变.解:移项,得2x≤2,系数化为1,得x≤1,不等式的解集在数轴上表示如下:.故选:D.5.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.【分析】设有x匹大马,y匹小马,根据100匹马恰好拉了100片瓦,已知一匹大马能拉3片瓦,3匹小马能拉1片瓦,列方程组即可.解:设有x匹大马,y匹小马,根据题意得,故选:C.6.在△ABC中,∠ACB=90°,用直尺和圆规在AB上确定点D,使△ACD∽△CBD,根据作图痕迹判断,正确的是()A.B.C.D.【分析】如果△ACD∽△CBD,可得∠CDA=∠BDC=90°,即CD是AB的垂线,根据作图痕迹判断即可.解:当CD是AB的垂线时,△ACD∽△CBD.∵CD⊥AB,∴∠CDA=∠BDC=90°,∵∠ACB=90°,∴∠A+∠ACD=∠ACD+∠BCD=90°,∴∠A=∠BCD,∴△ACD∽△CBD.根据作图痕迹可知,A选项中,CD是∠ACB的角平分线,不符合题意;B选项中,CD不与AB垂直,不符合题意;C选项中,CD是AB的垂线,符合题意;D选项中,CD不与AB垂直,不符合题意;故选:C.7.如图,在莲花山滑雪场滑雪,需从山脚下乘缆车上山,缆车索道与水平线所成的角为32°,缆车速度为每分钟50米,从山脚下A到达山顶B缆车需要16分钟,则山的高度BC为()A.800•sin32°B.C.800•tan32°D.【分析】作BC⊥AC,垂足为C,在Rt△ABC中,利用三角函数解答即可.解:如图,作BC⊥AC,垂足为C.在Rt△ABC中,∠ACB=90°,∠BAC=32°,AB=50×16=800(米),sin∠BAC=,∴BC=sin∠BAC•AB=800•sin32°.故选:A.8.如图,点A,B分别在反比例函数y=(x>0),y=(x<0)的图象上.若OA⊥OB,=2,则a的值为()A.﹣4B.4C.﹣2D.2【分析】过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N,利用相似三角形的判定定理得出△AOM∽△OBN,再由反比例函数系数k的几何意义得出S△AOM:S△BON=1:(﹣a),进而可得出结论.解:过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N,∴∠AMO=∠BNO=90°,∴∠AOM+∠OAM=90°,∵OA⊥OB,∴∠AOM+∠BON=90°,∴∠OAM=∠BON,∴△AOM∽△OBN,∵点A,B分别在反比例函数y=(x>0),y=(x<0)的图象上,∴S△AOM:S△BON=1:(﹣a),∴AO:BO=1:,∵OB:OA=2,∴a=﹣4,故选:A.二、填空题(每题3分,满分18分,将答案填在答题纸上)9.化简:﹣=.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.解:原式=2﹣=.故答案为:.10.因式分解:m2﹣4m+4=(m﹣2)2.【分析】原式利用完全平方公式分解即可.解:原式=(m﹣2)2.故答案为:(m﹣2)2.11.关于x的方程2x2﹣3x﹣k=0有两个相等的实数根,则k的值为﹣.【分析】根据关于x的方程2x2﹣3x﹣k=0有两个相等的实数根可得△=(﹣3)2﹣4×2(﹣k)=0,求出k的值即可.解:∵关于x的方程2x2﹣3x﹣k=0有两个相等的实数根,∴△=(﹣3)2﹣4×2(﹣k)=0,∴9+8k=0,∴k=﹣.故答案为:﹣.12.如图,一束平行太阳光线照射到正五边形上,则∠1=30°.【分析】作出平行线,根据两直线平行:内错角相等、同位角相等,结合三角形的内角和定理,即可得出答案.解:作出辅助线如图:则∠2=42°,∠1=∠3,∵五边形是正五边形,∴一个内角是108°,∴∠3=180°﹣∠2﹣∠3=30°,∴∠1=∠3=30°.故答案为:30°.13.图①表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A,当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10cm.图②表示当钟面显示3点45分时,A点距桌面的高度为16cm,若钟面显示3点55分时,A点距桌面的高度为(16+3)cm.【分析】根据当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10公分得出AD=10,进而得出A′C=16,从而得出FA″=3,得出答案即可.解:∵当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10公分.∴AD=10,∵钟面显示3点45分时,A点距桌面的高度为16公分,∴A′C=16,∴AO=A″O=6,则钟面显示3点55分时,∠A″OA′=45°,∴FA″=3,∴A点距桌面的高度为:16+3(cm).故答案为:().14.如图,在平面直角坐标系中,抛物线y=a(x+1)2+b与y=a(x﹣2)2+b+1交于点A.过点A作y轴的垂线,分别交两条抛物线于点B、C(点B在点A左侧,点C在点A右侧),则线段BC的长为6.【分析】设抛物线y=a(x+1)2+b的对称轴与线段BC交于点E,抛物线y=a(x﹣2)2+b+1的对称轴与线段BC交于点F,由抛物线的对称性结合BC═2(AE+AF),即可求出结论.解:设抛物线y=a(x+1)2+b的对称轴与线段BC交于点E,抛物线y=a(x﹣2)2+b+1的对称轴与线段BC交于点F,如图所示.由抛物线的对称性,可知:BE=AE,CF=AF,∴BC=BE+AE+AF+CF=2(AE+AF)=2×[2﹣(﹣1)]=6.故答案为:6.三、解答题:共78分.解答应写出文字说明、证明过程或演算步骤.15.先化简,再求值(a﹣1)2﹣2a(a﹣1)+(2a+1)(2a﹣1),其中a=.【分析】原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把a的值代入计算即可求出值.解:原式=a2﹣2a+1﹣2a2+2a+4a2﹣1=3a2,当a=时,原式=3×5=15.16.在一个不透明的盒子中装有三张卡片,分别标有数字为1,2,7,这些卡片除数字不同外其余均相同.洗匀后,小强从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为偶数的概率.【分析】首先根据题意列表求得所有等可能的结果与抽到的两张卡片上的数字之和为偶数的情况,再利用概率公式即可求得答案.解:根据题意,列表如下:1271238234978914所以P(两次抽取的卡片上数字之和为偶数)=.17.今年初,某爱心人士两次购买N95口罩支援武汉,第一次花了500000元,第二次花了770000,购买了同样的N95口罩,已知第二次购买的口罩的单价是第一次的1.4倍,且比第一次多购进了10000个,求该爱心人士第一次购进口罩的单价.【分析】设该爱心人士第一次购进口罩的单价为x元/个.则第二次购进口罩的单价为1.4x 元/个,根据数量=总价÷单价结合第二次比第一次多购进了10000个,即可得出关于x 的分式方程,解之经检验后即可得出结论.解:设该爱心人士第一次购进口罩的单价为x元/个.则第二次购进口罩的单价为 1.4x 元/个,依题意,得:,解得:x=5,经检验,x=5是原方程的解,且符合题意.答;该爱心人士第一次购进口罩的单价为5元/个.18.如图,E是Rt△ABC的斜边AB上一点,以AE为直径的⊙O与边BC相切于点D,交边AC于点F,连结AD.(1)求证:AD平分∠BAC.(2)若AE=2,∠CAD=25°,求的长.【分析】(1)连接OD,如图,由切线的性质得到OD⊥BC,则OD∥AC,根据平行线的性质得到∠CAD=∠ODA,由∠ODA=∠OAD,所以∠CAD=∠DAE;(2)由(1)知,∠FAE=50°,由弧长公式可得答案.解:(1)如图,连结OD,∵⊙O与边BC相切于点D,∴OD⊥BC,∴∠ODB=90°,∵∠C=90°,∴∠C=∠ODB=90°,∴OD∥AC.∴∠CAD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD=∠CAD,∴AD平分∠BAC;(2)如图,连结OF,∵AD平分∠BAC,且∠CAD=25°,∴12﹣3=9,∴∠EOF=100°,∴的长为.19.某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m的值为18;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.【分析】(1)根据条形统计图中的数据可以得到m的值;(2)根据题意可知应选择中位数比较合适;(3)根据统计图中的数据可以计该部门生产能手的人数.解:(1)由图可得,众数m的值为18,故答案为:18;(2)由题意可得,如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)300×=100(名),答:该部门生产能手有100名工人.20.图①,图②,图③均是4×4的正方形网格,每个小正方形的顶点称为格点,线段的端点均在格点上,在图①,图②,图③恰定的网格中按要求画图.(1)在图①中,画出格点C,使AC=BC,用黑色实心圆点标出点C所有可能的位置.(2)在图②中,在线段AB上画出点M,使AM=3BM.(3)在图③中,在线段AB上画出点P,使AP=2BP.(保留作图痕迹)要求:借助网格,只用无刻度的直尺,不要求写出画法.【分析】(1)根据线段垂直平分线的性质画图即可;(2)根据相似三角形的性质,构造相似三角形即可;(3)由相似三角形的性质,构造相似三角形即可.解:(1)如图①所示,点C即为所求;(2)如图②所示,点M即为所求;(3)如图③所示,点P即为所求.21.小明在练习操控航拍无人机,该型号无人机在上升和下落时的速度相同,设无人机的飞行高度为y(米),小明操控无人飞机的时间为x(分),y与x之间的函数图象如图所示.(1)无人机上升的速度为20米/分,无人机在40米的高度上飞行了3分.(2)求无人机下落过程中,y与x之间的函数关系式.(3)求无人机距地面的高度为50米时x的值.【分析】(1)利用图象信息,根据速度=计算即可解决问题;(2)利用待定系数法即可解决问题;(3)求出无人机从40米高度到60米高度的函数关系式为y=20x﹣60(5≤x≤6),分两种情形构建方程即可解决问题;解:(1)无人机上升的速度为=20米/分,无人机在40米的高度上飞行了6﹣1﹣2=3分.故答案为20,3;(2)设y=kx+b,把(9,60)和(12,0)代入得到,解得,∴无人机下落过程中,y与x之间的函数关系式为y=﹣20x+240.(3)易知无人机从40米高度到60米高度的函数关系式为y=20x﹣60(5≤x≤6),由20x﹣60=50,解得x=5.5,由﹣20x+240=50,解得x=9.5,综上所述,无人机距地面的高度为50米时x的值为5.5和9.5.22.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN 是线段AB的垂直平分线,P是MN上任一点,连结PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点.求证:PA=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证明PA =PB(请写出完整的证明过程)请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:(1)如图②,在△ABC中,直线l、m、n分别是边AB、BC、AC的垂直平分线.求证:直线l、m、n交于一点.(2)如图③,在△ABC中,AB=BC,边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,若∠ABC=120°,AC=18,则DE的长为6.【分析】教材呈现:如图①中,证明△PAC≌△PBC即可解决问题.定理应用:(1)如图②中,设直线l、m交于点O,连结AO、BO、CO.利用线段的垂直平分线的判定和性质解决问题即可.(2)连接BD,BE,证明△BDE是等边三角形即可.【解答】教材呈现:解:如图①中,∵MN⊥AB,∴∠PCA=∠PCB=90°.又∵AC=BC,PC=PC,∴△PAC≌△PBC(SAS),∴PA=PB.定理应用:(1)证明:如图②中,设直线l、m交于点O,连结AO、BO、CO.∵直线l是边AB的垂直平分线,∴OA=OB,又∵直线m是边BC的垂直平分线,∴OB=OC,∴OA=OC,∴点O在边AC的垂直平分线n上,∴直线l、m、n交于点O.(2)解:如图③中,连接BD,BE.∵BA=BC,∠ABC=120°,∴∠A=∠C=30°,∵边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,∴DA=DB,EB=EC,∴∠A=∠DBA=30°,∠C=∠EBC=30°,∴∠BDE=∠A+∠DBA=60°,∠BED=∠C+∠EBC=60°,∴△BDE是等边三角形,∴AD=BD=DE=BE=EC,∵AC=18,∴DE=AC=6.故答案为6.23.在△ABC中,AC=5,BC=4,∠B=45°,点D在边AB上,且AD=3,动点P 从点A出发,以每秒1个单位长度的速度向终点B运动,以PD为边向上做正方形PDMN,设点P运动的时间为t秒,正方形PDMN与△ABC重叠部分的面积为S.(1)用含有t的代数式表示线段PD的长.(2)当点N落在△ABC的边上时,求t的值.(3)求S与t的函数关系式.(4)当点P在线段AD上运动时,做点N关于CD的对称点N',当N'与△ABC的某一个顶点的连线平分△ABC的面积时,求t的值.【分析】(1)分0<t≤3时,3<t≤7时,两种情形分别求解即可.(2)分两种情形①如图2中,当点N在AC上时,②如图3中,当点N在BC上时,利用平行线分线段成比例定理解决问题即可.(3)分三种情形:①如图4中,当0<t≤时,重叠部分是五边形EFPDM,②如图5或6中.当<t≤5时,重叠部分是正方形PDMN.③如图7中,当5<t≤7时,重叠部分是五边形EFPDM,分别求解即可.(4)分三种情形画出图形,利用平行线分线段成比例定理构建方程即可解决问题.解:(1)如图1中,作CD′⊥AB于D.∵∠B=45°,BC=4,∴CD′=BD′=4,∴AD′===3,∵AD=3,∴AD=AD′,∴D′与D重合,当0<t≤3时,PD=3﹣t.当3<t≤7时,PD=t﹣3;(2)①如图2中,当点N在AC上时,∵MN∥AD,∴,∴,解得t=;②如图3中,当点N在BC上时,∵MN∥BD,∴,∴,解得t=5;综上所述,满足条件的t的值为s或5s.(3)①如图4中,当0<t≤时,重叠部分是五边形EFPDM,S=S正方形MDPN﹣S△NEF=(3﹣t)2﹣•(3﹣t﹣t)2=﹣t+;②如图5或6中,当<t≤5时,重叠部分是正方形PDMN,S=t2﹣6t+9③如图7中,当5<t≤7时,重叠部分是五边形EFPDM,S=S正方形MNPD﹣S△EFN=(t ﹣3)2﹣•[(t﹣3)﹣(7﹣t)]2=﹣t2+14t﹣41.综上所述,S=.(4)如图8中,当点N′落在中线AE上时,作EK⊥BC于K,N′J⊥AB于J.∵JN′∥EK,∴,则,解得t=1;如图9中,当点N′落在中线BG上时,作GK⊥BC于K,N′J⊥AB于J.∵N′J∥GK,∴,∴,解得t=;如图10中,当点N′落在中线CF上时,∵MN′∥DF,∴,∴=,解得t=.综上所述,满足条件的t的值为1s或s或s.24.在平面直角坐标系中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“伴随点”.例如:点(5,6)的“伴随点”为点(5,6);点(﹣5,6)的“伴随点”为点(﹣5,﹣6).(1)直接写出点A(2,1)的“伴随点”A′的坐标.(2)点B(m,m+1)在函数y=kx+3的图象上,若其“伴随点”B′的纵坐标为2,求函数y=kx+3的解析式.(3)点C、D在函数y=﹣x2+4的图象上,且点C、D关于y轴对称,点D的“伴随点”为D′.若点C在第一象限,且CD=DD′,求此时“伴随点”D′的横坐标.(4)点E在函数y=﹣x2+n(﹣1≤x≤2)的图象上,若其“伴随点”E′的纵坐标y′的最大值为m(1≤m≤3),直接写出实数n的取值范围.【分析】(1)由题意即可求解;(2)分m≥0、m<0两种情况分别求解即可;(3)设点C的横坐标为n,点C在函数y=﹣x2+4的图象上,CD=DD′,即可求解;(4)通先分段表示出y',进而确定出最大值,最后用m的范围建立不等式组,即可得出结论.解:(1)由题意得:点A'的坐标为(2,1)(2)①当m≥0时,m+1=2,m=1∴B(1,2)∵点B在一次函数y=kx+3图象上,∴k+3=2,解得:k=﹣1∴一次函数解析式为y=﹣x+3②m<0时,m+1=﹣2,m=﹣3∴B(﹣3,﹣2)∵点B在一次函数y=kx+3图象上,∴﹣3k+3=﹣2解得:k=一次函数解析式为y=x+3.(3)设点C的横坐标为n,点C在函数y=﹣x2+4的图象上,∴点C的坐标为(n,﹣n2+4),∴点D的坐标为(﹣n,﹣n2+4),D′(﹣n,n2﹣4)∵CD=DD′,∴2n=2(﹣n2+4),解得:n=;∵点C在第一象限,∴D′的横坐标为;(4)当﹣1≤x≤0时,y'=x2﹣n,此时,﹣n≤y'≤1﹣n,当0≤x≤2时,y'=﹣x2+n,此时,n﹣4≤y'≤n,当n≥1﹣n时,即:n≥,y'的最大值是n,①∵“伴随点”E′的纵坐标y′的最大值为m(1≤m≤3),∴1≤n≤3,当n<时,y'最大值为1﹣n,②∵“伴随点”E′的纵坐标y′的最大值为m(1≤m≤3),∴1≤1﹣n≤3,∴﹣2≤n≤0,∴n的取值范围应为1≤n≤3或﹣2≤n≤0.。

2020年湖北鄂州中考数学试卷(解析版)

2020年湖北鄂州中考数学试卷(解析版)

2020年湖北鄂州中考数学试卷(解析版)一、选择题1.的相反数是( ).A. B. C. D.2.下列运算正确的是( ).A. B.C. D.3.如图是由个小正方体组合成的几何体,则其俯视图为( ).A. B. C. D.4.面对年突如其来的新冠疫情,党和国家及时采取“严防严控”措施,并对新冠患者全部免费治疗,据统计共投入约亿元资金,亿用科学记数法可表示为( ).A.B.C.D.5.如图,,一块含的直角三角板的一个顶点落在其中一条直线上,若,则的度数为( ).A.B.C.D.6.一组数据,,,,的平均数为,则这组数据的众数为( ).A.B.C.D.7.目前以等为代表的战略性新兴产业蓬勃发展.某市年底有用户万户,计划到年底全市用户数累计达到万户,设全市用户数年平均增长率为,则值为( ).A.B.C.D.8.如图,在和中,,,,,连接、交于点,连接,下列结论:①;②;③平分;④平分,其中正确的结论个数有()个.A.B.C.D.9.如图,抛物线与轴交于点和,与轴交于点,下列结论:①;②;③;④,其中正确的结论个数为( ).A.个B.个C.个D.个10.如图,点,,在反比例函数的图象上,点,,,在轴上,且,直线与双曲线交于点,,,,则(为正整数)的坐标是( ).A.B.C.D.二、填空题11.分解因式: .12.关于的不等式组的解集是 .13.用一个圆心角为,半径为的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为 .14.如图,点是双曲线上一动点,连接,作,且使,当点在双曲线上运动时,点在双曲线上移动,则的值为 .yx15.如图,半径为的⊙与边长为的正方形的边相切于,点为正方形的中心,直线过点.当正方形沿直线以每秒的速度向左运动 秒时,⊙与正方形重叠影的面积为.16.如图,已知直线与、轴交于、两点,的半径为,为上一动点,切于点,当线段长取最小值时,直线交轴于点,为过点的一条直线,则点到直线的距离的最大值为 .三、解答题17.先化简,再从,,,,中选一个合适的数作为的值代入求值.18.(1)(2)如图,在平行四边形中,对角线与交于点,点,分别为、的中点,延长至点,使,连接.求证:≌.若,且,,求四边形的面积.(1)(2)(3)19.某校为了了解全校学生线上学习情况,随机选取该校部分学生,调查学生居家学习时每天学习时间(包括线上听课及完成作业时间).以下是根据调查结果绘制的统计图表.请你根据图表中的信息完成下列问题:学习时间分组频数频率组组组组组频数分布直方图人数时间(小时)频数分布表中 ,,并将频数分布直方图补充完整.若该校有学生名,现要对每天学习时间低于小时的学生进行提醒,根据调查结果,估计全校需要提醒的学生有多少名?已知调查的组学生中有名男生名女生,老师随机从中选取名学生进一步了解学生居家学习情况.请用树状图或列表求所选名学生恰为一男生一女生的概率.20.已知关于的方程有两实数根.(1)(2)求的取值范围.设方程两实数根分别为、,且,求实数的值.(1)(2)21.鄂州市某校数学兴趣小组借助无人机测量一条河流的宽度.如图所示,一架水平飞行的无人机在处测得正前方河流的左岸处的俯角为 ,无人机沿水平线方向继续飞行米至处,测得正前方河流右岸处的俯角为.线段的长为无人机距地面的铅直高度,点、、在同一条直线上.其中,米.求无人机的飞行高度.(结果保留根号)求河流的宽度.(结果精确到米,参考数据:,)(1)(2)(3)22.如图所示:⊙与的边相切于点,与、分别交于点、,.是⊙的直径.连接,过作交⊙于,连接、,与交于点.求证:直线与⊙相切.求证:.若,时,过作交⊙于、两点(在线段上),求的长.23.一大型商场经营某种品牌商品,该商品的进价为每件元,根据市场调查发现,该商品每周的销售量(件)与售价(元件)(为正整数)之间满足一次函数关系,下表记录的是某三周的有关数据:(元/件)(件)(1)(2)(3)求与的函数关系式(不求自变量的取值范围).在销售过程中要求销售单价不低于成本价,且不高于元/件.若某一周该商品的销售量不少于件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?抗疫期间,该商场这种商品售价不大于元/件时,每销售一件商品便向某慈善机构捐赠元(),捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请直接写出的取值范围.(1)12(2)24.如图,抛物线与轴交于、两点(点在点左边),与轴交于点.直线经过、两点.求抛物线的解析式.点是抛物线上的一动点,过点且垂直于轴的直线与直线及轴分别交于点、.,垂足为.设.备用图点在抛物线上运动,若、、三点中恰有一点是其它两点所连线段的中点(三点重合除外).请直接写出符合条件的的值.当点在直线下方的抛物线上运动时,是否存在一点,使与相似.若存在,求出点的坐标;若不存在,请说明理由.【答案】解析:互为相反数的两个数和为,∴故选.解析:从该组合体的俯视图看从左至右共有三列,从左到右第一列有一个正方形,第二列有一个正方形,第三列有两个正方形,可得只有选项符合题意.故选:.解析:亿.故选.解析:如图所示,过直角顶点作,∵,∴,∴,A 1.C 2.A 3.C 4.A 5.∴,∴.故选.解析:∵,,,,的平均数为,∴,解得:,∴这组数据为:,,,,,∴这组数据的众数为.故选.解析:设全市用户数年平均增长率为,根据题意,得:,解这个方程,得:,(不合题意,舍去).∴的值为.故选.解析:∵,∴,即,在和中,,∴≌,∴,,②正确;∴,B 6.C 7.B 8.由三角形的外角性质得:,∴,②正确;作于,于,如图所示:则,在和中,,∴≌,∴,∴平分,④正确;∵,∴当时,平分,假设,∵≌,∴,∵平分,∴,在和中,,∴≌,∴,∵,∴,与矛盾,∴③错误;正确的有①②④.故选.解析:∵抛物线开口向上,∴,∵对称轴在轴右边,∴,即,∵抛物线与轴的交点在轴的下方,∴,∴,故①错误;对称轴在左侧,∴,∴,即,故②错误;当时,,故③正确;当时,抛物线过轴,即,∴,又,∴,即,故④正确;综上,正确的结论有③④,共个.故答案选:.解析:联立,解得,∴,,由题意可知,∵,∴为等腰直角三角形,∴,B 9.D 10.过作交轴于,则容易得到,设,则,∴,解得,(舍),∴,,∴,用同样方法可得到,因此可得到,即.故选:.11.解析:,,.故答案为:.12.解析:由,得,由,得,∴不等式组的解集是.故答案为:.13.解析:设圆锥底面的半径为,扇形的弧长为:,∵圆锥的底面周长等于它的侧面展开图的弧长,∴根据题意得,解得:.14.解析:如图作轴于点,作轴于点,yx∵,∴,∵点是双曲线上,∴,∵,∴,又∵直角中,,∴,又∵∴,∴,∴,∴,∵函数图像位于第四象限,∴,故答案为:.解析:①当正方形运动到如图位置,连接,,交于点,图此时正方形与圆的重叠部分的面积为,由题意可知:,,∴为等边三角形,∴,,在中,,∴,,∴,∴,∴点向左运动个单位,所以此时运动时间为秒,②同理,当正方形运动到如图位置,连接,,交于点,图此时正方形与圆的重叠部分的面积为,由题意可知:,,∴为等边三角形,∴,,在中,,或15.扇形扇形扇形∴,,∴,∴,∴点向左运动个单位,所以此时运动时间为秒,综上,当运动时间为或秒时,⊙与正方形重叠部分的面积为,故答案为:或.解析:如图:在直线上,时,,时,,∴,,∴∴,由切于点,可知,∴,由于,因此当最小时长取最小值,此时,∴,此时,∴,即,若使到直线的距离最大,则最大值为,且位于轴下方,过作轴于,,,∴,扇形16.(1)(2)∵,∴,∴,即,∴.故答案为:.解析:.在、、、、中只有当时,原分式有意义,即只能取,当时,.解析:∵四边形是平行四边形,∴,,,∴,又点,分别为、的中点,∴,在和中,,∴≌.,又已知,∴,,.17.(1)证明见解析.(2).18.(1)∴为等腰三角形;又为的中点,∴由等腰三角形的“三线合一”性质可知:,∴,同理可证也为等腰三角形,又是的中点,∴由等腰三角形的“三线合一”性质可知:,,∵,∴,又已知,由()中知,∴,∴四边形为平行四边形,又,∴四边形为矩形,在中,由勾股定理有:,∴,∴,∴.故答案为:.解析:随机选取学生数为:人,则,,矩形(1),;画图见解析.(2)名.(3).19.(2)(3)(1)(2)频数分布直方图人数时间(小时)故答案为,.根据频数分布表可知:选取该校部分学生每天学习时间低于小时为,则若该校有学生名,每天学习时间低于小时的学生数有,所以,估计全校需要提醒的学生有名.根据题意列表如下:女男男女 (女,男)(女,男)男(男,女)(男,男)男(男,女)(男,男)则共有种情况,其中所选名学生恰为一男生一女生的情况数种,所以所选名学生恰为一男生一女生的概率为.解析:∵关于的一元二次方程有两个实数根,∴,解得:,故的取值范围为:.由根与系数的关系可得,,由可得,代入和的值,可得:,解得:,(舍去),经检验,是原方程的根,故.(1).(2).20.(1)(2)(1)解析:由题意可得,∴,在中,(米).如图,过点作,在中,,,∴米,∵,,∴四边形是矩形,∴米,∴(米),∴(米),故河流的宽度为米.解析:∵,∴,∵,∴,又∵,∴,由题意得:,,∴≌,∴,∴是⊙的切线.(1)米.(2)米.21.(1)证明见解析.(2)证明见解析.(3).22.(2)(3)如图所示与交点作为点,∵,∴,又由()所知,∴,∴,∴,由圆周角定理可知,,∵,∴,∴,又∵,∴,∴,∴,即.∵,,与相等角的值都相同.∴,则,根据勾股定理可得.∴.由()可得,在中,可得,即,∴,解得,则,,(1)(2)连接,延长交于点,根据垂径定理可知,∵,∴.在中,可得,即,解得,则,在中,,即,解得,∴.解析:设与的函数关系式为,代入,可得:,解得:,即与的函数关系式为.设这一周该商场销售这种商品获得的利润为,根据题意可得:,解得:,,∵,(1).(2)最大利润为元,售价为元.(3).23.(3)(1)1(2)∴当时,有最大值,,答:这一周该商场销售这种商品获得的最大利润为元,售价为元.设这一周该商场销售这种商品获得的利润为,当每销售一件商品便向某慈善机构捐赠元时,,由题意,当时,利润仍随售价的增大而增大,可得:,解得:,∵,∴,故的取值范围为:.解析:由直线经过、两点得,,将、坐标代入抛物线得,,解得,∴抛物线的解析式为:.∵,垂足为,,∴,,分以下几种情况:(1).12(2),,.存在,.24.是的中点时,,即解得,(舍去);是的中点时,,即解得,(舍去);是的中点时,,即,解得,(舍去);∴符合条件的的值有,,.2∵抛物线的解析式为:,∴,,,∴,,,∴,又,∴,∴,∵与相似,∴,∴,∴,∴点的纵坐标是,代入抛物线,得,解得:(舍去),,∴点的坐标为:.。

2020年山西省名校联考中考数学一模试题(附详细解析)

2020年山西省名校联考中考数学一模试题(附详细解析)

…外……………内…………绝密★启用前2020年山西省名校联考中考数学一模试题考试范围:xxx ;考试时间:100分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、单选题1.下列各数中,比﹣2小的数是( ) A .﹣3B .﹣1C .0D .12.2020年春节前夕,一场突如其来的新冠肺炎疫情牵动着全国人民的心.因疫情发展迅速,全国口罩防护用品销售量暴涨、供应紧张.国有疫,我有责.在特殊时期,某集团紧急启动了应急响应机制,取消了工人休假,与防疫救灾相关的口罩,84消毒液生产线连续24小时运转,将援驰武汉的10万片口罩,5万瓶84消毒液和200万片酒精棉片第一时间发往武汉,其中200万用科学记数法表示为( ) A .2×102B .2×104C .2×106D .2×1033.下列运算正确的是( ) A .(﹣a 4)5=a 9 B .2a 2+3a 2=6a 4C .2a 2•a 5=2a 10D .(﹣2b a )2=224b a4.用配方法解一元二次方程x 2﹣2x ﹣1=0时,配方后的形式为( ) A .(x ﹣2)2=3B .(x ﹣2)2=5C .(x ﹣1)2=0D .(x ﹣1)2=25.如图,是一个由4条线段构成的“鱼”形图案,其中OA ∥BC ,AC ∥OB .若∠1=50°,则∠3的度数为( )A .130°B .120°C .50°D .125°6.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题可迎刃而解,且解法简洁.如图,直线y =3x 和直线y =ax +b 交于点(1,3),根据图象分析,外…………○……………○……线…………○……※※※在※※装※※订※※线内…………○……………○……线…………○……A .x =1B .x =﹣1C .x =3D .x =﹣37.在一个不透明的袋子里装有5个球,其中3个红球,2个黄球,它们除颜色外其余都相同,从袋子中任意摸出一球然后放回,搅匀后再任意摸出一球,则两次摸出的球是一红一黄的概率为( ) A .25B .1225C .625D .358.如图,在△ABC 中,AB =AC =8,BC =6,点P 从点B 出发以1个单位/s 的速度向点A 运动,同时点Q 从点C 出发以2个单位/s 的速度向点B 运动.当以B ,P ,Q 为顶点的三角形与△ABC 相似时,运动时间为( )A .2411s B .95s C .2411s 或95sD .以上均不对9.如图,正方形ABCD 的边长为4,分别以正方形的三边为直径在正方形内部作半圆,则阴影部分的面积之和是( )A .8B .4C .16πD .4π第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题…外…………○……装…………○……订……………线…………○……学_______姓名:___________班________考号:_________…内…………○……装…………○……订……………线…………○……11.若分式3xx 的值为零,则x 的值是_____. 12.在△ABC 中,尺规作图的痕迹如图所示,已知∠ADB =50°,∠A =110°,则∠ABC 的度数为_____.13.将黑色棋子按照一定规律排列成一系列如图所示的图案,按照此规律,第n 个图案中黑色棋子的个数是_____.14.如图,在平面直角坐标系xOy 中,已知点A 0),B (1,1).若平移点B 到点D ,使四边形OADB 是平行四边形,则点D 的坐标是_____.15.如图,正方形纸片ABCD 沿直线BE 折叠,点C 恰好落在点G 处,连接BG 并延长,交CD 于点H ,延长EG 交AD 于点F ,连接FH .若AF =FD =6cm ,则FH 的长为_____cm .…………○…………………………○……※※在※※装※※订※※线※※※题※※…………○…………………………○……三、解答题16.计算:(2020﹣π)0﹣6cos30°(﹣12)﹣317.解不等式组:263(2)4x x x >-⎧⎨--≥-⎩①②,并把解集在数轴上表示出来.18.如图,一次函数y 1=kx +b 与反比例函数y 2=mx的图象交于A (2,3),B (6,n )两点,与x 轴、y 轴分别交于C ,D 两点.(1)求一次函数与反比例函数的解析式. (2)求当x 为何值时,y 1>0.19.某校开展以“我们都是追梦人”为主题的校园文化节活动,活动分为球类、书画、乐器、诵读四项内容,要求每位学生参加其中的一项.校学生会为了解各项报名情况,随机抽取了部分学生进行调查,并对调查结果进行了统计,绘制了如下统计图(均不完整):…○…………线…………○……____…○…………线…………○……请解答以下问题:(1)图1中,“书画”这一项的人数是 .(2)图2中,“乐器”这一项的百分比是 ,“球类”这一项所对应的扇形的圆心角度数是 .(3)若该校共有2200名学生,请估计该校参加“诵读”这一项的学生约有多少人. 20.中国杂粮看山西,山西杂粮看忻州,“忻州——中国杂粮之都”近年来打造以“一薯、三麦、四米、五豆”为特色的小杂粮产业,走上了“兴科技、树品牌、强产业广交流、共发展”的新道路.某县为帮助农民进一步提高杂粮播种水平,提升综合生产能力,决定财政拨款45600元购进A ,B 两种型号的播种机共30台.两种型号播种机的单价和工作效率分别如表:(1)求购进A ,B 两种型号的播种机各多少台.(2)某农场有2000公顷地种植杂粮,计划从县里新购进的播种机中租用两种型号的播种机共15台同时进行播种.若农场的工人每天工作8h ,则至少租用A 种型号的播种机多少台才能在5天内完成播种工作? 21.请阅读下列材料,并完成相应的任务.梅涅劳斯(Menelaus )是公元一世纪时的希腊数学家兼天文学家,著有几何学和三角学…………○……※※在※※装※※订※※…………○………装…………○…__姓名:___________班级…装…………○…(1)请帮助该小组的同学根据上表中的测量数据,求塔高AB .(结果精确到1m ;参考数据:sin24°≈0.41,cos24°≈0.91,tan24°≈0.45,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) (2)该小组要写出一份完整的课题活动报告,除上表中的项目外,你认为还需要补充哪些项目?(写出一个即可)23.综合与实践 问题情境:在综合与实践课上,老师让同学们以“等腰三角形的剪拼”为主题开展数学活动.如图1,在△ABC 中,AB =AC =10cm ,BC =16cm .将△ABC 沿BC 边上的中线AD 剪开,得到△ABD 和△ACD . 操作发现:…………○…………装……………线…………○……※※请※※不※※要※※在…………○…………装……………线…………○……(1)乐学小组将图1中的△ACD 以点D 为旋转中心,按逆时针方向旋转,使得A 'C '⊥AD ,得到图2,A 'C '与AB 交于点E ,则四边形BEC 'D 的形状是 .(2)缜密小组将图1中的△ACD 沿DB 方向平移,A 'D '与AB 交于点M ,A 'C '与AD 交于点N ,得到图3,判断四边形MNDD '的形状,并说明理由. 实践探究:(3)缜密小组又发现,当(2)中线段DD '的长为acm 时,图3中的四边形MNDD '会成为正方形,求a 的值.(4)创新小组又把图1中的△ACD 放到如图4所示的位置,点A 的对应点A '与点D 重合,点D 的对应点D '在BD 的延长线上,再将△A 'C 'D '绕点D 逆时针旋转到如图5所示的位置,DD '交AB 于点P ,DC '交AB 于点Q ,DP =DQ ,此时线段AP 的长是 cm . 24.综合与探究.如图1,抛物线y =x 2﹣x ﹣2与x 轴交于A ,B 两点,与y 轴交于点C ,经过点B 的直线交y 轴于点E (0,2).(1)求A ,B ,C 三点的坐标及直线BE 的解析式.(2)如图2,过点A 作BE 的平行线交抛物线于点D ,点P 是抛物线上位于线段AD 下方的一个动点,连接P A ,PD ,求OAPD 面积的最大值.(3)若(2)中的点P 为抛物线上一动点,在x 轴上是否存在点Q ,使得以A ,D ,P ,Q 为顶点的四边形是平行四边形?若存在,请直接写出点Q 的坐标;若不存在,请说参考答案1.A【解析】【分析】先根据正数都大于0,负数都小于0,可排除C、D,再根据两个负数,绝对值大的反而小,可得比-2小的数是-3.【详解】解:根据两个负数,绝对值大的反而小可知-3<-2.故选:A.【点睛】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.2.C【解析】【分析】首先把200万化为2000000,再用科学记数法表示,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:200万=2000000=2×106.故选:C.【点睛】此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.D【解析】【分析】直接利用幂的乘方法则,合并同类项法则,单项式乘以单项式以及分式的乘方运算法则分别计算得出答案.【详解】解:A 、(﹣a 4)5=﹣a 20,故此选项错误; B 、2a 2+3a 2=5a 2,故此选项错误; C 、2a 2•a 5=2a 7,故此选项错误;D 、(﹣2b a )2=224b a,正确.故选:D . 【点睛】此题主要考查了整式的运算,正确掌握相关运算法则是解题关键. 4.D 【解析】 【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后可得答案. 【详解】解:∵x 2﹣2x ﹣1=0, ∴x 2﹣2x =1, ∴x 2﹣2x +1=1+1, ∴(x ﹣1)2=2 故选:D . 【点睛】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 5.A 【解析】 【分析】根据平行线的性质先求出∠2的度数,再根据平行线的性质先求出∠3的度数. 【详解】解:∵AC ∥OB ,∠1=50°, ∴∠2=50°,∵OA∥BC,∴∠2+∠3=180°,∴∠3=180°﹣50°=130°.故选:A.【点睛】考查了平行线的性质,掌握基本性质是解题的关键.6.A【解析】【分析】根据方程的解即为函数图象的交点横坐标解答.【详解】解:∵直线y=3x和直线y=ax+b交于点(1,3)∴方程3x=ax+b的解为x=1.故选:A.【点睛】本题主要考查了一次函数与一元一次方程.函数图象交点坐标为两函数解析式组成的方程组的解.7.B【解析】【分析】画出树状图列出所有等可能的结果,得到等可能的结果数,再找出一红一黄的结果数,最后用概率公式计算即可.【详解】解:树状图如图所示:共有25个等可能的结果数,两次摸出的球是一红一黄的结果有12个,∴两次摸出的球是一红一黄的概率为1225; 故选:B .【点睛】 此题主要考查了列举法求概率,注意每种结果都必须是等可能的结果.8.C【解析】【分析】首先设ts 时△ABC 与以B 、P 、Q 为顶点的三角形相似,则BP=t ,CQ=2t ,BQ=BC-CQ=6-2t ,然后分两种情况当△BAC ∽△BPQ 和当△BCA ∽△BPQ 讨论.【详解】解:设运动时间为t s ,则BP =t ,CQ =2t ,BQ =BC ﹣CQ =6﹣2t ,当△BAC ∽△BPQ ,BP AB =BQ BC, 即8t =626t -,解得t =2411; 当△BCA ∽△BPQ ,BP BC =BQ AB , 即6t =628t -,解得t =95, 综上所述,当以B ,P ,Q 为顶点的三角形与△ABC 相似时,运动时间为2411s 或95s , 故选:C .【点睛】 本题考查了相似三角形的判定与性质,注意数形结合思想与分类讨论思想的运用. 9.A【解析】【分析】先判断出两半圆交点为正方形的中心,连接OA ,OD ,则可得出所产生的四个小弓形的面积相等,先得出2个小弓形的面积,即可求阴影部分面积.【详解】解:由题意,易知两半圆的交点即为正方形的中心,设此点为O,连接AO,DO,则图中的四个小弓形的面积相等,∵两个小弓形面积=S半圆AOD -S△AOD=S半圆AOD-14S正方形ABCD,又正方形ABCD的边长为4,得各半圆的半径为2,∴两个小弓形面积=12×π×22﹣14×4×4=2π﹣4,∴S阴影=2×S半圆﹣4个小弓形面积=π•22﹣2(2π﹣4)=8,故选:A.【点睛】本题考查了扇形的面积计算,正方形的性质,解答本题的关键是得出两半圆的交点是正方形的中心,求出小弓形的面积,有一定难度,注意仔细观察图形.10.A【解析】从左面看,这个立体图形有两层,且底层有两个小正方形,第二层的左边有一个小正方形.故选A.11.0【解析】【分析】根据分式的值为零,则分子为零,分母不为零.【详解】解:由分式的值为零的条件得x=0,且x﹣3≠0,故答案为:0.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.45°【解析】【分析】由作图可知:EF垂直平分线段BC,先求出∠C,再利用三角形内角和定理解决问题即可.【详解】解:由作图可知:EF垂直平分线段BC,∴DB=DC,∴∠DBC=∠C,∵∠ADB=∠DBC+∠C=50°,∴∠C=25°,∴∠ABC=180°﹣∠A﹣∠C=180°﹣110°﹣25°=45°,故答案为:45°.【点睛】本题考查作图-复杂作图,三角形内角和定理,线段的垂直平分线的性质,等腰三角形的性质,三角形外角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.5n+3【解析】【分析】根据图形的变化先写出前几个图案中黑色棋子的个数,从中发现规律,总结规律即可.【详解】解:观察图形的变化可知:第1个图案中黑色棋子的个数是8=5×1+3;第2个图案中黑色棋子的个数是13=5×2+3第3个图案中黑色棋子的个数是18=5×3+3…发现规律:第n个图案中黑色棋子的个数是5n+3.故答案为:5n+3.【点睛】本题考查了规律型-图形的变化类,解决本题的关键是观察图形的变化寻找规律,总结规律.14.+1,1)【解析】【分析】先确定OA的长,再根据四边形OADB是平行四边形得出BD的长,且BD∥OA,从而根据点B的坐标可得出点D的坐标.【详解】解:∵A0),∴OA∵四边形OADB是平行四边形,∴BD=OA,BD∥OA,∵B(1,1),∴D,1),故答案为:,1).【点睛】本题考查平行四边形的判定与性质、平移变换等知识,解题的关键是熟练掌握基本知识.15.【解析】【分析】连接BF,先证明Rt△ABF≌Rt△GBF,得到∠AFB=∠GFB,FA=FG,再证明Rt△FGH≌Rt△FDH,得到∠GFH=∠DFH,于是∠BFH=∠BFG+∠GFH=12×180°=90°,根据△ABF∽△DFH,得AB BFDF FH,从而可求出FH.【详解】解:如图,连接BF.∵四边形ABCD 是正方形,∴∠A =∠C =90°,AB =BC =AF +FD =12cm .由折叠可知,BG =BC =12cm ,∠BGE =∠BCE =90°.∴AB =GB .在Rt △ABF 和Rt △GBF 中,BF BFAB GB ⎧⎨⎩==,∴Rt △ABF ≌Rt △GBF (HL ).∴∠AFB =∠GFB ,F A =FG ,又∵AF =FD ,∴FG =FD .同理可证Rt △FGH ≌Rt △FDH ,∴∠GFH =∠DFH ,∴∠BFH =∠BFG +∠GFH =12⨯180°=90°,∴∠AFB +∠DFH =90°.又∵∠AFB +∠ABF =90°,∴∠ABF =∠DFH .又∵∠A =∠D =90°,∴△ABF ∽△DFH , ∴ABBFDF FH =,在Rt △ABF 中,由勾股定理,得BF==,∴126FH =,∴FH=.故答案为:【点睛】本题考查了折叠的性质,正方形的性质,三角形全等的判定与性质,勾股定理以及相似三角形的判定与性质,综合运用相关性质是解题的关键.16.-7【解析】【分析】先利用零次幂的运算法则,特殊角的三角函数值,立方根的定义以及负整数指数幂的运算法则化简各数,再进行加减运算即可.【详解】解:原式=1﹣8=1﹣8=﹣7.【点睛】本题考查了实数的混合运算以及特殊的三角函数值,掌握基本运算法则是解题的关键.17.﹣3<x≤1,详见解析【解析】【分析】首先分别求出两个不等式的解集,再根据求不等式组解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到找出公共解集即可.【详解】解:解不等式①得:x>﹣3,解不等式②得:x≤1,∴不等式组的解集为:﹣3<x≤1,不等式组的解集在数轴上表示如下:此题主要考查了解不等式组,关键是正确解出每个不等式的解集,再表示出公共解集,在用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.18.(1)y 1=﹣12x +4,y 2=6x ;(2)当x <8时,y 1>0. 【解析】【分析】(1)先利用A 点坐标确定反比例函数解析式,再利用反比例函数解析式确定B 点坐标,然后利用待定系数法求一次函数解析式;(2)令y 1>0,然后解不等式kx+b >0即可.【详解】解:(1)把A (2,3)代入y 2=m x得m =2×3=6, ∴反比例函数解析式为y 2=6x , 把B (6,n )代入y 2=6x得,6n =6,解得n =1, ∴B (6,1), 把A (2,3),B (6,1)代入y 1=kx +b 得2361k b k b +=⎧⎨+=⎩,解得124k b ⎧=-⎪⎨⎪=⎩, ∴一次函数解析式为y 1=﹣12x +4; (2)当y 1>0时,即﹣12x +4>0,解得x <8, ∴当x <8时,y 1>0.【点睛】本题是反比例函数与一次函数的综合题,主要考查了待定系数法求函数解析式以及一次函数与不等式,利用数形结合思想解题是关键.19.(1)30;(2)10%;108°;(3)约有880人【分析】(1)根据条形图得到参加诵读活动的人数,根据扇形图得到参加诵读活动的人数所占的百分比,从而求出抽取的学生总数,根据“书画”这一项的百分比计算,得到答案;(2)根据条形图得到“乐器”这一项的人数、“球类”这一项的人数,求出“乐器”这一项的百分比、“球类”这一项所对应的扇形的圆心角度数;(3)根据参加诵读活动的人数占40%,估计总体,得到答案.【详解】解:(1)由条形图可知,参加诵读活动的人数为60,由扇形图可知,参加诵读活动的人数占40%,∴抽取的学生数为:60÷40%=150(人),∴“书画”这一项的学生数是:150×20%=30(人),故答案为:30;(2)“乐器”这一项的百分比是:15÷150×100%=10%,“球类”这一项所对应的扇形的圆心角度数是:45150×360°=108°,故答案为:10%;108°;(3)该校参加“诵读”这一项的学生约有:2200×40%=880(人),答:该校参加“诵读”这一项的学生约有880人.【点睛】本题考查的是条形统计图、扇形统计图、样本估计总体,读懂统计图,从统计图中得到必要的信息是解决问题的关键.20.(1)购进A种型号的播种机10台,B种型号的播种机20台;(2)至少租用A种型号的播种机5台才能在5天内完成播种工作.【解析】【分析】(1)设购进A种型号的播种机x台,B种型号的播种机y台,根据财政拨款45600元购进A,B两种型号的播种机共30台,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设租用A种型号的播种机m台,则租用B种型号的播种机(15﹣m)台,根据工作总量=工作效率×时间结合在5天内完成2000公顷地的播种工作,即可得出关于m 的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:(1)设购进A 种型号的播种机x 台,B 种型号的播种机y 台,依题意,得:301600148045600x y x y +=⎧⎨+=⎩,解得:1020x y =⎧⎨=⎩. 答:购进A 种型号的播种机10台,B 种型号的播种机20台.(2)设租用A 种型号的播种机m 台,则租用B 种型号的播种机(15﹣m )台,依题意,得:5×8×[4m +3(15﹣m )]≥2000, 解得:m ≥5.答:至少租用A 种型号的播种机5台才能在5天内完成播种工作.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.21.(1)两条直线被一组平行线所截,所得的对应线段成比例;(2)见解析;(3)94 【解析】【分析】(1)根据平行线分线段成比例定理解决问题即可;(2)如图2中,作CN ∥DE 交BD 于N .模仿情况①的方法解决问题即可;(3)利用梅氏定理1AD BE CF DB EC FA⋅⋅=即可解决问题. 【详解】解:(1)情况①中的依据是:两条直线被一组平行线所截,所得的对应线段成比例.故答案为:两条直线被一组平行线所截,所得的对应线段成比例.(2)如图2中,作CN ∥DE 交BD 于N .则有ADDN=AFFC,BEEC=BDDN,∴BE ADEC DNg=BD AFDN FCg,∴BE•AD•FC=BD•AF•EC,∴AD BE CFDB EC FAg g=1.(3)∵AD BE CFDB EC FAg g=1,AD:DB=CF:F A=2:3,∴2233BEEC⨯⨯=1,∴BEEC=94.故答案为:94.【点睛】本题考查了平行线分线段成比例定理,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.22.(1)约为38m;(2)还需要补充的项目为:计算过程,人员分工,指导教师,活动感受等.(答案不唯一,合理即可.)【解析】【分析】(1)易知四边形HCDF是矩形,四边形FDBE是矩形,结合三角函数的定义求出AE和BE 长即可得出答案;(2)如要补充:计算过程,人员分工,指导教师,活动感受等.(答案不唯一,合理即可.)【详解】解:(1)在Rt△AFE中,tan∠AFE=AEFE,∠AFE=37°,∴43FE AE≈,∵∠HCD=90°,∠FDC=90°,∴HC∥FD,又∵HC=FD,∴四边形HCDF是矩形,∴HF=CD=32m.在Rt△AHE中,tan∠AHE=AE AEHE HF FE=+=4323AEAE+≈0.45,解得:AE=36.同理,四边形FDBE是矩形,则BE=FD=HC=1.76m,∴AB=AE+BE=36+1.76=37.76≈38(m).答:塔高AB约为38m.(2)还需要补充的项目为:计算过程,人员分工,指导教师,活动感受等.(答案不唯一,合理即可.)【点睛】本题考查解直角三角形的应用,解题的关键是理解题意,灵活运用所学知识解决问题.23.(1)菱形;(2)四边形MNDD'是矩形,理由见解析;(3)247;(4)65【解析】【分析】操作发现:(1)由等腰三角形的性质可得∠B=∠C,BD=CD=8cm,∠BAD=∠CAD,由余角的性质可得∠ADC'=∠BAD,可得AB∥C'D,可证四边形BDC'E是平行四边形,且BD=C'D,可证四边形BEC'D是菱形;(2)由“ASA”可证△MDB'≌△NDC',可得DN=MD',由平移性质可得MD'∥DN,可证四边形MNDD'是平行四边形,且∠BD'M=90°,可证四边形MNDD'是矩形;实践探究:(3)由正方形的性质可得D'M∥DN,D'M=D'D=acm,由相似三角形的性质可求解;(4)过点D作DG⊥AB于点G,通过证明△DQP∽△AQD,可求AQ=AD=6,通过证明△DGA∽△BDA,可得AG ADAD AB,可求AG的长,即可求解.【详解】解:操作发现:(1)如图1:∵AB=AC=10cm,BC=16cm.∴∠B=∠C,BD=CD=8cm,∠BAD=∠CAD,∵△ACD以点D为旋转中心,按逆时针方向旋转,∴C'D=BD,∵AD⊥BD,A'C'⊥AD,∴A'C'∥BD,∠ADC'=90°﹣∠C',∴∠ADC'=90°﹣∠B,且∠BAD=90°﹣∠B,∴∠ADC'=∠BAD,∴AB∥C'D,∴四边形BDC'E是平行四边形,∵BD=C'D,∴四边形BEC'D是菱形,故答案为:菱形;(2)如图3,四边形MNDD'是矩形,理由如下:∵BD=CD,∴BD'=CD,且∠B=∠C',∠MD'B=∠NDC'∴△MDB'≌△NDC'(ASA)∴MD'=ND,∵△ACD沿DB方向平移,∴MD'∥DN,∴四边形MNDD'是平行四边形,∵∠BD'M=90°,∴四边形MNDD'是矩形;(3)由图形(1)可得AB=10cm,BD=8cm,∴AD6cm,∵四边形MNDD'为正方形,∴D'M∥DN,D'M=D'D=acm,∴△BD'M∽△BDA,∴BD MD BD AD''=,∴886a a -=,∴a=247;(4)如图5,过点D作DG⊥AB于点G,∵DP=DQ,∴∠DQP=∠DPQ,QG=PG,又∵∠A=∠PDQ,∴△DQP∽△AQD,∴∠ADQ=∠DPQ,∴∠ADQ=∠AQD,∴AQ=AD=6,∵∠A=∠A,∠DGA=∠BDA,∴△DGA∽△BDA,∴AG AD AD AB=,∴6 610 AG=,∴AG=185,∴GQ =AQ ﹣AG =6﹣185=125, ∴PG =QG =125, ∴AP =AG ﹣PG =185﹣125=65, 故答案为:65. 【点睛】本题是四边形综合题,考查了矩形的判定和性质,正方形的性质,平移的性质,相似三角形的判定和性质,全等三角形的判定和性质等知识,灵活运用这些性质进行推理是本题的关键.24.(1)A (﹣1,0),B (4,0),C (0,﹣2);y =﹣12x +2;(2) 4;(3)存在;点Q 的坐标为(2,0)或(﹣4,0)或(112+,0)或(112-,0). 【解析】【分析】 (1)令y=0可求A 与B 点坐标,令x=0可求出C 点的坐标;设直线BE 的解析式为y=kx+b ,将B (4,0)、E (0,2)代入解析式可求k 与b 的值;(2)设AD 的解析式为y=-12x+m ,将A (-1,0)代入求出m ,进而确定直线AD 的解析式,再联立2132221122y x x y x ⎧=--⎪⎪⎨⎪=--⎪⎩求出D 点坐标,过点P 作PF ⊥x 轴于点F ,交AD 于点N ,过点D 作DG ⊥x 轴于点G .则S △APD =S △APN +S △DPN =2PN ,设P 213,222a a a ⎛⎫--- ⎪⎝⎭,则N 11,22a a ⎛⎫-- ⎪⎝⎭,求出PN=-12a 2+a+32,所以S △APD =-a 2+2a+3=-(a-1)2+4,当a=1时,△APD 的面积最大,最大值为4;(3)分两种情况讨论:①当PD 与AQ 为平行四边形的对边时,由PD=AQ=3,可求Q (2,0)或Q (-4,0);②当PD 与AQ 为平行四边形的对角线时,先求出P 32⎛⎫+ ⎪⎝⎭或P32⎛⎫- ⎪⎝⎭,再求出PD的中点为9,04⎛⎫ ⎪ ⎪⎝⎭或9,02⎛⎫- ⎪ ⎪⎝⎭,由平行四边形对角线的性质可求Q 112⎛⎫+⎪⎝⎭或Q 112⎛⎫- ⎪⎝⎭. 【详解】解:(1)令y =0,则12x 2﹣32x ﹣2=0,解得x =4或x =﹣1, ∴A (﹣1,0),B (4,0),令x =0,则y =﹣2,∴C (0,﹣2),设直线BE 的解析式为y =kx +b ,将B (4,0)、E (0,2)代入得,240b k b =⎧⎨+=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩,∴y =﹣12x +2; (2)由题意可设AD 的解析式为y =﹣12x +m , 将A (﹣1,0)代入,得到m =﹣12, ∴y =﹣12x ﹣12, 联立2132221122y x x y x ⎧=--⎪⎪⎨⎪=-⎪⎩, 解得:10x y =-⎧⎨=⎩,32x y =⎧⎨=-⎩, ∴D (3,﹣2),过点P 作PF ⊥x 轴于点F ,交AD 于点N ,过点D 作DG ⊥x 轴于点G .∴S △APD =S △APN +S △DPN =12PN •AF +12PN •FG =12PN (AF +FG )=12PN •AG =12×4PN =2PN , 设P (a ,﹣12a 2﹣32a ﹣2),则N (a ,﹣12a ﹣12), ∴PN =﹣12a 2+a +32, ∴S △APD =﹣a 2+2a +3=﹣(a ﹣1)2+4,∵﹣1<0,﹣1<a <3,∴当a =1时,△APD 的面积最大,最大值为4;(3)存在;①当PD 与AQ 为平行四边形的对边时,∵AQ ∥PD ,AQ 在x 轴上,∴P (0,﹣2),∴PD =3,∴AQ =3,∵A (﹣1,0),∴Q (2,0)或Q (﹣4,0);②当PD 与AQ 为平行四边形的对角线时,PD 与AQ 的中点在x 轴上,∴P 点的纵坐标为2,∴P ,2)或P ,2),∴PD 的中点为(94+,0)或(92-,0), ∵Q 点与A 点关于PD 的中点对称,∴Q 0)或Q ,0);综上所述:点Q 的坐标为(2,0)或(﹣4,0)或(112,0)或(112,0). 【点睛】本题考查二次函数的综合应用,熟练掌握二次函数的图象及性质,一次函数的图象与性质,灵活应用平行四边形的性质是解题的关键.。

2020年中考数学试卷(含答案)

2020年中考数学试卷(含答案)

2020年中考数学试卷一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分.1.(3分)计算(﹣3)×2的结果是()A.﹣6B.﹣1C.1D.62.(3分)下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是()A.B.C.D.3.(3分)2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是()A.直接观察B.实验C.调查D.测量4.(3分)如图,直线a,b相交于点O,如果∠1+∠2=60°,那么∠3是()A.150°B.120°C.60°D.30°5.(3分)当x=1时,下列分式没有意义的是()A .x+1xB .x x−1C .x−1xD .x x+16.(3分)下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是( )A .B .C .D .7.(3分)菱形的两条对角线长分别是6和8,则此菱形的周长是( )A .5B .20C .24D .328.(3分)已知a <b ,下列式子不一定成立的是( )A .a ﹣1<b ﹣1B .﹣2a >﹣2bC .12a +1<12b +1D .ma >mb9.(3分)如图,Rt △ABC 中,∠C =90°,利用尺规在BC ,BA 上分别截取BE ,BD ,使BE =BD ;分别以D ,E 为圆心、以大于12DE 的长为半径作弧,两弧在∠CBA 内交于点F ;作射线BF 交AC 于点G .若CG =1,P 为AB 上一动点,则GP 的最小值为( )A .无法确定B .12C .1D .210.(3分)已知二次函数y =ax 2+bx +c 的图象经过(﹣3,0)与(1,0)两点,关于x 的方程ax 2+bx +c +m =0(m >0)有两个根,其中一个根是3.则关于x 的方程ax 2+bx +c +n =0 (0<n <m )有两个整数根,这两个整数根是( )A .﹣2或0B .﹣4或2C .﹣5或3D .﹣6或4二、填空题:每小题4分,共20分11.(4分)化简x(x﹣1)+x的结果是.12.(4分)如图,点A是反比例函数y=3x图象上任意一点,过点A分别作x轴,y轴的垂线,垂足为B,C,则四边形OBAC的面积为.13.(4分)在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是.14.(4分)如图,△ABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB 上,若DA=EB,则∠DOE的度数是度.15.(4分)如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE 的延长线于点D,BD=8,AC=11,则边BC的长为.三、解答题:本大题10小题,共100分.16.(8分)如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.17.(10分)2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表时间/h 1.52 2.53 3.54人数/人26610m4(1)本次共调查的学生人数为,在表格中,m=;(2)统计的这组数据中,每天听空中黔课时间的中位数是,众数是;(3)请就疫情期间如何学习的问题写出一条你的看法.18.(10分)如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE.(1)求证:四边形AEFD是平行四边形;(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.19.(10分)如图,一次函数y =x +1的图象与反比例函数y =k x 的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数y =x +1的图象向下平移2个单位,求平移后的图象与反比例函数y =k x 图象的交点坐标;(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y =k x 的图象没有公共点.20.(10分)“2020第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动,规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.(1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率;(2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一张,使得抽到《消防知识手册》卡片的概率为57,那么应添加多少张《消防知识手册》卡片?请说明理由.21.(8分)脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB 所在的直线,为了测量房屋的高度,在地面上C 点测得屋顶A 的仰角为35°,此时地面上C 点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E 点的仰角为60°,房屋的顶层横梁EF=12m,EF∥CB,AB交EF于点G(点C,D,B 在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,√3≈1.7)(1)求屋顶到横梁的距离AG;(2)求房屋的高AB(结果精确到1m).22.(10分)第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?23.(10分)如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠ABD.(1)求证:AD=CD;(2)若AB=4,BF=5,求sin∠BDC的值.24.(12分)2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y(人)与时间x(分钟)的变化情况,数据如下表:(表中9~15表示9<x≤15)时间x(分钟)01234567899~15人数y(人)0170320450560650720770800810810(1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出y与x之间的函数关系式;(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?25.(12分)如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是,位置关系是;(2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB 的形状,并证明你的结论;(3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB的面积.2020年中考数学试卷参考答案与试题解析一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分.1.(3分)计算(﹣3)×2的结果是()A.﹣6B.﹣1C.1D.6【解答】解:原式=﹣3×2=﹣6.故选:A.2.(3分)下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是()A.B.C.D.【解答】解:在四个选项中,D选项袋子中红球的个数最多,所以从D选项袋子中任意摸出一个球,摸到红球可能性最大,故选:D.3.(3分)2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是()A.直接观察B.实验C.调查D.测量【解答】解:一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是:调查.故选:C .4.(3分)如图,直线a ,b 相交于点O ,如果∠1+∠2=60°,那么∠3是( )A .150°B .120°C .60°D .30°【解答】解:∵∠1+∠2=60°,∠1=∠2(对顶角相等),∴∠1=30°,∵∠1与∠3互为邻补角,∴∠3=180°﹣∠1=180°﹣30°=150°.故选:A .5.(3分)当x =1时,下列分式没有意义的是( )A .x+1xB .x x−1C .x−1xD .x x+1【解答】解:A 、x+1x ,当x =1时,分式有意义不合题意;B 、x x−1,当x =1时,x ﹣1=0,分式无意义符合题意;C 、x−1x ,当x =1时,分式有意义不合题意;D 、x x+1,当x =1时,分式有意义不合题意;故选:B .6.(3分)下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是() A . B .C .D .【解答】解:A 、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A 选项错误;B 、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B 选项错误;C 、在同一时刻阳光下,树高与影子成正比,所以C 选项正确.D 、图中树高与影子成反比,而在同一时刻阳光下,树高与影子成正比,所以D 选项错误; 故选:C .7.(3分)菱形的两条对角线长分别是6和8,则此菱形的周长是( ) A .5B .20C .24D .32【解答】解:如图所示:∵四边形ABCD 是菱形,AC =8,BD =6,∴AB =BC =CD =AD ,OA =12AC =4,OB =12BD =3,AC ⊥BD , ∴AB =√OA 2+OB 2=√42+32=5, ∴此菱形的周长=4×5=20; 故选:B .8.(3分)已知a <b ,下列式子不一定成立的是( ) A .a ﹣1<b ﹣1 B .﹣2a >﹣2b C .12a +1<12b +1D .ma >mb【解答】解:A 、在不等式a <b 的两边同时减去1,不等号的方向不变,即a ﹣1<b ﹣1,原变形正确,故此选项不符合题意;B 、在不等式a <b 的两边同时乘以﹣2,不等号方向改变,即﹣2a >﹣2b ,原变形正确,故此选项不符合题意;C 、在不等式a <b 的两边同时乘以12,不等号的方向不变,即12a <12b ,不等式12a <12b 的两边同时加上1,不等号的方向不变,即12a +1<12b +1,原变形正确,故此选项不符合题意;D 、在不等式a <b 的两边同时乘以m ,不等式不一定成立,即ma >mb ,或ma <mb ,或ma =mb ,原变形不正确,故此选项符合题意. 故选:D .9.(3分)如图,Rt △ABC 中,∠C =90°,利用尺规在BC ,BA 上分别截取BE ,BD ,使BE =BD ;分别以D ,E 为圆心、以大于12DE 的长为半径作弧,两弧在∠CBA 内交于点F ;作射线BF 交AC 于点G .若CG =1,P 为AB 上一动点,则GP 的最小值为( )A .无法确定B .12C .1D .2【解答】解:如图,过点G 作GH ⊥AB 于H .由作图可知,GB 平分∠ABC , ∵GH ⊥BA ,GC ⊥BC , ∴GH =GC =1,根据垂线段最短可知,GP 的最小值为1, 故选:C .10.(3分)已知二次函数y =ax 2+bx +c 的图象经过(﹣3,0)与(1,0)两点,关于x 的方程ax 2+bx +c +m =0(m >0)有两个根,其中一个根是3.则关于x 的方程ax 2+bx +c +n =0 (0<n <m )有两个整数根,这两个整数根是( ) A .﹣2或0B .﹣4或2C .﹣5或3D .﹣6或4【解答】解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴当y=0时,0=ax2+bx+c的两个根为﹣3和1,函数y=ax2+bx+c的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.∴方程ax2+bx+c+m=0(m>0)的另一个根为﹣5,函数y=ax2+bx+c的图象开口向上,∵关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,∴这两个整数根是﹣4或2,故选:B.二、填空题:每小题4分,共20分11.(4分)化简x(x﹣1)+x的结果是x2.【解答】解:x(x﹣1)+x=x2﹣x+x=x2,故答案为:x2.12.(4分)如图,点A是反比例函数y=3x图象上任意一点,过点A分别作x轴,y轴的垂线,垂足为B,C,则四边形OBAC的面积为3.【解答】解:∵过点A分别作x轴,y轴的垂线,垂足为B,C,∴AB×AC=|k|=3,则四边形OBAC的面积为:3.故答案为:3.13.(4分)在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是16.【解答】解:在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是1 6.故答案为:16.14.(4分)如图,△ABC 是⊙O 的内接正三角形,点O 是圆心,点D ,E 分别在边AC ,AB 上,若DA =EB ,则∠DOE 的度数是 120 度.【解答】解:连接OA ,OB , ∵△ABC 是⊙O 的内接正三角形, ∴∠AOB =120°, ∵OA =OB ,∴∠OAB =∠OBA =30°, ∵∠CAB =60°, ∴∠OAD =30°, ∴∠OAD =∠OBE , ∵AD =BE ,∴△OAD ≌△OBE (SAS ), ∴∠DOA =∠BOE ,∴∠DOE =∠DOA +∠AOE =∠AOB =∠AOE +∠BOD =120°, 故答案为:120.15.(4分)如图,△ABC 中,点E 在边AC 上,EB =EA ,∠A =2∠CBE ,CD 垂直于BE 的延长线于点D ,BD =8,AC =11,则边BC 的长为 4√5 .【解答】解:延长BD到F,使得DF=BD,∵CD⊥BF,∴△BCF是等腰三角形,∴BC=CF,过点C点作CH∥AB,交BF于点H∴∠ABD=∠CHD=2∠CBD=2∠F,∴HF=HC,∵BD=8,AC=11,∴DH=BH﹣BD=AC﹣BD=3,∴HF=HC=8﹣3=5,在Rt△CDH,∴由勾股定理可知:CD=4,在Rt△BCD中,∴BC=√82+42=4√5,故答案为:4√5三、解答题:本大题10小题,共100分.16.(8分)如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.【解答】解:(1)如图①中,△ABC即为所求.(2)如图②中,△ABC即为所求.(3)△ABC即为所求.17.(10分)2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表时间/h 1.52 2.53 3.54人数/人26610m4(1)本次共调查的学生人数为50,在表格中,m=22;(2)统计的这组数据中,每天听空中黔课时间的中位数是 3.5h,众数是 3.5h;(3)请就疫情期间如何学习的问题写出一条你的看法.【解答】解:(1)本次共调查的学生人数为:6÷12%=50(人),m=50×44%=22,故答案为:50,22;(2)由条形统计图得,2个1.5,6个2,6个2.5,10个3,22个3.5,4个4,∵第25个数和第26个数都是3.5h,∴中位数是3.5h;∵3.5h出现了22次,出现的次数最多,∴众数是3.5h,故答案为:3.5h,3.5h;(3)就疫情期间如何学习的问题,我的看法是:认真听课,独立思考(答案不唯一).18.(10分)如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE.(1)求证:四边形AEFD是平行四边形;(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.【解答】(1)证明:∵∠四边形ABCD是矩形,∴AD∥BC,AD=BC,∵BE=CF,∴BE+EC=EC+EF,即BC=EF,∴AD=EF,∴四边形AEFD是平行四边形;(2)解:连接DE,如图,∵四边形ABCD是矩形,∴∠B=90°,在Rt△ABE中,AE=√42+22=2√5,∵AD∥BC,∴∠AEB=∠EAD,∵∠B=∠AED=90°,∴△ABE∽△DEA,∴AE:AD=BE:AE,∴AD=2√5×2√52=10,∴四边形AEFD的面积=AB×AD=2×10=20.19.(10分)如图,一次函数y=x+1的图象与反比例函数y=kx的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数y=x+1的图象向下平移2个单位,求平移后的图象与反比例函数y=k x图象的交点坐标;(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y=kx的图象没有公共点.【解答】解:(1)将x =2代入y =x +1=3,故其中交点的坐标为(2,3), 将(2,3)代入反比例函数表达式并解得:k =2×3=6, 故反比例函数表达式为:y =6x①;(2)一次函数y =x +1的图象向下平移2个单位得到y =x ﹣1②, 联立①②并解得:{x =−2y =−3或{x =3y =2,故交点坐标为(﹣2,﹣3)或(3,2);(3)设一次函数的表达式为:y =kx +5③, 联立①③并整理得:kx 2+5x ﹣6﹣0,∵两个函数没有公共点,故△=25+24k <0,解得:k <−2524, 故可以取k =﹣2(答案不唯一),故一次函数表达式为:y =﹣2x +5(答案不唯一).20.(10分)“2020第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动,规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.(1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率; (2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一张,使得抽到《消防知识手册》卡片的概率为57,那么应添加多少张《消防知识手册》卡片?请说明理由.【解答】解:(1)把《消防知识手册》《辞海》《辞海》分别即为A 、B 、C ,画树状图如图:共有6个等可能的结果,恰好抽到2张卡片都是《辞海》的结果有2个, ∴恰好抽到2张卡片都是《辞海》的概率为26=13;(2)设应添加x 张《消防知识手册》卡片, 由题意得:1+x 3+x=57,解得:x =4,经检验,x =4是原方程的解;答:应添加4张《消防知识手册》卡片.21.(8分)脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB 所在的直线,为了测量房屋的高度,在地面上C 点测得屋顶A 的仰角为35°,此时地面上C 点、屋檐上E 点、屋顶上A 点三点恰好共线,继续向房屋方向走8m 到达点D 时,又测得屋檐E 点的仰角为60°,房屋的顶层横梁EF =12m ,EF ∥CB ,AB 交EF 于点G (点C ,D ,B 在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,√3≈1.7) (1)求屋顶到横梁的距离AG ; (2)求房屋的高AB (结果精确到1m ).【解答】解:(1)∵房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB 所在的直线,EF ∥BC ,∴AG ⊥EF ,EG =12∠AEG =∠ACB =35°,在Rt△AGE中,∠AGE=90°,∠AEG=35°,∵tan∠AEG=tan35°=AGEG,EG=6,∴AG=6×0.7=4.2(米);答:屋顶到横梁的距离AG为4.2米;(2)过E作EH⊥CB于H,设EH=x,在Rt△EDH中,∠EHD=90°,∠EDH=60°,∵tan∠EDH=EH DH,∴DH=xtan60°,在Rt△ECH中,∠EHC=90°,∠ECH=35°,∵tan∠ECH=EH CH,∴CH=xtan35°,∵CH﹣DH=CD=8,∴xtan35°−xtan60=8,解得:x≈9.52,∴AB=AG+BG=13.72≈14(米),答:房屋的高AB为14米.22.(10分)第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?【解答】解:(1)设单价为6元的钢笔买了x支,则单价为10元的钢笔买了(100﹣x)支,根据题意,得:6x+10(100﹣x)=1300﹣378,解得x=19.5,因为钢笔的数量不可能是小数,所以学习委员搞错了;(2)设笔记本的单价为a元,根据题意,得:6x+10(100﹣x)+a=1300﹣378,整理,得:x=14a+392,因为0<a<10,x随a的增大而增大,所以19.5<x<22,∵x取整数,∴x=20,21.当x=20时,a=4×20﹣78=2;当x=21时,a=4×21﹣78=6,所以笔记本的单价可能是2元或6元.23.(10分)如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠ABD.(1)求证:AD=CD;(2)若AB=4,BF=5,求sin∠BDC的值.【解答】解:(1)证明:∵∠CAD=∠ABD,又∵∠ABD=∠ACD,∴∠ACD=∠CAD,∴AD=CD;(2)∵AF是⊙O的切线,∴∠F AB=90°,∵AB是⊙O的直径,∴∠ACB=∠ADB=∠ADF=90°,∴∠ABD+∠BAD=∠BAD+∠F AD=90°,∴∠ABD=∠F AD,∵∠ABD=∠CAD,∴∠F AD=∠EAD,∵AD=AD,∴△ADF≌△ADE(ASA),∴AF=AE,DF=DE,∵AB=4,BF=5,∴AF=√BF2−AB2=3,∴AE=AF=3,∵S△ABF=12AB⋅AF=12BF⋅AD,∴AD=AB⋅AFBF=4×35=125,∴DE=√AE2−AD2=√32−(245)2=95,∴BE=BF﹣2DE=7 5,∵∠AED=∠BED,∠ADE=∠BCE=90°,∴△BEC ∽△AED , ∴BE AE=BC AD,∴BC =BE⋅AD AE =2825, ∴sin ∠BAC =BCAB =725, ∵∠BDC =∠BAC , ∴sin ∠BDC =725.24.(12分)2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y (人)与时间x (分钟)的变化情况,数据如下表:(表中9~15表示9<x ≤15) 时间x (分钟) 0 1 2 3 4 5 6 7 8 9 9~15 人数y (人)170320450560650720770800810810(1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出y 与x 之间的函数关系式;(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?【解答】解:(1)由表格中数据的变化趋势可知, ①当0≤x ≤9时,y 是x 的二次函数, ∵当x =0时,y =0,∴二次函数的关系式可设为:y =ax 2+bx , 由题意可得:{170=a +b450=9a +3b ,解得:{a =−10b =180,∴二次函数关系式为:y =﹣10x 2+180x , ②当9<x ≤15时,y =180,∴y 与x 之间的函数关系式为:y ={−10x 2+180x(0≤x ≤9)180(9<x ≤15);(2)设第x分钟时的排队人数为w人,由题意可得:w=y﹣40x={−10x2+140x(0≤x≤9) 810−40x(9<x≤15),①当0≤x≤9时,w=﹣10x2+140x=﹣10(x﹣7)2+490,∴当x=7时,w的最大值=490,②当9<x≤15时,w=810﹣40x,w随x的增大而减小,∴210≤w<450,∴排队人数最多时是490人,要全部考生都完成体温检测,根据题意得:810﹣40x=0,解得:x=20.25,答:排队人数最多时有490人,全部考生都完成体温检测需要20.25分钟;(3)设从一开始就应该增加m个检测点,由题意得:12×20(m+2)≥810,解得m≥11 8,∵m是整数,∴m≥118的最小整数是2,∴一开始就应该至少增加2个检测点.25.(12分)如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是PQ=12BO,位置关系是PQ⊥BO;(2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB 的形状,并证明你的结论;(3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB的面积.【解答】解:(1)∵点O为对角线AC的中点,∴BO⊥AC,BO=CO,∵P为BC的中点,Q为BO的中点,∴PQ∥OC,PQ=12OC,∴PQ⊥BO,PQ=12BO;故答案为:PQ=12BO,PQ⊥BO.(2)△PQB的形状是等腰直角三角形.理由如下:连接O'P并延长交BC于点F,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵将△AOB绕点A按顺时针方向旋转45°得到△AO'E,∴△AO'E是等腰直角三角形,O'E∥BC,O'E=O'A,∴∠O'EP=∠FCP,∠PO'E=∠PFC,又∵点P是CE的中点,∴CP=EP,∴△O'PE≌△FPC(AAS),∴O'E=FC=O'A,O'P=FP,∴AB﹣O'A=CB﹣FC,∴BO'=BF,∴△O'BF为等腰直角三角形.∴BP⊥O'F,O'P=BP,∴△BPO'也为等腰直角三角形.又∵点Q为O'B的中点,∴PQ⊥O'B,且PQ=BQ,∴△PQB的形状是等腰直角三角形;(3)延长O'E交BC边于点G,连接PG,O'P.∵四边形ABCD是正方形,AC是对角线,∴∠ECG=45°,由旋转得,四边形O'ABG是矩形,∴O'G=AB=BC,∠EGC=90°,∴△EGC为等腰直角三角形.∵点P是CE的中点,∴PC=PG=PE,∠CPG=90°,∠EGP=45°,∴△O'GP≌△BCP(SAS),∴∠O'PG=∠BPC,O'P=BP,∴∠O'PG﹣∠GPB=∠BPC﹣∠GPB=90°,∴∠O'PB=90°,∴△O'PB为等腰直角三角形,∵点Q是O'B的中点,∴PQ=12O'B=BQ,PQ⊥O'B,∵AB=1,∴O'A=√2 2,∴O'B=√O′A2+AB2=(22)2+12=√62,∴BQ=√6 4.∴S△PQB=12BQ•PQ=12×√64×√64=316.。

2020年中考数学复习专题练:《分式方程实际应用 》(含答案)

2020年中考数学复习专题练:《分式方程实际应用 》(含答案)

2020年中考数学复习专题练:《分式方程实际应用》1.在抗击“新冠肺炎”战役中,某公司接到转产生产1440万个医用防护口罩补充防疫一线需要的任务,临时改造了甲、乙两条流水生产线.试产时甲生产线每天的产能(每天的生产的数量)是乙生产线的2倍,各生产80万个,甲比乙少用了2天.(1)求甲、乙两条生产线每天的产能各是多少?(2)若甲、乙两条生产线每天的运行成本分别是1.2万元和0.5万元,要使完成这批任务总运行成本不超过40万元,则至少应安排乙生产线生产多少天?(3)正式开工满负荷生产3天后,通过技术革新,甲生产线的日产能提高了50%,乙生产线的日产能翻了一番.再满负荷生产13天能否完成任务?2.某口罩生产厂在春节期间接到紧急任务,要求几天内生产出70万只口罩,为了战胜疫情,口罩厂工人愿意奉献自己的休息时间来完成这项任务,厂长决定开足全厂口罩生产线进行生产,结果每天比原来多生产3万只,而且提前了3天完成了任务,问原来要求几天完成这项紧急任务?3.在我县创建“生态保护示范县”活动中,某社区计划对面积为3600m2的区域进行绿化,经投标由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍.如果两队各自独立完成面积为600m2区域的绿化时,甲队比乙队少用6天,求甲,乙两工程队每天各能完成多少面积的绿化?4.九年级(1)班学生周末从学校出发到某实践基地,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地.已知快车的速度是慢车速度的1.2倍.求慢车与快车的速度各是多少?5.某服装加工厂甲、乙两个车间共同加工一款休闲装,且每人每天加工的件数相同,甲车间比乙车间少10人,甲车间每天加工服装400件,乙车间每天加工服装600件.(1)求甲、乙两车间各有多少人;(2)甲车间更新了设备,平均每人每天加工的件数比原来多了10件,乙车间的加工效率不变,在两个车间总人数不变的情况下,加工厂计划从乙车间调出一部分人到甲车间,使每天两个车间加工的总数不少于1314件,求至少要从乙车间调出多少人到甲车间.6.某公司需要采购A、B两种笔记本,A种笔记本的单价高出B种笔记本的单价10元,并且花费300元购买A种笔记本和花费100元购买B种笔记本的数量相等.(1)求A种笔记本和B种笔记本的单价各是多少元;(2)该公司准备采购A、B两种笔记本共80本,若A种笔记本的数量不少于60本,并且采购A、B两种笔记本的总费用不高于1100元,那么该公司有种购买方案.7.哈市红十字预计在2019年儿童节前为郊区某小学发放学习用品,联系某工厂加工学习用品.机器每小时加工产品的数量比手工每小时加工产品的数量的2倍多9件,若加工1800件这样的产品,机器加工所用的时间是手工加工所用时间的倍.(1)求手工每小时加工产品的数量;(2)经过调查该小学的小学生的总数不超过1332名,每名小学生分发两个学习用品,工厂领导打算在两天内(48小时)完成任务,打算以机器加工为主,同时人工也参与加工(人工与机器加工不能同时进行),为了保证按时完成加工任务,人工至多加工多少小时?8.甲、乙两个筑路队共同承担一段一级路的施工任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用15天.且甲队单独施工60天和乙队单独施工40天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)若甲、乙两队共同工作了4天后,乙队因设备检修停止施工,由甲队单独继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?9.为维护市区的生态环境,政府决定对市区周边水域的水质进行改善,这项工程由甲、乙两个工程队承包,乙工程队单独施工140天后甲工程队加入,甲、乙两个工程队合作40天后,共完成总工程的,且甲工程队每天的施工量是乙工程队的3倍.(1)求甲工程队单独完成这项工程需要多少天?(2)若要求乙工程队施工工期不超过300天,则甲工程队至少要施工多少天?10.某工程队承接一铁路工程,在挖掘一条500米长的隧道时,为了尽快完成,实际施工时每天挖掘的长度是原计划的1.5倍,结果提前了25天完成了其中300米的隧道挖掘任务.(1)求实际每天挖掘多少米?(2)由于气候等原因,需要进一步缩短工期,要求完成整条隧道不超过70天,那么为了完成剩下的任务,在实际每天挖掘长度的基础上,至少每天还应多挖掘多少米?11.节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶.比亚迪油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为96元;若完全用电做动力行驶,则费用为36元.已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求:汽车行驶中每千米用电费用是多少元?甲乙两地的距离是多少千米?(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元,则至少需要用电行驶多少千米?12.某商店用1000元人民币购进水果销售,过了一段时间又用2800元购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)求该商店第一次购进水果多少千克?(2)该商店两次购进的水果按照相同的标价销售一段时间后,将最后剩下的100千克按照标价的半价出售.售完全部水果后,利润不低于1700元,则最初每千克水果的标价至少是多少?13.某校为美化校园,计划对面积为1100m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为200m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.35万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?14.某体育用品商场预测某品牌运动服能够畅销,用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场第一次购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率=×100%.)15.某周日,珂铭和小雪从新天地小区门口同时出发,沿同一条路线去离该小区1800米的少年宫参加活动,为响应节能环保,绿色出行的号召,两人步行,已知珂铭的速度是小雪的速度的1.2倍,结果珂铭比小雪早6分钟到达.(1)求小雪的速度;(2)活动结東后返回,珂铭与小雪的速度均与原来相同,若小雪计划比珂铭至少提前6分钟回到小区,则小雪至少要比珂铭提前多长时间出发?16.一项工程,甲队单独完成比乙队单独完成少用8天,甲队单独做3天的工作乙队单独做需要5天.(1)甲、乙两队单独完成此项工程各需几天?(2)甲队每施工一天则需付给甲队工程款5.5万元,乙队每施工一天则需付给乙队工程款3万元.该工程先由甲、乙两队合作若干天后,再由乙队完成剩下的工程.若要求完成此项工程的工程款不超过65万元,则甲、乙两队最多合作多少天?17.八(1)班为了配合学校体育文化月活动的开展,同学们从捐助的班费中拿出一部分钱来购买羽毛球拍和跳绳.已知购买一副羽毛球拍比购买一根跳绳多20元.若用200元购买羽毛球拍和用80元购买跳绳,则购买羽毛球拍的副数是购买跳绳根数的一半.(1)求购买一副羽毛球拍、一根跳绳各需多少元?(2)双11期间,商店老板给予优惠,购买一副羽毛球拍赠送一根跳绳,如果八(1)班需要的跳绳根数比羽毛球拍的副数的2倍还多10,且该班购买羽毛球拍和跳绳的总费用不超过350元,那么八(1)班最多可购买多少副羽毛球拍?18.国庆70华诞期间,各超市购物市民络绎不绝,呈现浓浓节日气氛.“百姓超市”用320元购进一批葡萄,上市后很快脱销,该超市又用680元购进第二批葡萄,所购数量是第一批购进数量的2倍,但进价每市斤多了0.2元.(1)该超市第一批购进这种葡萄多少市斤?(2)如果这两次购进的葡萄售价相同,且全部售完后总利润不低于20%,那么每市斤葡萄的售价应该至少定为多少元?19.在开任公路改建工程中,某工程段将由甲,乙两个工程队共同施工完成,据调查得知,甲,乙两队单独完成这项工程所需天数之比为2:3,若先由甲,乙两队合作30天,剩下的工程再由乙队做15天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)此项工程由两队合作施工,甲队共做了m天,乙队共做了n天完成.已知甲队每天的施工费为15万元,乙队每天的施工费用为8万元,若工程预算的总费用不超过840万元,甲队工作的天数与乙队工作的天数之和不超过80天,请问甲、乙两队各工作多少天,完成此项工程总费用最少?最少费用是多少?20.某学校计划选购A、B两种图书.已知A种图书每本价格是B种图书每本价格的2.5倍,用1200元单独购买A种图书比用1500元单独购买B种图书要少25本.(1)A、B两种图书每本价格分别为多少元?(2)如果该学校计划购买B种图书的本数比购买A种图书本数的2倍多8本,且用于购买A、B两种图书的总经费不超过1164元,那么该学校最多可以购买多少本B种图书?参考答案1.解:(1)设乙条生产线每天的产能是x万个,则甲条生产线每天的产能是2x万个,依题意有﹣=2,解得x=20,经检验,x=20是原方程的解,2x=2×20=40,故甲条生产线每天的产能是40万个,乙条生产线每天的产能是20万个;(2)设安排乙生产线生产y天,依题意有0.5y+1.2×≤40,解得y≥32.故至少应安排乙生产线生产32天;(3)(40+20)×3+[40×(1+50%)+20×2]×13=180+1300=1480(万个),1440万个<1480万个,故再满负荷生产13天能完成任务.2.解:设原来每天生产x万只口罩,则实际每天生产(x+3)万只口罩,依题意,得:﹣=3,解得:x=7,经检验,x=7是原分式方程的解,且符合题意,∴==10.答:原来要求10天完成这项紧急任务.3.解:设乙工程队每天能完成xm2的绿化,则甲工程队每天能完成2xm2的绿化,依题意,得:﹣=6,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴2x=100.答:甲工程队每天能完成100m2的绿化,乙工程队每天能完成50m2的绿化.4.解:设慢车与快车的速是xkm/h,则快车的速度是1.2xkm/h,根据题意得﹣=,解得:x=50,检验:经检验x=50是原方程的根,答:慢车速度为50千米/小时,快车速度为60千米/小时.5.解:(1)设甲车间有x人,乙车间有(x+10)人,则:,解得:x=20,经检验:x=20是原分式方程的解.答:甲车间有20人,乙车间有30人.(2)设从乙车间调a人到甲车间;则:,解得:a≥11.4.因为a为正整数,所以a的最小值为12.答:从乙车间至少调12人到甲车间.6.解:(1)设A种笔记本的单价是x元,则B种笔记本的单价是(x﹣10)元,根据题意得,=,解得:x=15,经检验:x=15是原方程的根,∴x﹣10=5,答:A种笔记本和B种笔记本的单价各是15元和5元;(2)设该公司准备采购A种笔记本a本,采购B种笔记本(80﹣a)本,根据题意得,15a+5(80﹣a)≤1100,解得:a≤70,∵A种笔记本的数量不少于60本,∴60≤a≤70,(a为正整数),∴该公司有11种购买方案.故答案为:11.7.解:(1)设手工每小时加工产品x件,则机器每小时加工产品(2x+9)件,根据题意,得:×=,解得x=27,经检验:x=27是原分式方程的解,答:手工每小时加工产品27件;(2)设人工要加工a小时,根据题意,得:27a+(2×27+9)(48﹣a)≥2×1332,解得a≤10,答:人工至多加工10小时.8.解:(1)设乙队单独完成此项任务需x天,则甲队单独完成此项任务需(x+15)天根据题意得经检验x=30是原方程的解,则x+15=45(天)答:甲队单独完成此项任务需45天,乙队单独完成此项任务需30天.(2)解:设甲队再单独施工y天,依题意,得,解得y≥4.答:甲队至少再单独施工4天.9.解:(1)设甲工程队单独完成这项工程需要x天,则甲每天的施工量为,乙每天的施工量为,由题意得140×+40(+)=∴+=∴x=200经检验x=200是原方程的解,且符合问题的实际意义.答:甲工程队单独完成这项工程需要200天.(2)由(1)可知,乙工程队单独完成这项工程需要3×200=600天设甲工程队至少要施工y天,由题意得≤300∴y≥199答:甲工程队至少要施工199天.10.解:(1)设原计划每天挖掘x米,则实际每天挖掘1.5x米,根据题意得:﹣=25,解得x=4.经检验,x=4是原分式方程的解,且符合题意,则1.5x=6答:实际每天挖掘6米.(2)设每天还应多挖掘y米,由题意,得(70﹣)(6+y)≥500﹣300,解得y≥4.答:每天还应多挖掘4米.11.解:(1)设汽车行驶中每千米用电费用是x元,则每千米用油费用为(x+0.5)元,可得:=,解得:x=0.3,经检验x=0.3是原方程的解,∴汽车行驶中每千米用电费用是0.3元,甲、乙两地的距离是36÷0.3=120(千米);(2)汽车行驶中每千米用油费用为0.3+0.5=0.8(元),设汽车用电行驶ykm,可得:0.3y+0.8(120﹣y)≤50,解得:y≥92,所以至少需要用电行驶92千米.12.解:(1)设第一次购进水果x千克,依题意可列方程:.解得x=200.经检验:x=200是原方程的解.答:第一次购进水果200千克;(2)由(1)可知,二次共购进水果600千克,设最初水果标价为y元,依题意可列不等式:500y+100×﹣3800≥1700.解得y≥10.答:最初每千克水果标价至少为10元.13.解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=25,经检验x=25是原方程的解,则甲工程队每天能完成绿化的面积是25×2=50(m2),答:甲、乙两工程队每天能完成绿化的面积分别是50m2、25m2;(2)设应安排甲队工作y天,根据题意得:0.35y+×0.25≤8,解得:y≥20,答:至少应安排甲队工作20天.14.解:(1)设该商场第一次购进这种运动服x套,第二次购进2x套,由题意得,﹣=10,解得:x=200,经检验:x=200是原分式方程的解,且符合题意,答:该商场第一次购进200套;(2)设每套售价是y元,两批运动服总数:200+400=600由题意得:600y﹣32000﹣68000≥(32000+68000)×20%,解得:y≥200,答:每套售价至少是200元.15.解:设小雪的速度是x米/分钟,则珂铭速度是1.2x米/分钟,依题意得:,解得:x=50,经检验x=50是原方程的解,答:小雪的速度是50米/分钟.(2)1.2×50=60(米/分钟),1800÷50=36(分钟),1800÷60=30(分钟),设小雪比珂铭提前a分钟出发,根据题意得,a+30﹣36≥6,解得a≥12,答:小雪至少要比珂铭提前出发12分钟.16.解:(1)设甲队单独完成此项工程需x天,乙队单独完成此项工程需(x+8)天根据题意得:=解得x=12经检验x=12是原方程的解当x=12时,x+8=20答:甲队单独完成此项工程需12天,乙队单独完成此项工程需20天.(2)设甲乙两队合作m天,根据题意得:5.5m+×3≤65,解得m≤10;又∵(+)m≤1,∴m≤7.5,∴甲乙两队最多合作7天.答:甲乙两队最多合作7天.17.解:(1)设购买一副羽毛球拍需要x元,则购买一根跳绳需要(x﹣20)元,依题意,得:=×,解得:x=25,经检验,x=25是原方程的解,且符合题意,∴x﹣20=5.答:购买一副羽毛球拍需要25元,购买一根跳绳需要5元.(2)设八(1)班购买m副羽毛球拍,则购买(2m+10)根跳绳,依题意,得:25m+5(2m+10﹣m)≤350,解得:m≤10.答:八(1)班最多可购买10副羽毛球拍.18.解:(1)设该超市第一批购进这种葡萄x市斤,则第二批购进这种葡萄2x市斤,依题意,得:﹣=0.2,解得:x=100,经检验,x=100是原分式方程的解,且符合题意.答:该超市第一批购进这种葡萄100市斤.(2)设每市斤葡萄的售价应该定为y元,依题意,得:(100+100×2)y﹣320﹣680≥(320+680)×20%,解得:y≥4.答:每市斤葡萄的售价应该至少定为4元.19.解:(1)设甲工程队单独完成这项工程需要2x天,则乙工程队单独完成这项工程需要3x天,依题意,得:+=1,解得:x=30,经检验,x=30是原方程的解,且符合题意,∴2x=60,3x=90.答:甲工程队单独完成这项工程需要60天,乙工程队单独完成这项工程需要90天.(2)由题意,得:+=1,∴n=90﹣m.设施工总费用为w万元,则w=15m+8n=15m+8×(90﹣m)=3m+720.∵两队施工的天数之和不超过80天,工程预算的总费用不超过840万元,∴,∴20≤m≤40.∵15>0,∴w值随m值的增大而增大,∴当m=20时,完成此项工程总费用最少,此时n=90﹣m=60,w=780万元.答:甲、乙两队各工作20,60天,完成此项工程总费用最少,最少费用是780万元.20.解:(1)设B种图书每本价格为x元,则A种图书每本价格为2.5x元,依题意,得:﹣=25,解得:x=40.8,经检验,x=40.8是原方程的解,且符合题意,∴2.5x=102.答:A种图书每本价格为102元,B种图书每本价格为40.8元.(2)设购买y本A种图书,则购买(2y+8)本B种图书,依题意,得:102y+40.8(2y+8)≤1164,解得:y≤4.∵y为整数,∴y的最大值为4,∴(2y+8)的最大值为16.答:该学校最多可以购买16本B种图书.。

2020年四川省达州市中考数学试题(解析版)

2020年四川省达州市中考数学试题(解析版)

2020年四川省达州市中考数学试卷一、选择题1.人类与病毒的斗争是长期的,不能松懈.据中央电视台报道,截止北京时间2020年6月30日凌晨,全球新冠肺炎患者确诊病例达到1002万.1002万用科学记数法表示,正确的是()A.1.002×107B.1.002×106C.1002×104D.1.002×102万2.下列各数中,比3大比4小的无理数是()A.3.14B.C.D.3.下列正方体的展开图上每个面上都有一个汉字.其中,手的对面是口的是()A.B.C.D.4.下列说法正确的是()A.为了解全国中小学生的心理健康状况,应采用普查B.确定事件一定会发生C.某校6位同学在新冠肺炎防疫知识竞赛中成绩分别为98、97、99、99、98、96,那么这组数据的众数为98D.数据6、5、8、7、2的中位数是65.图2是图1中长方体的三视图,用S表示面积,S主=x2+3x,S左=x2+x,则S俯=()A.x2+3x+2B.x2+2x+1C.x2+4x+3D.2x2+4x6.如图,正方体的每条棱上放置相同数目的小球,设每条棱上的小球数为m,下列代数式表示正方体上小球总数,则表达错误的是()A.12(m﹣1)B.4m+8(m﹣2)C.12(m﹣2)+8D.12m﹣167.中国奇书《易经》中记载,远古时期,人们通过在绳子上打结来计数,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满5进1,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是()A.10B.89C.165D.2948.如图,在半径为5的⊙O中,将劣弧AB沿弦AB翻折,使折叠后的恰好与OA、OB 相切,则劣弧AB的长为()A.πB.πC.πD.π9.如图,直线y1=kx与抛物线y2=ax2+bx+c交于A、B两点,则y=ax2+(b﹣k)x+c的图象可能是()A.B.C.D.10.如图,∠BOD=45°,BO=DO,点A在OB上,四边形ABCD是矩形,连接AC、BD交于点E,连接OE交AD于点F.下列4个判断:①OE平分∠BOD;②OF=BD;③DF=AF;④若点G是线段OF的中点,则△AEG为等腰直角三角形.正确判断的个数是()A.4B.3C.2D.1二、填空题(每小题3分,共18分)11.2019年是中华人民共和国成立70周年,天安门广场举行了盛大的国庆阅兵式和群众游行活动.其中,群众游行队伍以“同心共筑中国梦”为主题,包含有“建国创业”“改革开放”“伟大复兴”三个部分,某同学要统计本班学生最喜欢哪个部分,制作扇形统计图.以下是打乱了的统计步骤:①绘制扇形统计图②收集三个部分本班学生喜欢的人数③计算扇形统计图中三个部分所占的百分比其中正确的统计顺序是.12.如图,点P(﹣2,1)与点Q(a,b)关于直线1(y=﹣1)对称,则a+b=.13.小明为测量校园里一颗大树AB的高度,在树底部B所在的水平面内,将测角仪CD竖直放在与B相距8m的位置,在D处测得树顶A的仰角为52°.若测角仪的高度是1m,则大树AB的高度约为.(结果精确到lm.参考数据:sin52°≈0.78,cos52°≈0.61,tan52°≈1.28)14.如图,点A、B在反比函数y=的图象上,A、B的纵坐标分别是3和6,连接OA、OB,则△OAB的面积是.15.已知△ABC的三边a、b、c满足b+|c﹣3|+a2﹣8a=4﹣19,则△ABC的内切圆半径=.16.已知k为正整数,无论k取何值,直线11:y=kx+k+1与直线12:y=(k+1)x+k+2都交于一个固定的点,这个点的坐标是;记直线11和12与x轴围成的三角形面积为S k,则S1=,S1+S2+S3+…+S100的值为.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共72分)17.计算:﹣22+()﹣2+(π﹣)0+.18.求代数式(﹣x﹣1)÷的值,其中x=+1.19.如图,点O在∠ABC的边BC上,以OB为半径作⊙O,∠ABC的平分线BM交⊙O于点D,过点D作DE⊥BA于点E.(1)尺规作图(不写作法,保留作图痕迹),补全图形;(2)判断⊙O与DE交点的个数,并说明理由.20.争创全国文明城市,从我做起.尚理中学在八年级开设了文明礼仪校本课程,为了解学生的学习情况,随机抽取了20名学生的测试成绩,分数如下:94 83 90 86 94 88 96 100 89 8294 82 84 89 88 93 98 94 93 92整理上面的数据,得到频数分布表和扇形统计图:等级成绩/分频数A95≤x≤100aB90≤x<958C85≤x<905D80≤x<854根据以上信息,解答下列问题.(1)填空:a=,b=;(2)若成绩不低于90分为优秀,估计该校1200名八年级学生中,达到优秀等级的人数;(3)已知A等级中有2名女生,现从A等级中随机抽取2名同学,试用列表或画树状图的方法求出恰好抽到一男一女的概率.21.如图,△ABC中,BC=2AB,D、E分别是边BC、AC的中点.将△CDE绕点E旋转180度,得△AFE.(1)判断四边形ABDF的形状,并证明;(2)已知AB=3,AD+BF=8,求四边形ABDF的面积S.22.某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如下表:原进价(元/张)零售价(元/张)成套售价(元/套)餐桌a380940餐椅a﹣140160已知用600元购进的餐椅数量与用1300元购进的餐桌数量相同.(1)求表中a的值;(2)该商场计划购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.若将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售,请问怎样进货,才能获得最大利润?最大利润是多少?23.如图,在梯形ABCD中,AB∥CD,∠B=90°,AB=6cm,CD=2cm.P为线段BC 上的一动点,且和B、C不重合,连接PA,过点P作PE⊥PA交射线CD于点E.聪聪根据学习函数的经验,对这个问题进行了研究:(1)通过推理,他发现△ABP∽△PCE,请你帮他完成证明.(2)利用几何画板,他改变BC的长度,运动点P,得到不同位置时,CE、BP的长度的对应值:当BC=6cm时,得表1:BP/cm…12345…CE/cm…0.83 1.33 1.50 1.330.83…当BC=8cm时,得表2:BP/cm…1234567…CE/cm… 1.17 2.00 2.50 2.67 2.50 2.00 1.17…这说明,点P在线段BC上运动时,要保证点E总在线段CD上,BC的长度应有一定的限制.①填空:根据函数的定义,我们可以确定,在BP和CE的长度这两个变量中,的长度为自变量,的长度为因变量;②设BC=mcm,当点P在线段BC上运动时,点E总在线段CD上,求m的取值范围.24.(1)[阅读与证明]如图1,在正△ABC的外角∠CAH内引射线AM,作点C关于AM的对称点E(点E在∠CAH内),连接BE,BE、CE分别交AM于点F、G.①完成证明:∵点E是点C关于AM的对称点,∴∠AGE=90°,AE=AC,∠1=∠2.∵正△ABC中,∠BAC=60°,AB=AC,∴AE=AB,得∠3=∠4.在△ABE中,∠1+∠2+60°+∠3+∠4=180°,∴∠1+∠3=°.在△AEG中,∠FEG+∠3+∠1=90°,∴∠FEG=°.②求证:BF=AF+2FG.(2)[类比与探究]把(1)中的“正△ABC”改为“正方形ABDC”,其余条件不变,如图2.类比探究,可得:①∠FEG=°;②线段BF、AF、FG之间存在数量关系.(3)[归纳与拓展]如图3,点A在射线BH上,AB=AC,∠BAC=α(0°<α<180°),在∠CAH内引射线AM,作点C关于AM的对称点E(点E在∠CAH内),连接BE,BE、CE分别交AM于点F、G.则线段BF、AF、GF之间的数量关系为.25.如图,在平面直角坐标系xOy中,已知直线y=x﹣2与x轴交于点A,与y轴交于点B,过A、B两点的抛物线y=ax2+bx+c与x轴交于另一点C(﹣1,0).(1)求抛物线的解析式;(2)在抛物线上是否存在一点P,使S△PAB=S△OAB?若存在,请求出点P的坐标,若不存在,请说明理由;(3)点M为直线AB下方抛物线上一点,点N为y轴上一点,当△MAB的面积最大时,求MN+ON的最小值.参考答案一、单项选择题(每小题3分,共30分)1.人类与病毒的斗争是长期的,不能松懈.据中央电视台报道,截止北京时间2020年6月30日凌晨,全球新冠肺炎患者确诊病例达到1002万.1002万用科学记数法表示,正确的是()A.1.002×107B.1.002×106C.1002×104D.1.002×102万【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.解:1002万用科学记数法表示为1.002×107,故选:A.2.下列各数中,比3大比4小的无理数是()A.3.14B.C.D.【分析】由于带根号的要开不尽方是无理数,无限不循环小数为无理数,根据无理数的定义即可求解.解:3=,4=,A、3.14是有理数,故此选项不合题意;B、是有理数,故此选项不符合题意;C、是比3大比4小的无理数,故此选项符合题意;D、比4大的无理数,故此选项不合题意;故选:C.3.下列正方体的展开图上每个面上都有一个汉字.其中,手的对面是口的是()A.B.C.D.【分析】利用正方体及其表面展开图的特点解题.解:A、手的对面是勤,不符合题意;B、手的对面是口,符合题意;C、手的对面是罩,不符合题意;D、手的对面是罩,不符合题意;故选:B.4.下列说法正确的是()A.为了解全国中小学生的心理健康状况,应采用普查B.确定事件一定会发生C.某校6位同学在新冠肺炎防疫知识竞赛中成绩分别为98、97、99、99、98、96,那么这组数据的众数为98D.数据6、5、8、7、2的中位数是6【分析】根据抽样调查与普查的区别、确定性事件的概念、众数和中位数的定义逐一求解可得.解:A.为了解全国中小学生的心理健康状况,应采用抽样调查,此选项错误;B.确定事件一定会发生,或一定不会发生,此选项错误;C.某校6位同学在新冠肺炎防疫知识竞赛中成绩分别为98、97、99、99、98、96,那么这组数据的众数为98和99,此选项错误;D.数据6、5、8、7、2的中位数是6,此选项正确;故选:D.5.图2是图1中长方体的三视图,用S表示面积,S主=x2+3x,S左=x2+x,则S俯=()A.x2+3x+2B.x2+2x+1C.x2+4x+3D.2x2+4x【分析】由主视图和左视图的宽为x,结合两者的面积得出俯视图的长和宽,从而得出答案.解:∵S主=x2+3x=x(x+3),S左=x2+x=x(x+1),∴俯视图的长为x+3,宽为x+1,则俯视图的面积S俯=(x+3)(x+1)=x2+4x+3,故选:C.6.如图,正方体的每条棱上放置相同数目的小球,设每条棱上的小球数为m,下列代数式表示正方体上小球总数,则表达错误的是()A.12(m﹣1)B.4m+8(m﹣2)C.12(m﹣2)+8D.12m﹣16【分析】正方体有12条棱,每条棱上的小球数为m,则有12m个小球,而每个顶点处的小球重复计算2次,则正方形边上的所有小球的个数为12m﹣8×2=12m﹣16,再将各选项化简即可.解:由题意得,当每条棱上的小球数为m时,正方体上的所有小球数为12m﹣8×2=12m ﹣16.而12(m﹣1)=12m﹣12≠12m﹣16,4m+8(m﹣2)=12m﹣16,12(m﹣2)+8=12m﹣16,所以A选项表达错误,符合题意;B、C、D选项表达正确,不符合题意;故选:A.7.中国奇书《易经》中记载,远古时期,人们通过在绳子上打结来计数,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满5进1,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是()A.10B.89C.165D.294【分析】根据计数规则可知,从右边第为的计数单位为50,右边第2位的计数单位为51,右边第3位的计数单位为52,右边第4位的计数单位为53……依此类推,可求出结果.解:2×53+1×52+3×51+4×50=294,故选:D.8.如图,在半径为5的⊙O中,将劣弧AB沿弦AB翻折,使折叠后的恰好与OA、OB 相切,则劣弧AB的长为()A.πB.πC.πD.π【分析】作O点关于AB的对称点O′,连接O′A、O′B,如图,利用对称的性质得到OA=OB=O′A=O′B,则可判断四边形OAO′B为菱形,再根据切线的性质得到O′A⊥OA,O′B⊥OB,则可判断四边形OAO′B为正方形,然后根据弧长公式求解.解:如图,作O点关于AB的对称点O′,连接O′A、O′B,∵OA=OB=O′A=O′B,∴四边形OAO′B为菱形,∵折叠后的与OA、OB相切,∴O′A⊥OA,O′B⊥OB,∴四边形OAO′B为正方形,∴∠AOB=90°,∴劣弧AB的长==π.故选:B.9.如图,直线y1=kx与抛物线y2=ax2+bx+c交于A、B两点,则y=ax2+(b﹣k)x+c的图象可能是()A.B.C.D.【分析】根据题意和题目中给出的函数图象,可以得到函数y=ax2+(b﹣k)x+c的大致图象,从而可以解答本题.解:设y=y2﹣y1,∵y1=kx,y2=ax2+bx+c,∴y=ax2+(b﹣k)x+c,由图象可知,在点A和点B之间,y>0,在点A的左侧或点B的右侧,y<0,故选项B符合题意,选项A、C、D不符合题意;故选:B.10.如图,∠BOD=45°,BO=DO,点A在OB上,四边形ABCD是矩形,连接AC、BD交于点E,连接OE交AD于点F.下列4个判断:①OE平分∠BOD;②OF=BD;③DF=AF;④若点G是线段OF的中点,则△AEG为等腰直角三角形.正确判断的个数是()A.4B.3C.2D.1【分析】由矩形得EB=ED=EA,∠BAD为直角,再由等腰三角形的三线合一性质可判断①的正误;证明△AOF≌△ABD,便可判断②的正误;连接BF,由线段的垂直平分线得BF=DF,由前面的三角形全等得AF=AB,进而便可判断③的正误;由直角三角形斜边上的中线定理得AG=OG,进而求得∠AGE=45°,由矩形性质得ED=EA,进而得∠EAD=22.5°,再得∠EAG=90°,便可判断④的正误.解:①∵四边形ABCD是矩形,∴EB=ED,∵BO=DO,∴OE平分∠BOD,故①正确;②∵四边形ABCD是矩形,∴∠OAD=∠BAD=90°,∴∠ABD+∠ADB=90°,∵OB=OD,BE=DE,∴OE⊥BD,∴∠BOE+∠OBE=90°,∴∠BOE=∠BDA,∵∠BOD=45°,∠OAD=90°,∴∠ADO=45°,∴AO=AD,∴△AOF≌△ABD(ASA),∴OF=BD,故②正确;③∵△AOF≌△ABD,∴AF=AB,连接BF,如图1,∴BF=,∵BE=DE,OE⊥BD,∴DF=BF,∴DF=,故③正确;④根据题意作出图形,如图2,∵G是OF的中点,∠OAF=90°,∴AG=OG,∴∠AOG=∠OAG,∵∠AOD=45°,OE平分∠AOD,∴∠AOG=∠OAG=22.5°,∴∠FAG=67.5°,∠ADB=∠AOF=22.5°,∵四边形ABCD是矩形,∴EA=ED,∴∠EAD=∠EDA=22.5°,∴∠EAG=90°,∵∠AGE=∠AOG+∠OAG=45°,∴∠AEG=45°,∴AE=AG,∴△AEG为等腰直角三角形,故④正确;故选:D.二、填空题(每小题3分,共18分)11.2019年是中华人民共和国成立70周年,天安门广场举行了盛大的国庆阅兵式和群众游行活动.其中,群众游行队伍以“同心共筑中国梦”为主题,包含有“建国创业”“改革开放”“伟大复兴”三个部分,某同学要统计本班学生最喜欢哪个部分,制作扇形统计图.以下是打乱了的统计步骤:①绘制扇形统计图②收集三个部分本班学生喜欢的人数③计算扇形统计图中三个部分所占的百分比其中正确的统计顺序是②③①.【分析】根据扇形统计图的制作步骤求解可得.解:正确的统计顺序是:②收集三个部分本班学生喜欢的人数;③计算扇形统计图中三个部分所占的百分比;①绘制扇形统计图;故答案为:②③①.12.如图,点P(﹣2,1)与点Q(a,b)关于直线1(y=﹣1)对称,则a+b=﹣5.【分析】利用轴对称的性质求出等Q的坐标即可.解:∵点P(﹣2,1)与点Q(a,b)关于直线1(y=﹣1)对称,∴a=﹣2,b=﹣3,∴a+b=﹣2﹣3=﹣5,故答案为﹣5.13.小明为测量校园里一颗大树AB的高度,在树底部B所在的水平面内,将测角仪CD竖直放在与B相距8m的位置,在D处测得树顶A的仰角为52°.若测角仪的高度是1m,则大树AB的高度约为11.(结果精确到lm.参考数据:sin52°≈0.78,cos52°≈0.61,tan52°≈1.28)【分析】过点D作DE⊥AB,构造直角三角形,利用直角三角形的边角关系,求出AE,进而求出AB即可.解:如图,过点D作DE⊥AB,垂足为E,由题意得,BC=DE=8,∠ADE=52°,DE =CD=1在Rt△ADE中,AD=DE•tan∠ADE=8×tan52°≈10.24,∴AB=AE+BE=10.24+1≈11(米)故答案为:11.14.如图,点A、B在反比函数y=的图象上,A、B的纵坐标分别是3和6,连接OA、OB,则△OAB的面积是9.【分析】根据图象上点的坐标特征求得A、B的坐标,将三角形AOB的面积转化为梯形ABED的面积,根据坐标可求出梯形的面积即可,解:∵点A、B在反比函数y=的图象上,A、B的纵坐标分别是3和6,∴A(4,3),B(2,6),作AD⊥y轴于D,BE⊥y轴于E,∴S△AOD=S△BOE=×12=6,∵S△OAB=S△AOD+S梯形ABED﹣S△BOE=S梯形ABED,∴S△AOB=(4+2)×(6﹣3)=9,故答案为9.15.已知△ABC的三边a、b、c满足b+|c﹣3|+a2﹣8a=4﹣19,则△ABC的内切圆半径=1.【分析】由非负性可求a,b,c的值,由勾股定理的逆定理可证△ABC是直角三角形,∠ABC=90°,由面积法可求△ABC的内切圆半径.解:∵b+|c﹣3|+a2﹣8a=4﹣19,∴|c﹣3|+(a﹣4)2+()2=0,∴c=3,a=4,b=5,∵32+42=25=52,∴c2+a2=b2,∴△ABC是直角三角形,∠ABC=90°,设内切圆的半径为r,根据题意,得S△ABC=×3×4=×3×r+×4×r+×r×5,∴r=1,故答案为:1.16.已知k为正整数,无论k取何值,直线11:y=kx+k+1与直线12:y=(k+1)x+k+2都交于一个固定的点,这个点的坐标是(﹣1,1);记直线11和12与x轴围成的三角形面积为S k,则S1=,S1+S2+S3+…+S100的值为.【分析】变形解析式得到两条直线都经过点(﹣1,1),即可证出无论k取何值,直线l1与l2的交点均为定点(﹣1,1);先求出y=kx+k+1与x轴的交点和y=(k+1)x+k+2与x轴的交点坐标,再根据三角形面积公式求出S k,求出S1=×(1﹣)=,S2=×(),以此类推S100=×(﹣),相加后得到×(1﹣).解:∵直线11:y=kx+k+1=k(x+1)+1,∴直线12:y=(k+1)x+k+2经过点(﹣1,1);∵直线12:y=(k+1)x+k+2=k(x+1)+(x+1)+1=(k+1)(x+1)+1,∴直线12:y=(k+1)x+k+2经过点(﹣1,1).∴无论k取何值,直线l1与l2的交点均为定点(﹣1,1).∵直线11:y=kx+k+1与x轴的交点为(﹣,0),直线12:y=(k+1)x+k+2与x轴的交点为(﹣,0),∴S K=|﹣+|×1=,∴S1==;∴S1+S2+S3+…+S100=[++…]=[(1﹣)+()+…+(﹣)]=×(1﹣)==.故答案为(﹣1,1);;.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共72分)17.计算:﹣22+()﹣2+(π﹣)0+.【分析】直接利用零指数幂的性质和立方根的性质、负整数指数幂的性质分别化简得出答案.解:原式=﹣4+9+1﹣5=1.18.求代数式(﹣x﹣1)÷的值,其中x=+1.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.解:原式=(﹣)÷=)÷=•=﹣x(x﹣1)当x=+1时,原式=﹣(+1)(+1﹣1)=﹣(+1)×=﹣2﹣.19.如图,点O在∠ABC的边BC上,以OB为半径作⊙O,∠ABC的平分线BM交⊙O 于点D,过点D作DE⊥BA于点E.(1)尺规作图(不写作法,保留作图痕迹),补全图形;(2)判断⊙O与DE交点的个数,并说明理由.【分析】(1)根据要求,利用尺规作出图形即可.(2)证明直线AE是⊙O的切线即可解决问题.解:(1)如图,⊙O,射线BM,直线DE即为所求.(2)直线DE与⊙O相切,交点只有一个.理由:∵OB=OD,∴∠ODB=∠OBD,∵BD平分∠ABC,∴∠ABM=∠CBM,∴∠ODB=∠ABD,∴OD∥AB,∵DE⊥AB,∴AE⊥OD,∴直线AE是⊙O的切线,∴⊙O与直线AE只有一个交点.20.争创全国文明城市,从我做起.尚理中学在八年级开设了文明礼仪校本课程,为了解学生的学习情况,随机抽取了20名学生的测试成绩,分数如下:94 83 90 86 94 88 96 100 89 8294 82 84 89 88 93 98 94 93 92整理上面的数据,得到频数分布表和扇形统计图:等级成绩/分频数A95≤x≤100aB90≤x<958C85≤x<905D80≤x<854根据以上信息,解答下列问题.(1)填空:a=3,b=40;(2)若成绩不低于90分为优秀,估计该校1200名八年级学生中,达到优秀等级的人数;(3)已知A等级中有2名女生,现从A等级中随机抽取2名同学,试用列表或画树状图的方法求出恰好抽到一男一女的概率.【分析】(1)由四个等级的人数之和等于总人数可得a的值,利用百分比的概念可得b 的值;(2)用总人数乘以样本中A、B等级人数和所占比例即可得;(3)列表得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率.解:(1)由题意知a=20﹣(8+5+4)=3,b%=×100%=40%,即b=40;故答案为:3、40;(2)估计该校1200名八年级学生中,达到优秀等级的人数为1200×=660(人);(3)列表如下:男女女男(男,女)(男,女)女(男,女)(女,女)女(男,女)(女,女)所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,∴恰好抽到一男一女的概率为=.21.如图,△ABC中,BC=2AB,D、E分别是边BC、AC的中点.将△CDE绕点E旋转180度,得△AFE.(1)判断四边形ABDF的形状,并证明;(2)已知AB=3,AD+BF=8,求四边形ABDF的面积S.【分析】(1)结论:四边形ABDF是菱形.根据邻边相等的平行四边形是菱形证明即可.(2)设OA=x,OB=y,构建方程组求出2xy即可解决问题.解:(1)结论:四边形ABDF是菱形.∵CD=DB,CE=EA,∴DE∥AB,AB=2DE,由旋转的性质可知,DE=EF,∴AB=DF,AB∥DF,∴四边形ABDF是平行四边形,∵BC=2AB,BD=DC,∴BA=BD,∴四边形ABDF是菱形.(2)连接BF,AD交于点O.∵四边形ABDF是菱形,∴AD⊥BF,OB=OF,AO=OD,设OA=x,OB=y,则有,∴x+y=4,∴x2+2xy+y2=16,∴2xy=7,∴S菱形ABDF=×BF×AD=2xy=7.22.某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如下表:原进价(元/张)零售价(元/张)成套售价(元/套)餐桌a380940餐椅a﹣140160已知用600元购进的餐椅数量与用1300元购进的餐桌数量相同.(1)求表中a的值;(2)该商场计划购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.若将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售,请问怎样进货,才能获得最大利润?最大利润是多少?【分析】(1)根据数量=总价÷单价,即可得出结论,解之经检验后即可得出a值;(2)设购进餐桌x张,则购进餐椅(5x+20)张,由餐桌和餐椅的总数量不超过200张,可得出关于x的一元一次不等式,解之即可得出x的取值范围,设销售利润为y元,根据销售方式及总利润=单件(单套)利润×销售数量,即可得出y关于x的函数关系式,利用一次函数的性质即可解决最值问题.解:(1)根据题意得:,解得a=260,经检验,a=260是原分式方程的解.答:表中a的值为260.(2)设购进餐桌x张,则购进餐椅(5x+20)张,根据题意得:x+5x+20≤200,解得:x≤30.设销售利润为y元,根据题意得:y=[940﹣260﹣4×(260﹣110)]×x+(380﹣260)×x+[160﹣(260﹣110)]×(5x+20﹣4×x)=250x+1000,∵k=250>0,∴当x=30时,y取最大值,最大值为:250×30+1000=8500.答:当购进餐桌30张、餐椅170张时,才能获得最大利润,最大利润是8500元.23.如图,在梯形ABCD中,AB∥CD,∠B=90°,AB=6cm,CD=2cm.P为线段BC 上的一动点,且和B、C不重合,连接PA,过点P作PE⊥PA交射线CD于点E.聪聪根据学习函数的经验,对这个问题进行了研究:(1)通过推理,他发现△ABP∽△PCE,请你帮他完成证明.(2)利用几何画板,他改变BC的长度,运动点P,得到不同位置时,CE、BP的长度的对应值:当BC=6cm时,得表1:BP/cm…12345…CE/cm…0.83 1.33 1.50 1.330.83…当BC=8cm时,得表2:BP/cm…1234567…CE/cm… 1.17 2.00 2.50 2.67 2.50 2.00 1.17…这说明,点P在线段BC上运动时,要保证点E总在线段CD上,BC的长度应有一定的限制.①填空:根据函数的定义,我们可以确定,在BP和CE的长度这两个变量中,BP的长度为自变量,EC的长度为因变量;②设BC=mcm,当点P在线段BC上运动时,点E总在线段CD上,求m的取值范围.【分析】(1)根据两角对应相等两三角形相似证明即可.(2)①根据函数的定义判断即可.②设BP=xcm,CE=ycm.利用相似三角形的性质构建二次函数,两条二次函数的性质求出y的最大值即可解决问题.【解答】(1)证明:∵AB∥CD,∴∠B+∠C=90°,∵∠B=90°,∴∠B=∠C=90°,∵AP⊥PE,∴∠APE=90°,∴∠APB+∠EPC=90°,∵∠EPC+∠PEC=90°,∴∠APB=∠PEC,∴△ABP∽△PCE.(2)解:①根据函数的定义,我们可以确定,在BP和CE的长度这两个变量中,BP 的长度为自变量,EC的长度为因变量,故答案为:BP,EC.②设BP=xcm,CE=ycm.∵△ABP∽△PCE,∴=,∴=,∴y=﹣x2+mx=﹣(x﹣m)2+,∵﹣<0,∴x=m时,y有最大值,∵点E在线段CD上,CD=2cm,∴≤2,∴m≤4,∴0<m≤4.24.(1)[阅读与证明]如图1,在正△ABC的外角∠CAH内引射线AM,作点C关于AM的对称点E(点E在∠CAH内),连接BE,BE、CE分别交AM于点F、G.①完成证明:∵点E是点C关于AM的对称点,∴∠AGE=90°,AE=AC,∠1=∠2.∵正△ABC中,∠BAC=60°,AB=AC,∴AE=AB,得∠3=∠4.在△ABE中,∠1+∠2+60°+∠3+∠4=180°,∴∠1+∠3=60°.在△AEG中,∠FEG+∠3+∠1=90°,∴∠FEG=30°.②求证:BF=AF+2FG.(2)[类比与探究]把(1)中的“正△ABC”改为“正方形ABDC”,其余条件不变,如图2.类比探究,可得:①∠FEG=45°;②线段BF、AF、FG之间存在数量关系BF=AF+FG.(3)[归纳与拓展]如图3,点A在射线BH上,AB=AC,∠BAC=α(0°<α<180°),在∠CAH内引射线AM,作点C关于AM的对称点E(点E在∠CAH内),连接BE,BE、CE分别交AM于点F、G.则线段BF、AF、GF之间的数量关系为BF=2AF•sinα+.【分析】(1)①利用等腰三角形的性质,三角形内角和定理解决问题即可.②如图1中,连接CF,在FB上取一点T,使得FT=CF,连接CT.证明△BCT≌△ACF(SAS)可得结论.(2)①如图2中,利用圆周角定理解决问题即可.②结论:BF=AF+FG.如图2中,连接CF,在FB上取一点T,使得FT=CF,连接CT.证明△BCT∽△ACF,推出==,推出BT=CF可得结论.(3)如图3中,连接CF,BC,在BF上取一点T,使得FT=CF.构造相似三角形,利用相似三角形的性质解决问题即可.【解答】(1)①解:如图1中,∵点E是点C关于AM的对称点,∴∠AGE=90°,AE=AC,∠1=∠2.∵正△ABC中,∠BAC=60°,AB=AC,∴AE=AB,得∠3=∠4.在△ABE中,∠1+∠2+60°+∠3+∠4=180°,∴∠1+∠3=60°.在△AEG中,∠FEG+∠3+∠1=90°,∴∠FEG=30°.故答案为60,30.②证明:如图1中,连接CF,在FB上取一点T,使得FT=CF,连接CT.∵C,E关于AM对称,∴AM垂直平分线段EC,∴FE=FC,∴∠FEC=∠FCE=30°,EF=2FG,∴∠CFT=∠FEC+∠FCE=60°,∵FC=FT,∴△CFT是等边三角形,∴∠ACB=∠FCT=60°,CF=CT=FT,∴∠BCT=∠ACF,∵CB=CA,∴△BCT≌△ACF(SAS),∴BT=AF,∴BF=BT+FT=AF+EF=AF+2FG.(2)解:①如图2中,∵AB=AC=AE,∴点A是△ECB的外接圆的圆心,∴∠BEC=∠BAC,∵∠BAC=90°,∴∠FEG=45°.故答案为45.②结论:BF=AF+FG.理由:如图2中,连接CF,在FB上取一点T,使得FT=CF,连接CT.∵AM⊥EC,CG=CE,∴FC=EF,∴∠FEC=∠FCE=45°,EF=FG,∴∠CFT=∠FEC+∠FCE=90°,∵CF=CT,∴△CFT是等腰直角三角形,∴CT=CF,∵△ABC是等腰直角三角形,∴BC=AC,∴=,∵∠BCA=∠TCF=45°,∴∠BCT=∠ACF,∴△BCT∽△ACF,∴==,∴BT=CF,∴BF=BT+TF=AF+E AF+FG..(3)如图3中,连接CF,BC,在BF上取一点T,使得FT=CF.∵AB=AC,∠BAC=α,∴=sinα,∴=2•sinα,∵AB=AC=AE,∴∠BEC=∠BAC=α,EF=,∵FC=FE,∴∠FEC=∠FCE=α,∴∠CFT=∠FEC+∠FCE=α,同法可证,△BCT∽△ACF,∴==2•sinα,∴BT=2AF•sinα,∴BF=BT+FT=2AF•sinα+EF.即BF=2AF•sinα+.故答案为:BF=2AF•sinα+.25.如图,在平面直角坐标系xOy中,已知直线y=x﹣2与x轴交于点A,与y轴交于点B,过A、B两点的抛物线y=ax2+bx+c与x轴交于另一点C(﹣1,0).(1)求抛物线的解析式;(2)在抛物线上是否存在一点P,使S△PAB=S△OAB?若存在,请求出点P的坐标,若不存在,请说明理由;(3)点M为直线AB下方抛物线上一点,点N为y轴上一点,当△MAB的面积最大时,求MN+ON的最小值.【分析】(1)先求出点A,点B坐标,利用待定系数法可求解析式;(2)分两种情况讨论,利用平行线之间的距离相等,可求OP解析式,EP''的解析式,联立方程组可求解;(3)过点M作MF⊥AC,交AB于F,设点M(m,m2﹣m﹣2),则点F(m,m ﹣2),可求MF的长,由三角形面积公式可求△MAB的面积=﹣(m﹣2)2+4,利用二次函数的性质可求点M坐标,过点O作∠KOB=30°,过点N作KN⊥OK于K点,过点M作MR⊥OK于R,延长MF交直线KO于Q,由直角三角形的性质可得KN=ON,可得MN+ON=MN+KN,则当点M,点N,点K三点共线,且垂直于OK时,MN+ON 有最小值,即最小值为MP,由直角三角形的性质可求解.解:(1)∵直线y=x﹣2与x轴交于点A,与y轴交于点B,∴点A(4,0),点B(0,﹣2),设抛物线解析式为:y=a(x+1)(x﹣4),∴﹣2=﹣4a,∴a=,∴抛物线解析式为:y=(x+1)(x﹣4)=x2﹣x﹣2;(2)如图,当点P在直线AB上方时,过点O作OP∥AB,交抛物线与点P,∵OP∥AB,∴△ABP和△ABP是等底等高的两个三角形,∴S△PAB=S△ABO,∵OP∥AB,∴直线PO的解析式为y=x,联立方程组可得,解得:或,∴点P(2+2,1+)或(2﹣2,1﹣);当点P''在直线AB下方时,在OB的延长线上截取BE=OB=2,过点E作EP''∥AB,交抛物线于点P'',∴AB∥EP''∥OP,OB=BE,∴S△ABP''=S△ABO,∵EP''∥AB,且过点E(0,﹣4),∴直线EP''解析式为y=x﹣4,联立方程组可得,解得,∴点P''(2,﹣3),综上所述:点P坐标为(2+2,1+)或(2﹣2,1﹣)或(2,﹣3);(3)如图2,过点M作MF⊥AC,交AB于F,设点M(m,m2﹣m﹣2),则点F(m,m﹣2),∴MF=m﹣2﹣(m2﹣m﹣2)=﹣(m﹣2)2+2,∴△MAB的面积=×4×[﹣(m﹣2)2+2]=﹣(m﹣2)2+4,∴当m=2时,△MAB的面积有最大值,∴点M(2,﹣3),如图3,过点O作∠KOB=30°,过点N作KN⊥OK于K点,过点M作MR⊥OK于R,延长MF交直线KO于Q,∵∠KOB=30°,KN⊥OK,∴KN=ON,∴MN+ON=MN+KN,∴当点M,点N,点K三点共线,且垂直于OK时,MN+ON有最小值,即最小值为MP,∵∠KOB=30°,∴直线OK解析式为y=x,当x=2时,点Q(2,2),∴QM=2+3,∵OB∥QM,∴∠PQM=∠PON=30°,∴PM=QM=+,∴MN+ON的最小值为+.。

中考数学抗击疫情试题答案

中考数学抗击疫情试题答案

中考数学抗击疫情试题答案考生须知:1. 请在答题前仔细阅读试题说明。

2. 所有答案必须写在答题卡上,否则不予评分。

3. 请使用黑色或蓝色墨水的签字笔作答。

4. 答题时间结束后,请将答题卡放于桌面上,等待监考老师收取。

5. 请保持考场安静,不得交头接耳、左顾右盼。

一、选择题(每题2分,共20分)1. 下列哪个选项是正确的口罩佩戴方式?A. 口罩的金属条应朝下B. 口罩的金属条应朝上C. 口罩的内侧应朝外D. 口罩的外侧应朝上2. 疫情期间,以下哪种行为不利于个人防护?A. 频繁洗手B. 避免聚集C. 随意触摸公共物品D. 保持社交距离3. 疫情期间,学校应该如何安排教学活动?A. 正常进行线下教学B. 完全停止教学活动C. 采用线上教学方式D. 仅在周末进行教学4. 以下哪个数字是2020年世界卫生组织宣布新冠病毒疫情为“国际关注的突发公共卫生事件”的日期?A. 2020年1月30日B. 2020年2月15日C. 2020年3月11日D. 2020年4月4日5. 疫情期间,以下哪种消毒方式不适合家庭使用?A. 75%酒精擦拭B. 含氯消毒液喷洒C. 紫外线灯照射D. 煮沸消毒6. 以下哪个公式可以用来计算口罩的正确佩戴数量?A. 需要人数× 每人每天使用量B. 总人口数÷ 每人每天使用量C. 需要人数÷ 每人每天使用量D. 总人口数× 每人每天使用量7. 疫情期间,以下哪种心态是积极的?A. 恐慌B. 乐观C. 冷漠D. 焦虑8. 以下哪种情况需要立即更换口罩?A. 口罩受潮B. 口罩内有异味C. 口罩变形D. 口罩颜色变淡9. 疫情期间,以下哪种行为有助于减少病毒传播?A. 频繁外出B. 与他人保持1米以上距离C. 不戴口罩D. 随意丢弃使用过的口罩10. 以下哪个选项是新冠病毒的潜伏期平均天数?A. 1-2天B. 3-7天C. 8-14天D. 15-21天二、填空题(每题2分,共20分)1. 疫情期间,为了减少接触传播,建议使用__________支付方式。

专题55 新冠疫情中的中考数学(解析版)

专题55 新冠疫情中的中考数学(解析版)

专题55 新冠疫情中的中考数学
新冠疫情在中考考查的问题,体现在以下几个方面:
1.统计与概率。

如对数据的统计和处理(统计图、频率问题);数据分析(众数、平均数、中位数)。

2.从防控举措、防控物质的生产、调配上,考查科学计数法、方程(组)、不等式、函数等。

3.其他情况。

【例题1】(2020•黑龙江)在抗击疫情网络知识竞赛中,为奖励成绩突出的学生,学校计划用200元钱购买A、B、C三种奖品,A种每个10元,B种每个20元,C种每个30元,在C种奖品不超过两个且钱全部用完的情况下,有多少种购买方案()
A.12种B.15种C.16种D.14种
志愿服务时间(小时)频数
A0<x≤30a
B30<x≤6010
C60<x≤9016
D90<x≤12020
A B C
A A,A B,A C,A
B A,B B,B C,B
C A,C B,C C,C
x(元/件)1213141516
y(件)120011001000900800。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.截止到2020年2月14日,各级财政已安排疫情防控补助资金 亿元,其中中央财政安排 亿元,为疫情防控提供了有力保障,其中数据 亿用科学记数法可表示为()
A. B. C. D.
11.据环球报报道:中央应对新冠肺炎疫情工作领导小组3月23日明确,当前以武汉为主战场的全国本土疫情传播基本阻断.过去两个多月,中国为防控疫情做出的巨大努力有目共睹,受到了世卫组织和国际权威公共卫生专家的称赞.其他一些国家也在寻求借鉴中国的经验和防控措施.截止报道前,海外累计确诊病例约295000人次.将295000用科学记数法表示应为()
C.从图2在2月6日新增病例出现下降,可以估计2月6日后全国新型冠状病毒肺炎累计确诊病例的单日增长率会低于10%.
D.从表1可看出确诊病例较多的省市大部分都是在湖北周围,很大原因是由于携带病毒的流动人口造成的,所以控制疫情的有效手段是在家隔离,同时也可以推断在新疆和甘肃等西北地区疫情相对缓和.
8.2020年我国爆发“新冠肺炎”疫情,在党中央的坚强领导下,全国上下,众志成城,抗击疫情,截止2020年2月20号,累计确诊70637例,把数70637用科学记数法表示为( )
金额/元
5
10
20
50
100
人数
6
17
14
8
5
则他们捐款金额的平均数和中位数分别是()
A. B. C. D.
7.全国人民每天都很关心新型冠状病毒感染肺炎的全国疫情和湖北疫情,下面是2020年2月7日小明在网上看到的2020年2月6日有关全国和武汉的疫情统计图表:
图1全国疫情趋势图
图2新增确诊病例趋势图
故选:D.
【点睛】
本题考查的知识点是用科学记数法表示较大的数,需要注意的是当原数的绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.
10.C
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
5.B
【解析】
【分析】
根据科学计数的定义表示出即可.
【详解】
11.8亿元= 元
故选B.
【点睛】
本题考查了科学计数法的概念,解题的关键在于对概念的理解.
6.B
【解析】
【分析】
根据平均数的计算公式求出这组数据的平均数,再根据中位数的定义直接求出这组数据的中位数即可.
【详解】
这组数的平均数是: (5×6+10×17+20×14+50×8+100×5)=27.6(元),
根据统计图表提供的信息,下列推断不合理的是()
A.从图1可得出在2月6日的全国确诊病例达到3万多,是“非典”确诊病例(共5327例)的若干倍,说明新型冠状病毒比“非典”病毒传染性强.
B.从图2可得出在2月6日新增病例出现下降,说明此时全国的累计确诊病例开始下降,肺炎疫情得到控制,政府和人民的防疫工作有了显著成效
【详解】
解: 亿 .
故选:B
【点睛】
本题考查了科学记数法表示较大的数的方法,准确确定 与 值是解决问题的关键.
2.A
【解析】
【分析】
科学记数法的表示形式为 的形式,其中1<|a|<10,n为整数.
确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.由此可得出本题的答案.
本题考查的是科学记数法的概念,即把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.
【详解】
A.从图1可得出在2月6日的全国确诊病例为31211,而“非典”确诊病例为5327例,很明显31211接近5327的6倍,所以本选项推断合理;
B.从图2可得出在2月6日全国的确诊病例呈下降趋势,说明疫情得到控制,防疫工作有了成效,所以本选项推断合理;
C.从图2在可得到2月6日新增病例出现下降,但是并不能确定2月6日后全国新型冠状病毒肺炎累计确诊病例的单日增长率会低于10%,所以本选项推断不合理;
2020年中考数学专题训练-疫情专题01
一、单选题
1.为应对“新冠疫情”,近日,财政部表示,截至3月21日,中央财政已累计安排有关防控资金257.5亿元,支持地方做好患者救治、医护人员补贴发放,以及建立疫情防控短缺物资储备、开展药品和疫苗研发等工作.据官方此前消息,截止到3月13号,全国各级财政安排的疫情防控投入已经达到了1169亿元.将1169亿元用科学计数法表示为()元.
【详解】
解:将70637用科学记数法表示为:7.0637×104
故选:A.
【点睛】
本题考查了科学记数法,确定n的值是解题的关键.
9.D
【解析】
【分析】
科学记数法的表示形式为 的形式,其中 ,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.
【详解】
解:40182万=401820000=
A. B. C. D.
4.近期,新型冠状病毒感染肺炎的疫情在全国蔓延,全国人民团结一致,全力抗击新型冠状病毒感染肺炎.多国政府官员及机构高度赞赏并支持中国政府抗击疫情的有力措施,表示对中国早日战胜疫情充满信心,社会各界人士积极捐款.截止2月5日中午12点,武汉市慈善总会接收捐赠款约32300000000元.14亿中国人民众志成城、行动起来、战斗起来,一定能打赢这场疫情防控阻击战!将32300000000用科学记数法表示应为().
13.A
【解析】
【分析】
根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:5290000= ,
故选:A.
【点睛】
D.从表1可看出确诊病例较多的省市大部分都是在湖北周围,而新疆和甘肃等西北地区距离湖北较远,所以疫情相对比较缓和,所以本选项推断合理;
故选:C.
【点睛】
本题主要考查统计图表分析,准确的解读图表并进行合理分析是解决本题的关键.
8.A
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.据此作答.
数据来源:疫情实时大数据报告
对近一个月内数据,下面有四个推断:
①全国新增境外输入病例呈上升趋势;
②全国一天内新增确诊人数最多约650人;
③全国新增确诊人数增加,现有确诊病例人数也增加;
④全国一日新增确诊人数的中位数约为200.所有合理推断的序号是()
A.①②B.①②③C.②③④D.①②④
13.抗击新冠状肺炎疫情期间,截止到2月18日吉林敖东向武汉火神山医院捐赠药品,防疫紧缺物资和资金共计5 290 000元,5 290 000这个数用科学记数法表示为( )
A. B. C. D.
2.据不完全统计,新冠肺炎疫情爆发,湖北省各级财政投入105亿抗击疫情,数据105亿用科学计数法表示为()
A. B. C. D.
3.2020年2月3日,国家卫生健康委副主任在国务院应对新型冠状病毒感染的肺炎疫情联防联控机制举行的新闻发布会上表示,国家在政策和经费方面支持做好新型冠状病毒肺炎疫情防控相关工作截至该日,国家已拨款665.3亿元,用于疫情防控.将665.3亿用科学记数法表示为()
16.新冠肺炎疫情期间,某校组织七、八年级共50名学生参加“抗击疫情线上宣传员”活动,若七年级学生平均每人创作8条宣传标语,八年级学生平均每人创作10条,为了保证收集到的宣传标语不少于480条,至少需要多少名八年级学生?
参考答案
1.B
【解析】
【分析】
科学记数法的表示形式为 的形式,其中 , 为整数.确定 的值是易错点,由于 亿有 位,所以可以确定 .
A. B. C. D.
5.当前,新冠肺炎疫情防控仍处在关键阶段,全国人民团结一致,坚决打赢这场疫情防控阻击战,其中广大共产党员积极响应党中央号召,踊跃捐款,用“特殊党费”支持疫情防控工作,截至2月29日,共捐款11.8亿元,将11.8亿元用科学计数法表示应为()
A. B. C. D.
6.疫情无情人有情,爱心捐款传真情.新型冠状病毒感染的肺炎疫情期间,某班学生积极参加献爱心活动,该班50名学生的捐款统计情况如下表:
【详解】
解: 亿=25290000000= ;
故选:C.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
11.D
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.
三、解答题
15.新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.问至少应安排两个工厂工作多少天才能完成任务?
【详解】
105亿=10500000000=
故选:A
【点睛】
科学记数法就是将一个数字表示成 的形式,其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.
相关文档
最新文档