随机数产生原理及实现

合集下载

Stata软件操作教程 (3)

Stata软件操作教程 (3)
generate newvar=runiform() 其中,generate为生成新变量的基本命令,newvar为新变量的名称,
runiform()是生成均匀分布于区间[0, 1)随机数的函数。需要注意的是, runiform()中没有参数,但括号却必不可少。 如果要生成位于其他区间的均匀分布,我们可以进行简单的变形。例 如,要生成均匀分布于区间[a, b)的随机数,相应的函数为: a+(b-a)* runiform() 要生成均匀分布于区间[a, b]的随机数,相应的函数为: a+int((b-a+1)* runiform()) 其中,函数int()表示取整。 生成标准正态分布的随机数的函数为:
实验基本原理
通过计算机模拟从已知分布的总体中抽取大量随机样本的 计算方法被统称为“蒙特卡罗方法”(Monte Carlo Methods)。
在计量经济学中,常使用蒙特卡罗法来确定统计量的小样 本性质。我们知道,许多统计量的精确分布没有解析解。 一种解决方法是使用大样本理论,用渐近分布来近似真实 分布。然而,现实中的样本容量常常较小。
均值为3、方差为5且服从正态分布的序列,并将新生成的变量 命名为norm。需要说明的一点是,如果不设定观测值个数,则 新变量的观测值个数会与原序列的观测值个数相同;而未打开 任何数据文件时,原观测值个数显然为0。 下面,我们看一下变量norm的描述统计量。输入命令: sum norm
如果我们要作图看一下norm的分布,可输入命令: hist norm, normal 这里,hist表示做直方图,选项normal表示画出相应的正态分布。
3 分层抽样 如果我们要令样本中包括100个女性和100个男性,可以采

随机数生成原理 实现方法 不同编程语言的随机数函数

随机数生成原理 实现方法 不同编程语言的随机数函数

1-0:Microsoft VC++产生随机数的原理:Srand ( )和Rand( )函数。

它本质上是利用线性同余法,y=ax+b(mod m)。

其中a,b,m都是常数。

因此rand的产生决定于x,x被称为Seed。

Seed需要程序中设定,一般情况下取系统时间作为种子。

它产生的随机数之间的相关性很小,取值范围是0—32767(int),即双字节(16位数),若用unsigned int 双字节是65535,四字节是4294967295,一般可以满足要求。

1-1:线性同余法:其中M是模数,A是乘数,C是增量,为初始值,当C=0时,称此算法为乘同余法;若C ≠0,则称算法为混合同余法,当C取不为零的适当数值时,有一些优点,但优点并不突出,故常取C=0。

模M大小是发生器周期长短的主要标志,常见有M为素数,取A为M的原根,则周期T=M-1。

例如:a=1220703125a=32719 (程序中用此组数)a=16807代码:void main( ){const int n=100;double a=32719,m=1,f[n+1],g[n],seed;m=pow(2,31);cout<<"设置m值为"<<m-1<<endl;cout<<"输入种子"<<endl; //输入种子cin>>seed;f[0]=seed;for(int i=1;i<=n;i++) //线性同余法生成随机数{f[i]=fmod((a*f[i-1]),(m-1));g[i-1]=f[i]/(m-1);cout.setf(ios::fixed);cout.precision(6); //设置输出精度cout<<i<<" "<<'\t'<<g[i-1]<<endl;}}结果分析:统计数据的平均值为:0.485653统计数据的方差为:0.3205761-2:人字映射递推公式就是有名的混沌映射中的“人字映射”或称“帐篷映射”,它的非周期轨道点的分布密度函数:人字映射与线性同余法结合,可产生统计性质优良的均匀随机数。

随机数讲解

随机数讲解

随机数讲解随机数是一种随机生成数字的算法,可以用于各种不同的应用中。

在现代科技中,随机数已经成为了许多应用不可或缺的一部分,例如密码学、数据加密、人工智能、金融等等。

本文将介绍随机数的生成原理、应用场景以及如何使用随机数。

一、随机数生成原理随机数生成算法最基本的原则是“生成一个序列唯一的数字”。

为了实现这个目标,随机数生成器会通过多种算法生成一个序列数字。

现在我们来介绍几种常见的随机数生成算法。

1.Pseudo Random Number Generator(PRNG)PRNG是一种基于伪随机数生成的随机数生成器。

它使用的是一个序列伪随机数种子,通过这个种子来计算出其他的伪随机数。

每次生成的随机数都应该是不同的,并且可以通过简单的加法、减法、乘法等操作与之前的随机数进行区分。

2.True Random Number Generator(TRNG)TRNG是一种真正的随机数生成器,它使用的是一个物理随机数种子。

这个种子可以随着时间的推移而改变,因此生成的随机数可以保证是不同的。

TRNG通过一系列的数学运算来生成真正的随机数,并且这些随机数可以精确地表示任何种子。

3.Secure Random Number Generator(SRNG)SRNG是一种安全的随机数生成器,主要用于金融和密码学等领域。

它使用的是一个安全的随机数种子,并且可以生成同时满足NIST GG 88-1和FIPS140-2标准的随机数。

为了保证随机性,SRNG在生成随机数之前会对种子进行一个非线性变换,以消除种子对随机性造成的微小影响。

二、随机数应用场景随机数在许多应用中都可以使用,下面列举了其中的一些应用场景。

1.密码学随机数在密码学中有着重要的应用,主要用于生成加密密钥、随机密码以及数字签名等。

这些数字都是基于随机数生成的,可以确保密码的复杂度和安全性。

2.数据加密随机数也可以用于数据加密中。

通过使用随机数作为密钥,数据加密算法可以确保密钥的复杂度和安全性,以保护数据的安全。

北理工随机信号分析实验

北理工随机信号分析实验

实验一 随机序列的产生及数字特征估计一、实验目的1、学习和掌握随机数的产生方法。

2、实现随机序列的数字特征估计。

二、实验原理1、随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。

进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。

伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。

伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。

(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。

实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:)(mod ,110N ky y y n n -=N y x n n /=序列{}n x 为产生的(0,1)均匀分布随机数。

下面给出了上式的3组常用参数: 1、10N 10,k 7==,周期7510≈⨯;2、(IBM 随机数发生器)3116N 2,k 23,==+周期8510≈⨯; 3、(ran0)315N 21,k 7,=-=周期9210≈⨯;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。

定理 1.1 若随机变量 X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有)(1R F X x -=由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。

2、MATLAB 中产生随机序列的函数(1)(0,1)均匀分布的随机序列 函数:rand 用法:x = rand(m,n)功能:产生m ×n 的均匀分布随机数矩阵。

(2)正态分布的随机序列 函数:randn 用法:x = randn(m,n)功能:产生m ×n 的标准正态分布随机数矩阵。

python随机数生成原理

python随机数生成原理

python随机数生成原理Python随机数生成原理随机数在计算机科学中是一个非常重要的概念,它被广泛应用于密码学、模拟实验、游戏开发等领域。

在Python中,生成随机数可以通过random模块来实现。

本文将介绍Python随机数生成的原理及其背后的算法。

一、随机数的概念和应用随机数是指在一定范围内没有规律可循的数值。

它的特点是无法预测,具有不确定性。

在计算机科学中,随机数可以用于生成随机密码、模拟随机事件、生成随机样本等。

二、伪随机数生成器计算机无法生成真正的随机数,因为计算机是基于确定性的逻辑运算的。

因此,计算机生成的随机数实际上是伪随机数,也就是一系列看似随机的数字序列。

这些数字序列是通过伪随机数生成器生成的。

Python中的random模块提供了伪随机数生成器,可以生成服从特定分布的随机数。

三、随机数生成的算法Python的random模块基于Mersenne Twister算法实现了伪随机数生成器。

Mersenne Twister算法是一种非常高效且具有良好统计特性的随机数生成算法。

Mersenne Twister算法的原理是使用一个非常长的周期为2^19937-1的Mersenne素数作为随机数生成的种子。

通过对这个种子进行一系列复杂的数学运算,可以生成一组看似随机的数值序列。

这个序列的周期非常长,因此生成的随机数具有很好的随机性。

四、随机数生成的应用1. 生成随机密码随机数可以用于生成随机密码。

通过随机选择字母、数字和特殊字符,可以生成强度较高的密码,提高账户的安全性。

2. 模拟随机事件随机数可以用于模拟随机事件。

例如,在游戏开发中,可以使用随机数生成器来模拟敌人的行动、掉落物品的概率等。

3. 生成随机样本随机数可以用于生成随机样本。

在数据分析和统计学中,随机样本是进行统计推断的重要基础。

通过随机数生成器,可以生成符合特定分布的随机样本,用于进行统计分析。

五、小结本文介绍了Python随机数生成的原理及其背后的算法。

随机数产生原理

随机数产生原理

第一节 均匀随机数的产生及其应用§1.1 随机数的产生§1.1.1 均匀随机数的产生随机变量X 的抽样序列 ,,,,21n X X X 称为随机数列。

若随机变量X 是均匀分布的,则X 的抽样序列 ,,,,21n X X X 称为均匀随机数列;如果X 是正态分布的随机变量,则称其抽样序列为正态随机数列。

用数学方法产生随机数,就是利用计算机能直接进行算术运算或逻辑运算的特点,产生具有均匀总体、简单子样统计性质的随机数。

计算机利用数学方法产生随机数速度快,占用内存少,对模拟的问题可以进行复算检查,通常还具有较好的统计性质。

另外,计算机上用数学方法产生随机数,是根据确定的算法推算出来的,因此严格说来,用数学方法在计算机上产生的“随机数”不能说是真正的随机数,故一般称之为“伪随机数”。

不过对这些伪随机数,只要通过统计检验符合一些统计要求,如均匀性、随机性、独立性等,就可以作为真正的随机数来使用。

以后,我们统称这样产生的伪随机数为随机数。

首先给出产生均匀随机数的方法,这是产生具有其它分布随机数的基础,而后给出产生其它分布随机数的方法。

§1.1.1 均匀随机数的产生方法线性同余法简称为LCG 法(Linear Congruence Generator ),它是Lehmer 于1951年提出来的。

线性同余法利用数论中的同余运算原理产生随机数。

分为乘同余法、混合同余法等,线性同余法是目前发展迅速且使用普遍的方法之一。

线性同余法递推公式为)(m o d 1M c ax x n n +≡-,,2,1, ==n M x r n n其中0x 为初值,a 为乘子,c 为增量,M 为模,且c a x ,,0和M 皆为非负整数。

当0=c 时,上式称为乘同余法公式;当0>c 时,上式称为混合同余法公式。

如下例用乘同余法产生伪随机数:例1:1117(mod11)n n x x x +=⎧⎨≡⎩ 1234567891011121;7;5;2;3;10;4;6;9;8;1;7;......x x x x x x x x x x x x ============上述方法虽产生了随机数,但只产生1-10之间的数。

随机数生成器原理

随机数生成器原理

随机数生成器原理随机数生成器是计算机科学中一个非常重要的概念,它在密码学、模拟实验、统计学等领域都有着广泛的应用。

随机数生成器的原理是如何产生一系列看似无规律、不可预测的数字序列,这些数字序列被认为是随机的。

在现代计算机系统中,随机数生成器是一个至关重要的组成部分,它为计算机提供了随机性,使得计算机能够执行各种复杂的任务。

本文将介绍随机数生成器的原理及其在计算机科学中的应用。

随机数生成器的原理可以分为伪随机数生成器和真随机数生成器两种。

伪随机数生成器是通过一定的算法产生一系列近似随机的数字序列,这些数字序列在一定程度上具有随机性,但是其实质是确定性的。

真随机数生成器则是通过一些物理过程产生真正的随机性,比如利用量子力学的原理来产生随机数。

在实际应用中,由于真随机数生成器的成本较高,大部分情况下我们使用的是伪随机数生成器。

伪随机数生成器的原理是基于一个种子(seed)和一个确定性的算法来产生随机数序列。

种子是一个初始值,通过对种子进行一系列的数学运算,比如加法、乘法、取模等,就可以产生一系列的伪随机数。

在计算机中,通常使用当前的系统时间作为种子,以保证每次生成的随机数序列都是不同的。

当然,在一些特定的应用中,我们也可以自己指定种子来产生确定的随机数序列。

随机数生成器在计算机科学中有着广泛的应用。

在密码学中,随机数生成器被用来产生加密密钥,以保证数据的安全性。

在模拟实验中,随机数生成器可以用来模拟各种随机事件,比如赌博游戏、天气模拟等。

在统计学中,随机数生成器可以用来进行抽样调查,以获取一定的样本数据。

总的来说,随机数生成器在计算机科学中扮演着非常重要的角色。

在实际应用中,我们需要注意随机数生成器的质量。

一个好的随机数生成器应该具有均匀性、独立性和周期性。

均匀性是指随机数生成器产生的随机数应该服从均匀分布,即每个数值的概率应该是相同的。

独立性是指随机数生成器产生的随机数应该是相互独立的,一个随机数不应该受到其他随机数的影响。

蒙特卡洛方法 编程实现

蒙特卡洛方法 编程实现

蒙特卡洛方法编程实现蒙特卡洛方法是一种基于随机抽样的数值计算方法,广泛应用于金融、物理、生物、工程等领域。

本文将介绍蒙特卡洛方法的基本原理和编程实现。

一、蒙特卡洛方法的基本原理蒙特卡洛方法是一种基于概率统计的数值计算方法,其基本思想是通过随机抽样来估计某个复杂系统的性质。

具体来说,蒙特卡洛方法通过生成大量的随机数,利用这些随机数来模拟系统的行为,从而得到系统的某些性质的估计值。

以求解圆周率为例,假设我们要求解圆的面积与正方形面积之比,可以通过在正方形内随机生成大量的点,然后统计落在圆内的点数和总点数,最终得到圆的面积与正方形面积之比的估计值,从而得到圆周率的估计值。

二、蒙特卡洛方法的编程实现蒙特卡洛方法的编程实现主要包括以下几个步骤:1.生成随机数在Python中,可以使用random模块中的random()函数来生成0到1之间的随机数。

例如,可以使用以下代码生成10个随机数:import randomfor i in range(10):print(random.random())2.模拟系统行为根据具体问题的不同,需要编写相应的模拟函数来模拟系统的行为。

以求解圆周率为例,可以编写以下模拟函数:def simulate(n):count = 0for i in range(n):x = random.random()y = random.random()if x**2 + y**2 <= 1:count += 1return count其中,n为生成的随机点的数量,x和y为随机生成的点的横纵坐标,如果该点在圆内,则count加1。

3.计算估计值根据模拟函数的结果,可以计算出所求性质的估计值。

以求解圆周率为例,可以使用以下代码计算圆周率的估计值:n = 1000000count = simulate(n)pi = 4 * count / nprint(pi)其中,n为生成的随机点的数量,count为落在圆内的点数,pi为圆周率的估计值。

随机数产生原理及应用

随机数产生原理及应用
得 Fi=G(R)=2*PI*R ,其中,R 为 0-1 区间上的均匀分布的随机数. 程序略
试验结果:
图 5:用反函数法生成的 300 随机数的平均分布情况 由于这里相当对 0-1 上的分布进行线性变换,所以变换后仍呈均匀分布是显 然的。 3.1.2 指数分布: 指数分布的分布函数为: x<0 时,F(x)=0 ; x>=0,F(x)=1-exp(-lamda*x) 利用反函数法,可以求得: x=-lnR/lamda 试验结果:
容易看出其易退化成 0 的缺点.
2.2 乘同余法: 乘同余法的迭代式如下: Xn+1=Lamda*Xn(mod M) Rn+1=Xn/M 各参数意义及各步的作用可参 2.1 当然,这里的参数的选取是有一定的理论基础的,否则所产生的随机数的周 期将较小,相关性会较大。 经过前人检验的两组性能较好的素数取模乘同余法迭代式的系数为: 1) lamda=5^5,M=2^35-31 2) lamda=7^5,M=2^31-1 相应 C 程序关键代码段: double long M;//请注意,这里一定要用到 double long,否则计算 2^32 会溢 出 float MyRnd() {
2.3 混合同余法: 混合同余法是加同余法和乘同余法的混合形式,其迭代式如下: Xn+1=(Lamda*Xn+Miu)%M Rn+1=Xn/M 经前人研究表明,在 M=2^q 的条件下,参数 lamda,miu,X0 按如下选取,周 期较大,概率统计特性好: Lamda=2^c+1,c 取 q/2 附近的数 Miu=(1/2+sqrt(3))/M X0 为任意非负整数
mPoint.x=miu1+sigma1*x; mPoint.y=miu2+sigma2*x;

随机数生成器

随机数生成器

随机数的原理与计算机实现摘要:随机数在计算机网络信息安全中起着至关重要的作用。

本文将对随机数,随机数产生器如何用计算机语言(JAVA )实现做简要介绍。

Abstract :Random number in the computer network information security plays a vital role. This will be random numbers, random number generator to use the computer language (JAVA) to achieve a brief introduction.关键字:随机数、计算机网络信息安全、JAVA 、随机数产生器Keyword :Random numbers, computer network and information security, JAVA, random number generator一、随机数简介什么叫随机数呢?由具有已知分布的总体中抽取简单子样,在蒙特卡罗方法中占有非常重要的地位。

总体和子样的关系,属于一般和个别的关系,或者说属于共性和个性的关系。

由具有已知分布的总体中产生简单子样,就是由简单子样中若干个性近似地反映总体的共性。

随机数是实现由已知分布抽样的基本量,在由已知分布的抽样过程中,将随机数作为已知量,用适当的数学方法可以由它产生具有任意已知分布的简单子样。

在连续型随机变量的分布中,最简单而且最基本的分布是单位均匀分布。

由该分布抽取的简单子样称,随机数序列,其中每一个体称为随机数。

单位均匀分布也称为[0,1]上的均匀分布,其分布密度函数为:分布函数为 :由于随机数在蒙特卡罗方法中占有极其重要的位置,我们用专门的符号ξ表示。

由随机数序列的定义可知,ξ1,ξ2,…是相互独立且具有相同单位均匀分布的随机数序列。

也就是说,独立性、均匀性是随机数必备的两个特点。

随机数具有非常重要的性质:对于任意自然数s ,由s 个随机数组成的s 维空间上的点(ξn+1,ξn+2,…ξn+s )在s 维空间的单位立方体G s 上均匀分布,即对任意的a i ,如下等式成立:⎩⎨⎧≤≤=其他,010,1)(x x f ⎪⎩⎪⎨⎧>≤≤<=1,110,0,0)(x x x x x F si a i ,,2,1,10 =≤≤∏=+==≤si ii i n a s i a P 1),,1,( ξ其中P (·)表示事件·发生的概率。

随机数的方法

随机数的方法

随机数的方法随机数是计算机领域中常用的一种方法,用于产生一组随机的数值。

在一些需要随机性的计算中,比如密码学、概率统计、物理模拟等,随机数的作用不可忽视。

下面将介绍几种常用的随机数产生方法。

一、线性同余法线性同余法是最简单、最基础的随机数产生算法。

它的计算原理是利用某个数不断地乘以一个常数并加上另一个常数,然后对一个大数取余数,得到的余数就是一个伪随机数。

该算法的公式为:X(n+1) = (aX(n)+c) mod m其中,X(n)为第n个随机数,a、c、m为常数。

为了避免过多的线性相关性,常数的选择至关重要。

二、拉斐特——罗森费尔德算法拉斐特——罗森费尔德算法又称真随机数发生器,它是一种基于物理过程的随机数生成方法。

它的原理是利用光电效应或微波辐射产生的电信号的微小变化,作为随机因素,产生随机数。

该算法生成的随机数既真实又不可预测,但是需要一些特殊的硬件设备才能实现。

三、梅森旋转算法梅森旋转算法是一种用于产生高质量随机数的算法。

它的原理是利用一个大型的循环移位寄存器,每次进行大量的移位运算以增加随机性。

该算法的随机性非常好,并且产生的随机数周期很长,但是它需要更多的时间和计算资源来实现。

四、高斯分布高斯分布是一种常见的概率分布,也是一种常用的随机数生成方法。

它的原理是根据正态分布函数的概率密度函数来产生符合该函数的随机数。

通过该方法生成的随机数呈现出逼近正态分布的性质,适用于需要模拟实际情况的概率统计问题。

总之,随机数发生算法有很多种,我们需要根据实际需要选择合适的算法。

在实际应用中,需要考虑到随机数的质量、随机性、周期性等方面问题。

随机数生成技术以及原理

随机数生成技术以及原理

随机数生成技术以及原理随机数是指在一定范围内,按照某种规律或不规则性的产生的数值,是计算机领域中的重要概念之一。

在各种应用领域中,如密码学、模拟实验、游戏制作、计算机图形学等,都需要用到随机数。

产生随机数的方法有很多种,常见的有硬件随机数生成器和软件随机数生成器。

硬件随机数生成器是利用计算机系统的硬件设施,在CPU或其他芯片中产生随机数。

硬件随机数生成器的产生的随机数是真随机数,和人类产生的随机数没有区别。

软件随机数生成器则是通过一定的算法来实现随机数的产生。

它是一种伪随机数生成器,它产生的随机数序列看起来像随机数,但实际上是按照固定的算法生成的。

现在我们来了解一下软件随机数生成器的原理。

软件随机数生成器的原理是利用计算机的算法来产生,它通常使用伪随机数生成算法,也称为伪随机性方法。

伪随机性方法是通过一种从一个种子(seed)生成一系列看上去像是随机的数值的算法实现的。

由于这种算法是基于初始状态与固定的算法,因此这一系列的数值实际上不是随机的,而是固定的。

为了实现更高的伪随机性和更高的效率,现代的伪随机数生成器使用了复杂的算法,如“梅森旋转算法”、“拉格朗日平方算法”等。

这些算法通过多次迭代计算,生成具有良好随机性的数字序列。

此外,为了增加随机性,软件随机数生成器通常会把随机种子设置为系统时间或者用户输入的数据等。

总之,随机数生成技术在计算机领域中起着重要的作用,而软件随机数生成器则是其中的一个重要组成部分。

随机数的质量和随机性直接影响到许多应用的安全性和有效性,因此在实际应用中需要根据具体情况选择合适的随机数生成算法和方法,以确保生成的随机数满足应用的需求。

高中数学(人教版A版必修三)配套课件3.2.2(整数值)随机数(random numbers)的产生

高中数学(人教版A版必修三)配套课件3.2.2(整数值)随机数(random numbers)的产生

超级记忆法-记忆规律
记忆中
选择恰当的记忆数量
魔力之七:美国心理学家约翰·米勒曾对短时记忆的广 度进行过比较精准的测定:通常情况下一个人的记忆 广度为7±2项内容。
超级记忆法-记忆规律
TIP1:我们可以选择恰当的记忆数量——7组之内! TIP2:很多我们觉得比较容易背的古诗词,大多不超过七个字,很大程度上也 是因为在“魔力之七”范围内的缘故。我们可以把要记忆的内容拆解组合控制 在7组之内(每一组不代表只有一个字哦,这7组中的每一组容量可适当加大)。 TIP3:比如我们记忆一个手机号码18820568803,如果一个一组的记忆,我 们就要记11组,而如果我们拆解一下,按照188-2056-8803,我们就只需要 记忆3组就可以了,记忆效率也会大大提高。
答案
1 2345
4.抛掷两枚均匀的正方体骰子,用随机模拟方法估计出现点数之和为10
的概率时,产生的整数随机数中,每几个数字为一组( B )
A.1
B.2
C.10
D.12
答案
1 2345
5.通过模拟试验产生了20组随机数:
6830 3013 7055 7430 7740 4422 7884 2604 3346 0952
费曼学习法
费曼学习法--简介
理查德·菲利普斯·费曼 (Richard PhillipsFeynman)
费曼学习法出自著名物理学家费曼,他曾获的 1965年诺贝尔物理学奖,费曼不仅是一名杰出的 物理学家,并且是一位伟大的教育家,他能用很 简单的语言解释很复杂的概念,让其他人能够快 速理解,实际上,他在学习新东西的时候,也会 不断的研究思考,直到研究的概念能被自己直观 轻松的理解,这也是这个学习法命名的由来!
为啥总是听懂了, 但不会做,做不好?

随机数生成原理实现方法不同编程语言的随机数函数

随机数生成原理实现方法不同编程语言的随机数函数

随机数生成原理实现方法不同编程语言的随机数函数随机数是一种在一定范围内无规律分布的数值,用于模拟实际系统或进行密码学等领域的安全性验证。

随机数生成原理通常分为两类:伪随机数生成和真随机数生成。

1. 伪随机数生成(Pseudo-random Number Generation, PRNG):伪随机数是由一定算法通过初始种子生成的,算法的输出看似无规律,但是实际上是可重现的。

伪随机数生成器通常使用一个算法(如线性同余法或梅森旋转算法)来生成一个序列,并将前一个数字作为种子来生成后一个数字。

伪随机数的质量取决于初始种子和生成算法的选择。

2. 真随机数生成(True Random Number Generation, TRNG):真随机数是通过测量自然环境中的随机物理过程来生成的,例如粒子衰变或环境噪声。

真随机数生成器依赖于不可预测的物理过程来生成随机数,因此具有更高的随机性。

真随机数的生成过程复杂且昂贵,通常需要额外的硬件设备或外部源来提供随机性。

不同编程语言的随机数函数实现方法:以下是几种常见编程语言中随机数函数的实现方法:1.C语言:```c#include <stdio.h>#include <stdlib.h>int maiint i;for (i = 0; i < 10; i++)printf("%d\n", rand(); // 生成随机数}return 0;```2. Java语言:Java语言中,可以使用java.util.Random类来生成伪随机数。

Random类提供了多个方法(如nextInt(、nextDouble()来生成不同类型的随机数。

例程如下:```javaimport java.util.Random;public class RandomExamplepublic static void main(String[] args)Random random = new Random(; // 创建Random对象for (int i = 0; i < 10; i++)System.out.println(random.nextInt(); // 生成随机数}}```3. Python语言:Python语言中,可以使用random模块来生成伪随机数。

随机信号分析实验报告范文

随机信号分析实验报告范文

随机信号分析实验报告范文HaarrbbiinnIInnttiittuutteeooffTTeecchhnnoollooggyy实验报告告课程名称:院系:电子与信息工程学院班级:姓名:学号:指导教师:实验时间:实验一、各种分布随机数得产生(一)实验原理1、、均匀分布随机数得产生原理产生伪随机数得一种实用方法就是同余法,它利用同余运算递推产生伪随机数序列.最简单得方法就是加同余法为了保证产生得伪随机数能在[0,1]内均匀分布,需要M为正整数,此外常数c与初值y0亦为正整数。

加同余法虽然简单,但产生得伪随机数效果不好。

另一种同余法为乘同余法,它需要两次乘法才能产生一个[0,1]上均匀分布得随机数ﻩﻩﻩ式中,a为正整数。

用加法与乘法完成递推运算得称为混合同余法,即ﻩﻩﻩ用混合同余法产生得伪随机数具有较好得特性,一些程序库中都有成熟得程序供选择。

常用得计算语言如Baic、C与Matlab都有产生均匀分布随机数得函数可以调用,只就是用各种编程语言对应得函数产生得均匀分布随机数得范围不同,有得函数可能还需要提供种子或初始化。

Matlab提供得函数rand()可以产生一个在[0,1]区间分布得随机数,rand(2,4)则可以产生一个在[0,1]区间分布得随机数矩阵,矩阵为2行4列。

Matlab提供得另一个产生随机数得函数就是random(’unif’,a,b,N,M),unif表示均匀分布,a与b就是均匀分布区间得上下界,N与M分别就是矩阵得行与列。

2、、随机变量得仿真根据随机变量函数变换得原理,如果能将两个分布之间得函数关系用显式表达,那么就可以利用一种分布得随机变量通过变换得到另一种分布得随机变量。

若X就是分布函数为F(某)得随机变量,且分布函数F(某)为严格单调升函数,令Y=F(某),则Y必为在[0,1]上均匀分布得随机变量.反之,若Y就是在[0,1]上均匀分布得随机变量,那么即就是分布函数为F某(某)得随机变量。

《随机数的产生》课件

《随机数的产生》课件
局限性
伪随机数生成器受到初 始种子选择的影响,可 能会导致预测性和周期 性问题。
硬件随机数生成器
1 原理
基于物理过程(例如热 噪声、放电噪声等)生 成真正的随机数。
2 基于物理过程的硬
件随机数生成器
利用物理过程生成随机 数,但实现上存在一些 技术挑战。
3 优缺点分析
硬件随机数生成数生成器
1 原理
利用量子力学中的不确定性原理生成真正的随机数。
2 实现方式
目前有不同的实现方式,如基于光子的实现和基于超导电子的实现。
3 优缺点分析
量子随机数生成器生成的随机数具有绝对的随机性,但技术上尚不成熟且成本较高。
随机数的应用
1 密码学
2 模拟
随机数在密码学中起到重要作用,用于生 成加密密钥和随机挑战。
式的优缺点比较
3 发展趋势及挑战
随机数生成技术仍在不
伪随机数生成器便于实
断发展,量子随机数生
现,但存在周期性问题。
成器的应用前景广阔,
硬件随机数生成器和量
但还需要克服技术难题。
子随机数生成器生成的
随机数质量更高。
《随机数的产生》PPT课件
# 随机数的产生 ## 介绍 - 什么是随机数? - 随机数在计算机中的应用 - 常见的随机数生成方式
伪随机数生成器
1 定义
伪随机数是通过确定性 算法生成的,看起来像 是随机生成的。
2 线性同余法
使用线性同余法生成伪 随机数序列,但它存在 周期性问题。
3 伪随机数生成器的
随机数用于模拟各种现实世界的随机事物, 如天气、股票价格等。
3 游戏
4 科学计算
游戏中的随机性让游戏更有挑战性和趣味 性,使游戏更具变化。

random 实现原理

random 实现原理

random 实现原理以random实现原理为标题,本文将介绍random的实现原理及其在计算机科学中的应用。

一、random的定义与作用random是一个计算机科学中常用的函数或算法,用于生成随机数。

随机数在计算机科学中有着广泛的应用,如密码学、模拟、游戏等领域。

随机数的生成需要具备以下两个特性:不可预测性和均匀性。

不可预测性指的是随机数的生成过程是不可预知的,无法通过已知信息推测出来;均匀性指的是生成的随机数应该在给定的范围内均匀分布。

二、random的实现原理在计算机中,要实现随机数的生成并不容易。

因为计算机是一个确定性的机器,无法自主地产生真正的随机数。

所以我们需要通过一些算法来模拟生成随机数的过程。

常见的随机数生成算法有伪随机数生成算法和真随机数生成算法。

伪随机数生成算法是通过确定性的过程产生一个看似随机的序列,而真随机数生成算法则是通过物理过程来产生真正的随机数。

1. 伪随机数生成算法伪随机数生成算法是基于一个起始值,通过一系列的数学运算来生成一个序列。

这个序列看起来是随机的,但实际上是可以被复现的。

常见的伪随机数生成算法有线性同余法、梅森旋转算法等。

其中,线性同余法是最常见的伪随机数生成算法之一。

它的基本原理是通过一个线性方程,不断地迭代产生一个序列。

具体的算法如下:X(n+1) = (aX(n) + c) mod m其中,X(n)表示当前的随机数,X(n+1)表示下一个随机数,a、c、m是事先给定的参数。

通过调整这三个参数的值,可以得到不同的伪随机数序列。

2. 真随机数生成算法真随机数生成算法是通过物理过程来产生真正的随机数。

这些物理过程可以是天然的随机现象,如大气噪声、放射性衰变等;也可以是基于硬件设备的随机过程,如随机数发生器等。

其中,随机数发生器是最常见的真随机数生成算法之一。

它通过利用物理过程中的随机性来产生真正的随机数。

随机数发生器可以是硬件设备,也可以是基于物理原理的软件算法。

随机数产生原理及实现

随机数产生原理及实现

电子信息与通信工程学院实验报告实验名称随机数的产生课程名称随机信号分析姓名顾康学号U201413323 日期6月6日地点南一楼东204 成绩教师董燕以上为6种分布的实验结果1.均匀分布随机变量X~U(0,1)的一组样本值的模拟值一般采用某种数值计算方法产生随机数序列,在计算机上运算来得到,通常是利用递推公式:Xn=f(Xn-1,.....,Xn-k)1.1 同余法Xn+1 = λXn(mod M)Rn=Xn/MR1 R2...Rn即为(0,1)上均匀分布的随机数列。

而上述方法是伪随机的,{Rn}本质上是递推公式给定的周期序列,周期T可看做logλ(M)。

解决方法是:选择模拟参数并对序列进行统计检验。

1.2选择模拟参数1)周期长度取决于Xo,λ, M的选择2)通过选取适当的参数可以改善随机数的性质几组参考的取值Xo =1 , λ=7 , M=10^10Xo =1 , λ=5^13 , M=2 *10^10Xo =1 , λ=5^17 , M=10^121.3对数列进行统计检验对应序列能否看作X的独立同分布样本,须检验其独立性和均匀性for i=2:1:size %同余法均匀分布x(i)= mod ( v*x(i-1), M);y(i)=x(i)/M;endsubplot(2,3,1);hist(y,100)[ahat,bhat,ACI,BCI]=unifit(y)% 以0.95的置信度估计样本的参数首先我们的标准是U ~(0,1),而实验值,ACI表示ahat的范围[-0.0030,0], BCI表示bhat的范围[1.0000,1.0030]。

同时样本的均值和方差分别为0.4932和0.0830,结论与理论值很接近。

该样本以0.95的可信度服从(0,1)均匀分布。

2.伯努利分布2.1算法原理若随机变量R服从(0,1),P(X=Xi)=PiP(0)=0, P(n)=∑PiP{P(n-1)<R<=P(n)}=P(n)-P(n-1)=Pn令{P(n-1)<X<=P(n)}={X=Xn} 有P(X=Xn)=Pn从理论上讲,已经解决了产生具有任何离散型随机分布的问题。

高斯随机数产生原理及代码_笔记

高斯随机数产生原理及代码_笔记

一:随机数的产生C++中不提供random函数,但是提供了rand函数,产生0~RAND_MAX之间的整数,但严格意义上来讲生成的只是伪随机数(pseudo-random integral number).生成随机数时需要指定一个种子,如果在程序内循环,那么下一次生成随机数时调用上一次的结果作为种子。

但如果分两次执行程序,那么由于种子相同,生成的“随机数”也是相同的。

rand()函数不接受参数,默认以1为种子(即起始值)。

若随机数生成器总是以相同的种子开始,所以形成的伪随机数列也相同,失去了随机意义。

(但这样便于程序调试).C++中另一函数srand(),可以指定不同的数(无符号整数变元)为种子。

但是如果种子相同,伪随机数列也相同。

一个办法是让用户输入种子,但是仍然不理想。

比较理想的是用变化的数,比如时间来作为随机数生成器的种子。

time的值每时每刻都不同。

所以种子不同,所以,产生的随机数也不同。

rand函数产生随机数的方法:1>如果要产生0~10的10个整数,可以表达为:int N = rand() % 11;这样,N的值就是一个0~10的随机数,如果要产生1~10,则是这样:int N = 1 + rand() % 11;总结来说,可以表示为:a + rand()%(b-a+1)其中的a是起始值,(b-a+1)是整数的范围。

若要0~1的小数,则可以先取得0~10的整数,然后均除以10即可得到随机到十分位的10个随机小数,若要得到随机到百分位的随机小数,则需要先得到0~100的10个整数,然后均除以100,其它情况依此类推。

当要求的精度较高的时候,使用RAND_MAX作为分母。

如果要求左闭右开的话,分母设置为RAND_MAX+1即可。

精度要求高时形式如下:x=a+((rand()%RAND_MAX)/(double)RAND_MAX)*(b-a); /*x belong [a,b] */ 通常rand()产生的随机数在每次运行的时候都是与上一次相同的,这是有意这样设计的,是为了便于程序的调试。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子信息与通信工程学院
实验报告
实验名称随机数的产生
课程名称随机信号分析
姓名顾康学号U201413323 日期6月6日地点南一楼东204 成绩教师董燕
以上为6种分布的实验结果
1.均匀分布
随机变量X~U(0,1)的一组样本值的模拟值一般采用某种数值计算方法产生随机数序列,在计算机上运算来得到,通常是利用递推公式:
Xn=f(Xn-1,.....,Xn-k)
1.1 同余法
Xn+1 = λXn(mod M)
Rn=Xn/M
R1 R2...Rn即为(0,1)上均匀分布的随机数列。

而上述方法是伪随机的,{Rn}本质上是递推公式给定的周期序列,周期T可看做logλ(M)。

解决方法是:选择模拟参数并对序列进行统计检验。

1.2选择模拟参数
1)周期长度取决于Xo,λ, M的选择
2)通过选取适当的参数可以改善随机数的性质
几组参考的取值
Xo =1 , λ=7 , M=10^10
Xo =1 , λ=5^13 , M=2 *10^10
Xo =1 , λ=5^17 , M=10^12
1.3对数列进行统计检验
对应序列能否看作X的独立同分布样本,须检验其独立性和均匀性
for i=2:1:size %同余法均匀分布
x(i)= mod ( v*x(i-1), M);
y(i)=x(i)/M;
end
subplot(2,3,1);
hist(y,100)
[ahat,bhat,ACI,BCI]=unifit(y)% 以0.95的置信度估计样本的参数
首先我们的标准是U ~(0,1),而实验值,ACI表示ahat的范围[-0.0030,0], BCI表示bhat的范围[1.0000,1.0030]。

同时样本的均值和方差分别为0.4932
和0.0830,结论与理论值很接近。

该样本以0.95的可信度服从(0,1)均匀分布。

2.伯努利分布
2.1算法原理
若随机变量R服从(0,1),
P(X=Xi)=Pi
P(0)=0, P(n)=∑Pi
P{P(n-1)<R<=P(n)}=P(n)-P(n-1)=Pn
令{P(n-1)<X<=P(n)}={X=Xn} 有P(X=Xn)=Pn
从理论上讲,已经解决了产生具有任何离散型随机分布的问题。

具体执行仍有困难,如X取值为无穷时。

2.2算法
对于伯努利分布只需用到上述算法最简单的情形,即取n为2。

%伯努利分布
k1=0,k2=1
p1=0.2,p2=0.8;
r=zeros(1,size);
for j=1:1:size
if y(j)>p1
r(j)=k2;
else
r(j)=k1;
end
end
subplot(2,3,2);
hist(r)
title('伯努利分布');
[PHAT,PCI]=binofit(r,1000)%以0.95的置信度检验样本参数
PHAT=0.198,而PCI= [0.195,0.212 ] ,而我设置的P=0.2,与实验结果十分接近,可见该样本的性质较好。

该样本以0.95的可信度服从0.2的伯努利分布。

3.正态分布
3.1算法
设有两个在(0,1)上独立均匀分布的随机数R1 ,R1;作如下变换
Y1= (-2㏑R1)½COS(2πR2)
Y2= (-2㏑R1)½SIN(2πR2)
其逆变换为
R1=exp(- (Y1²+Y2²)/2)
R2=1/2πarctag(Y2/Y1)
可导出Y1,Y2的联合分布函数
f(Y1,Y2)= 1/2πexp(- (Y1²+Y2²)/2)故知Y1,Y2相互独立且服从N(0,1)再作变换Xi = σYi+μ,可得到服从N(μ,σ)的X
3.2代码
%正态随机分布
y=rand(1,size);
z=rand(1,size);
m=sqrt(-2*log(y)).*cos(2*pi.*z);
n=sqrt(-2*log(y)).*sin(2*pi.*z);
t=[m,n];
subplot(2,3,3);
hist(t,100)
title('正态分布');
[muhat,sigmahat,muci,sigmaci]=normfit(t)%以0.95置信度检验样本参数
实验结果:muhat=0.0060, sigmahat=1.0080;
Muci=[-0.0382,0.0502] ,sigmaci=[0.9777,1.0402];
理论上假设的是标准正态分布,则该样本以0.95的可信度服从标准正态分布。

4.指数分布
4.1算法
已知指数分布的分布函数为F=1-exp(-λx),F∈[0,1]。

而利用服从U(0,1)的变量Y, 带入方程左边反解出x:
X= -log(1-y)/λ
即我们得到了用均匀分布产生指数分布的方法
4.2代码
%指数分布
y=rand(1,size);
lamda=3;
x=-log(1-y)/lamda;
subplot(2,3,4);
hist(x,30)
title('指数分布')
[muhat,muci]=expfit(x)%以0.95的置信度检验样本参数
理论上λ取为3,而实验值muhat=0.3204, muci=[0.3015,0.3402] ,可得到该样本以0.95的可信度服从E(3).
5.泊松分布
5.1算法
利用一组在(0,1)独立且同均匀分布的变量X,首先理解泊松分布的到达间隔服从指数分布:
在一次独立实验中∏X k≤exp(-λ)作为判断成功条件,输出为k,即X的次数。

5.2代码
%泊松分布
lamda=20;
p=exp(-lamda);
y=zeros(1,100);
for cnt=1:1:100
i=0;
q=1;
while q>=p
q=q*rand(1);
i=i+1;
end
y(cnt)=i-1;
end
subplot(2,3,5);
hist(y,25)
title('泊松分布')
[lamdahat,lamdaci]=possifit(y)%以0.95的置信度检验样本参数
注意到lamda初值被赋为20,实验值lamdahat=20.1900,
Lamdaci=[19.3093,21.0707].所以样本以0.95的可信度服从P(20).
6.几何分布
6.1算法原理
先由几何分布的定义出发P(X=k)= q^(k-1) * p;则可利用与产生泊松分布随机数相似的方法,从均匀分布入手。

产生一组(0,1)独立地均匀分布随机数,分别与P比较。

如果Xi<P,则继续X(i+1);但如果Xk≥P,则输出K(代表比较的次数)
6.2代码
%几何分布
y=zeros(1,100);
p=0.6;
q=0.4;
test=0;
cnt=1;
while cnt<=100
if test==1
x=rand(1,size);
end
for i=1:1:size
if x(i)>p
y(cnt)=i;
cnt=cnt+1;
test=1;
break
end
end
end
subplot(2,3,6);
hist(y,20)
title('几何分布')
[phat,pci]=mle(y,'distribution','geometric')%极大似然估计函数,以0.95置信度预测p
我给P的初值为0.6,但是值得注意的现象是,多次运算得到的phat都在0.3左右。

当改变P值后,phat仍然会分布在另一个值附近。

通过pci的范围我们可以判断样本以0.95的可信度属于几何分布,但概率P并不与初值一致。

我认为这可能是算法导致的,并无法保证初值P仍然是样本的概率。

7.总结
在这次实验中,最大的收获是体会到均匀分布随机数是很多其它类型随机数的基础,所以均匀分布随机数的质量十分重要。

不仅是产生随机数,判断随机数质量的过程加深了我对所谓伪随机算法的理解,我们需要不断完善伪随机的算法以达到近似随机的效果。

8.参考文献
1... 《MATLAB统计分析与应用》北京航空航天大学出版社。

相关文档
最新文档