美赛:13215---数模英文论文
美国大学生数学建模竞赛优秀论文
For office use onlyT1________________ T2________________ T3________________ T4________________Team Control Number7018Problem ChosencFor office use onlyF1________________F2________________F3________________F4________________ SummaryThe article is aimed to research the potential impact of the marine garbage debris on marine ecosystem and human beings,and how we can deal with the substantial problems caused by the aggregation of marine wastes.In task one,we give a definition of the potential long-term and short-term impact of marine plastic garbage. Regard the toxin concentration effect caused by marine garbage as long-term impact and to track and monitor it. We etablish the composite indicator model on density of plastic toxin,and the content of toxin absorbed by plastic fragment in the ocean to express the impact of marine garbage on ecosystem. Take Japan sea as example to examine our model.In ask two, we designe an algorithm, using the density value of marine plastic of each year in discrete measure point given by reference,and we plot plastic density of the whole area in varies locations. Based on the changes in marine plastic density in different years, we determine generally that the center of the plastic vortex is East—West140°W—150°W, South—North30°N—40°N. According to our algorithm, we can monitor a sea area reasonably only by regular observation of part of the specified measuring pointIn task three,we classify the plastic into three types,which is surface layer plastic,deep layer plastic and interlayer between the two. Then we analysis the the degradation mechanism of plastic in each layer. Finally,we get the reason why those plastic fragments come to a similar size.In task four, we classify the source of the marine plastic into three types,the land accounting for 80%,fishing gears accounting for 10%,boating accounting for 10%,and estimate the optimization model according to the duel-target principle of emissions reduction and management. Finally, we arrive at a more reasonable optimization strategy.In task five,we first analyze the mechanism of the formation of the Pacific ocean trash vortex, and thus conclude that the marine garbage swirl will also emerge in south Pacific,south Atlantic and the India ocean. According to the Concentration of diffusion theory, we establish the differential prediction model of the future marine garbage density,and predict the density of the garbage in south Atlantic ocean. Then we get the stable density in eight measuring point .In task six, we get the results by the data of the annual national consumption ofpolypropylene plastic packaging and the data fitting method, and predict the environmental benefit generated by the prohibition of polypropylene take-away food packaging in the next decade. By means of this model and our prediction,each nation will reduce releasing 1.31 million tons of plastic garbage in next decade.Finally, we submit a report to expediction leader,summarize our work and make some feasible suggestions to the policy- makers.Task 1:Definition:●Potential short-term effects of the plastic: the hazardeffects will be shown in the short term.●Potential long-term effects of the plastic: thepotential effects, of which hazards are great, willappear after a long time.The short- and long-term effects of the plastic on the ocean environment:In our definition, the short-term and long-term effects of the plastic on the ocean environment are as follows.Short-term effects:1)The plastic is eaten by marine animals or birds.2) Animals are wrapped by plastics, such as fishing nets, which hurt or even kill them.3)Deaden the way of the passing vessels.Long-term effects:1)Enrichment of toxins through the food chain: the waste plastic in the ocean has no natural degradation in theshort-term, which will first be broken down into tinyfragments through the role of light, waves,micro-organisms, while the molecular structure has notchanged. These "plastic sands", easy to be eaten byplankton, fish and other, are Seemingly very similar tomarine life’s food,causing the enrichment and delivery of toxins.2)Accelerate the greenhouse effect: after a long-term accumulation and pollution of plastics, the waterbecame turbid, which will seriously affect the marineplants (such as phytoplankton and algae) inphotosynthesis. A large number of plankton’s deathswould also lower the ability of the ocean to absorbcarbon dioxide, intensifying the greenhouse effect tosome extent.To monitor the impact of plastic rubbish on the marine ecosystem:According to the relevant literature, we know that plastic resin pellets accumulate toxic chemicals , such as PCBs、DDE , and nonylphenols , and may serve as a transport medium and soure of toxins to marine organisms that ingest them[]2. As it is difficult for the plastic garbage in the ocean to complete degradation in the short term, the plastic resin pellets in the water will increase over time and thus absorb more toxins, resulting in the enrichment of toxins and causing serious impact on the marine ecosystem.Therefore, we track the monitoring of the concentration of PCBs, DDE, and nonylphenols containing in the plastic resin pellets in the sea water, as an indicator to compare the extent of pollution in different regions of the sea, thus reflecting the impact of plastic rubbish on ecosystem.To establish pollution index evaluation model: For purposes of comparison, we unify the concentration indexes of PCBs, DDE, and nonylphenols in a comprehensive index.Preparations:1)Data Standardization2)Determination of the index weightBecause Japan has done researches on the contents of PCBs,DDE, and nonylphenols in the plastic resin pellets, we illustrate the survey conducted in Japanese waters by the University of Tokyo between 1997 and 1998.To standardize the concentration indexes of PCBs, DDE,and nonylphenols. We assume Kasai Sesside Park, KeihinCanal, Kugenuma Beach, Shioda Beach in the survey arethe first, second, third, fourth region; PCBs, DDE, andnonylphenols are the first, second, third indicators.Then to establish the standardized model:j j jij ij V V V V V min max min --= (1,2,3,4;1,2,3i j ==)wherej V max is the maximum of the measurement of j indicator in the four regions.j V min is the minimum of the measurement of j indicatorstandardized value of j indicator in i region.According to the literature [2], Japanese observationaldata is shown in Table 1.Table 1. PCBs, DDE, and, nonylphenols Contents in Marine PolypropyleneTable 1 Using the established standardized model to standardize, we have Table 2.In Table 2,the three indicators of Shioda Beach area are all 0, because the contents of PCBs, DDE, and nonylphenols in Polypropylene Plastic Resin Pellets in this area are the least, while 0 only relatively represents the smallest. Similarly, 1 indicates that in some area the value of a indicator is the largest.To determine the index weight of PCBs, DDE, and nonylphenolsWe use Analytic Hierarchy Process (AHP) to determine the weight of the three indicators in the general pollution indicator. AHP is an effective method which transforms semi-qualitative and semi-quantitative problems into quantitative calculation. It uses ideas of analysis and synthesis in decision-making, ideally suited for multi-index comprehensive evaluation.Hierarchy are shown in figure 1.Fig.1 Hierarchy of index factorsThen we determine the weight of each concentrationindicator in the generall pollution indicator, and the process are described as follows:To analyze the role of each concentration indicator, we haveestablished a matrix P to study the relative proportion.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111323123211312P P P P P P P Where mn P represents the relative importance of theconcentration indicators m B and n B . Usually we use 1,2,…,9 and their reciprocals to represent different importance. The greater the number is, the more important it is. Similarly, the relative importance of m B and n B is mn P /1(3,2,1,=n m ).Suppose the maximum eigenvalue of P is m ax λ, then theconsistency index is1max --=n nCI λThe average consistency index is RI , then the consistencyratio isRICI CR = For the matrix P of 3≥n , if 1.0<CR the consistency isthougt to be better, of which eigenvector can be used as the weight vector.We get the comparison matrix accoding to the harmful levelsof PCBs, DDE, and nonylphenols and the requirments ofEPA on the maximum concentration of the three toxins inseawater as follows:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=165416131431P We get the maximum eigenvalue of P by MATLAB calculation0012.3max =λand the corresponding eigenvector of it is()2393.02975.09243.0,,=W1.0042.012.1047.0<===RI CI CR Therefore,we determine the degree of inconsistency formatrix P within the permissible range. With the eigenvectors of p as weights vector, we get thefinal weight vector by normalization ()1638.02036.06326.0',,=W . Defining the overall target of pollution for the No i oceanis i Q , among other things the standardized value of threeindicators for the No i ocean is ()321,,i i i i V V V V = and the weightvector is 'W ,Then we form the model for the overall target of marine pollution assessment, (3,2,1=i )By the model above, we obtained the Value of the totalpollution index for four regions in Japanese ocean in Table 3T B W Q '=In Table3, the value of the total pollution index is the hightest that means the concentration of toxins in Polypropylene Plastic Resin Pellets is the hightest, whereas the value of the total pollution index in Shioda Beach is the lowest(we point up 0 is only a relative value that’s not in the name of free of plastics pollution)Getting through the assessment method above, we can monitor the concentration of PCBs, DDE and nonylphenols in the plastic debris for the sake of reflecting the influence to ocean ecosystem.The highter the the concentration of toxins,the bigger influence of the marine organism which lead to the inrichment of food chain is more and more dramatic.Above all, the variation of toxins’ concentration simultaneously reflects the distribution and time-varying of marine litter. We can predict the future development of marine litter by regularly monitoring the content of these substances, to provide data for the sea expedition of the detection of marine litter and reference for government departments to make the policies for ocean governance.Task 2:In the North Pacific, the clockwise flow formed a never-ending maelstrom which rotates the plastic garbage. Over the years, the subtropical eddy current in North Pacific gathered together the garbage from the coast or the fleet, entrapped them in the whirlpool, and brought them to the center under the action of the centripetal force, forming an area of 3.43 million square kilometers (more than one-third of Europe) .As time goes by, the garbage in the whirlpool has the trend of increasing year by year in terms of breadth, density, and distribution. In order to clearly describe the variability of the increases over time and space, according to “Count Densities of Plastic Debris from Ocean Surface Samples North Pacific Gyre 1999—2008”, we analyze the data, exclude them with a great dispersion, and retain them with concentrated distribution, while the longitude values of the garbage locations in sampled regions of years serve as the x-coordinate value of a three-dimensional coordinates, latitude values as the y-coordinate value, the Plastic Count per cubic Meter of water of the position as the z-coordinate value. Further, we establish an irregular grid in the yx plane according to obtained data, and draw a grid line through all the data points. Using the inverse distance squared method with a factor, which can not only estimate the Plastic Count per cubic Meter of water of any position, but also calculate the trends of the Plastic Counts per cubic Meter of water between two original data points, we can obtain the unknown grid points approximately. When the data of all the irregular grid points are known (or approximately known, or obtained from the original data), we can draw the three-dimensional image with the Matlab software, which can fully reflect the variability of the increases in the garbage density over time and space.Preparations:First, to determine the coordinates of each year’s sampled garbage.The distribution range of garbage is about the East - West 120W-170W, South - North 18N-41N shown in the “Count Densities of Plastic Debris from Ocean Surface Samples North Pacific Gyre 1999--2008”, we divide a square in the picture into 100 grids in Figure (1) as follows:According to the position of the grid where the measuring point’s center is, we can identify the latitude and longitude for each point, which respectively serve as the x- and y- coordinate value of the three-dimensional coordinates.To determine the Plastic Count per cubic Meter of water. As the “Plastic Count per cubic Meter of water” provided by “Count Densities of P lastic Debris from Ocean Surface Samples North Pacific Gyre 1999--2008”are 5 density interval, to identify the exact values of the garbage density of one year’s different measuring points, we assume that the density is a random variable which obeys uniform distribution in each interval.Uniform distribution can be described as below:()⎪⎩⎪⎨⎧-=01a b x f ()others b a x ,∈We use the uniform function in Matlab to generatecontinuous uniformly distributed random numbers in each interval, which approximately serve as the exact values of the garbage density andz-coordinate values of the three-dimensional coordinates of the year’s measuring points.Assumptions(1)The data we get is accurate and reasonable.(2)Plastic Count per cubic Meter of waterIn the oceanarea isa continuous change.(3)Density of the plastic in the gyre is a variable by region.Density of the plastic in the gyre and its surrounding area is interdependent , However, this dependence decreases with increasing distance . For our discussion issue, Each data point influences the point of each unknown around and the point of each unknown around is influenced by a given data point. The nearer a given data point from the unknown point, the larger the role.Establishing the modelFor the method described by the previous,we serve the distributions of garbage density in the “Count Pensities of Plastic Debris from Ocean Surface Samples North Pacific Gyre 1999--2008”as coordinates ()z y,, As Table 1:x,Through analysis and comparison, We excluded a number of data which has very large dispersion and retained the data that is under the more concentrated the distribution which, can be seen on Table 2.In this way, this is conducive for us to get more accurate density distribution map.Then we have a segmentation that is according to the arrangement of the composition of X direction and Y direction from small to large by using x co-ordinate value and y co-ordinate value of known data points n, in order to form a non-equidistant Segmentation which has n nodes. For the Segmentation we get above,we only know the density of the plastic known n nodes, therefore, we must find other density of the plastic garbage of n nodes.We only do the sampling survey of garbage density of the north pacificvortex,so only understand logically each known data point has a certain extent effect on the unknown node and the close-known points of density of the plastic garbage has high-impact than distant known point.In this respect,we use the weighted average format, that means using the adverse which with distance squared to express more important effects in close known points. There're two known points Q1 and Q2 in a line ,that is to say we have already known the plastic litter density in Q1 and Q2, then speculate the plastic litter density's affects between Q1、Q2 and the point G which in the connection of Q1 and Q2. It can be shown by a weighted average algorithm22212221111121GQ GQ GQ Z GQ Z Z Q Q G +*+*=in this formula GQ expresses the distance between the pointG and Q.We know that only use a weighted average close to the unknown point can not reflect the trend of the known points, we assume that any two given point of plastic garbage between the changes in the density of plastic impact the plastic garbage density of the unknown point and reflecting the density of plastic garbage changes in linear trend. So in the weighted average formula what is in order to presume an unknown point of plastic garbage density, we introduce the trend items. And because the greater impact at close range point, and thus the density of plastic wastes trends close points stronger. For the one-dimensional case, the calculation formula G Z in the previous example modify in the following format:2212122212212122211111112121Q Q GQ GQ GQ Q Q GQ Z GQ Z GQ Z Z Q Q Q Q G ++++*+*+*=Among them, 21Q Q known as the separation distance of the known point, 21Q Q Z is the density of plastic garbage which is the plastic waste density of 1Q and 2Q for the linear trend of point G . For the two-dimensional area, point G is not on the line 21Q Q , so we make a vertical from the point G and cross the line connect the point 1Q and 2Q , and get point P , the impact of point P to 1Q and 2Q just like one-dimensional, and the one-dimensional closer of G to P , the distant of G to P become farther, the smaller of the impact, so the weighting factor should also reflect the GP in inversely proportional to a certain way, then we adopt following format:221212222122121222211111112121Q Q GQ GP GQ GQ Q Q GQ GP Z GQ Z GQ Z Z P Q Q Q Q G ++++++*+*+*=Taken together, we speculated following roles:(1) Each known point data are influence the density of plastic garbage of each unknown point in the inversely proportional to the square of the distance;(2) the change of density of plastic garbage between any two known points data, for each unknown point are affected, and the influence to each particular point of their plastic garbage diffuse the straight line along the two known particular point; (3) the change of the density of plastic garbage between any two known data points impact a specific unknown points of the density of plastic litter depends on the three distances: a. the vertical distance to a straight line which is a specific point link to a known point;b. the distance between the latest known point to a specific unknown point;c. the separation distance between two known data points.If we mark 1Q ,2Q ,…,N Q as the location of known data points,G as an unknown node, ijG P is the intersection of the connection of i Q ,j Q and the vertical line from G to i Q ,j Q()G Q Q Z j i ,,is the density trend of i Q ,j Q in the of plasticgarbage points and prescribe ()G Q Q Z j i ,,is the testing point i Q ’ s density of plastic garbage ,so there are calculation formula:()()∑∑∑∑==-==++++*=Ni N ij ji i ijGji i ijG N i Nj j i G Q Q GQ GPQ Q GQ GP G Q Q Z Z 11222222111,,Here we plug each year’s observational data in schedule 1 into our model, and draw the three-dimensional images of the spatial distribution of the marine garbage ’s density with Matlab in Figure (2) as follows:199920002002200520062007-2008(1)It’s observed and analyzed that, from 1999 to 2008, the density of plastic garbage is increasing year by year and significantly in the region of East – West 140W-150W, south - north 30N-40N. Therefore, we can make sure that this region is probably the center of the marine litter whirlpool. Gathering process should be such that the dispersed garbage floating in the ocean move with the ocean currents and gradually close to the whirlpool region. At the beginning, the area close to the vortex will have obviously increasable about plastic litter density, because of this centripetal they keeping move to the center of the vortex ,then with the time accumulates ,the garbage density in the center of the vortex become much bigger and bigger , at last it becomes the Pacific rubbish island we have seen today.It can be seen that through our algorithm, as long as the reference to be able to detect the density in an area which has a number of discrete measuring points,Through tracking these density changes ,we Will be able to value out all the waters of the density measurement through our models to determine,This will reduce the workload of the marine expedition team monitoring marine pollution significantly, and also saving costs .Task 3:The degradation mechanism of marine plasticsWe know that light, mechanical force, heat, oxygen, water, microbes, chemicals, etc. can result in the degradation of plastics . In mechanism ,Factors result in the degradation can be summarized as optical ,biological,and chemical。
2015美国数学建模A题M奖论文-林星岑 廖相伊 王隽逸
For office use onlyT1________________ T2________________ T3________________ T4________________Team Control Number 37090Problem ChosenAFor office use onlyF1________________F2________________F3________________F4________________2015 Mathematical Contest in Modeling (MCM) Summary SheetThe advent of licensed Ebola vaccines and drugs delights the whole world while also posing a dilemma of how to allocate the needed quantity among all Ebola outbreaks and deliver them with effectiveness and efficiency.We establish comprehensive Ebola response models in three most suffering countries (Guinea, Liberia and Sierra Leone) including a prediction model generating short-term estimates of the Ebola transmission situations, an allocation-and-delivery model planning the needed quantity of medicines and the optimal delivery route, and a cellular automaton model measuring the effect of effective isolation and treatment. Besides, we also give policy making suggestions to prevent international spread to some unaffected countries.Based on the special characteristic of Ebola, we create a modified SEIR epidemic model with an added intervention factor to stand for the effect of some forms of interventions other than vaccines and drugs. We predict the potential number of future Ebola cases with or without the use of effective medicine and the result also shows that if the transmission trends continue without effective interventions, countries will undergo worse and worse situations In the next model, we first classify all outbreaks into five levels due to the different Ebola case numbers. Then we apply minimum spanning tree method, Monte Carlo method and 0-1 programming to our model to locate an optimal number of medical center and sub-centers in each country aiming to eradicate Ebola. We set one medial center in each country and one more sub-center in Guinea, three more sub-centers in Liberia and four more sub-centers in Sierra Leone. The model also calculates the minimal needed number of vaccines and drugs in every manufacturing cycle.Then, we discuss the effect of isolation and treatment by cellular automaton model and find out that if only effective isolation is conducted, the retarding effect is limited.We present a comprehensive strategy to eradicate Ebola by conducting dynamic models and as time passes, we can update the statistic data to reality which adds accuracy to our models and optimal results.An Optimal Strategy to Eradicate EbolaIntroductionEbola virus disease (EVD) is a severe, often fatal illness in humans. It has become one of the most prevalent and devastating threat for its intense transmission. Since first cases of the current West African epidemic of Ebola virus disease were reported on March 22, 2014, over 20000 new cases have been found and about 9000 patients have died from it. The western Africa areas-Guinea, Liberia and Sierra Leone in particular-are outbreaks that have suffered most [1].With the help of licensed vaccines and drugs, we aim to stop Ebola transmission in affected countries within a short period and prevent international spread. Our objectives are:●to achieve full and fast coverage with vaccines for susceptible individuals and drugs for infectious individuals among three most suffering countries (Guinea, Liberia and Sierra Leone);●to ensure emergency and immediate application of comprehensive Ebola response interventions in countries with an initial case or with localized transmission;●to strengthen preparedness of all countries to rapidly detect and response to an Ebola exposure,especially those sharing land borders with an intense transmission area and those with international transportation hubs[1].For the first objective, we create a comprehensive Ebola response models in those three countries including a prediction model of Ebola transmission, an allocation-and-delivery model for vaccines and drugs used and a cellular automaton model measuring the effect of some crucial interventions. The last two objectives are closely related to policy making and in the following part of our paper we just present detailed information of our models.Basic Assumptions1. A patient can only progress forward through the four states and can never regress(e.g. go from the incubating to the susceptible) or skip a state (e.g. go from the incubating to the recovered state, skipping the infectious state).2.Once recovered from Ebola, an individual will not be infected again in a short time.3.Populations of each country remain the same over the prediction period.4.In absence of licensed vaccines or drugs, some other interventions are used, such as effective isolation for Ebola patients and safe burial protocol.5.When vaccines and drugs are introduced to the prediction model, the incubation period and the effect of interventions other than medicine will not change.6.Building a medical center is at a high cost (e.g. storage facilities of medicines, etc.) and every medical center are capable of delivering all needed medicines.7.We ignore the potential damage to medicines when delivering.8.We calculate the distance between two sites by measuring the spherical distance and ignore the actual traffic situation.9.Once received treatment with licensed drugs, patients will no longer be infectiousindividuals, which also means that we do not take the needed recovery period into account.10.The needed vaccines or drug for an individual is one unit.11.All the data searched from the Internet are of trustworthiness and reliability.Model 1: Prediction ModelWe create a modified SEIR model [2] to estimate the potential number of future Ebola cases in countries with intense and widespread transmission- Guinea, Liberia and Sierra Leone. Not only useful in predicting future situation in absence of any licensed vaccine or drug, the modeling tool also can be used to estimate how control and prevention medicine can slow and eventually stop the epidemic.Terminology and definitionsdays is used from previous study. The resulting distribution has a mean incubation period of 6.3 days [3] and therefore, in our prediction model, patients are assumed to be infectious after a 6.3-day’s incubation period. Besides, in absence of licensed vaccines or drugs, Ebola is a disease with few cases of recovery. Thus, under this situation, we assume the recovery rate is 0.001, which is very close to zero.MethodA frightening characteristic of Ebola virus disease is that it has an incubation period ranging from 2 to 21 days before an individual exposed to the virus who finally become infectious. Thus, we create a SEIR epidemic model tracking individuals through the following four states: susceptible (at risk of contracting the disease), exposed (infected but not yet infectious), infectious (capable of transmitting the disease) and removed (recovered from the disease or dead).Moreover, based on Assumption 4, some forms of interventions other than vaccines and drugs may also reduce the spread of Ebola and death numbers, and therefore we introduce an intervention factor γ as a parameter to measure the effect. In those three intense-transmissioncountries(Guinea, Liberia and Sierra Leone),at least 20% of new Ebola infections occur during traditional burials of deceased Ebola patients when family and community members directly touching or washing the body. By conducting safe burial practice, the number of new Ebola cases may drop remarkably. Moreover, effective isolation with in-time treatment is also of significant importance in reducing transmission and deaths.In our modified SEIR model, we describe the flow of individuals between epidemiological classes as follows.Figure 1 A schematic representation of the flow of individuals between epidemiologicalclassesSusceptible individuals in class S in contact with the virus enter the exposed class E at the per-capita rate (λ-γ), where λ is transmission rate per infectious individual per day and γ is the intervention factor serves to retard the transmission. After undergoing an average incubation period of 1/α days, exposed individuals progress to the infectious class I. Infectious individuals (I) move to the R-class either recover or die at rate (μ+β+γ), where b stands for the recovery rate and d represents the fatality rate. Besides,The transmission process above is modeled by the following differential equation set: ()()()()()()()()()()()(++)()dS S t I t dt dE S t I t t E t dt dI E t I t dt dR I t dtλγλγααμβγμβγ⎧=--⎪⎪⎪=--⎪⎨⎪=-++⎪⎪⎪=⎩ (1.1)We modify SEIR model by adding intervention factor γ.Algorithm1. With known values of parameter α and μ, we solve the differential equation (1.1) by assigning certain value ranges and step values to parameter λ, β, and γ.2. We get the predicted numbers of exposed, infectious and dead individuals and these numbers can be fitted to real data by using the least square method to get the residual errors of each times’ loop iteration.3. By comparison every residual error, we find the least one and we use the corresponding values of parameters in our prediction for further prediction.ResultVia MA TLAB programming, we obtain the optimal values for parameters λ,μ,α,βand γ(Table1)and then get the estimated cumulative number of cases in Guinea, Liberia and Sierra Leone separately(Figure 2, 3 and 4). The result shows that if Ebola transmission trends continue without effective drugs and vaccines, countries will undergo worse and worse situations.Sierra Leone 0.101 0.001 0.1587 0.03 0.02Figure 2 Cumulative numbers of cases in LiberiaFigure 3 Cumulative numbers of cases in GuineaFigure 4 Cumulative numbers of cases in Sierra LeoneStability testDefinition of stabilityAn aggregation of all possible parameters’ values resulting in a downwards trend of the total number of exposed individuals and infectious individuals are defined as the stability range in our model [4].Stability range First, we draw two equations from the differential equation set (1.1):()()()()()()()()dE S t I t t E t dt dI E t I t dtλγααμβγ=--=-++ As ()E t and ()R t is relatively small, we assume that ()1()S t I t =-. Then, we sum the two equations up and get:()()[1()]()()()E I d I t I t I t tλγμβγ+=---+- In order to prevent the spread of Ebola, the total percentage of E(t) and I(t) has to present a decline trend from the first day of taking action with the licensed medicine, which also means()[]0[()]d E I d dt d I t +< . When I(t)=I(0),the inequality is equivalent to(2)()()0I t λμβγλγ-----<As ()0I t ≈, the relationship of parameters λ, μ, β and γ are(2)0λμβγ---<To conclude, the stability range for model one is (2)0λμβγ---<. When parameters’ values satisfy this inequality, the model is of stability.Model 2: Allocation-and-delivery ModelWe create an allocation-and-delivery model for vaccines and drugs used in three most suffering countries (Guinea, Liberia and Sierra Leone) and the optimal strategy is assumed to have significant effect of eradicating Ebola in 180 days.In our allocation-and-delivery model, we set medical centers and sub-centers, which serve to treat Ebola patients, inject vaccines to susceptible individuals and also store needed amount of drugs and vaccines. Besides, countries manufacturing medicines (e.g., America, Canada, etc.) are not where in need of medicines, so we set one medical center to receive drugs and vaccines from the manufacturing country and then delivers the needed amount to every sub-center once a month. For sake of the inconvenience might face when delivering medicines across borders, we model three countries desperately. In another word, we set one medical center in Guinea, one in Liberia and one in Sierra Leone respectively and drugs and vaccines are delivered from every center to the sub-centers within borders.The Figure 5 below demonstrates the model with a hypothetical scenario. The dotted arrow lines show that individuals from every Ebola outbreak (E) will go to the nearest medical center (MC) or sub-center (MSC) for treatment or injection, while the solid arrow lines represent the delivery process of medicines from manufacturing county to each medical center and then to sub-centers.Figure 5 The allocation-and-delivery mode lInstead of building new treating places, we locate our medical centers and sub-centers in some existing Ebola Treating Units (ETUs) [1]. The model shows how we choose from current ETUs, including deciding the optimal number and location.Table 3 existing ETUs their locationTerminology and definitionsGoalWe determine the number and location of medical center and sub-centers on the basis of ● Minimizing the total time-cost that an infectious individual from one outbreak spends on the way to the corresponding medical center or sub-center, while locating those center and sub-centers as few as possible, also means0min N nN ij i o j C d ===∑∑● Minimizing the total distance among one medical center to other sub-centers, also meansmin ()Nij i o D i j =≠∑● Averaging the workloads of medical center and sub-centers, also meansmin N N NSV CV AV =AlgorithmFigure 6 the flow chart for model 2Initialize parameters in previous prediction model●We do not change the value of α and γ used in Model 1.●We have deduced the relationship of parameters λ, μ, β and γ in the stability test of model 1.Estimate daily added number of infectious individualsWe use the prediction model to simulate the situation of daily added number of infectious individuals DI i in 6 months(180 days) for 10 times and choose the worst case(maximal numbers) as the final estimation of daily added number.Build geographical distribution of new added infectious individualsWe categorize all outbreaks into five levels as level I, II, III, IV and V according to the number of confirmed cases and then calculate each level’s probability of a new occurring case. According to the number of new added infectious individuals and the probability of occurring in every outbreak, we build geographical distribution among all outbreaks of new added infectious individuals.Table 5 Outbreaks and classificationSet n from 1 to kWe set n from 1 to k to conduct the process for k times and compare each optimal result as N changes.Locate sub-centers randomlyWe locate sub-centers randomly and for each sub-center, the corresponding outbreaks represent all those outbreaks with a nearer distance to this sub-center compared to others.Calculate total time-costWe define the time-cost as the period that an infectious individual from one outbreak spends on the way to the corresponding medical center or sub-center, and we add up the corresponding distance as the measurement of the time-cost. When calculating the total time-cost, the number of all potential patients is taken into account.Make comparisonWe compare the total time-cost calculated in 400 times’ loop and choose the minimal one as the optimal result.Output optimal n, C n, A V n, CV nLocate medical centerWe calculate the total distance of every medical sub-center to others and locate the one with minimal total distance as the medical center which serve to receive all needed medicine from manufacturing country and deliver the required amount to every sub-center [5].ResultWe locate medical centers and sub-centers separately in three countries as shown in Table 7 and Figure7. We get the different values of indicators (shown in Table 6) and taking total distance and margin distance into account, we choose the optimal number and location of medical sub-centersTable 6 Values of indicatorsTable 7 Location of medical center and sub-centers and their corresponding outbreaksFigure 7 Locations of medical center and sub-centers and the routesWe determine the needed amount of vaccines and drugs.We assume that the successful immune rate is 90%, the recovery rate when drugs are used is 60% and the manufacturing cycle of the licensed drug is 30 days. These rates and cycle-days can be adjusted according to reality. VaccinesIndividuals having received vaccine injection can be protected from being infectious. The larger proportion of population being injected, the lower the transmission rate is. This relationship can be measured as 1'(1)dk λλ=- and we solve this equation and get thenumber of needed vaccines (1k ) is'1dλλ-DrugsPatients will have a higher recovery rate and lower fatality rate. The shorter the course of treatment is, the greater the impact on recovery rate and fatality rate. We rewrite therelationship in mathematic equations as 2'rk D μμ=+or 2'rkDββ=-. Thus, the number of needed drugs (2k ) is (')D r μμ- or (')Drββ- .The resultWe calculate an allocation plan for vaccines and drugs in 6 months and the detailed number are present in table 8 and 9. We can see that the demand for vaccine is much larger than that of drugs because there is a wider range of individuals who need vaccine injections as an effective protection.Table 8 Allocation plan for vaccines in 6 monthsTable 9 Allocation plan for drugs in 6 monthsStability testWe make 10 times’ simulation for the three countries by the following procedures.First, we estimate the needed number of medicines for one month and supply at the first day of that month.Then, we generate added numbers of infectious individuals randomly and calculate the consumed and remaining amount of medicines.Finally, we get the line of daily reaming amount of medicines as shown in Figure 8.-100100200300400500600700Dates u r p l u sFigure 8 Surplus of medicine in Guinea, Liberia and Sierra LeoneThe figures demonstrate that the supply of medicine is sufficient except a small probability (less than 10%) of deficit at the end of the first month. Thus, the model is of high stability.Sensitivity analysisWe have estimated the cumulative number of infectious individuals based on the optimal number and location of medical center and sub-centers in model 2. Then we change the values of parameters to conduct sensitivity analysis. The results are shown in the following table. Table 10 result of sensitivity analysisThe result shows the optimal result will not change unless there is some big fluctuation of parameters’ values. Besides, the fluctuation of transmission rate will result in more significant changes to the number of infectious individuals and therefore, we should put emphasis on the generalization of vaccine injections.Dates u r p l usDates u r p l u sFigure 9 Number of daily added infectious Figure 10 Present number of infectious, exposed individuals in Sirrea,Liberia,Guinea and dead individuals in Sirrea,Liberia,GuineaModel 3: the cellular automaton modelIn model 1, we estimate the transmission trends of Ebola and then in model 2, we measure the trends when licensed vaccines and drugs are used and make an allocation-and-delivery plan of medicines. We now introduce a cellular automaton model to present a clearer dynamic simulation of the spread of Ebola in one area.Cellular automaton[6] is a model in which time, space and other variables are all discrete. lt can be expressed asCA = (Ld, S, N, f)Where Ld represents a d-dimensional cellular spaces and we set d=2, L ×L=1000×1000, S represents all finite discrete set of cell stateN represents t he set of a cell’s eight neighbors’ statef represents the transfer function of one cell and it is expressed as S t+1f(S t,N t)Figure 11 A cell and its eight neighborsThere are five states{S, E, I, Q, D, R} in our model which represent susceptible, exposed, infectious, quarantined, dead and recovered individuals. We assign them as{0, 1, 2, 3, 4, 5}. Initialize all cells state value Si j = 0, which means that all cells are susceptible individuals. We select a proportion of 0.0005’s cells in the cellular spaces randomly and set their state value Si j =2, which represent the initial infectious individuals.From t=0, we scan all cells in the cellular spaces and compare the effect of treatment and isolation. We set three situations as no treatment and no isolation, only isolation but no treatment and both isolation and treatment, and then simulate all these situations.Take the third situation (both isolation and treatment) as an example to show the renewing rules.When Si j=0, we calculate the probability p i j that a single cell C ij become infectious when contacting with its neighbors. Then we judge weather susceptible individuals will become exposed individuals with the probability p i j. If it is not the probability, they remain susceptible individuals.When S ij=1, cell C ij is exposed individuals with a probability of e to become infectious individuals (S ij=2).When S ij=2, cell C ij is infectious individuals with a probability of r1 to be isolated (S ij=3) and a probability of d to dead(S ij=4 and are moved out of the transfer).When S ij=3, cell C ij is quarantined individuals with a probability of r3 to be cured (S ij=5 andare moved out of the transfer because of high immune ability).We update the states of all cells in the cellular spaces at the same time and use the result as the initial state in the next time’s simulation.ResultWe use Matlab to realize a simulation process of 200 days and the following figures show the results.Figure 12No isolation and no treatment2040608010012014016018020020406080100120140160180200204060801001201401601802002040608010012014016018020020406080100120140160180200204060801001201401601802002040608010012014016018020020406080100120140160180200DAY 50DAY 100DAY 150DAY 200Figure 13 Only isolation and no treatmentFigure 14 Both treatment and isolation20406080100120140160180200204060801001201401601802002040608010012014016018020020406080100120140160180200204060801001201401601802002040608010012014016018020020406080100120140160180200204060801001201401601802002040608010012014016018020020406080100120140160180200204060801001201401601802002040608010012014016018020020406080100120140160180200204060801001201401601802002040608010012014016018020020406080100120140160180200DAY 50DAY 100DAY 150DAY 200DAY 50DAY 100DAY 150DAY 200The results shows that the transmission accelerates with no isolation and treatment, while slows down significantly when effective isolation is added. However, simple isolation as intervention cannot stop the spread of Ebola. Only with effective isolation and treatment, the transmission can be limited and the fatality rate is reduced.We use the cellular automaton model to simulate the spread of Ebola in three situations and illustrate that effective isolation and treatment is of significant importance,Sensitivity analysisWe assign different values to parameters λ, 12r r ⨯ and μand simulate the situation of the 100th day. The results are as follows.Figure 15 Result of sensitivity analysisThe figure demonstrates that the model is not sensitive to isolation level while sensitive to r transmission and recovery rate. The results indicate that the eradication of Ebola is rely heavily on the control of transmission and recovery rate. Besides, isolation is more effective with a relatively small scale of infectious individuals.Evaluation of the modelStrengths●The prediction model is a modified one adjusted to the unique characteristic of Ebola and this model is much more suitable for the prediction of Ebola transmission than the traditional SEIR epidemic model.●The allocation-and-delivery model is based on the real location of outbreaks and ETUs, and the resulting locations of medical centers and sub-centers are of high practical value.●The value of parameters in the allocation-and-delivery model is highly adjustable. Policy makers can change the value according to the reality or determined goals and this will not affect the modeling process.●The cellular automaton model presents a brief picture of the transmission trends. The result shows the limited retarding effect of simple isolation and indicates the crucial role of effective vaccines and drugs.Weaknesses●We use previous data and probability distribution to determine the value of some parameters in our model. Maybe they deviate from the current situation.●The models fail to take some emergent cases and their effect into account. For example, we ignore the real traffic situations and potential congestions when delivering medicines.Conclusions●We estimate the transmission trend of Ebola in (Guinea, Liberia and Sierra Leone) and present a comprehensive strategy to eradicate Ebola by planning the allocation and delivery system.●The model also presents the different effect of three kinds of interventions-injecting vaccines, treating with drugs, isolation. The best retarding method is to inject vaccines and treating with drugs can reduce deaths in a short period, while isolation is the least choice in absence of other forms of interventions.●To prevent international transmission to unaffected counties, immediate supply of vaccines and drugs should be delivered to any new initial outbreaks from the nearest available place and all unaffected counties have to establish a full Ebola surveillance preparedness and response plan.References[1] http://www.who.int/en/, Feb 2015[2] Ma J L,Ma Z E.Epidemic threshold condition for seasonally forced SEIR models. Mathematical Bio-sciences and Engineering . 2006[3] Chowell G, Hengartner NW, Castillo-Chavez C, Fenimore PW, Hyman JM. The basic reproductive number of Ebola and the effects of public health measures: the cases of Congo and Uganda. J Theor Biol 2004;229:119-26 [4]Katsuaki Koike,Setsuro Matsuda. New Indices for Characterizing Spatial Models of Ore Deposits by the Use of a Sensitivity Vector and an Influence Factor[J]. Mathematical Geology . 2006 (5)[5] Peter Kovesi.MA TLAB and Octave Functions for Computer Vision and Image Processing. Digital Image Computing:Techniques and Applications . 2012[6] rraga,,J.A.delRio,,L.Alvarez-lcaza.Cellularautomationforonelanetrafficmodeling.Transportatio researchpartC . 2005ReportTo whom it may concern:Ebola virus disease (EVD) are posing a threat to all human beings but the advent of licensed vaccines and drugs enable us to fight with Ebola. We have studied out a comprehensive strategy to stop Ebola transmission in affected countries within a short period and prevent international spread.For those unaffected countries and light Ebola outbreaks, immediate response actions to a new initial case are of significant importance. According to our model, effective isolation and treatment can prevent the widespread transmission of Ebola. Thus, immediate supply of vaccines and drugs should be delivered to any new initial outbreaks from the nearest available place and all unaffected counties have to establish a full Ebola surveillance preparedness and response plan including isolation and treatment of infectious individuals and injection of vaccines to susceptible individuals.For countries with intense and widespread transmission- Guinea, Liberia and Sierra Leone- besides the immediate isolation and treatment, a plan of allocating and delivering medicines is also crucial. We model the potential number of future Ebola cases in these three countries and estimate the goal number of transmission rate, recovery rate and fatality rate with which we can control the spread of Ebola. Meanwhile, we classify all the outbreaks in those three countries according to the number of cumulative confirmed cases. Outbreaks with different level will have a different probability of a new occurring case and we use our model to predict the possible new outbreak.Classification of outbreaksAccording to our prediction, 567 units of drugs and 2069139 units of vaccines are needed in the first manufacturing cycle, and therefore, we model an optimal delivering system with the highest efficiency. For sake of the inconvenience might face when delivering medicines across borders, we model three countries desperately. We set one medical center (MC) and a certain number of medical sub-centers (MSC), in each country which serve to treat Ebola patients, inject vaccines to susceptible individuals and also store needed amount of drugs and vaccines. Besides, the medical center serves to receive drugs and vaccines from the manufacturing country and then delivers the needed amount to every sub-center once a month.。
2013美国大学生数学建模竞赛论文
summaryOur solution paper mainly deals with the following problems:·How to measure the distribution of heat across the outer edge of pans in differentshapes and maximize even distribution of heat for the pan·How to design the shape of pans in order to make the best of space in an oven·How to optimize a combination of the former two conditions.When building the mathematic models, we make some assumptions to get themto be more reasonable. One of the major assumptions is that heat is evenly distributedwithin the oven. We also introduce some new variables to help describe the problem.To solve all of the problems, we design three models. Based on the equation ofheat conduction, we simulate the distribution of heat across the outer edge with thehelp of some mathematical softwares. In addition, taking the same area of all the pansinto consideration, we analyze the rate of space utilization ratio instead of thinkingabout maximal number of pans contained in the oven. What’s more, we optimize acombination of conditions (1) and (2) to find out the best shape and build a function toshow the relation between the weightiness of both conditions and the width to lengthratio, and to illustrate how the results vary with different values of W/L and p.To test our models, we compare the results obtained by stimulation and our models, tofind that our models fit the truth well. Yet, there are still small errors. For instance, inModel One, the error is within 1.2% .In our models, we introduce the rate of satisfaction to show how even thedistribution of heat across the outer edge of a pan is clearly. And with the help ofmathematical softwares such as Matlab, we add many pictures into our models,making them more intuitively clear. But our models are not perfect and there are someshortcomings such as lacking specific analysis of the distribution of heat across theouter edge of a pan of irregular shapes. In spite of these, our models can mainlypredict the actual conditions, within reasonable range of error.For office use onlyT1 ________________T2 ________________T3 ________________T4 ________________ Team Control Number18674 Problem Chosen AFor office use only F1 ________________ F2 ________________ F3 ________________ F4 ________________2013 Mathematical Contest in Modeling (MCM) Summary Sheet(Attach a copy of this page to your solution paper.)Type a summary of your results on this page. Do not includethe name of your school, advisor, or team members on this page.The Ultimate Brownie PanAbstractWe introduce three models in the paper in order to find out the best shape for the Brownie Pan, which is beneficial to both heat conduction and space utility.The major assumption is that heat is evenly distributed within the oven. On the basis of this, we introduce three models to solve the problem.The first model deals with heat distribution. After simulative experiments and data processing, we achieve the connection between the outer shape of pans and heat distribution.The second model is mainly on the maximal number of pans contained in an oven. During the course, we use utility rate of space to describe the number. Finally, we find out the functional relation.Having combined both of the conditions, we find an equation relation. Through mathematical operation, we attain the final conclusion.IntroductionHeat usage has always been one of the most challenging issues in modern world. Not only does it has physic significance, but also it can influence each bit of our daily life. Likewise,space utilization, beyond any doubt, also contains its own strategic importance. We build three mathematic models based on underlying theory of thermal conduction and tip thermal effects.The first model describes the process and consequence of heat conduction, thus representing the temperature distribution. Given the condition that regular polygons gets overcooked at the corners, we introduced the concept of tip thermal effects into our prediction scheme. Besides, simulation technique is applied to both models for error correction to predict the final heat distribution.Assumption• Heat is distributed evenly in the oven.Obviously, an oven has its normal operating temperature, which is gradually reached actually. We neglect the distinction of temperature in the oven and the heating process, only to focus on the heat distribution of pans on the basis of their construction.Furthermore, this assumption guarantees the equivalency of the two racks.• Thermal conductivity is temperature-invariant.Thermal conductivity is a physical quantity, symbolizing the capacity of materials. Always, the thermal conductivity of metal material usually varies with different temperatures, in spite of tiny change in value. Simply, we suppose the value to be a constant.• Heat flux of boundaries keeps steady.Heat flux is among the important indexes of heat dispersion. In this transference, we give it a constant value.• Heat conduction dom inates the variation of temperature, while the effects ofheat radiation and heat convection can be neglected.Actually, the course of heat conduction, heat radiation and heat convectiondecide the variation of temperature collectively. Due to the tiny influence of other twofactors, we pay closer attention to heat conduction.• The area of ovens is a constant.I ntroduction of mathematic modelsModel 1: Heat conduction• Introduction of physical quantities:q: heat fluxλ: Thermal conductivityρ: densityc: specific heat capacityt: temperature τ: timeV q : inner heat sourceW q : thermal fluxn: the number of edges of the original polygonsM t : maximum temperaturem t : minimum temperatureΔt: change quantity of temperatureL: side length of regular polygon• Analysis:Firstly, we start with The Fourier Law:2(/)q gradt W m λ=- . (1) According to The Fourier Law, along the direction of heat conduction, positionsof a larger cross-sectional area are lower in temperature. Therefore, corners of panshave higher temperatures.Secondly, let’s analyze the course of heat conduction quantitatively.To achieve this, we need to figure out exact temperatures of each point across theouter edge of a pan and the variation law.Based on the two-dimension differential equation of heat conduction:()()V t t t c q x x y yρλλτ∂∂∂∂∂=++∂∂∂∂∂. (2) Under the assumption that heat distribution is time-independent, we get0t τ∂=∂. (3)And then the heat conduction equation (with no inner heat source)comes to:20t ∇=. (4)under the Neumann boundary condition: |W s q t n λ∂-=∂. (5)Then we get the heat conduction status of regular polygons and circles as follows:Fig 1In consideration of the actual circumstances that temperature is higher at cornersthan on edges, we simulate the temperature distribution in an oven and get resultsabove. Apparently, there is always higher temperature at corners than on edges.Comparatively speaking, temperature is quite more evenly distributed around circles.This can prove the validity of our model rudimentarily.From the figure above, we can get extreme values along edges, which we callM t and m t . Here, we introduce a new physical quantity k , describing the unevennessof heat distribution. For all the figures are the same in area, we suppose the area to be1. Obviously, we have22sin 2sin L n n n ππ= (6) Then we figure out the following results.n t M t m t ∆ L ksquare 4 214.6 203.3 11.3 1.0000 11.30pentagon 5 202.1 195.7 6.4 0.7624 8.395hexagon 6 195.7 191.3 4.4 0.6204 7.092heptagon 7 193.1 190.1 3.0 0.5246 5.719octagon 8 191.1 188.9 2.2 0.4551 4.834nonagon 9 188.9 187.1 1.8 0.4022 4.475decagon 10 189.0 187.4 1.6 0.3605 4.438Table 1It ’s obvious that there is negative correlation between the value of k and thenumber of edges of the original polygons. Therefore, we can use k to describe theunevenness of temperature distribution along the outer edge of a pan. That is to say, thesmaller k is, the more homogeneous the temperature distribution is.• Usability testing:We use regular hendecagon to test the availability of the model.Based on the existing figures, we get a fitting function to analyze the trend of thevalue of k. Again, we introduce a parameter to measure the value of k.Simply, we assume203v k =, (7) so that100v ≤. (8)n k v square 4 11.30 75.33pentagon 5 8.39 55.96hexagon 6 7.09 47.28heptagon 7 5.72 38.12octagon 8 4.83 32.23nonagon9 4.47 29.84 decagon 10 4.44 29.59Table 2Then, we get the functional image with two independent variables v and n.Fig 2According to the functional image above, we get the fitting function0.4631289.024.46n v e -=+.(9) When it comes to hendecagons, n=11. Then, v=26.85.As shown in the figure below, the heat conduction is within our easy access.Fig 3So, we can figure out the following result.vnActually,2026.523tvL∆==.n ∆t L k vhendecagons 11 187.1 185.8 1.3 0.3268 3.978 26.52Table 3Easily , the relative error is 1.24%.So, our model is quite well.• ConclusionHeat distribution varies with the shape of pans. To put it succinctly, heat is more evenly distributed along more edges of a single pan. That is to say, pans with more number of peripheries or more smooth peripheries are beneficial to even distribution of heat. And the difference in temperature contributes to overcooking. Through calculation, the value of k decreases with the increase of edges. With the help of the value of k, we can have a precise prediction of heat contribution.Model 2: The maximum number• Introduction of physical quantities:n: the number of edges of the original polygonsα: utility rate of space• Analysis:Due to the fact that the area of ovens and pans are constant, we can use the area occupied by pans to describe the number of pans. Further, the utility rate of space can be used to describe the number. In the following analysis, we will make use of the utility rate of space to pick out the best shape of pans. We begin with the best permutation devise of regular polygon. Having calculated each utility rate of space, we get the variation tendency.• Model Design:W e begin with the scheme which makes the best of space. Based on this knowledge, we get the following inlay scheme.Fig 4Fig 5According to the schemes, we get each utility rate of space which is showed below.n=4 n=5 n=6 n=7 n=8 n=9 n=10 n=11 shape square pentagon hexagon heptagon octagon nonagon decagon hendecagon utility rate(%)100.00 85.41 100.00 84.22 82.84 80.11 84.25 86.21Table 4Using the ratio above, we get the variation tendency.Fig 6 nutility rate of space• I nstructions:·The interior angle degrees of triangles, squares, and regular hexagon can be divided by 360, so that they all can completely fill a plane. Here, we exclude them in the graph of function.·When n is no more than 9, there is obvious negative correlation between utility rate of space and the value of n. Otherwise, there is positive correlation.·The extremum value of utility rate of space is 90.69%,which is the value for circles.• Usability testing:We pick regular dodecagon for usability testing. Below is the inlay scheme.Fig 7The space utility for dodecagon is 89.88%, which is around the predicted value. So, we’ve got a rather ideal model.• Conclusion:n≥), the When the number of edges of the original polygons is more than 9(9 space utility is gradually increasing. Circles have the extreme value of the space utility. In other words, circles waste the least area. Besides, the rate of increase is in decrease. The situation of regular polygon with many sides tends to be that of circles. In a word, circles have the highest space utility.Model 3: Rounded rectangle• Introduction of physical quantities:A: the area of the rounded rectanglel: the length of the rounded rectangleα: space utilityβ: the width to length ratio• Analysis:Based on the combination of consideration on the highest space utility of quadrangle and the even heat distribution of circles, we invent a model using rounded rectangle device for pans. It can both optimize the cooking effect and minimize the waste of space.However, rounded rectangles are exactly not the same. Firstly, we give our rounded rectangle the same width to length ratio (W/L) as that of the oven, so that least area will be wasted. Secondly, the corner radius can not be neglected as well. It’ll give the distribution of heat across the outer edge a vital influence. In order to get the best pan in shape, we must balance how much the two of the conditions weigh in the scheme.• Model Design:To begin with, we investigate regular rounded rectangle.The area224r ar a A π++= (10) S imilarly , we suppose the value of A to be 1. Then we have a function between a and r :21(4)2a r r π=+--(11) Then, the space utility is()212a r α=+ (12) And, we obtain()2114rαπ=+- (13)N ext, we investigate the relation between k and r, referring to the method in the first model. Such are the simulative result.Fig 8Specific experimental results arer a ∆t L k 0.05 0.90 209.2 199.9 9.3 0.98 9.49 0.10 0.80 203.8 196.4 7.4 0.96 7.70 0.15 0.71 199.6 193.4 6.2 0.95 6.56 0.20 0.62 195.8 190.5 5.3 0.93 5.69 0.25 0.53 193.2 189.1 4.1 0.92 4.46Table 5According to the table above, we get the relation between k and r.Fig 9So, we get the function relation3.66511.190.1013r k e -=+. (14) After this, we continue with the connection between the width to length ratioW Lβ=and heat distribution. We get the following results.krFig 10From the condition of heat distribution, we get the relation between k and βFig 11And the function relation is4.248 2.463k β=+ (15)Now we have to combine the two patterns together:3.6654.248 2.463(11.190.1013)4.248 2.463r k e β-+=++ (16)Finally, we need to take the weightiness (p) into account,(,,)()(,)(1)f r p r p k r p βαβ=⋅+⋅- (17)To standard the assessment level, we take squares as criterion.()(,)(1)(,,)111.30r p k r p f r p αββ⋅⋅-=+ (18) Then, we get the final function3.6652(,,)(1)(0.37590.2180)(1.6670.0151)1(4)r p f r p p e rββπ-=+-⋅+⋅++- (19) So we get()()3.6652224(p 1)(2.259β 1.310)14r p f e r r ππ--∂=-+-+∂⎡⎤+-⎣⎦ (20) Let 0f r∂=∂,we can get the function (,)r p β. Easily,0r p∂<∂ and 0r β∂>∂ (21) So we can come to the conclusion that the value of r decreases with the increase of p. Similarly, the value of r increases with the increase of β.• Conclusion:Model 3 combines all of our former analysis, and gives the final result. According to the weightiness of either of the two conditions, we can confirm the final best shape for a pan.• References:[1] Xingming Qi. Matlab 7.0. Beijing: Posts & Telecom Press, 2009: 27-32[2] Jiancheng Chen, Xinsheng Pang. Statistical data analysis theory and method. Beijing: China's Forestry Press, 2006: 34-67[3] Zhengshen Fan. Mathematical modeling technology. Beijing: China Water Conservancy Press, 2003: 44-54Own It NowYahoo! Ladies and gentlemen, please just have a look at what a pan we have created-the Ultimate Brownie Pan.Can you imagine that just by means of this small invention, you can get away of annoying overcookedchocolate Brownie Cake? Pardon me, I don’t want to surprise you, but I must tell you , our potential customers, that we’ve made it! Believing that it’s nothing more than a common pan, some people may think that it’s not so difficult to create such a pan. To be honest, it’s not just a simple pan as usual, and it takes a lot of work. Now let me show you how great it is. Here we go!Believing that it’s nothing more than a common pan, some people may think that it’s not so difficult to create such a pan. To be honest, it’s not just a simple pan as usual, and it takes a lot of work. Now let me show you how great it is. Here we go!Maybe nobody will deny this: when baked in arectangular pan, cakes get easily overcooked at thecorners (and to a lesser extent at the edges).But neverwill this happen in a round pan. However, round pansare not the best in respects of saving finite space in anoven. How to solve this problem? This is the key pointthat our work focuses on.Up to now, as you know, there have been two factors determining the quality of apan -- the distribution of heat across the outer edge of and thespace occupied in an oven. Unfortunately, they cannot beachieved at the same time. Time calls for a perfect pan, andthen our Ultimate Brownie Pan comes into existence. TheUltimate Brownie Pan has an outstandingadvantage--optimizing a combination of the two conditions. As you can see, it’s so cute. And when you really begin to use it, you’ll find yourself really enjoy being with it. By using this kind of pan, you can use four pans in the meanwhile. That is to say you can bake more cakes at one time.So you can see that our Ultimate Brownie Pan will certainly be able to solve the two big problems disturbing so many people. And so it will! Feel good? So what are you waiting for? Own it now!。
数模美国赛总结部分英文
数模美国赛总结部分英文第一篇:数模美国赛总结部分英文Conclusions1、As our team set out to come up with a strategy on what would be the most efficient way to 我们提出了一种最有效的方法去解决……2、The first aspect that we took into major consideration was…….Other important findings through research made it apparent that the standard 首先我们考虑到……,其他重要的是我们通过研究使4、We have used mathematical modeling in a……to analyze some of the factors associated with such an activity。
为了分析这类问题的一些因素,我们运用数学模型……5、This “cannon problem” has been used in many forms in many differential equations courses in the Department of Mathematical Sciences for several years.这些年这些问题已经以不同的微分方程形式运用于自然科学部门。
6、In conclusion our team is very certain that the methods we came up with in 总之,我们很确定我们提出的方法7、We already know how well our results worked for…… 我们已经知道我们结果对……8、Now that the problem areas have been defined, we offer some ways to reduce the effect of these problems.既然已经定义了结果,我们提出一些方法减少对问题的影响。
美赛数学建模比赛论文模板
The Keep-Right-Except-To-Pass RuleSummaryAs for the first question, it provides a traffic rule of keep right except to pass, requiring us to verify its effectiveness. Firstly, we define one kind of traffic rule different from the rule of the keep right in order to solve the problem clearly; then, we build a Cellular automaton model and a Nasch model by collecting massive data; next, we make full use of the numerical simulation according to several influence factors of traffic flow; At last, by lots of analysis of graph we obtain, we indicate a conclusion as follow: when vehicle density is lower than 0.15, the rule of lane speed control is more effective in terms of the factor of safe in the light traffic; when vehicle density is greater than 0.15, so the rule of keep right except passing is more effective In the heavy traffic.As for the second question, it requires us to testify that whether the conclusion we obtain in the first question is the same apply to the keep left rule. First of all, we build a stochastic multi-lane traffic model; from the view of the vehicle flow stress, we propose that the probability of moving to the right is 0.7and to the left otherwise by making full use of the Bernoulli process from the view of the ping-pong effect, the conclusion is that the choice of the changing lane is random. On the whole, the fundamental reason is the formation of the driving habit, so the conclusion is effective under the rule of keep left.As for the third question, it requires us to demonstrate the effectiveness of the result advised in the first question under the intelligent vehicle control system. Firstly, taking the speed limits into consideration, we build a microscopic traffic simulator model for traffic simulation purposes. Then, we implement a METANET model for prediction state with the use of the MPC traffic controller. Afterwards, we certify that the dynamic speed control measure can improve the traffic flow .Lastly neglecting the safe factor, combining the rule of keep right with the rule of dynamical speed control is the best solution to accelerate the traffic flow overall.Key words:Cellular automaton model Bernoulli process Microscopic traffic simulator model The MPC traffic controlContentContent (2)1. Introduction (3)2. Analysis of the problem (3)3. Assumption (3)4. Symbol Definition (3)5. Models (4)5.1 Building of the Cellular automaton model (4)5.1.1 Verify the effectiveness of the keep right except to pass rule (4)5.1.2 Numerical simulation results and discussion (5)5.1.3 Conclusion (8)5.2 The solving of second question (8)5.2.1 The building of the stochastic multi-lane traffic model (9)5.2.2 Conclusion (9)5.3 Taking the an intelligent vehicle system into a account (9)5.3.1 Introduction of the Intelligent Vehicle Highway Systems (9)5.3.2 Control problem (9)5.3.3 Results and analysis (9)5.3.4 The comprehensive analysis of the result (10)6. Improvement of the model (11)6.1 strength and weakness (11)6.1.1 Strength (11)6.1.2 Weakness (11)6.2 Improvement of the model (11)7. Reference (13)1. IntroductionAs is known to all, it’s essential for us to drive automobiles, thus the driving rules is crucial important. In many countries like USA, China, drivers obey the rules which called “The Keep-Right-Except-To-Pass (that is, when driving automobiles, the rule requires drivers to drive in the right-most unless theyare passing another vehicle)”.2. Analysis of the problemFor the first question, we decide to use the Cellular automaton to build models,then analyze the performance of this rule in light and heavy traffic. Firstly,we mainly use the vehicle density to distinguish the light and heavy traffic; secondly, we consider the traffic flow and safe as the represent variable which denotes the light or heavy traffic; thirdly, we build and analyze a Cellular automaton model; finally, we judge the rule through two different driving rules,and then draw conclusions.3. AssumptionIn order to streamline our model we have made several key assumptions●The highway of double row three lanes that we study can representmulti-lane freeways.●The data that we refer to has certain representativeness and descriptive●Operation condition of the highway not be influenced by blizzard oraccidental factors●Ignore the driver's own abnormal factors, such as drunk driving andfatigue driving●The operation form of highway intelligent system that our analysis canreflect intelligent system●In the intelligent vehicle system, the result of the sampling data hashigh accuracy.4. Symbol Definitioni The number of vehiclest The time5. ModelsBy analyzing the problem, we decided to propose a solution with building a cellular automaton model.5.1 Building of the Cellular automaton modelThanks to its simple rules and convenience for computer simulation, cellular automaton model has been widely used in the study of traffic flow in recent years. Let )(t x i be the position of vehicle i at time t , )(t v i be the speed of vehicle i at time t , p be the random slowing down probability, and R be the proportion of trucks and buses, the distance between vehicle i and the front vehicle at time t is:1)()(1--=-t x t x gap i i i , if the front vehicle is a small vehicle.3)()(1--=-t x t x gap i i i , if the front vehicle is a truck or bus.5.1.1 Verify the effectiveness of the keep right except to pass ruleIn addition, according to the keep right except to pass rule, we define a new rule called: Control rules based on lane speed. The concrete explanation of the new rule as follow:There is no special passing lane under this rule. The speed of the first lane (the far left lane) is 120–100km/h (including 100 km/h);the speed of the second lane (the middle lane) is 100–80km8/h (including80km/h);the speed of the third lane (the far right lane) is below 80km/ h. The speeds of lanes decrease from left to right.● Lane changing rules based lane speed controlIf vehicle on the high-speed lane meets control v v <, ),1)(min()(max v t v t gap i f i +≥, safe b i gap t gap ≥)(, the vehicle will turn into the adjacent right lane, and the speed of the vehicle after lane changing remains unchanged, where control v is the minimum speed of the corresponding lane.● The application of the Nasch model evolutionLet d P be the lane changing probability (taking into account the actual situation that some drivers like driving in a certain lane, and will not takethe initiative to change lanes), )(t gap f i indicates the distance between the vehicle and the nearest front vehicle, )(t gap b i indicates the distance between the vehicle and the nearest following vehicle. In this article, we assume that the minimum safe distance gap safe of lane changing equals to the maximum speed of the following vehicle in the adjacent lanes.Lane changing rules based on keeping right except to passIn general, traffic flow going through a passing zone (Fig. 5.1.1) involves three processes: the diverging process (one traffic flow diverging into two flows), interacting process (interacting between the two flows), and merging process (the two flows merging into one) [4].Fig.5.1.1 Control plan of overtaking process(1) If vehicle on the first lane (passing lane) meets ),1)(min()(max v t v t gap i f i +≥ and safe b i gap t gap ≥)(, the vehicle will turn into the second lane, the speed of the vehicle after lane changing remains unchanged.5.1.2 Numerical simulation results and discussionIn order to facilitate the subsequent discussions, we define the space occupation rate as L N N p truck CAR ⨯⨯+=3/)3(, where CAR N indicates the number ofsmall vehicles on the driveway,truck N indicates the number of trucks and buses on the driveway, and L indicates the total length of the road. The vehicle flow volume Q is the number of vehicles passing a fixed point per unit time,T N Q T /=, where T N is the number of vehicles observed in time duration T .The average speed ∑∑⨯=T it i a v T N V 11)/1(, t i v is the speed of vehicle i at time t . Take overtaking ratio f p as the evaluation indicator of the safety of traffic flow, which is the ratio of the total number of overtaking and the number of vehicles observed. After 20,000 evolution steps, and averaging the last 2000 steps based on time, we have obtained the following experimental results. In order to eliminate the effect of randomicity, we take the systemic average of 20 samples [5].Overtaking ratio of different control rule conditionsBecause different control conditions of road will produce different overtaking ratio, so we first observe relationships among vehicle density, proportion of large vehicles and overtaking ratio under different control conditions.(a) Based on passing lane control (b) Based on speed control Fig.5.1.3Fig.5.1.3 Relationships among vehicle density, proportion of large vehicles and overtaking ratio under different control conditions.It can be seen from Fig. 5.1.3:(1) when the vehicle density is less than 0.05, the overtaking ratio will continue to rise with the increase of vehicle density; when the vehicle density is larger than 0.05, the overtaking ratio will decrease with the increase of vehicle density; when density is greater than 0.12, due to the crowding, it willbecome difficult to overtake, so the overtaking ratio is almost 0.(2) when the proportion of large vehicles is less than 0.5, the overtaking ratio will rise with the increase of large vehicles; when the proportion of large vehicles is about 0.5, the overtaking ratio will reach its peak value; when the proportion of large vehicles is larger than 0.5, the overtaking ratio will decrease with the increase of large vehicles, especially under lane-based control condition s the decline is very clear.● Concrete impact of under different control rules on overtaking ratioFig.5.1.4Fig.5.1.4 Relationships among vehicle density, proportion of large vehicles and overtaking ratio under different control conditions. (Figures in left-hand indicate the passing lane control, figures in right-hand indicate the speed control. 1f P is the overtaking ratio of small vehicles over large vehicles, 2f P is the overtaking ratio of small vehicles over small vehicles, 3f P is the overtaking ratio of large vehicles over small vehicles, 4f P is the overtaking ratio of large vehicles over large vehicles.). It can be seen from Fig. 5.1.4:(1) The overtaking ratio of small vehicles over large vehicles under passing lane control is much higher than that under speed control condition, which is because, under passing lane control condition, high-speed small vehicles have to surpass low-speed large vehicles by the passing lane, while under speed control condition, small vehicles are designed to travel on the high-speed lane, there is no low- speed vehicle in front, thus there is no need to overtake. ● Impact of different control rules on vehicle speedFig. 5.1.5 Relationships among vehicle density, proportion of large vehicles and average speed under different control conditions. (Figures in left-hand indicates passing lane control, figures in right-hand indicates speed control.a X is the average speed of all the vehicles, 1a X is the average speed of all the small vehicles, 2a X is the average speed of all the buses and trucks.).It can be seen from Fig. 5.1.5:(1) The average speed will reduce with the increase of vehicle density and proportion of large vehicles.(2) When vehicle density is less than 0.15,a X ,1a X and 2a X are almost the same under both control conditions.Effect of different control conditions on traffic flowFig.5.1.6Fig. 5.1.6 Relationships among vehicle density, proportion of large vehicles and traffic flow under different control conditions. (Figure a1 indicates passing lane control, figure a2 indicates speed control, and figure b indicates the traffic flow difference between the two conditions.It can be seen from Fig. 5.1.6:(1) When vehicle density is lower than 0.15 and the proportion of large vehicles is from 0.4 to 1, the traffic flow of the two control conditions are basically the same.(2) Except that, the traffic flow under passing lane control condition is slightly larger than that of speed control condition.5.1.3 ConclusionIn this paper, we have established three-lane model of different control conditions, studied the overtaking ratio, speed and traffic flow under different control conditions, vehicle density and proportion of large vehicles.5.2 The solving of second question5.2.1 The building of the stochastic multi-lane traffic model5.2.2 ConclusionOn one hand, from the analysis of the model, in the case the stress is positive, we also consider the jam situation while making the decision. More specifically, if a driver is in a jam situation, applying ))(,2(x P B R results with a tendency of moving to the right lane for this driver. However in reality, drivers tend to find an emptier lane in a jam situation. For this reason, we apply a Bernoulli process )7.0,2(B where the probability of moving to the right is 0.7and to the left otherwise, and the conclusion is under the rule of keep left except to pass, So, the fundamental reason is the formation of the driving habit.5.3 Taking the an intelligent vehicle system into a accountFor the third question, if vehicle transportation on the same roadway was fully under the control of an intelligent system, we make some improvements for the solution proposed by us to perfect the performance of the freeway by lots of analysis.5.3.1 Introduction of the Intelligent Vehicle Highway SystemsWe will use the microscopic traffic simulator model for traffic simulation purposes. The MPC traffic controller that is implemented in the Matlab needs a traffic model to predict the states when the speed limits are applied in Fig.5.3.1. We implement a METANET model for prediction purpose[14].5.3.2 Control problemAs a constraint, the dynamic speed limits are given a maximum and minimum allowed value. The upper bound for the speed limits is 120 km/h, and the lower bound value is 40 km/h. For the calculation of the optimal control values, all speed limits are constrained to this range. When the optimal values are found, they are rounded to a multiplicity of 10 km/h, since this is more clear for human drivers, and also technically feasible without large investments.5.3.3 Results and analysisWhen the density is high, it is more difficult to control the traffic, since the mean speed might already be below the control speed. Therefore, simulations are done using densities at which the shock wave can dissolve without using control, and at densities where the shock wave remains. For each scenario, five simulations for three different cases are done, each with a duration of one hour. The results of the simulations are reported in Table 5.1, 5.2, 5.3.●Enforced speed limits●Intelligent speed adaptationFor the ISA scenario, the desired free-flow speed is about 100% of the speed limit. The desired free-flow speed is modeled as a Gaussian distribution, with a mean value of 100% of the speed limit, and a standard deviation of 5% of the speed limit. Based on this percentage, the influence of the dynamic speed limits is expected to be good[19].5.3.4 The comprehensive analysis of the resultFrom the analysis above, we indicate that adopting the intelligent speed control system can effectively decrease the travel times under the control of an intelligent system, in other words, the measures of dynamic speed control can improve the traffic flow.Evidently, under the intelligent speed control system, the effect of the dynamic speed control measure is better than that under the lane speed control mentioned in the first problem. Because of the application of the intelligent speed control system, it can provide the optimal speed limit in time. In addition, it can guarantee the safe condition with all kinds of detection device and the sensor under the intelligent speed system.On the whole, taking all the analysis from the first problem to the end into a account, when it is in light traffic, we can neglect the factor of safe with the help of the intelligent speed control system.Thus, under the state of the light traffic, we propose a new conclusion different from that in the first problem: the rule of keep right except to pass is more effective than that of lane speed control.And when it is in the heavy traffic, for sparing no effort to improve the operation efficiency of the freeway, we combine the dynamical speed control measure with the rule of keep right except to pass, drawing a conclusion that the application of the dynamical speed control can improve the performance of the freeway.What we should highlight is that we can make some different speed limit as for different section of road or different size of vehicle with the application of the Intelligent Vehicle Highway Systems.In fact, that how the freeway traffic operate is extremely complex, thereby,with the application of the Intelligent Vehicle Highway Systems, by adjusting our solution originally, we make it still effective to freeway traffic.6. Improvement of the model6.1 strength and weakness6.1.1 Strength●it is easy for computer simulating and can be modified flexibly to consideractual traffic conditions ,moreover a large number of images make the model more visual.●The result is effectively achieved all of the goals we set initially, meantimethe conclusion is more persuasive because of we used the Bernoulli equation.●We can get more accurate result as we apply Matlab.6.1.2 Weakness●The relationship between traffic flow and safety is not comprehensivelyanalysis.●Due to there are many traffic factors, we are only studied some of the factors,thus our model need further improved.6.2 Improvement of the modelWhile we compare models under two kinds of traffic rules, thereby we come to the efficiency of driving on the right to improve traffic flow in some circumstance. Due to the rules of comparing is too less, the conclusion is inadequate. In order to improve the accuracy, We further put forward a kinds of traffic rules: speed limit on different type of cars.The possibility of happening traffic accident for some vehicles is larger, and it also brings hidden safe troubles. So we need to consider separately about different or specific vehicle types from the angle of the speed limiting in order to reduce the occurrence of traffic accidents, the highway speed limit signs is in Fig.6.1.Fig .6.1Advantages of the improving model are that it is useful to improve the running condition safety of specific type of vehicle while considering the difference of different types of vehicles. However, we found that the rules may be reduce the road traffic flow through the analysis. In the implementation it should be at the 85V speed of each model as the main reference basis. In recent years, the85V of some researchers for the typical countries from Table 6.1[ 21]:Author Country ModelOttesen and Krammes2000 AmericaLC DC L DC V C ⨯---=01.0012.057.144.10285Andueza2000Venezuela ].[308.9486.7)/894()/2795(25.9885curve horizontal L DC Ra R V T++--=].[tan 819.27)/3032(69.10085gent L R V T +-= Jessen2001America][00239.0614.0279.080.86185LSD ADT G V V P --+=][00212.0432.010.7285NLSD ADT V V P -+=Donnell2001 America22)2(8500724.040.10140.04.78T L G R V --+=22)3(85008369.048.10176.01.75T L G R V --+=22)4(8500810.069.10176.05.74T L G R V --+=22)5(8500934.008.21.83T L G V --=BucchiA.BiasuzziK. And SimoneA.2005Italy DCV 124.0164.6685-= DCE V 4.046.3366.5585--=2855.035.1119.0745.65DC E DC V ---=FitzpatrickAmericaKV 98.17507.11185-= Meanwhile, there are other vehicles driving rules such as speed limit in adverseweather conditions. This rule can improve the safety factor of the vehicle to some extent. At the same time, it limits the speed at the different levels.7. Reference[1] M. Rickert, K. Nagel, M. Schreckenberg, A. Latour, Two lane trafficsimulations using cellular automata, Physica A 231 (1996) 534–550.[20] J.T. Fokkema, Lakshmi Dhevi, Tamil Nadu Traffi c Management and Control inIntelligent Vehicle Highway Systems,18(2009).[21] Yang Li, New Variable Speed Control Approach for Freeway. (2011) 1-66。
国际数学建模竞赛优秀论文英文模板
T eam Control NumberFor office use only38253For office use onlyT1F1 T2 F2 T3 Problem ChosenF3 T4 AF42015 Mathematical Contest in Modeling (MCM) Summary SheetEradicating EbolaAbstractThis paper aim at the problem which is to eradicate or inhibit the spread of Ebola, we start from three sub problem, that is: the demand for drugs, drugs delivery route and the car allocation. And establish the spreading model of Ebola, optimization model of drugs transport system and car allocation model respectively by using the differential equation method and simulated annealing algorithm. Finally, do the model extension and sensitively analysis.The first issue, figure out the demand for drugs in different regions. First, establish Ebola spread SIR model. And in the time of t, using differential equation to find the proportion of infected i (t )=1/Qln(s /s 0), then get the demand for drugs in this region H =kNi (t ).The second issue, how to find the shortest route to deliver drugs. Use Guinea, Liberia and Sierra Leone whose infection is relatively serious as the investigation object. According to the Binary classification to find the rules of iteration, which is useful to find out the nearest city to any other cities, and the result is Bombali. So we put it as the center of distribution. Then use simulated annealing algorithm and put forward two kinds of schemes for shortest path by the different ways in drugs delivery.Schemes one, asynchronous mode: put three countries as a regional countries. Using the TSP method to solve the shortest route is 54.8486, which is start from Bombali to different regions.Schemes two, synchronization method: dividing the whole area into two areas around A and B by use the longitude coordinates of Bombali as a standard. Respectively solve the shortest route is 10.1739 and 29.8075, which is start from Bombali and pass all cities in A and B, and solve the sum of the two route is 39.9814.According to the different drug delivery requirements (such as the shortest distance or transmission synchronization), can choose the asynchronous or synchronous way.The third issue, how to allocate the number of cars reasonable, and obtain the suitable speed of drug production. According to the predict number which obtained in model one, get the vehicles and drug distribution table (the results are shown Table 4.6 and Table 4.7). and obtain the speed V of drugs production is:10(ln ln )ni ii i i i k N V Q T s s =≥-∑At last, the minimum speed of drugs production is 56.14 agent/day to meet the need in three countries by calculating.Finally, use the SIR model which was optimized by using vaccination cycle control. By doing this we can know the number of susceptible and infections in crowd under the condition of the pulse vaccination significantly lower faster than without pulse vaccination. Thus, using pulse vaccination can effectively control the spread of Ebola.Keywords: SIR model; Simulated Annealing Algorithm; Pulse vaccination; EbolaEradicating EbolaContent1 Restatement of the Problem (1)1.1 Introduction (1)1.2 The Problem (1)2 General Assumptions (1)3 Variables and Abbreviations (2)4 Modeling and Solving (2)4.1 Model I (2)4.1.1 Analysis of the Problem (2)4.1.2 Model Design (2)4.2 Model II (6)4.2.1 Analysis of the Problem (6)4.2.2 Model Design (6)4.3 Model Ⅲ (8)4.3.1 Analysis of the Problem (8)4.3.2 Model Design (9)4.4 Extent our models (11)5 Sensitivity Analysis (14)5.1 Effect of Daily Contact Rate (14)5.2 Effect of inoculation rate (14)6 Model Analysis (15)6.1 The Advantages of Model (15)6.2 The Disadvantages of Model (15)7 Non-technical Explanation (16)References (18)1Restatement of the Problem1.1IntroductionEbola virus is a very rare kind of virus. It can cause humans and primates produce Ebola hemorrhagic fever virus, and has a high mortality rate. The largest and most complex Ebola outbreak appeared in the West African country in 2014. This outbreak occurred in guinea first, then through various ways to countries such as Sierra Leone, Liberia, Nigeria and Senegal. The number of cases and deaths, which occurred in this outbreak, is more than the sum of all the other epidemic. And outbreak continued to spread between countries. On August 8, 2014, the general-director of the world health organization announced the outbreak of public health emergency of international concern.In this paper, a realistic and reasonable mathematic model, which considers several aspects such as vaccine manufacturing and drug delivery, has been built.Then optimizing the model to eliminate or suppress the harm done by the Ebola virus.1.2The ProblemEstablishing a model to solve the spread of the disease, amount of drugs needed, possible feasible transportation system, transporting position, the speed of a vaccine or drug manufacturing and any other key factor. Thus, we decompose the problem into three sub-problem, modeling and finding the optimization method to face the Ebola virus.♦Building a model, which can solve the spread of the disease and the demand for drugs.♦Building a model to find the best solution.♦Using the goal programming to solve the problems of production and distribution and optimization of other factors..2General AssumptionsTo simplify the problem, we make the following basic assumptions, each of which is properly justified.♦Our assumptions is reasonable and effective.♦Vehicles only run in the path which we have simulated♦This assumption greatly simplify our model and allow us to focus on the shortest path.♦We consider the model that are enclosed.♦People who recovered, will not infected again, and exit the transmission system3Variables and AbbreviationsThe variables and abbreviations used in this paper are listed in Table 3.1.Table 3.1 Assuming variableSymbol DefinitionS the number of susceptible peopleI the number of infected personsR the number of recoveredT a vaccine or drug production cycleH the amount of drugs needed by RegionA a cycle of a vaccine or drug productionL drug reserve area to the shortest path to all affected areasV speed of vaccine or pharmaceutical productionV’vehicle speedλrate of patient contact per dayμday cure rate per dayαn rights of those infected regions weight4Modeling and Solving4.1Model I4.1.1Analysis of the ProblemAccording to the literature that different types of virus has its own different propagation process characteristics, we do not analyze the spread of viruses from a medical point of view, but from the general to analyze the propagation mechanism. So we have to analyze the spread of the Ebola virus and the requirements of drugs through the SIR[1] model.4.1.2Model DesignIn the dynamics of infectious diseases, the main follow Kermack and McKendrick SIR epidemic model which the dynamics of the established method in 1927. SIR model until now is still widely used and continue to develop. SIR model of the total population is divided into the following three categories: susceptibles, the ratio of the number denoted by s(t), at time t is not likely to be infected, but the number of infectious diseases such proportion of the total; infectives, the ratio of the number denoted by i(t), at time t become a patient has been infected and has the proportion of the total number of contagious; recovered, the ratio of the number denoted by r(t), expressed the number of those infected at time t removed from the total proportion (ie, it has quit infected systems). Assuming a total population of N(t), then there are N(t) = s(t) + i(t) + r(t).SIR model is established based on the following two assumptions:In the investigated region-wide spread of the disease is not considered during the births, deaths, population mobility and other dynamic factors. Total population N(t) remainunchanged, the population remains a constant N.The patients’ contact rate (the average number of effective contacts per patient per day) is constant λ, the cure rate (patients be cured proportion of the total number of patients a day) is a constant μ, clearly the average infectious period of 1/μ, infectious period contact number for Q = λ/μ.In the model based on the assumption that we develop a susceptible person to recover fromthe sick person in the process, such as Figure 4.1:Figure 4.1 SIR the model flowchartSIR basis differential equation model can be expressed as:disi i dt dssi dt dri dt λμλμ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩(5.1)But it can see that s(t), i(t) is more difficult to solve, so we use the numerical calculations to esti mate general variation. Assuming λ = 1, μ = 0.3, i(0) = 0.02, s(0) = 0.98 (at the initial time), then we borrow MATLAB software programming to get results. And according to Table 4.1 analyzed i(t), s(t) of the general variation.Figure4.2 s(t),i(t)The patient scale map Figure 4.3 i ~s Phase track diagramFrom Table 4.1 and Figure4.2, we can see that i(t) increased from the initial value to about t = 7(maximum), and then began to decrease.Based on the calculating the numerical and graphical observation, use of phase trajectories discussed i(t), s(t) in nature. Here i ~ s plane is phase plane , the domain (s, i)∈D in phase plane for:{}(,)0,0,1D s i s i s i =≥≥+≤(5.2)According to equation (5.1) and con tact number of the infectious period Q = λ / μ, we can eliminate dt, get:0011(1)(1)i s i s s sdi ds di ds Q Q =-⋅⇒=-⋅⎰⎰(5.3)Calculated using integral characteristics:0001()()ln si t s i s Q s =+-=(5.4)Curve in the domain of definition, equation(5.3) is a phase trajectory.According to equation(5.1) and equation(5.3), have to analyze the changes. If and only if the patient i(t) for some period of growth, it think that in the spread of infectious diseases , then 1/Q is a threshold. If s 0> 1/Q, infectious diseases will spread , and reduce infectious period the number of contacts with Q, namely raising the threshold 1/Q and will make s 0≤1/Q, then it will not spread diseases.And we note that Q = λ/μ in the formula, the higher the level of people's health, the smaller patients’ contact rate; the higher the level of medical, the cure rate is larger and the smaller Q. Therefore, to improve the level of hygiene and medical help to control the spread of infectious diseases. Of course, can also herd immunity and prevention, to reduce s 0.In the process, we analyzed the spread of the disease, then we are going to discuss the amount of medication needed.According to equation(5.4), you can get i(t) values, we can calculate the number of people infected with the disease who I was:()()I i t N t =⋅(5.5)And the amount of drug required, we can be expressed as: H kI =(k is a constant, w> 0)If k> 0, it indicates that the number of infections is still rising, measures to control the virus also needs to be strengthened, and the amount of drugs is a growing demand mode until fluctuation; if k≤0, it means reducing the number of people infected, the virus the measure is better, and the dose of demand is also gradually reduced.According to the data provided by the WHO, we can get the number of infections various,which areas before January 30, 2015. see Table 4.2:Table 4.2 As the number of infections January 30, 2015Region Number Proportion Region Number ProportionNzerekore 2 0.0045 Koinadugu 1 0.0022Macenta 1 0.0022 Kambia 25 0.0558Kissdougou 1 0.0022 Western Urban 105 0.2344Kankan 1 0.0022 Western Rural 64 0.1429Faranah 4 0.0089 Mali 1 0.0022Kono 28 0.0625 Boffa 4 0.0089Bo 6 0.0134 Dubreka 11 0.0246Kenema 2 0.0045 Kindia 2 0.0045Moyamba 8 0.0179 Coyah 11 0.0246Port Loko 78 0.1741 Forecariah 24 0.0536Tonkolili 18 0.0402 Conakry 20 0.0446Bombal 18 0.0402 Montserrado 13 0.029Based on the latest data Ebola virus infections in January 2015, and the regional population and the associated parameter value Ebola assumptions, the model has been solved to a time t proportion of those infected i(t) = 1/Q ln (s/s0), using MATLAB software, we have predict the number of infections each region in February, then get a weight value of those infected forecast for each region in February 2015, as can be show Table 4.3.Table 4.3 As the number of infections February 28, 2015Region Number Proportion Region Number ProportionNzerekore 1 0.00233 Koinadugu 8 0.01864Macenta 3 0.00700 Kambia 24 0.05594Kissdougou 2 0.00470 Western Urban 69 0.16083Kankan 1 0.00233 Western Rural 78 0.18182Faranah 2 0.00470 Mali 4 0.00932Kono 22 0.05130 Boffa 2 0.00470Bo 5 0.01166 Dubreka 10 0.02331 Kenema 5 0.01166 Kindia 1 0.00233Moyamba 1 0.00233 Coyah 9 0.020979Port Loko 100 0.23310 Forecariah 20 0.046620Tonkolili 12 0.02797 Conakry 18 0.041968Bombal 23 0.05361 Montserrado 9 0.020979From Table 4.2 can be known, According to the number of cases of expression,we made a rough prediction that Ebola outbreak in February. it’s provide a reference for the production of vaccines and drugs. Indeed, it have provide a theoretical basis for the relevant departments which take appropriate precautions.4.2Model II4.2.1Analysis of the ProblemBased on the model I, we obtained the equation expression of disease transmission speed and number of drugs. However, in addition to these two factors, we should also consider how to transport drugs to the demanded area quickly and effectively. Thus, it is very important to develop a good transportation system, which can greatly improve the efficiency of drug transport and reduce the cost.4.2.2Model DesignBy searching on Wikipedia, we obtain cities which have erupted Ebola, and the latitude and longitude coordinates[2]. The results are shown in Table 4.4We get the best point, which is Bombali by programming. So, we assume it as the city which produces drugs.Because these cities are breaking points, both as a place of delivery. In order to find out the optimal path, we make following assumptions:♦The demand for each city is same♦The quantity of vehicles can meet the demand of transport♦Vehicles only run in the path which we have simulated4.2.2.1SA modelSA[3] is a random algorithm which is established by imitating metal annealing principle. It can be implemented in large rough search and local fine search by controlling the changes of temperature.Basic principle of SA:♦First, generated initial solution x0 randomly, and make it as the current best solution xopt. Then calculate the value of objective function f (xopt).♦Second, make a random fluctuation on the current solution. Then calculate the value of the new objective function f (x).♦Calculating and judgingΔf = f(x) - f(xopt).IfΔf >0, accept it as the current best solution;Otherwise, accept it in the form of probability P.The calculation method of P is:10=exp[(()())]0opt i f P f x f x f ≤⎧⎨-->⎩ (5.6)In this chapter, the SA algorithm is extended by selecting Bombali as a starting point to solve the optimal path. In the extended SA algorithm.we exploits the exponential cooling strategies and controls the change of temperature, namely10k i T Apha T -=⨯(5.7)Where T i is current controlled temperature, T 0 is the initial temperature, Apha is temperature reduction coefficient, k is the iterations.Solving the initial temperature 0T by means of random iterative and setting Apha = 0.9, the results are shown in Figure 4.4Longitude coordinates of citiesP a r a l l e l v a l u e o f c i t i e sthe total distance:54.8486Figure 4.4 Path graphThe value of the shortest total distance y is 54.8486 The shortest path is presented as follow:Bombali →Tonkolili →Nzerekore →Moyamba →Kambia →Port Loko →Coyah →Mali →Bo →Kindia →Western Urban →Kono →Dubreka →Faranah →Western Rural →Kenema →Kiss-dou gou →Kankan →Forecariah →Boffa →Macenta →Conakry →Montserrado →Koinadugu → Bombali4.2.2.2 SA model refinementSA model got all the shortest path problem of the city, but transport route is single and the efficiency is not high. So we use the longitude coordinates of Bombali as the basis to divide these cities into two parts. Urban classification is shown inTable 4.5, then simulate respectively.Table 4.5 The divided city distributionClassify CitiesLeft half Conakry, Moyamba, Port Loko, Kambia, Western Urban, Western Rural, Boffa, Dubreka, Kindia, Coyah, Forecariah, Bombali.Right halfMontserrado, Nzerekore, Macenta, Kissdougou, Kankan, Faranah, Kono, Bo, Kenema, Tonkolili, Koinadugu, Mali, Bombali .Bombali appears twice, because it is the starting point.After the algorithm simulation result is shown in Figure4.5 and Figure 4.6:Longitude coordinates of citiesP a r a l l e l v a l u e o f c i t i e sLongitude coordinates of citiesP a r a l l e l v a l u e o f c i t i e sthe total distance:28.2716Figure4.5 Left half Figure 4.6 Right halfThe path of left half :Bombali →Port Loko →Boffa →Forecariah →Dubreka →Moyamba →Kindia →Coyah →West e-rnRural →Conakry →Kambia →Western Urban →Bombali The path of right half :Bombali →Kenema →Faranah →Mali →Nzerekore →Bo →Kissdougou →Kankan →Koinadu gu →Kono →Tonkolili →Montserrado →Macenta →Bombali The total distance is:L=10.1739+29.8075=39.9814.It is smaller than the answer before, the transport time is reduced and the efficiency of transportation is improved.4.3 Model Ⅲ4.3.1 Analysis of the ProblemAccording to the above analysis of the first model and the second model, we can learn something about the spreading of Ebola, then finding the shortest path to transport medicines or vaccines. On the basis of the spreading of Ebola, we can know the numbers of illness with Ebola, then, get the quantity demanded of illness. According to the city distribution of infected zone, we find the shortest path to transport medicines, as well as ensure the shortest transporting route.After comprehending the demand for vaccine in infected zones and its the shortest transporting route, the next problem we think about is how to transport the vaccines or drugs from storage zone to infected zone using the maximum efficiency. Besides, we also need to consider whether the production speed can keep up with the demand for drugs and delivery speed. That is to say, the quantity of medicine production must be greater than or equal to the demand for drugs. Only in this method can we give sufficient vaccines or drugs to infected zones by using the fastest speed to control the spread of Ebola. 4.3.2 Model DesignIn the second model, we consider the shortest path and find the shortest path to all infected zones, then get its occurrence of distance. Getting the basic solve of the first model and the second model, the drugs or vaccines transport system can allot cars for infected zones judging by the weight of the numbers of infections in different cities. hypothesis :♦ All allocation cars are the same vehicle size, moreover, have sufficient cars. That is to say, the quantity of vaccines or drugs in all cars is equal.♦ All delivery routes will not block up, and the cars will not break down. That is to say, all allocation cars can reach the infected area on time.♦ In order to avoid Ebola propagate to other place, this area should be isolated immediately once this area burst Ebola.♦ The car allocation in different regions can match up with the pharmaceutical demand in different regions. That is to say, they are positively related♦ By looking for date, we can get the number of infections in different regions :I1,I2,I3….In, then get the weight of the number of infections in different regions:11,2,3nn nnn I n Iα===∑(5.8)The pharmaceutical demand in different regions is:1,2,3n n H C n α==(5.9)C is the total quantity of car ,αn is the weight of the number of infections in different regions.According to the hypothesis, we can know that the pharmaceutical demand in each infected zone is directly related to the car allocation, so, we allot all cars in the light of weight. That is to say, the bigger weight can get more cars, the smaller weight will get less cars. Thus, we not only can save time, but also cost.According to the above analysis, we can know that the model also should meet the follow conditions:123'n A H H H H L T V ≥++++⎧⎪⎨≤⎪⎩(5.10)H n is the pharmaceutical demand in different regions, V 'is vehicle speed, T is theproduction cycle of vaccines or drugs. According to the model I solving scheme, we can get the proportion of infected is i(t)=1/Qln(s/s 0)in t time, At the same time the region's demand for drugs is H=kNi(t), Drug production speed need to meet :10(ln ln )ni ii i i i k N V QT s s =≥-∑(5.11)We seek the latest date information from WTO official website [4], and get the new casedistribution graphs of Guinea 、Sierra Leone 、Liberia .You can see on Figure 4.7Figure 4.7 Geographical distribution of new and total confirmed casesWe can get the number of infections about 24 cities in infected zones from the diagram [5], then figure out the weight of infection numbers in different regions and clear up these dates. You can see on the Table 4.1.According to the model I, it have forecast the number of infections in 2015 February, and calculate the number of infections in various regions of the weight, the allocation of all transport vehicles, and have meet the demand for drugs in February at epidemic area. so, according to the predicted values, We can get the drug distribution table show in Table 4.6 and vehicle allocation table show in Table 4.7.the future of the epidemic and how to reasonable distribution of drugs,.According to the above model analysis, after ensuring the demand for vaccines and medicines in different regions and the shortest transport route, and on the double bind of medicine production speed and medicine delivery speed. we have a discussion ,then get the car allocation in different regions to make sure the medicines or vaccines reach the infected zones by using the fastest speed. So, we can remit current epidemic situation of Ebola.4.4 Extent our modelsIn the model I, we have studied the classical SIR epidemic model, then we have an improved in the model I, the improved model is:()()()()()()()()dSN I S t dt dIS t I t I t dt dRI t R t dt λβλβλμμλ⎧=-+⎪⎪⎪=-+⎨⎪⎪=-⎪⎩(5.12)In the infectious disease model, We've added the μto the population birth rate and natural mortality, ‘β’is the coefficient of the spread of the disease, ‘N’ is the number of species number. In this model assumes that there is no population move out and the death due to illness, the number of population is constant.As mentioned above, the ‘I’ is the number of infected patients, if the ‘S’ ‘I’ ‘R’ have given the initialvalue, By solving the differential equations(5.12), can get the value of ‘I(t)’ at a certain moment. For this model, we expect the people infected can stable at a low level, this means that the spread of infectious diseases has been effectively controlled. Analyzed the infectious disease model, if we want to control effectively to ‘I’, should decrease the coefficient of the spread of the disease β, and improve disease recovery rate λ, In terms of emergency rescue, it’s should ensure that there are have adequate relief drug to patients in emergency treatment, and make the probability of recovery to increase, then , it can control effectively to the increase of ‘I’.At the beginning of the outbreak of infectious diseases, when it ’s have a pulse vaccination for the population cycle T, the spread of the corresponding SIR epidemic model [6] is shown in Figure 4.8, Propagation model expressed in equation (4.13).S λI λRλFigure 4.8 The flow chart of pulse SIR1()()()()()()()()()(1)()()()0,1,2()()()nn nn dSN I S t dt dI S t I t I t t tdt dR I t R t t t T dtS t p S t I t I t t t n R t R t pS t λβλβλμμλ+----⎧=-+⎪⎪⎪=-+≠⎪⎪⎨=-=+⎪⎪=-⎪⎪===⎪=+⎩(5.13)P is vaccination rate.Impulsive vaccination is different from traditional large-scale disposable vaccination, it can ensure to make an effective control by using the spread of lower vaccination rate. We can obtain something from the analysis of the first model that i(t) is the function which increase first and then decrease with the time. Thus, the population infected will tend to zero ultimately. If 0dIdt <, then the critical value of c S is:()(1)(1)T c TT p e pTS T p e λλλγλλβλ+--+=>-+ (5.14)Then the critical value of c p is :()(1)()(1)T c T T e p T e λλλλμβμβλμβ+--=--+- (5.15)We can know that, if the vaccination rate p>p c , system can obtain a stable disease-free periodic solution.When the infectious disease, which is described at model(5.12), burst out at one region, we should firstly know the demand for vaccine in different rescue cycle area before doing vaccinate to the infected populations. On account of epidemical diffusion law that indicated by SIR model(5.13), which possessing the pulse vaccination, we use the following form of demand forecasting that change over time.()k k D pS T -=(5.16)We can know something from the second model that we divide the whole infected zone into two regions. The two regions are assumed to be A and B. There is a stockpile around A and B. Known about the above information, we use the suggested model to do car allocation for A and B.Given the parameters in Ebola spread model(5.13) and its initial value, as shown in the Table 4.8 and Table 4.9. If the pulse vaccination cycle T=50, we use MATLAB programming to figure out the arithmetic solution of Ebola spread model (5.8) and model(5.9), as shown in the follow form:Table 4.8 Infectious disease model parametersParameter λ β μ p T Numerical0.000060.000020.0080.150Table 4.9 A and B area initial values i r Infected area A 830 370 0 Infected area B92278daysn u m b e r sthe SIR model with pulse vaccination in the demand point Adaysn u m b e r sthe SIR model without pulse vaccination in the demand point A(a) (b)daysn u m b e r sthe SIR model with pulse vaccination in the demand point Bdaysn u m b e r sthe SIR model without pulse vaccination in the demand point B(c) (d)Figure 4.9 Numerical solution of diffusion model SIR diseaseCompare Figure 4.9(a) with Figure 4.9(b), we can see that infected people and vulnerable people are going down faster under the circumstance of pulse vaccination. The same circumstance can be seen in the comparison of Figure 4.9(c) and Figure 4.9(d), it indicate that the pulse vaccination can control the spread of Ebola more effective. Because of this, we use the pulse vaccination to make our model solve the spread of Ebola preferably.5 Sensitivity Analysis5.1 Effect of Daily Contact RateIn model Ⅰ, we get the variation of function i (t ) and s (t ) by assuming variable value. So further discuss the value of λ is 2 or 3 whether impact on the result.Based on MATLAB software programming, can get the graphics when λ=2 or λ=3.daysn u m b e r sThe rate of healthy people and patientsdaysn u m b e r sThe rate of healthy people and patientsFigure 5.1 λ=2 or λ=3Conclusion:♦ Through comparing with Figure 4.2 ( λ=1 ) in model Ⅰ, it can be seen that the growth of the I (t) section is slightly reduced.♦ Observe the Figure 5.1, you can see λ=2 or λ=3 graphics haven't changed much5.2 Effect of inoculation rateIn the model Ⅲ, we have introduced the method of pulse vaccination. At the same time drew a conclusion that pulse vaccination can effectively control the spread of the virus.。
美国大学生数学建模竞赛MCM写作模板(各个部分)
美国⼤学⽣数学建模竞赛MCM写作模板(各个部分)摘要:第⼀段:写论⽂解决什么问题1.问题的重述a. 介绍重点词开头:例1:“Hand move” irrigation, a cheap but labor-intensive system used on small farms, consists of a movable pipe with sprinkler on top that can be attached to a stationary main.例2:……is a real-life common phenomenon with many complexities.例3:An (effective plan) is crucial to………b. 直接指出问题:例1:We find the optimal number of tollbooths in a highway toll-plaza for a given number of highway lanes: the number of tollbooths that minimizes average delay experienced by cars.例2:A brand-new university needs to balance the cost of information technology security measures with the potential cost of attacks on its systems.例3:We determine the number of sprinklers to use by analyzing the energy and motion of water in the pipe and examining the engineering parameters of sprinklers available in the market.例4: After mathematically analyzing the ……problem, our modeling group would like to present our conclusions, strategies, (and recommendations )to the …….例5:Our goal is... that (minimizes the time )……….2.解决这个问题的伟⼤意义反⾯说明。
美赛数学建模英文写作
第二部分 怎样写作论文主体项目
标题(Title)
基本功能:概括全文;吸引读者;便于检索 语言特点:一般不用完整的句子;多用名词 词组或动名词,如: Database Logic,
Conference Interpreting and Its Effect Evaluation, Nonlinear Waves in Elastic Rods, Introducing Management into…
复合句多 科学技术是研究外界事物的发展变化规律 极其应用的学问。为了十分准确地反映事 物内在联系,就需要严密的逻辑思维,而 这种思维内容反映在语言的形式上,就必 然是并列关系和多种主从关系的长句。如:
An electric current which reverses its direction at regular intervals, and which is constantly changing in magnitude is called an alternating current, which is usually abbreviated to a.c. …
“Investigation on …”, “Observation on …”, “The Method of …”, “Some thought on…”, “A research on…”等冗余套语 。
4. 少用问题性标题 5. 避免名词与动名词混杂使用 如:标题是 “The Treatment of Heating and Eutechticum of Steel” 宜改为 “Heating and Eutechticuming of Steel” 6. 避免使用非标准化的缩略语 论文标题要 求简洁,但一般不使用缩略语 ,更不能使用 非标准化的缩略语 。
美国大学生数学建模竞赛美赛--论文
Each team member must sign the statement below: (Failure to obtain signatures from each team member will result in disqualification of the entire team.)
2015 Mathematical Contest in Modeling (MCM/ICM) Control Sheet Please review this page before submitting your solution to ensure that all of the information is correct Do not make changes by hand to the information on this control sheet. If you need to change any of the information on this sheet, login via the Advisor Login link on the MCM web site, make the changes online, and print a new sheet. You may NOT photocopy this control sheet to give to a new team, nor may you assign any team a control number. Each team must have its own control number, obtained by registering via the MCM web site. Advisor Jinpeng Yu Name: Department: Control Engineering Institution: Qingdao University Address: 308 Ningxia Road,Shinan District,Qingdao,Shandong,China Qingdao, Shandong 266000 Phone: 18653250086 Fax: 053285953064 Email: zhanghaoran06@ Home Phone: 053285953064 The names of the team members will appear on your team's certificate exactly as they appear on this page, including all capitalization and punctuation, if any. Gender data is optional and will be used for statistical purposes only; it will not appear on the certificate. Team Member Haoran Zhang Yu Ma Guiying Dong Gender M M F Your team's control number is: 40906 (Place this control number on all pages of your solution paper and on any support material.) Problem Chosen: B
美赛数学建模比赛论文资料材料模板
The Keep-Right-Except-To-Pass RuleSummaryAs for the first question, it provides a traffic rule of keep right except to pass, requiring us to verify its effectiveness. Firstly, we define one kind of traffic rule different from the rule of the keep right in order to solve the problem clearly; then, we build a Cellular automaton model and a Nasch model by collecting massive data; next, we make full use of the numerical simulation according to several influence factors of traffic flow; At last, by lots of analysis of graph we obtain, we indicate a conclusion as follow: when vehicle density is lower than 0.15, the rule of lane speed control is more effective in terms of the factor of safe in the light traffic; when vehicle density is greater than 0.15, so the rule of keep right except passing is more effective In the heavy traffic.As for the second question, it requires us to testify that whether the conclusion we obtain in the first question is the same apply to the keep left rule. First of all, we build a stochastic multi-lane traffic model; from the view of the vehicle flow stress, we propose that the probability of moving to the right is 0.7and to the left otherwise by making full use of the Bernoulli process from the view of the ping-pong effect, the conclusion is that the choice of the changing lane is random. On the whole, the fundamental reason is the formation of the driving habit, so the conclusion is effective under the rule of keep left.As for the third question, it requires us to demonstrate the effectiveness of the result advised in the first question under the intelligent vehicle control system. Firstly, taking the speed limits into consideration, we build a microscopic traffic simulator model for traffic simulation purposes. Then, we implement a METANET model for prediction state with the use of the MPC traffic controller. Afterwards, we certify that the dynamic speed control measure can improve the traffic flow .Lastly neglecting the safe factor, combining the rule of keep right with the rule of dynamical speed control is the best solution to accelerate the traffic flow overall.Key words:Cellular automaton model Bernoulli process Microscopic traffic simulator model The MPC traffic controlContentContent (2)1. Introduction (3)2. Analysis of the problem (3)3. Assumption (3)4. Symbol Definition (3)5. Models (3)5.1 Building of the Cellular automaton model (3)5.1.1 Verify the effectiveness of the keep right except to pass rule (4)5.1.2 Numerical simulation results and discussion (5)5.1.3 Conclusion (8)5.2 The solving of second question (8)5.2.1 The building of the stochastic multi-lane traffic model (8)5.2.2 Conclusion (8)5.3 Taking the an intelligent vehicle system into a account (8)5.3.1 Introduction of the Intelligent Vehicle Highway Systems (9)5.3.2 Control problem (9)5.3.3 Results and analysis (9)5.3.4 The comprehensive analysis of the result (9)6. Improvement of the model (10)6.1 strength and weakness (10)6.1.1 Strength (10)6.1.2 Weakness (10)6.2 Improvement of the model (10)7. Reference (12)1. IntroductionAs is known to all, it ’s essential for us to drive automobiles, thus the driving rules is crucial important. In many countries like USA, China, drivers obey the rules which called “The Keep-Right-Except-To-Pass (that is, when driving automobiles, the rule requires drivers to drive in the right-most unless they are passing another vehicle)”.2. Analysis of the problemFor the first question, we decide to use the Cellular automaton to build models, then analyze the performance of this rule in light and heavy traffic. Firstly, we mainly use the vehicle density to distinguish the light and heavy traffic; secondly, we consider the traffic flow and safe as the represent variable which denotes the light or heavy traffic; thirdly, we build and analyze a Cellular automaton model; finally, we judge the rule through two different driving rules, and then draw conclusions.3. AssumptionIn order to streamline our model we have made several key assumptions● The highway of double row three lanes that we study can representmulti-lane freeways.● The data that we refer to has certain representativeness and descriptive● Operation condition of the highway not be influenced by blizzard or accidental factors ● Ignore the driver's own abnormal factors, such as drunk driving and fatigue driving ● The operation form of highway intelligent system that our analysis can reflectintelligent system● In the intelligent vehicle system, the result of the sampling data has high accuracy.4. Symbol Definitioni The number of vehiclest The time5. ModelsBy analyzing the problem, we decided to propose a solution with building a cellular automaton model.5.1 Building of the Cellular automaton modelThanks to its simple rules and convenience for computer simulation, cellular automaton model has been widely used in the study of traffic flow in recent years.Let )(t x i be the position of vehicle i at time t , )(t v i be the speed of vehicle i at time t ,p be the random slowing down probability, and R be the proportion of trucks and buses, the distance between vehicle i and the front vehicle at time t is:1)()(1--=-t x t x gap i i i , if the front vehicle is a small vehicle.3)()(1--=-t x t x gap i i i , if the front vehicle is a truck or bus.5.1.1 Verify the effectiveness of the keep right except to pass ruleIn addition, according to the keep right except to pass rule, we define a new rule called: Control rules based on lane speed. The concrete explanation of the new rule as follow:There is no special passing lane under this rule. The speed of the first lane (the far left lane) is 120–100km/h (including 100 km/h);the speed of the second lane (the middle lane) is 100–80km8/h (including80km/h);the speed of the third lane (the far right lane) is below 80km/ h. The speeds of lanes decrease from left to right.● Lane changing rules based lane speed controlIf vehicle on the high-speed lane meets control v v <, ),1)(min()(max v t v t gap i f i +≥, safe b i gap t gap ≥)(, the vehicle will turn into the adjacent right lane, and the speed of the vehicle after lane changing remains unchanged, where control v is the minimum speed of the corresponding lane.● The application of the Nasch model evolutionLet d P be the lane changing probability (taking into account the actual situation that some drivers like driving in a certain lane, and will not take the initiative to change lanes), )(t gap f i indicates the distance between the vehicle and the nearest front vehicle, )(t gap b i indicates the distance between the vehicle and the nearest following vehicle. In this article, we assume that the minimum safe distance gap safe of lane changing equals to the maximum speed of the following vehicle in the adjacent lanes.● Lane changing rules based on keeping right except to passIn general, traffic flow going through a passing zone (Fig. 5.1.1) involves three processes: the diverging process (one traffic flow diverging into two flows), interacting process (interacting between the two flows), and merging process (the two flows merging into one)[4].Fig.5.1.1 Control plan of overtaking process(1) If vehicle on the first lane (passing lane) meets ),1)(min()(max v t v t gap i f i +≥ and safe b i gap t gap ≥)(, the vehicle will turn into the second lane, the speed of the vehicle after lane changing remains unchanged.5.1.2 Numerical simulation results and discussionIn order to facilitate the subsequent discussions, we define the space occupation rate as L N N p truck CAR ⨯⨯+=3/)3(, where CAR N indicates the number of small vehicles on the driveway,truck N indicates the number of trucks and buses on the driveway, and L indicates the total length of the road. The vehicle flow volume Q is the number of vehicles passing a fixed point per unit time,T N Q T /=, where T N is the number of vehicles observed in time duration T .The average speed ∑∑⨯=T it i a v T N V 11)/1(, t i v is the speed of vehicle i at time t . Take overtaking ratio f p as the evaluation indicator of the safety of traffic flow, which is the ratio of the total number of overtaking and the number of vehicles observed. After 20,000 evolution steps, and averaging the last 2000 steps based on time, we have obtained the following experimental results. In order to eliminate the effect of randomicity, we take the systemic average of 20 samples [5].Overtaking ratio of different control rule conditionsBecause different control conditions of road will produce different overtaking ratio, so we first observe relationships among vehicle density, proportion of large vehicles and overtaking ratio under different control conditions.(a) Based on passing lane control (b) Based on speed controlFig.5.1.3Fig.5.1.3Relationships among vehicle density, proportion of large vehicles and overtaking ratio under different control conditions.It can be seen from Fig. 5.1.3:(1) when the vehicle density is less than 0.05, the overtaking ratio will continue to rise with the increase of vehicle density; when the vehicle density is larger than 0.05, the overtaking ratio will decrease with the increase of vehicle density; when density is greater than 0.12, due to the crowding, it will become difficult to overtake, so the overtaking ratio is almost 0.(2) when the proportion of large vehicles is less than 0.5, the overtaking ratio will rise with the increase of large vehicles; when the proportion of large vehicles is about 0.5, the overtaking ratio will reach its peak value; when the proportion of large vehicles is larger than 0.5, the overtaking ratio will decrease with the increase of large vehicles, especially under lane-based control condition s the decline is very clear.Concrete impact of under different control rules on overtaking ratioFig.5.1.4Fig.5.1.4 Relationships among vehicle density, proportion of large vehicles and overtaking ratio under different control conditions. (Figures in left-hand indicate the passing lane control, figures in right-hand indicate thespeed control. 1f P is the overtaking ratio of small vehicles over large vehicles, 2f P is the overtaking ratio ofsmall vehicles over small vehicles, 3f P is the overtaking ratio of large vehicles over small vehicles, 4f P is the overtaking ratio of large vehicles over large vehicles.).It can be seen from Fig. 5.1.4:(1) The overtaking ratio of small vehicles over large vehicles under passing lane control is much higher than that under speed control condition, which is because, under passing lane control condition, high-speed small vehicles have to surpass low-speed large vehicles by the passing lane, while under speed control condition, small vehicles are designed to travel on the high-speed lane, there is no low- speed vehicle in front, thus there is no need to overtake. ● Impact of different control rules on vehicle speedFig. 5.1.5 Relationships among vehicle density, proportion of large vehicles and average speed under different control conditions. (Figures in left-hand indicates passing lane control, figures in right-hand indicates speed control. a X is the average speed of all the vehicles, 1a X is the average speed of all the small vehicles, 2a X is the average speed of all the buses and trucks.).It can be seen from Fig. 5.1.5:(1) The average speed will reduce with the increase of vehicle density and proportion of large vehicles.(2) When vehicle density is less than 0.15,a X ,1a X and 2a X are almost the same under both control conditions.● Effect of different control conditions on traffic flowFig.5.1.6Fig. 5.1.6Relationships among vehicle density, proportion of large vehicles and traffic flow under different control conditions. (Figure a1 indicates passing lane control, figure a2 indicates speed control, and figure b indicates the traffic flow difference between the two conditions.It can be seen from Fig. 5.1.6:(1) When vehicle density is lower than 0.15 and the proportion of large vehicles is from 0.4 to 1, the traffic flow of the two control conditions are basically the same.(2) Except that, the traffic flow under passing lane control condition is slightly larger than that of speed control condition.5.1.3 ConclusionIn this paper, we have established three-lane model of different control conditions, studied the overtaking ratio, speed and traffic flow under different control conditions, vehicle density and proportion of large vehicles.5.2 The solving of second question5.2.1 The building of the stochastic multi-lane traffic model5.2.2 ConclusionOn one hand, from the analysis of the model, in the case the stress is positive, we also consider the jam situation while making the decision. More specifically, if a driver is in a jam BP(situation, applying ))results with a tendency of moving to the right lane for this,2(xRdriver. However in reality, drivers tend to find an emptier lane in a jam situation. For this reason, we apply a Bernoulli process )7.0,2(B where the probability of moving to the right is 0.7and to the left otherwise, and the conclusion is under the rule of keep left except to pass, So, the fundamental reason is the formation of the driving habit.5.3 Taking the an intelligent vehicle system into a accountFor the third question, if vehicle transportation on the same roadway was fully under the control of an intelligent system, we make some improvements for the solution proposed by usto perfect the performance of the freeway by lots of analysis.5.3.1 Introduction of the Intelligent Vehicle Highway SystemsWe will use the microscopic traffic simulator model for traffic simulation purposes. The MPC traffic controller that is implemented in the Matlab needs a traffic model to predict the states when the speed limits are applied in Fig.5.3.1. We implement a METANET model for prediction purpose[14].5.3.2 Control problemAs a constraint, the dynamic speed limits are given a maximum and minimum allowed value. The upper bound for the speed limits is 120 km/h, and the lower bound value is 40 km/h. For the calculation of the optimal control values, all speed limits are constrained to this range. When the optimal values are found, they are rounded to a multiplicity of 10 km/h, since this is more clear for human drivers, and also technically feasible without large investments.5.3.3 Results and analysisWhen the density is high, it is more difficult to control the traffic, since the mean speed might already be below the control speed. Therefore, simulations are done using densities at which the shock wave can dissolve without using control, and at densities where the shock wave remains. For each scenario, five simulations for three different cases are done, each with a duration of one hour. The results of the simulations are reported in Table5.1, 5.2, 5.3.●Enforced speed limits●Intelligent speed adaptationFor the ISA scenario, the desired free-flow speed is about 100% of the speed limit. The desired free-flow speed is modeled as a Gaussian distribution, with a mean value of 100% of the speed limit, and a standard deviation of 5% of the speed limit. Based on this percentage, the influence of the dynamic speed limits is expected to be good[19].5.3.4 The comprehensive analysis of the resultFrom the analysis above, we indicate that adopting the intelligent speed control system can effectively decrease the travel times under the control of an intelligent system, in other words, the measures of dynamic speed control can improve the traffic flow.Evidently, under the intelligent speed control system, the effect of the dynamic speed control measure is better than that under the lane speed control mentioned in the first problem. Becauseof the application of the intelligent speed control system, it can provide the optimal speed limit in time. In addition, it can guarantee the safe condition with all kinds of detection device and the sensor under the intelligent speed system.On the whole, taking all the analysis from the first problem to the end into a account, when it is in light traffic, we can neglect the factor of safe with the help of the intelligent speed control system.Thus, under the state of the light traffic, we propose a new conclusion different from that in the first problem: the rule of keep right except to pass is more effective than that of lane speed control.And when it is in the heavy traffic, for sparing no effort to improve the operation efficiency of the freeway, we combine the dynamical speed control measure with the rule of keep right except to pass, drawing a conclusion that the application of the dynamical speed control can improve the performance of the freeway.What we should highlight is that we can make some different speed limit as for different section of road or different size of vehicle with the application of the Intelligent Vehicle Highway Systems.In fact, that how the freeway traffic operate is extremely complex, thereby, with the application of the Intelligent Vehicle Highway Systems, by adjusting our solution originally, we make it still effective to freeway traffic.6. Improvement of the model6.1 strength and weakness6.1.1 Strength●it is easy for computer simulating and can be modified flexibly to consider actual trafficconditions ,moreover a large number of images make the model more visual.●The result is effectively achieved all of the goals we set initially, meantime the conclusion ismore persuasive because of we used the Bernoulli equation.●We can get more accurate result as we apply Matlab.6.1.2 Weakness●The relationship between traffic flow and safety is not comprehensively analysis.●Due to there are many traffic factors, we are only studied some of the factors, thus ourmodel need further improved.6.2 Improvement of the modelWhile we compare models under two kinds of traffic rules, thereby we come to the efficiency of driving on the right to improve traffic flow in some circumstance. Due to the rules of comparing is too less, the conclusion is inadequate. In order to improve the accuracy, Wefurther put forward a kinds of traffic rules: speed limit on different type of cars.The possibility of happening traffic accident for some vehicles is larger, and it also brings hidden safe troubles. So we need to consider separately about different or specific vehicle types from the angle of the speed limiting in order to reduce the occurrence of traffic accidents, the highway speed limit signs is in Fig.6.1.Fig.6.1Advantages of the improving model are that it is useful to improve the running condition safety of specific type of vehicle while considering the difference of different types of vehicles. However, we found that the rules may be reduce the road traffic flow through the analysis. In the implementation it should be at the85V speed of each model as the main reference basis. Inrecent years, the85V of some researchers for the typical countries from Table 6.1[ 21]:Author Country ModelOttesen andKrammes2000America LCDCLDCVC⨯---=01.0012.057.144.10285Andueza2000 Venezuela].[308.9486.7)/894()/2795(25.9885curvehorizontalLDCRaRVT++--=].[tan819.27)/3032(69.10085gentLRVT+-=Jessen2001 America][00239.0614.0279.080.86185LSDADTGVVP--+=][00212.0432.010.7285NLSDADTVVP-+=Donnell2001 America22)2(8500724.040.10140.04.78TLGRV--+=22)3(85008369.048.10176.01.75TLGRV--+=22)4(8500810.069.10176.05.74TLGRV--+=22)5(8500934.008.21.83TLGV--=BucchiA.BiasuzziK.And SimoneA.2005 ItalyDCV124.0164.6685-=DCEV4.046.3366.5585--=Meanwhile, there are other vehicles driving rules such as speed limit in adverse weather conditions. This rule can improve the safety factor of the vehicle to some extent. At the same time, it limits the speed at the different levels.7. Reference[1] M. Rickert, K. Nagel, M. Schreckenberg, A. Latour, Two lane traffic simulations usingcellular automata, Physica A 231 (1996) 534–550.[20] J.T. Fokkema, Lakshmi Dhevi, Tamil Nadu Traffic Management and Control inIntelligent Vehicle Highway Systems,18(2009).[21] Yang Li, New Variable Speed Control Approach for Freeway. (2011) 1-66。
2015年北美数学建模赛(MCM)A题二等奖论文honorable mention
36837
Problem Chosen
A
F4 ________________
2015
Mathematical Contest in Modeling (MCM/ICM) Summary Sheet
Summary
Ebola viral disease(EVD) has become a problem threatening not only western Africa, but the world. The world medical association has announced their new medication. This paper aims at tackling the following problems: Describing and predicting the spread of EVD based on current statistics; determing the quantity of medicine needed; deciding the speed of manufacturing the vaccine or drug under the principle of meeting demands and lowering costs; locating the delivery center and establish an efficient delivery system. When analyzing demand and supply, an additional factor, inventory level is taken into account. First an improved SIR epidemic model is built. The population of epidemic area is divided into 5 parts instead of 3, to be more comprehensive. By solving a set of differential equations and computing several parameters, we obtained the fitting function of cumulative cases of EVD. Compared with current statistics, the imitative effect is satisfying. Second, by predicting through the fitting function obtained from Model one, we get the approximate demand curve of medicine. Considering efficiency and inventory costs, an approximate speed function of manufacturing is obtained. In the updated model, the proper inventory level is discussed based on EOQ model of short-supply not allowed and time-needed supplying. Third, a three-level delivery system is built based on Model two where supply is guaranteed to be sufficient. Centroid method and analytic hierarchy process (AHP) are combined to select optimal location of distribution center, and the severeness of the epidemic in different places, the distances and transportation costs are considered. In addition, an emergency dispatch scheme is built to response to sudden outbreak. By randomly simulation, we test the sensitivity of Model three, and conclude that it is steady and effective.Team Nhomakorabea#36837
2015美国数学建模竞赛优秀论文
Team#35943
Page 1
of
20
Contents 1 Introduction and restatement
1.1 Background…………………………………………………………………… 2 1.2 Restatement of problems……………………………………………………..... 2 1.3 An overview of sustainable development…………………………………........ 3
D
2015
Mathematical Contest in Modeling (MCM/ICM) Summary Sheet
In order to measure a country's level of sustainable development precisely, we establish a evaluation system based on AHP(Analytic Hierarchy Process). We classify quantities of influential factors into three parts, including economic development, social development and the situation of resources and environment. Then we select 6 to 8 significant indicators of every part. With regard to the practical situation of the country we are focusing on, we are able to build judgment matrixes and obtain the weight of every indicator. Via liner weighting method, we give the definition of comprehensive index of sustainable development. Referring to classifications given by experts, we can judge whether this country is sustainable or not precisely. In task 2, we choose Cambodia as our target nation. We obtain detailed data from the world bank. Using standardized data of this country, via the process above, we successfully get the comprehensive index is 0.48, which means its sustainable development ability is weak. We notice that industrial value added, enrollment rate in higher learning institutions and other five indicators contribute most to the sustainable development according to our model, so we make policies and plans which focus on the improvement of these aspects, including developing industry and improving social security. We also recommend ICM to assistant Cambodia in these aspects in order to optimize the development. To solve task 3, we consider several unpredictable factors that may influence sustainable development, such as politics, climate changes and so on. After taking all of these factors into consideration, we predict the value of every indicator in 2020, 2030 and 2034 according to our plans. After calculating, we are delighted that the comprehensive index has grown up to 0.91, meaning this country is quite sustainable. This also reflects that our model and plans are reasonable and correct.
2015数模美赛S奖论文
For office use onlyT1 ________________T2 ________________T3 ________________T4 ________________ Team Control Number 39993 Problem Chosen A For office use only F1 ________________ F2 ________________ F3 ________________ F4 ________________ 2015Mathematical Contest in Modeling (MCM) Summary SheetThe Optimal Strategy of Drugs Distribution and Transportation In The Case of EbolaSummaryAiming at the outbreak of Ebola in West Africa in 2014, the world medical association has announced that medicines which can stop Ebola come out. Therefore, so as to control Ebola even eliminate Ebola fully, we establish the optimal model of drugs distribution and transportation on Ebola.We begin to establish a tree structure, which describes the traffic network of incidence area. According to their medical conditions, economical conditions and the number of patients, we classify all the incidence cities into different levels.Then we analyze the influence of drugs distribution on the spread of Ebola.(1) If the rate of drugs production is large enough to satisfy the demand, then we establish a Auto Regressive Integrated Moving Average Model(ARIMA). The model can predict the number of added patients and total amount of medical demand within a short term by SPSS software.(2) If the drugs production is so limited that cannot satisfy the demand of all areas, then we should consider the influence of the immigration on the spread of Ebola. In order to define the severity of Ebola η, we introduce the endemic equilibrium ),,(1111I E S P . We conclude that if the number of local patients reaches the endemic equilibrium, then the disease will continue to steadily survive. Considering the relationship of ηand ξ, which represents the ratio of patients in one city and total amount of patients at that level, we establish a multi-goal model to control the spread of Ebola.At last, we select three of West African countries where Ebola is most serious, Guinea, Liberia and Sierra Leone, to analyze. We make the model testing and sensitivity analysis. Meanwhile, we figure out the approximate equations of each countries are the same formula,c t b a t I +=)*exp(*)(, besides, the correlation coefficients approaches to 0.95. As for the multi-goal model, we work out the weight of ξ and η are 0.667 and 0.333 by using analytic hierarchy process(AHP).Keyword: Tree structure, ARIMA model, SEIS model, The endemic equilibrium, Multi-goal model, AHPContents1. Introduction (1)1.1 Background (1)1.2 Question Retelling (1)2. Model Assumptions (2)2.1 Assumptions of Tree Structure (2)2.2 Assumptions of ARIMA Model (2)2.3 Assumptions of SEIS Model (2)2.4 Assumptions of Multi-goal Model (2)3. Explanation (3)3.1 Explanation of Symbols (3)3.2 Extra Explanation (4)4. The Models (4)4.1The Tree Structure Chart (5)4.2 The Time Series Analysis (7)4.2.1 Auto Regressive Integrated Moving Average Model (7)4.2.2 The Judgment of Models (9)4.3 Establishing SEIS Models (9)4.3.1 The Feature of Ebola (9)4.3.2 The SEIS Model (10)4.3.3 Analyzing The Severity of Ebola (11)4.4 The Multi-goal Programming Model (12)4.4.1 The Analytic Hierarchy Process (AHP) (13)4.4.2 Testing Consistency (14)4.4.3 The Multi-goal Programming Model Equation (15)5. Conclusion And Sensitivity Analysis (17)5.1 The Predicted Result of ARIMA(p,d,q) Model. (17)5.2 The Error Analysis of ARIMA (p,d,q) Model Above (19)5.3 The Stability Analysis of Tree Structure (20)7. Strengths And Weaknesses (21)8. A Non-technical Letter (22)9. References (23)1. Introduction1.1 BackgroundEbola, previously known as Ebola hemorrhagic fever, is a rare and deadly disease caused by infection with one of the Ebola virus strains. Ebola can cause disease in humans and nonhuman primates (monkeys, gorillas, and chimpanzees).Ebola is caused by infection with a virus of the family Filoviridae, genus Ebolavirus. There are five identified Ebola virus species, four of which are known to cause disease in humans: Ebola virus, Sudan virus, Taï Forest virus and Bundibugyo virus. The fifth, Reston virus, has caused disease in nonhuman primates, but not in humans.Ebola viruses are found in several African countries. Ebola was first discovered in 1976 near the Ebola River in what is now the Democratic Republic of the Congo. Since then, outbreaks have appeared sporadically in Africa.1.2 Question RetellingIn recent years, Ebola has attracted many peoples’ eyes. Furthermore, the world medical association has announced that their new medication could stop Ebola and cure patients whose disease is not advanced. Thus, it is necessary that we take measure to optimize the eradication of Ebola.Since we need consider the spread of the disease, the quantity of the medicine needed, possible feasible delivery systems, locations of delivery, and speed of manufacturing of the vaccine or drug and so on, our task is to design an appropriate mathematical model to work out these problems.After that, we will prepare a non-technical letter for the world medical association to use in their announcement.2.Model Assumptions2.1 Assumptions of Tree Structure(1)The capitals are large enough to accept a large number of drugs transportation.(2)The adjacent level in the tree structure can transport medications by railway.(3)The distance between the two adjacent levels cities are the same.2.2 Assumptions of ARIMA Model(1)The short term external factors such as temperature and climate are constant.(2)There is no infective immigrating.(3)The Ebola virus did not mutate, and the infection rate or mortality did not change.2.3 Assumptions of SEIS Model(1)The natural birth rate and the natural death rate keep unchanged, and the totalpopulation is unchanged.(2)Immigration rate u, has nothing to do with the city variation and keeps constant.(3)The patients are always moving along the tree structure from bottom to top.(4)The immigrated people caused by the lack of medicines are only patients.2.4 Assumptions of Multi-goal Model(1)Drugs distribution is only related to the severity of Ebola ηand the ratio ofpatients in one city and total amount of patients in that level ξ.(2)ξis prior to η.3. Explanation3.1 Explanation of Symbols●{})(t I:A non-stationary time series related to Guinea total cases.●t I: The time series’ present value.●P: The auto regressive orders.●q: The moving average orders.●{}tε: A zero-mean white noise series.●μ: The constant term.●ω: The coefficient of the white noise series.●φ: The autoregressive coefficient.●S(t): The number of the susceptible at the certain time t.●E(t): The number of the exposed at a certain time t.●I(t): The number of the exposed at a certain time t.●N: The total number of a population.●β: Mortality due to illness, namely, the radio of deaths due to illness in a unittime and the total infective suffering from Ebola.●λ: Effective contact rate, namely, the ratio of the susceptible who become theexposed through contacting the infective and the total susceptible.●θ: The radio of the exposed that become the infective and the total exposed.●v: Drug production speed, namely, the number of the produced drugs in aunit time.●m: The average number of drugs needed to cure a patient.●γ: Recovery rate, namely, the radio of the infective who become thesusceptible through drug treatment and the total infective.●u: The immigration rate.●R0: T he basic reproduction number.●P1: The endemic equilibrium.●k: The number of total children cites of their parent city.●i b: The number of the total infective in the i-th children city.●i a: The number of the infective that drugs in the i-th children city can meet.●α: The number of the infective who immigrate from children cities to theirparent city, we can easily find ∑=-⋅=kii i a bu1) (α.●η: The severity of Ebola.●ξ: T he ratio of the number of the infective in the city and the number of thetotal infective in the same level city.●A: The comparison matrix.●M: The weight vector of the matrix A.●maxλ: The maximum eigenvalue.●CI: The consistency index.●RI: The random consistency index.●CR: The consistency ratio index.●d: The difference frequency.3.2 Extra Explanation• Susceptible The susceptible are those who are potentially infected individuals and have no immunity to this disease.• Exposed The exposed are those who are infected and become infectious but do not show symptoms.• Infective The infective are those who show the corresponding symptoms and are infectious.• Recovered The recovered are those who recovered from the disease.4.The ModelsOur goal is devising a most reasonable mode of drug transport to control Ebola. Referring to the data, we begin to select three of West African countries where Ebolais most serious to analyze. Moreover, we classify all the infected cities in the three countries into four levels, according to their medical conditions, economical conditions and the number of the infective. We establish a tree structure chart. (see 4.1 The Tree Structure Chart)If the drug production speed is large enough to satisfy the demand, then we will predict the possible number of new patients within a short time and calculate the needed drugs. Then we can distribute the drugs in advance. Doing these, we can stop Ebola within a short time. In order to calculate the possible number of new patients within a short time, we establish a time-series analysis model and using Auto Regressive Integrated Moving Average Model (ARIMA for short) and SPASS to simulate the number.(see 4.2 The Time Series Analysis)If the drug production is limited, the speed cannot satisfy the current demand, and then we establish a multi-goal programming model to work out the optimal allocation. We select two factors, the portion of the number of the patients in the city ξand the severity of Ebola η, and calculate their respective weight. When calculating the value of η, we establish a SEIS model. We work out the endemic equilibrium and get the number of patients I1 at the endemic equilibrium. Through comparing the ratio of the number of existing patients I(t)and I1, I(t)/I1, we definite the value of η. The larger I(t)/I1 is, the largerηis, namely, the more serious Ebola is.(see 4.3 Establishing SEIS Models) Last, we use the multi-goal formulas to calculate the number of needed drugs in each level cities.(see 4.4 The Multi-goal Programming Model)4.1The Tree Structure ChartAccording to the statistics of Ebola incidence (see fig.4-1-1), we select three of West African countries where Ebola is most serious to analyze. They are Guinea, Liberia and Sierra Leone. We collect all the infected cities in the three countries into four levels, according to their medical conditions, economical conditions and the number of the infective. The capitals are the first-level cities; the cities slightly smaller than their respective capital are the second-level cities. And like that, the cities slightly smaller than their respective second-level cities are the third-level cities and the cities slightly smaller than their respective third-level cities are the forth-level cities.FIGURE 4-1-1. The distribution of the infected cities in Guinea, Liberia and Sierra LeoneFIGURE 4-1-2. A tree structure chart of four level cities in GuineaIn order to count the ratio of the distributed drugs more conveniently, we construct a tree structure chart (see fig.4-1-2). In order to achieve the goal of transporting the drugs most fast, we distribute the drugs to the first-level cities, then the first-levelcities distribute the drugs to their second-level cities, then the second-level citiesdistribute the drugs to their third-level cities, and last the third-level cities distribute the drugs to their forth-level cities. Notably, across-level distribution is not allowed. The mode of drugs transportation of the first-level cities is air transportation, the others are railway transportation.The number of distributed drugs of each city is proportional to the ratio of the number of the infective in the city and the number of the total infective in the same level city. Notably, the distributed drugs in each city equal to the sum of the native needed drugs in the city and the total needed drugs in its children cities.4.2 The Time Series AnalysisFIGURE 4-2-1. A line chart of total cases and death cases weekly in Ebola main outbreak area from November, 2014 to February, 2015Combined with the above development relationship between Ebola cases and time (see fig.4-2-1), we establish a time-series analysis model. Studying the model, we can forecast the future Ebola cases at a certain time t. We can analyze how to carry out the optimal strategy to transport the drugs so as to control Ebola.4.2.1 Auto Regressive Integrated Moving Average ModelReferring to the statistics (see table 4-2-1), we build up a time series {})(I t related to Guinea total cases. Time series is classified into the stationary time series and the non-stationary time series. The mean and the variance is constant in stationary timeseries, but having an obvious trend or periodicity in non-stationary time series.[1] Since Guinea’s Ebola total cases show a rising trend, we can conclude that our time series {})(I t is a non-stationary time series. Date Guinea total case (total deaths) Liberia total case(total deaths)Sierra Leone total case (total deaths) 2014.11.11 1919(1166)6878(2812) 5586(1187) 2014.11.21 2047(1214)7082(2963) 6190(1267) 2014.11.30 2164(1327)7635(3145) 7312(1583) 2014.12.7 2292(1428)7719(3177) 7897(1768) 2014.12.20 2571(1586)7830(3376) 8939(2256) 2014.12.28 2767(1790)8018(3423) 9446(2758) 2014.1.10 2799(1807)8278(3515) 10094(3049) 2014.1.20 2873(1880)8524(3636) 10400(3159) 2015.2.1 2975(1944)8668(3710) 10707(3274) Total22407(14142) 70632(29757) 76571(20301) TABLE 4-2-1. Total cases and death cases statistics weekly in West African Ebola main outbreak area from November, 2014 to February, 2015Auto Regressive Integrated Moving Average Model (ARIMA for short) is an important prediction tool suitable for non-stationary time series.[2] So we collect ARIMA(p,d,q) to predict and modify our non-stationary time series {})(I t . The time series’ present value is denoted as t I .Not only does t I relate to the time series’ past value, but a certain dependency also exists between t I and the disturbance which the time series generated in the past time when entering the system. So we use the linear combination of the series’ past value and the linear combination of white noise perturbation term to express t I . t I is as follows:q t q t t p t p t t I I -----⋅⋅⋅--++⋅⋅⋅++=εωεωεφφμ1111I ⑴Where the auto regressive orders is denoted as p , the moving average orders isdenoted as q , the zero-mean white noise series is denoted as {}t ε, the constant term is denoted as μ, the autoregressive coefficient is denoted as φ, the coefficient of the white noise series is denoted as ω.Because {}n ,321,⋅⋅⋅=,,,t I t of d-th order difference is stationary and t I meets the eq.2, the time series’ present value t I belongs to ARIMA . A fter centralizing t I , the operator form is as follows:⎪⎩⎪⎨⎧<∀=E ≠===E =∇t s I t s E Var B I B t s s t E t t tt d ,0(,0)(,)(,0)()()()2εεεσεεεωϕ ⑵ Where 1≤B , )(B ϕ and )(B θ are relatively prime, 0≠q p θϕ.4.2.2 The Judgment of ModelsFirst, we introduce AIC(An Information Criterion). The definition of AIC principle is as follows: The minimum information principle. It is applicable to the problem whose sample data is pretty little. We usually use AIC to judge the development process of forecasting target is closest to which model.)2(2log )(2+++-=q p d n AIC σWhere the sample number is denoted as n , the fitting residual square is denoted as σ.We collect the model whose parameters are least and AIC is minimum as theoptimal model. We collect the model’s order which can make AIC minimum as the optimal order. The fitting model is closer to theoretical distribution when the value of AIC is smaller.4.3 Establishing SEIS Models 4.3.1 The Feature of EbolaIn natural state, the number of a population is constant, natural birth rate and natural death rate keep a balance. Ebola is characterized by quick onset. Its incubation period is usually 2~21 days. Besides, the infective will die in 3~5 days since becoming ill and they do not have immunity after cured. So when Ebola outbreaks, it will have no impact on the natural birth rate and natural death rate of the population ina short time. So we neglect the natural birth rate and the natural death rate, we only consider mortality due to illness. Moreover, Ebola is basically transmitted through body fluids, so we conclude that the transmission mode of Ebola is horizontal transmission. Referring the data, we sort out a table (see table 4-3-1).[3]Age Gender Data Package Cases All ages(total) Female 2015-02-04 9458All ages(total) Male 2015-02-04 91500~14 Both sexes 2015-02-04 361815~44 Both sexes 2015-02-04 1009545+ Both sexes 2015-02-04 4226 TABLE 4-3-1. West African Ebola epidemic cases statistics in a year about age and gender We conclude that Ebola infection rate is irrelevant with gender or age.We know the world medical association has announced that their new medication could stop Ebola and cure patients whose disease is not advanced, therefore, we need deliver the drugs to each Ebola outbreak city.4.3.2 The SEIS ModelWhen the delivered drugs cannot meet the city node’s patients, the infective in the secondary city will immigrate higher level city because of its better medical condition and economical strength. The immigration rate is denoted as u, u is a fixed constant. The corresponding SEIS model isFIGURE 4-3-1. A SEIS model of one mode describes the quantitative change relations among the susceptible S(t), the exposed E(t) and the infective I(t).The flow chart describes the quantitative changing relationships among thesusceptible S(t), the exposed E(t) and the infective I(t). For the susceptible compartment S(t), we can see only one arrow inflows, which shows the number of people in the compartment increases. Since the recovery rate is denoted as γand the infective is denoted as I(t), I γ represents the number of the recovered. Effective contact rate is denoted as λ, so SI λ represents the number of the susceptible S(t) who become the exposed E(t) through effective contacting the infective I(t). Consequently, we can obtain the equationI -I =S dtdsλγ. Similarly, analyzing the remaining compartments, the exposed E(t) and the infective I(t), we can get the following equations.⎪⎪⎪⎩⎪⎪⎪⎨⎧I -I -E +=IE -I =-I =βγθαθλλγdt d S dt dESI dt dS⑶ In eq.3, the radio of the exposed who become the infective and the total exposed is denoted as θ, E θrepresents the number of the exposed who become the infective. And since mortality due to illness is denoted as β, I βrepresents the number of deaths due to illness in the infective compartment I(t).[4]4.3.3 Analyzing the Severity of EbolaIn order to analyze the severity of Ebola, we introduce the basic reproduction number R 0. R 0 represent the number of the second generation of infected cases which a patient generated when he mixed himself inside the susceptible population in his effective infectious period.If 10>R , then the disease is contagious and endemic equilibrium exists. When the disease isn’t controlled before P 1(S 1,E 1,I 1), then the disease will continue to steadily survive. Whereas if 10<R , the disease will gradually disappear.It is obvious that the number of Ebola patients is increasing, so we only consider the situation of 10>R . Now we will calculate our endemic equilibrium P 1(S 1,E 1,I 1).According to the equation(3), we devise the equations (4).⎪⎪⎪⎩⎪⎪⎪⎨⎧∆I -I -+E =∆E -I =∆I -I =),,(),,(),,(I E S T dt dII E S W S dt dEI E S Q S dt dSγβαθθλλγ ⑷ The equations (4) are the functions of Q(S,E,I), W(S,E,I), T(S,E,I) related to S,E,I.Calculating the equations ⎪⎩⎪⎨⎧===0),,(0),,(0),,(111111111I E S T I E S W I E S Q ⑸equals to calculating ⎪⎩⎪⎨⎧=I -I -+E =E -I =I -I 000111111111γβαθθλλγS S ⑹We can work out βαθγλγ=I I =E =111,,S . Now that we have worked out our endemic equilibrium P 1(S 1,E 1,I 1), we begin to analyze the severity of Ebola in a certain area. The severity is denoted as η. The larger the value of η is, the more serious Ebola is. We design a table (see table 4-3-2) to distinguish the severity.I(t)/I 10~30% 30%~70%70%~100%η135Table 4-3-2. Our division of the severity according to the ratio of I(t) and I 14.4 The Multi-goal Programming ModelWe should consider the drug production speed and economical factors when wedistribute the drugs.If the medical supply is adequate enough to satisfy the current demand, then we establish the time series model for short-term forecast of the infected area . We predict the possible number of the new infective within a short time and calculate the needed drugs within a short time. Then we can distribute the drugs in advance. Our thought is to nip in the bud. The measure necessarily decreases the number of the newinfective in the future, and succeed in stopping Ebola.Whereas if the medical supply is limited, the speed cannot satisfy the current demand, then we establish the multi-goal programming model to work out the optimal allocation . We draw up the principles of drug allocation. One is the ratio of the number of the infective in the city and the number of the total infective in the same level city, the ratio is denoted as ξ. Notably, the number of the infective in the city equals to the sum of the number of the native patients in the city and the number of the total patients in its children cities. The other is the severity of Ebola, the severity is denoted as η.4.4.1 The Analytic Hierarchy Process (AHP)First, we use the Analytic Hierarchy Process (AHP for short) to calculate the weights of the two principles.[5] The hierarchical structure diagram isFIGURE 4-4-1. The hierarchical structure diagram about the drug distributionIn the hierarchical structure diagram, the first level is the target, the second is thefactors determining the target.[6]We compare the influence degree of the two factors ξ and η on the target factor, the drug distribution. We use j i a ,to represent the ratio of the influence degree ofξand η on the target factor. Meanwhile, we measure j i a ,according to the 1~9 scale. The matrix is())2,1(1,1,0,,,,,22,====>=⨯j i a a a a a A i i ji i j j i j i ⑺ The scale value isTABLE 4-4-1. Scale valueAccording to the scale value (see table 4-4-1), we establish our comparison matrixA. It is as follows12121Gηξηξ⑻ Through normalizing the matrix’s column vector, we can obtain the weight vector.The weight vector is denoted as M .M333.0667.0666.0334.1333.0333.0667.0667.012121ca =⎪⎪⎭⎫ ⎝⎛−−−−−−−−→−⎪⎪⎭⎫⎝⎛−−−−−−−→−⎪⎪⎭⎫ ⎝⎛−−−−−−−−→−⎪⎪⎪⎭⎫ ⎝⎛=vectorvolumn the g normalizin row each of sum lculating vector volumn the g normalizin A ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=665.0333.1333.0667.012121AM ⑼ We can work out the maximum eigenvalue. It is denoted as max λ.998.1)333.0665.0667.0333.1(21max =+=λ ⑽4.4.2 Testing ConsistencyTypically, the actual judgment matrix obtained is not necessarily consistent, that is, it is not necessarily meet the transitivity and the consistency. Actually, we shouldpromise our matrix is roughly consistent, that is, the degree of inconsistency should be in the allowable range. Consistency index:1max --=n nCI λ. In our model , n=2.Random consistency index: RI . RI is usually defined by the actual experience. It is as follows: TABLE 4-4-2. Random consistency indexConsistency ratio index: RICICR =. When 1.0<CR , we can regard the judgment matrix is consistent. For judging the matrix A ,We have worked out the maximum eigenvalue of the matrix A,max λ (see eq.10).998.1max =λBecause the matrix A is a second order matrix (n=2), the consistency index 0=CIConsequently, the consistency ratio index CR meets 1.0<CR . We can conclude the matrix A is consistent, so we can use its feature vector to substitute its weight. So the weight of ξis 0.667, the weight of ηis 0.333.4.4.3 The Multi-goal Programming Model EquationThen we discuss the multi-goal programming model of different level cities respectively.We set the forth-level cities as an example. We can get444333.0667.0F i i i ηξ+=The meaning of the equation is as follows:The total number of drugs equals to the product of the number of the infective in the city and the proportional coefficient of the infective that can get drugs.Where 4F i represents the multi-goal coefficient of the i-th forth level city. 4i ξ represents the ratio of the number of the infective in the i-th forth-level city and then 1 2 34567891011RI0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51number of the total infective in the total forth-lever city. 4i η represents the severity of Ebola in the i-th forth level city. We also get∑=⋅⋅=ni ii iiFF m t I H 14444)(The meaning of the equation is as follows:The total number of drugs equals to the sum of the product of the total number of the city, the proportional coefficient of the infective who can get drugs and the number of needed drugs of each patient.Where n represents the number of a certain level cities. 4)(i t I represents the number of the infective in the i-th forth-level city. 4i H represents the number of the distributed drugs in the i-th forth-level city. m represents the number of needed drugs of each patient.To sum up, the forth-level cities is444333.0667.0F i i i ηξ+= ⑾∑=⋅⋅=ni i i ii F F m t I H 14444)( ⑿Because drugs are only transported from the father city to its children cities, so when we calculate each level’s multi-goal factors, we must add up all the multi-goal factors of its total children cities, which is denoted as∑=ni iF14. Similarly, when wecalculate 3)(i t I , we must add up the number of the infective in its children cites. According to the forth-level cities, we can work out the equations of the third-level and the second-level cities. The third-level cities is∑=++=ni i iiiF 14333333.0667.0F ηξ ⒀∑=⋅⋅=ni i i ii F F m t I H 13333)( ⒁Thesecond-levelcitiesis∑=++=ni i iiiF 13222333.0667.0F ηξ ⒂∑=⋅⋅=n i iii i FF m t I H 12222)( ⒃We set the total number of existing drugs as Y. It is easy to know thatY H i =1 ⒄Besides, the total number of drugs in the i-th c-th-level city is1ic i c i H YH K ⋅= ⒅5. Conclusion and Sensitivity Analysis5.1 The Predicted Result of ARIMA Model.(1) In the time series model, we have found Ebola cases always keep a rising trend in a year, so we can conclude that Ebola cases are independent of the season. That is, the changing relationship between the number of patients and time does not exist seasonal difference. In ARIMA, we take 0,0,0===sq sd sp .(2) We calculate the difference of a non-stationary time series until the series becomes a stationary series, the difference frequency is denoted as d .FIGURE 5-1-1. The difference situation of the prepared time series of Guinea。
2013美国大学生数学建模论文终稿
本文建立了三个模型(model),模型一(model 1 )用于解释不同形状的pan(从矩形到圆形中的任一形状)在其外围边沿的热量分布(原文:the distribution of heat across the outer edge of a pan for pans of different shapes --rectangular to circular and other shapes in between ),模型二用于在一定条件下选取最优形状的pan(the best type of pan (shape)),第三个模型为对问题一、二的优化(optimize( .))方案。
In this paper, we formulate 3 relevant models. Through model 1, we display the distribution of heat across the outer edge of a pan for pans of different shapes -rectangular to circular and other shapes in between. While in model 2, we can select out the best type of pan in certain condition. Optimize a combination of model 1 and 2, then we get model 3.首先对于模型一,我们将求解pan的外沿热量分布(the distribution of heat across the outer edge of a pan )转化为求解pan所在平面的温度场(temperature field),根据热力学理论(thermodynamic theory )写出温度分布方程(Temperature distribution function),同时由假设条件(assumed condition)确定方程的初始条件(initial condition)和边界条件(boundary condition),利用Matlab(软件)求其数值解(numerical solution)。
美国大学生数学建模竞赛二等奖论文
美国⼤学⽣数学建模竞赛⼆等奖论⽂The P roblem of R epeater C oordination SummaryThis paper mainly focuses on exploring an optimization scheme to serve all the users in a certain area with the least repeaters.The model is optimized better through changing the power of a repeater and distributing PL tones,frequency pairs /doc/d7df31738e9951e79b8927b4.html ing symmetry principle of Graph Theory and maximum coverage principle,we get the most reasonable scheme.This scheme can help us solve the problem that where we should put the repeaters in general cases.It can be suitable for the problem of irrigation,the location of lights in a square and so on.We construct two mathematical models(a basic model and an improve model)to get the scheme based on the relationship between variables.In the basic model,we set a function model to solve the problem under a condition that assumed.There are two variables:‘p’(standing for the power of the signals that a repeater transmits)and‘µ’(standing for the density of users of the area)in the function model.Assume‘p’fixed in the basic one.And in this situation,we change the function model to a geometric one to solve this problem.Based on the basic model,considering the two variables in the improve model is more reasonable to most situations.Then the conclusion can be drawn through calculation and MATLAB programming.We analysis and discuss what we can do if we build repeaters in mountainous areas further.Finally,we discuss strengths and weaknesses of our models and make necessary recommendations.Key words:repeater maximum coverage density PL tones MATLABContents1.Introduction (3)2.The Description of the Problem (3)2.1What problems we are confronting (3)2.2What we do to solve these problems (3)3.Models (4)3.1Basic model (4)3.1.1Terms,Definitions,and Symbols (4)3.1.2Assumptions (4)3.1.3The Foundation of Model (4)3.1.4Solution and Result (5)3.1.5Analysis of the Result (8)3.1.6Strength and Weakness (8)3.1.7Some Improvement (9)3.2Improve Model (9)3.2.1Extra Symbols (10)Assumptions (10)3.2.2AdditionalAdditionalAssumptions3.2.3The Foundation of Model (10)3.2.4Solution and Result (10)3.2.5Analysis of the Result (13)3.2.6Strength and Weakness (14)4.Conclusions (14)4.1Conclusions of the problem (14)4.2Methods used in our models (14)4.3Application of our models (14)5.Future Work (14)6.References (17)7.Appendix (17)Ⅰ.IntroductionIn order to indicate the origin of the repeater coordination problem,the following background is worth mentioning.With the development of technology and society,communications technology has become much more important,more and more people are involved in this.In order to ensure the quality of the signals of communication,we need to build repeaters which pick up weak signals,amplify them,and retransmit them on a different frequency.But the price of a repeater is very high.And the unnecessary repeaters will cause not only the waste of money and resources,but also the difficulty of maintenance.So there comes a problem that how to reduce the number of unnecessary repeaters in a region.We try to explore an optimized model in this paper.Ⅱ.The Description of the Problem2.1What problems we are confrontingThe signals transmit in the way of line-of-sight as a result of reducing the loss of the energy. As a result of the obstacles they meet and the natural attenuation itself,the signals will become unavailable.So a repeater which just picks up weak signals,amplifies them,and retransmits them on a different frequency is needed.However,repeaters can interfere with one another unless they are far enough apart or transmit on sufficiently separated frequencies.In addition to geographical separation,the“continuous tone-coded squelch system”(CTCSS),sometimes nicknamed“private line”(PL),technology can be used to mitigate interference.This system associates to each repeater a separate PL tone that is transmitted by all users who wish to communicate through that repeater. The PL tone is like a kind of password.Then determine a user according to the so called password and the specific frequency,in other words a user corresponds a PL tone(password)and a specific frequency.Defects in line-of-sight propagation caused by mountainous areas can also influence the radius.2.2What we do to solve these problemsConsidering the problem we are confronting,the spectrum available is145to148MHz,the transmitter frequency in a repeater is either600kHz above or600kHz below the receiver frequency.That is only5users can communicate with others without interferences when there’s noPL.The situation will be much better once we have PL.However the number of users that a repeater can serve is limited.In addition,in a flat area ,the obstacles such as mountains ,buildings don’t need to be taken into account.Taking the natural attenuation itself is reasonable.Now the most important is the radius that the signals transmit.Reducing the radius is a good way once there are more users.With MATLAB and the method of the coverage in Graph Theory,we solve this problem as follows in this paper.Ⅲ.Models3.1Basic model3.1.1Terms,Definitions,and Symbols3.1.2Assumptions●A user corresponds a PLz tone (password)and a specific frequency.●The users in the area are fixed and they are uniform distribution.●The area that a repeater covers is a regular hexagon.The repeater is in the center of the regular hexagon.●In a flat area ,the obstacles such as mountains ,buildings don’t need to be taken into account.We just take the natural attenuation itself into account.●The power of a repeater is fixed.3.1.3The Foundation of ModelAs the number of PLz tones (password)and frequencies is fixed,and a user corresponds a PLz tone (password)and a specific frequency,we can draw the conclusion that a repeater can serve the limited number of users.Thus it is clear that the number of repeaters we need relates to the density symboldescriptionLfsdfminrpµloss of transmission the distance of transmission operating frequency the number of repeaters that we need the power of the signals that a repeater transmits the density of users of the areaof users of the area.The radius of the area that a repeater covers is also related to the ratio of d and the radius of the circular area.And d is related to the power of a repeater.So we get the model of function()min ,r f p µ=If we ignore the density of users,we can get a Geometric model as follows:In a plane which is extended by regular hexagons whose side length are determined,we move a circle until it covers the least regular hexagons.3.1.4Solution and ResultCalculating the relationship between the radius of the circle and the side length of the regular hexagon.[]()()32.4420lg ()20lg Lfs dB d km f MHz =++In the above formula the unit of ’’is .Lfs dB The unit of ’’is .d Km The unit of ‘‘is .f MHz We can conclude that the loss of transmission of radio is decided by operating frequency and the distance of transmission.When or is as times as its former data,will increase f d 2[]Lfs .6dB Then we will solve the problem by using the formula mentioned above.We have already known the operating frequency is to .According to the 145MHz 148MHz actual situation and some authority material ,we assume a system whose transmit power is and receiver sensitivity is .Thus we can conclude that ()1010dBm mW +106.85dBm ?=.Substituting and to the above formula,we can get the Lfs 106.85dBm ?145MHz 148MHz average distance of transmission .()6.4d km =4mile We can learn the radius of the circle is 40mile .So we can conclude the relationship between the circle and the side length of regular hexagon isR=10d.1)The solution of the modelIn order to cover a certain plane with the least regular hexagons,we connect each regular hexagon as the honeycomb.We use A(standing for a figure)covers B(standing for another figure), only when As don’t overlap each other,the number of As we use is the smallest.Figure1According to the Principle of maximum flow of Graph Theory,the better of the symmetry ofthe honeycomb,the bigger area that it covers(Fig1).When the geometric centers of the circle andthe honeycomb which can extend are at one point,extend the honeycomb.Then we can get Fig2,Fig4:Figure2Fig3demos the evenly distribution of users.Figure4Now prove the circle covers the least regular hexagons.Look at Fig5.If we move the circle slightly as the picture,you can see three more regular hexagons are needed.Figure 52)ResultsThe average distance of transmission of the signals that a repeater transmit is 4miles.1000users can be satisfied with 37repeaters founded.3.1.5Analysis of the Result1)The largest number of users that a repeater can serveA user corresponds a PL and a specific frequency.There are 5wave bands and 54different PL tones available.If we call a code include a PL and a specific frequency,there are 54*5=270codes.However each code in two adjacent regular hexagons shouldn’t be the same in case of interfering with each other.In order to have more code available ,we can distribute every3adjacent regular hexagons 90codes each.And that’s the most optimized,because once any of the three regular hexagons have more codes,it will interfere another one in other regular hexagon.2)Identify the rationality of the basic modelNow we considering the influence of the density of users,according to 1),90*37=3330>1000,so here the number of users have no influence on our model.Our model is rationality.3.1.6Strength and Weakness●Strength:In this paper,we use the model of honeycomb-hexagon structure can maximize the use of resources,avoiding some unnecessary interference effectively.It is much more intuitive once we change the function model to the geometric model.●Weakness:Since each hexagon get too close to another one.Once there are somebuildingsor terrain fluctuations between two repeaters,it can lead to the phenomenon that certain areas will have no signals.In addition,users are distributed evenly is not reasonable.The users are moving,for example some people may get a party.3.1.7Some ImprovementAs we all know,the absolute evenly distribution is not exist.So it is necessary to say something about the normal distribution model.The maximum accommodate number of a repeater is 5*54=270.As for the first model,it is impossible that 270users are communicating in a same repeater.Look at Fig 6.If there are N people in the area 1,the maximum number of the area 2to area 7is 3*(270-N).As 37*90=3330is much larger than 1000,our solution is still reasonable to this model.Figure 63.2Improve Model3.2.1Extra SymbolsSigns and definitions indicated above are still valid.Here are some extra signs and definitions.symboldescription Ra the radius of the circular flat area the side length of a regular hexagon3.2.2Additional AdditionalAssumptionsAssumptions ●The radius that of a repeater covers is adjustable here.●In some limited situations,curved shape is equal to straight line.●Assumptions concerning the anterior process are the same as the Basic Model3.2.3The Foundation of ModelThe same as the Basic Model except that:We only consider one variable(p)in the function model of the basic model ;In this model,we consider two varibles(p and µ)of the function model.3.2.4Solution and Result1)SolutionIf there are 10,000users,the number of regular hexagons that we need is at least ,thus according to the the Principle of maximum flow of Graph Theory,the 10000111.1190=result that we draw needed to be extended further.When the side length of the figure is equal to 7Figure 7regular hexagons,there are 127regular hexagons (Fig 7).Assuming the side length of a regular hexagon is ,then the area of a regular hexagon is a .The area of regular hexagons is equal to a circlewhose radiusis 22a =1000090R.Then according to the formula below:.221000090a R π=We can get.9.5858R a =Mapping with MATLAB as below (Fig 8):Figure 82)Improve the model appropriatelyEnlarge two part of the figure above,we can get two figures below (Fig 9and Fig 10):Figure 9AREAFigure 10Look at the figure above,approximatingAREA a rectangle,then obtaining its area to getthe number of users..The length of the rectangle is approximately equal to the side length of the regular hexagon ,athe width of the rectangle is ,thus the area of AREA is ,then R ?*R awe can get the number of users in AREA is(),2**10000 2.06R a R π=????????9.5858R a =As 2.06<<10,000,2.06can be ignored ,so there is no need to set up a repeater in.There are 6suchareas(92,98,104,110,116,122)that can be ignored.At last,the number of repeaters we should set up is,1276121?=2)Get the side length of the regular hexagon of the improved modelThus we can getmile=km 40 4.1729.5858a == 1.6* 6.675a =3)Calculate the power of a repeaterAccording to the formula[]()()32.4420lg ()20lg Lfs dB d km f MHz =++We get32.4420lg 6.67520lg14592.156Los =++=32.4420lg 6.67520lg14892.334Los =++=So we get106.85-92.156=14.694106.85-92.334=14.516As the result in the basic model,we can get the conclusion the power of a repeater is from 14.694mW to 14.516mW.3.2.5Analysis of the ResultAs 10,000users are much more than 1000users,the distribution of the users is more close toevenly distribution.Thus the model is more reasonable than the basic one.More repeaters are built,the utilization of the outside regular hexagon are higher than the former one.3.2.6Strength and Weakness●Strength:The model is more reasonable than the basic one.●Weakness:Repeaters don’t cover all the area,some places may not receive signals.And thefoundation of this model is based on the evenly distribution of the users in the area,if the situation couldn’t be satisfied,the interference of signals will come out.Ⅳ.Conclusions4.1Conclusions of the problem●Generally speaking,the radius of the area that a repeater covers is4miles in our basic model.●Using the model of honeycomb-hexagon structure can maximize the use of resources,avoiding some unnecessary interference effectively.●The minimum number of repeaters necessary to accommodate1,000simultaneous users is37.The minimum number of repeaters necessary to accommodate10,000simultaneoususers is121.●A repeater's coverage radius relates to external environment such as the density of users andobstacles,and it is also determined by the power of the repeater.4.2Methods used in our models●Analysis the problem with MATLAB●the method of the coverage in Graph Theory4.3Application of our models●Choose the ideal address where we set repeater of the mobile phones.●How to irrigate reasonably in agriculture.●How to distribute the lights and the speakers in squares more reasonably.Ⅴ.Future WorkHow we will do if the area is mountainous?5.1The best position of a repeater is the top of the mountain.As the signals are line-of-sight transmission and reception.We must find a place where the signals can transmit from the repeater to users directly.So the top of the mountain is a good place.5.2In mountainous areas,we must increase the number of repeaters.There are three reasons for this problem.One reason is that there will be more obstacles in the mountainous areas. The signals will be attenuated much more quickly than they transmit in flat area.Another reason is that the signals are line-of-sight transmission and reception,we need more repeaters to satisfy this condition.Then look at Fig11and Fig12,and you will know the third reason.It can be clearly seen that hypotenuse is larger than right-angleFig11edge(R>r).Thus the radius will become smaller.In this case more repeaters are needed.Fig125.3In mountainous areas,people may mainly settle in the flat area,so the distribution of users isn’t uniform.5.4There are different altitudes in the mountainous areas.So in order to increase the rate of resources utilization,we can set up the repeaters in different altitudes.5.5However,if there are more repeaters,and some of them are on mountains,more money will be/doc/d7df31738e9951e79b8927b4.html munication companies will need a lot of money to build them,repair them when they don’t work well and so on.As a result,the communication costs will be high.What’s worse,there are places where there are many mountains but few persons. Communication companies reluctant to build repeaters there.But unexpected things often happen in these places.When people are in trouble,they couldn’t communicate well with the outside.So in my opinion,the government should take some measures to solve this problem.5.6Another new method is described as follows(Fig13):since the repeater on high mountains can beFig13Seen easily by people,so the tower which used to transmit and receive signals can be shorter.That is to say,the tower on flat areas can be a little taller..Ⅵ.References[1]YU Fei,YANG Lv-xi,"Effective cooperative scheme based on relay selection",SoutheastUniversity,Nanjing,210096,China[2]YANG Ming,ZHAO Xiao-bo,DI Wei-guo,NAN Bing-xin,"Call Admission Control Policy based on Microcellular",College of Electical and Electronic Engineering,Shijiazhuang Railway Institute,Shijiazhuang Heibei050043,China[3]TIAN Zhisheng,"Analysis of Mechanism of CTCSS Modulation",Shenzhen HYT Co,Shenzhen,518057,China[4]SHANGGUAN Shi-qing,XIN Hao-ran,"Mathematical Modeling in Bass Station Site Selectionwith Lingo Software",China University of Mining And Technology SRES,Xuzhou;Shandong Finance Institute,Jinan Shandon,250014[5]Leif J.Harcke,Kenneth S.Dueker,and David B.Leeson,"Frequency Coordination in the AmateurRadio Emergency ServiceⅦ.AppendixWe use MATLAB to get these pictures,the code is as follows:1-clc;clear all;2-r=1;3-rc=0.7;4-figure;5-axis square6-hold on;7-A=pi/3*[0:6];8-aa=linspace(0,pi*2,80);9-plot(r*exp(i*A),'k','linewidth',2);10-g1=fill(real(r*exp(i*A)),imag(r*exp(i*A)),'k');11-set(g1,'FaceColor',[1,0.5,0])12-g2=fill(real(rc*exp(i*aa)),imag(rc*exp(i*aa)),'k');13-set(g2,'FaceColor',[1,0.5,0],'edgecolor',[1,0.5,0],'EraseMode','x0r')14-text(0,0,'1','fontsize',10);15-Z=0;16-At=pi/6;17-RA=-pi/2;18-N=1;At=-pi/2-pi/3*[0:6];19-for k=1:2;20-Z=Z+sqrt(3)*r*exp(i*pi/6);21-for pp=1:6;22-for p=1:k;23-N=N+1;24-zp=Z+r*exp(i*A);25-zr=Z+rc*exp(i*aa);26-g1=fill(real(zp),imag(zp),'k');27-set(g1,'FaceColor',[1,0.5,0],'edgecolor',[1,0,0]);28-g2=fill(real(zr),imag(zr),'k');29-set(g2,'FaceColor',[1,0.5,0],'edgecolor',[1,0.5,0],'EraseMode',xor';30-text(real(Z),imag(Z),num2str(N),'fontsize',10);31-Z=Z+sqrt(3)*r*exp(i*At(pp));32-end33-end34-end35-ezplot('x^2+y^2=25',[-5,5]);%This is the circular flat area of radius40miles radius 36-xlim([-6,6]*r) 37-ylim([-6.1,6.1]*r)38-axis off;Then change number19”for k=1:2;”to“for k=1:3;”,then we get another picture:Change the original programme number19“for k=1:2;”to“for k=1:4;”,then we get another picture:。
数模美赛论文模板
内容格式:AbstractIntroductionAssumptionsAnalysis of the problemTask 1 : predicting survivorshipTask2 : achieving stability….Sensitivity analysisStrengthsWeaknessesConclusionReferencesTitle(use Arial 14)First author , second author , the other (use Arial 14)Full address of first author . Including country and mail(use Arial 11)Full address of second author . Including country and mailList all distinct addresses in the same wayKeywords(use Arial 11)Abstract1985:模型概述-考虑因素-使用理由We modelled …. Since … – we used …. We included …which were to be chosen in order to …假设条件-数据处理方法We assumed that…We used actual data to estimate realistic ranges on the parameters in the model.评估标准-衡量方法-得到结论-结论的可靠性We defined…We then used …we found …We examined the results for different values of the mortality parameters and found them to be the same . Therefore ,our solution appears to be stable with respect to environmental conditions.2000:背景设置-模型引入…in order to determine …, we develop models using…解决问题-模型解决(层次排比)For the solution of …, we develop… model based … to … . For the solution of … , we employ … What is more , a self-adaptive traffic light is employed to … according to …模型检验-模型修正By comparison of … simulation results , the models are evaluated . …is formulated to judge which solution is effective .2002:The task is to … we begin by constructing a model of … base on … Using this model we can … Using… , we model … through … and obtain … we compare the performance of our model in … simulations show that …2001:We examine the … . Such evacuations been required due to … . in order to … , we begin with an analysis of … . For a more realistic estimate , including the effects of … , we formulate models of … . The model we construct is based on … .This model leads to a … and it further show that … what’ more , it agrees with …2004:(修正递进式模型摘要模板)The purpose of this paper is to propose … . We propose that … . To build a solid foundation , we define and test a simple model for … . We then develop … system , but we find it would be far from optimal in practice . We then propose that the best model is one that adapts to … . We implement … . We simulate the … with … and we find this system quickly converges to a nearly optimal solution subject to our constraints . It is , however , sensitive to some parameters . We discuss the effects of these findings on the expected effectiveness of the system in a real environment . We conclude that … is a good solution .问题分析句式:… is a real-life common phenomenon with many complexities .For a better view of … , we …To give a clear expression, we will introduce the method presented by …模型引入句式:In this paper , we present … model to simulate efficient methods for …We also apply … methods to solve …We address the problem of …. through ….We formulate the problem as …We formulate a … model to account for …Base on … , we establish a model ….We build a model to determine …We modify the model to reflect …To provide a more complete account for … , ... model has been employed .In this paper , in order to … , we design a … model based on …We propose a solution that …We have come up with an … for … andStrong evidence of ... , and powerful models have been created to estimate ...模型推进:… will scale up to an effective model for …模型求解:We employ … , one based on … and the other … , whose results agree closely.To combat this , we impose …结合数据:Using data from … , we determine …To ground this model in reality , we incorporate extensive demographic data ….We use data assembled by …Using a wide scale regression , we found that …We extrapolate from longevity data and explore the long-term behavior of …The base we developed was based off real-life data that gathered by …We estimate these characteristic numbers for a representative sample of …We fit the modified model to data , we conclude that …By statistical processing to results of …By analyzing the … on the basis of historic data in the same way mentioned in …结果给出句式:Results of this computation are presented , and ….We elicit that a conclusion …We conclude with a series of recommendations for …Given a … deviation in the value of the parameter , we calculate the percentage change in the value that the system converges to …As we can find out , in the situation of …. , …. is subject to the logistic regression .We conclude through analyzing that ….it is apparent that …Through comparing the … , we conclude that …According to the laws of … , we draw a conclusion of …From the formula , we know that …Thus we arrive at the conclusion :We elicit that a conclusion …As a consequence , we can get …模型可行性:Our suggested solution , which is easy to ….Since our model is based on … it can be applied to …Importantly , we use some practical data to test our model and analysis its stability , we simulate this model and receive a well effect .Therefore , we trust this model as an accurate testing ground for …Our algorithm is broad enough to accommodate various …定理可靠说明:That is the theoretical basis for … in many application areas .模型简化With further simplification, utilizing … we can reach …承上启下:In addition to the model , we also discuss …Because the movement of … operates by the same laws and equations as the movement of … , we can ….Based on the above discussion, considering …., let’s …误差句式:… does not deviate more than … from the target value .Theoretically , error due to … should not play a tremendous role under our model .Up to this point , we have made many approximations , not all of which are justified theoretically , but the results of algorithm are quite reasonable .This is a naïve approach which may mot ensure the …. , however if we … , the error is negligible .Context:方程给出:We derive the equation expressing the … as a function of… we haveA simple formula determined by the … is given by the equation :… can be written as the following system of equations :In particular , the … is defined in terms of … ,It is convenient to rewrite equations into the vector form:The expression of … can be expanded as …Equation (1) is reduced to ..Substitute the values into equation (1) ,we get …So its expression can be derived from equation (1) with small changes .Our results are summarized in the formula for …Plugging (1) into the equation for (2) , we obtain …Therefore , from (1)(2)(3) , we have the junction that …We use the following initial conditions to determine …When computing , we suppose … ,so this suppose doesn’t … ,then by … , we can get :According to equation (1)(2) , we can eliminate … ,then we can acquire :By connecting equation (6)(7) , we get the conclusion that …Then we can acquire … through the following equation :Its solution is the following …, in which … is …客观条件引入:A commonly accepted fact is that …A lot of research has been done to explain and find …In our model , we prefer to follow the conclusion used by …Here , we cite the model constructed by …There is one paper from … ,which concluded that …We get performance of … by citing the experimental results of …Here, we will introduce some terms used to address the problem, and we …方法给出句式:We construct … intelligent algorithms , a conservative approach , and an enthusiastic system to ..We formulate a simplified differential equation governing …This equation will be based on …The above considerations lead us to formulate the … asGiven this , it is easy to determine …To analyze the accuracy of our model , and determine a reasonable value for …We will evaluate the performance of our … by …We tabulate the … as a function of …Analysis for the … can be carried out exactly in the same fashion as …The main goal in attempting to model … is to determine … and … should be considered .The first requirement that the model reproduce is to determine if the model is reasonable .We begin our analysis of the phenomenon of congestion with the question of …In modeling this behavior , we begin with …In laying down the mathematics of this model , we begin with …When … is not taken into account ,it is …We give the criterion that …We fix A and examine the change of B with respect to CAttention has been draw to determine …To reveal the trend of … in a long horizonTo deal with the problem, we need figure out …图表句式:We can graph … with …,and such a plot is shown in …According to the above data , we can see that … . This phenomenon shows that … . Hence, we can safely arrive the conclusion that …Table 7 reports the general statistics under …文献句式:There is rather substantial literature on models for evaluating regional health condition, and most models fall into one of two categories: microscopic and macroscopic. Nevertheless, to get a more accurate understanding, we need to conduct quantitative modeling in our call for a better evaluation and predictive model.假设句式:In order to present our solution , we have made numerous simplifications to the given problem . we made several assumptions regarding either the problem domain itself , or …For the sake of simplicity , we will generally assume in our discussions that …… are assumed to have …We assume … are …Due to the symmetry of the image we can assume that …We came up with a few different hypotheses that …For simplicity we consider …We will use the following symbols and definitions in the description of the model:To get the general picture of the … , we rely on the assumption that …Hence we are bale to …This assumption makes sense , because we expect …Assumption … is valid , since if it was not the case , the … would …Make the following assumptions to approximate and simplify the problem …As a sweet spot , there is no doubt that … ,if not , …For the purpose of reaching a conclusion conveniently , we assume …We adopt a set of assumptions as follows …模型验证:To test our model , we developed a … simulator based on … , and the simulator was written in … and can be executed on several platforms .To demonstrate how our model works , we apply it to …跨段内容:For a further discussion of this model , please see Appendix A .The underlying idea is fairly simple内容引导:What we are really interested in is …With this consideration in mind , we now …Our goal is to … , one that would …We must restate the problem mathematically by narrowing our focus and defining our goals in order to obtain a good model .Given this idea , it is clear that we cannot compromise the …This immediately leads to useful conclusions . For example , …Given these assumptions , the following results can be quickly derived …We will pursue this goal …We turn our attention to …We restrict our attention to …In addition to the model , we also discuss policies for …In our paper , we take … factors into consideration to …… is not as simple a task as it might seem , because …For the … , we only take … into account .As the next step , we will introduce our advanced method to …Under the premise of this , …On the basis of previous analyses , we find the …效果评价:This is a good indication that our simulations are producing reasonable results .The results of our simulations ,shown in … indicate that the performance of …This is no surprise the distinguishing features of …This would appear very encouraging indeed , were it not …We therefore regard this model as reasonable .Here very little congestion occurs …As we will see when we apply our model to … ,this model works well . It should be noted ,though that this is not the only way to define the location of generator points , but it is a very good firs approach .//数据缺乏的理论化模型Of course , only theoretical explanations are not completely convincing . But mass of data relevant to our calculation can be obtained through experiments . Owing to our limit conditions , we only quote some experimental results from other literatures to assist and analyze our derived theoretical conclusion .变量指定句式:Let … denote … , and … to be …The … is … , where … is , W stands for , and … stands for bucks .For better description we assign …Note for brief description of the model , we will denote …解释句式:In fact , this assumption is reasonable not only because … but also that …In other word , …The key feature of this algorithm is …It is important to note that … can no longer be ignored when considering …If … , we can gain more insight into the nature of …The reason we care about … is that … ,the problem is determining …, if … so we ..Our approach weighs heavily on …To show that … are negligible , we vary …This is likely due to …修正:We modify … according to …We modify the model to reflect … and generalize the model to …影响:Because the effect of … and omit the resistance of …As the effect of …The model also incorporates the …At other impact points , the impact may …... has been implicated as the major component of ...图表用语:However , from this figure it is clear that the …From this figure one can see that …,one also notices that …This graph can be compared to the results of the symbolic model to see how well the model agrees with our simulated …The two plots at above which show … .According to …, there exists the fact that …According to …, it is no doubt that…拟合近似,模拟:Given the above assumptions , we may approximate …In simulations over a suitably long time period , we find …For each run of the simulation we fire enough blobs so that results are …An appropriate estimate for the … can be obtain as follows .In assessing the accuracy of a mathematical model , …We now propose a way to extend our model using a computer simulation of …It is obvious , however , that this is a highly subjective value that must be determined through experiment for each … that our model is applied to .This model leads to a computer simulation of …主要因素:Analyzing what parameters have the greatest effect on the simulation results indicates the things that we should focus on in order to produce a more effective evacuation scheme .Sensitivity analysisWe use the sensitivity analysis to defend our model . The sensitivity of a model is a measure of how sensitive the result changes at small changes of parameters . A good model is corresponding to low sensitiveness .Considering the parameters used in our solutions , here we provide following discussion .The above models we have built is based on … ,which has well solved … . To the final issue , we have take … into account in order to …Strength:On the whole , we have hound our model to be quite natural and easy to apply . Here , we list some of the advantages of our approach to the problem .The most distinct advantage of our model is that …Our methods can incorporate various scenarios : ….This model is simple enough for … to understand .Our method is robust (健壮), so that other variables or situations can be easily introduced .Our model … and is not overly sensitive to small changes in …Additionally , we avoided harsh assumptions that would constrain the possible …Most of the assumptions we did make could be accounted for as well in a more general model .We use random events to simulate the chaos of real world .The key insight to our model is that ….Our model also takes into account the …The model allows … which is more close to reality .The model is able to handle a range of …Besides rigorous theoretical derivation , we also citing the research results of numerous experts and scholars to test the result of our method .Weakness:Of course , there are many ways to attack a problem such as this one , In this section , we discuss some of the drawbacks of our approach to the problem , and some things that could have been done to deal with these issues .Some special data can’t be found , and it makes that we have to do some proper assumption before the solution of our models . A more abundant data resource can guarantee a better result in our model .The model responds slowly to dramatic changes in …The method does not allow … , which might be possible with a more radicalmodel .However , … constraints arise when pursuing this methodology .Additionally , this method would have required … , which would …However , the algorithms do have unique strengths and weaknesses when …Our model does take into account the complicated effects that …Factors considered in our method is relatively unitary , we only take the important factor into consideration .Lacking brief numerical calculation in our method , though we display rigorous theoretical derivation .。
美赛数学建模优秀论文
Why Crime Doesn’t Pay:Locating Criminals Through Geographic ProfilingControl Number:#7272February22,2010AbstractGeographic profiling,the application of mathematics to criminology, has greatly improved police efforts to catch serial criminals byfinding their residence.However,many geographic profiles either generate an extremely large area for police to cover or generates regions that are unstable with respect to internal parameters of the model.We propose,formulate,and test the Gaussian Rossmooth(GRS)Method,which takes the strongest elements from multiple existing methods and combines them into a more stable and robust model.We also propose and test a model to predict the location of the next crime.We tested our models on the Yorkshire Ripper case.Our results show that the GRS Method accurately predicts the location of the killer’s residence.Additionally,the GRS Method is more stable with respect to internal parameters and more robust with respect to outliers than the existing methods.The model for predicting the location of the next crime generates a logical and reasonable region where the next crime may occur.We conclude that the GRS Method is a robust and stable model for creating a strong and effective model.1Control number:#72722Contents1Introduction4 2Plan of Attack4 3Definitions4 4Existing Methods54.1Great Circle Method (5)4.2Centrography (6)4.3Rossmo’s Formula (8)5Assumptions8 6Gaussian Rossmooth106.1Properties of a Good Model (10)6.2Outline of Our Model (11)6.3Our Method (11)6.3.1Rossmooth Method (11)6.3.2Gaussian Rossmooth Method (14)7Gaussian Rossmooth in Action157.1Four Corners:A Simple Test Case (15)7.2Yorkshire Ripper:A Real-World Application of the GRS Method167.3Sensitivity Analysis of Gaussian Rossmooth (17)7.4Self-Consistency of Gaussian Rossmooth (19)8Predicting the Next Crime208.1Matrix Method (20)8.2Boundary Method (21)9Boundary Method in Action21 10Limitations22 11Executive Summary2311.1Outline of Our Model (23)11.2Running the Model (23)11.3Interpreting the Results (24)11.4Limitations (24)12Conclusions25 Appendices25 A Stability Analysis Images252Control number:#72723List of Figures1The effect of outliers upon centrography.The current spatial mean is at the red diamond.If the two outliers in the lower leftcorner were removed,then the center of mass would be locatedat the yellow triangle (6)2Crimes scenes that are located very close together can yield illog-ical results for the spatial mean.In this image,the spatial meanis located at the same point as one of the crime scenes at(1,1)..7 3The summand in Rossmo’s formula(2B=6).Note that the function is essentially0at all points except for the scene of thecrime and at the buffer zone and is undefined at those points..9 4The summand in smoothed Rossmo’s formula(2B=6,φ=0.5, and EPSILON=0.5).Note that there is now a region aroundthe buffer zone where the value of the function no longer changesvery rapidly (13)5The Four Corners Test Case.Note that the highest hot spot is located at the center of the grid,just as the mathematics indicates.15 6Crimes and residences of the Yorkshire Ripper.There are two residences as the Ripper moved in the middle of the case.Someof the crime locations are assaults and others are murders (16)7GRS output for the Yorkshire Ripper case(B=2.846).Black dots indicate the two residences of the killer (17)8GRS method run on Yorkshire Ripper data(B=2).Note that the major difference between this model and Figure7is that thehot zones in thisfigure are smaller than in the original run (18)9GRS method run on Yorkshire Ripper data(B=4).Note that the major difference between this model and Figure7is that thehot zones in thisfigure are larger than in the original run (19)10The boundary region generated by our Boundary Method.Note that boundary region covers many of the crimes committed bythe Sutcliffe (22)11GRS Method onfirst eleven murders in the Yorkshire Ripper Case25 12GRS Method onfirst twelve murders in the Yorkshire Ripper Case263Control number:#727241IntroductionCatching serial criminals is a daunting problem for law enforcement officers around the world.On the one hand,a limited amount of data is available to the police in terms of crimes scenes and witnesses.However,acquiring more data equates to waiting for another crime to be committed,which is an unacceptable trade-off.In this paper,we present a robust and stable geographic profile to predict the residence of the criminal and the possible locations of the next crime.Our model draws elements from multiple existing models and synthesizes them into a unified model that makes better use of certain empirical facts of criminology.2Plan of AttackOur objective is to create a geographic profiling model that accurately describes the residence of the criminal and predicts possible locations for the next attack. In order to generate useful results,our model must incorporate two different schemes and must also describe possible locations of the next crime.Addi-tionally,we must include assumptions and limitations of the model in order to ensure that it is used for maximum effectiveness.To achieve this objective,we will proceed as follows:1.Define Terms-This ensures that the reader understands what we aretalking about and helps explain some of the assumptions and limitations of the model.2.Explain Existing Models-This allows us to see how others have at-tacked the problem.Additionally,it provides a logical starting point for our model.3.Describe Properties of a Good Model-This clarifies our objectiveand will generate a sketelon for our model.With this underlying framework,we will present our model,test it with existing data,and compare it against other models.3DefinitionsThe following terms will be used throughout the paper:1.Spatial Mean-Given a set of points,S,the spatial mean is the pointthat represents the middle of the data set.2.Standard Distance-The standard distance is the analog of standarddeviation for the spatial mean.4Control number:#727253.Marauder-A serial criminal whose crimes are situated around his or herplace of residence.4.Distance Decay-An empirical phenomenon where criminal don’t traveltoo far to commit their crimes.5.Buffer Area-A region around the criminal’s residence or workplacewhere he or she does not commit crimes.[1]There is some dispute as to whether this region exists.[2]In our model,we assume that the buffer area exists and we measure it in the same spatial unit used to describe the relative locations of other crime scenes.6.Manhattan Distance-Given points a=(x1,y1)and b=(x2,y2),theManhattan distance from a to b is|x1−x2|+|y1−y2|.This is also known as the1−norm.7.Nearest Neighbor Distance-Given a set of points S,the nearestneighbor distance for a point x∈S ismin|x−s|s∈S−{x}Any norm can be chosen.8.Hot Zone-A region where a predictive model states that a criminal mightbe.Hot zones have much higher predictive scores than other regions of the map.9.Cold Zone-A region where a predictive model scores exceptionally low. 4Existing MethodsCurrently there are several existing methods for interpolating the position of a criminal given the location of the crimes.4.1Great Circle MethodIn the great circle method,the distances between crimes are computed and the two most distant crimes are chosen.Then,a great circle is drawn so that both of the points are on the great circle.The midpoint of this great circle is then the assumed location of the criminal’s residence and the area bounded by the great circle is where the criminal operates.This model is computationally inexpensive and easy to understand.[3]Moreover,it is easy to use and requires very little training in order to master the technique.[2]However,it has certain drawbacks.For example,the area given by this method is often very large and other studies have shown that a smaller area suffices.[4]Additionally,a few outliers can generate an even larger search area,thereby further slowing the police effort.5Control number:#727264.2CentrographyIn centrography ,crimes are assigned x and y coordinates and the “center of mass”is computed as follows:x center =n i =1x i ny center =n i =1y i nIntuitively,centrography finds the mean x −coordinate and the mean y -coordinate and associates this pair with the criminal’s residence (this is calledthe spatial mean ).However,this method has several flaws.First,it can be unstablewith respect to outliers.Consider the following set of points (shown in Figure 1:Figure 1:The effect of outliers upon centrography.The current spatial mean is at the red diamond.If the two outliers in the lower left corner were removed,then the center of mass would be located at the yellow triangle.Though several of the crime scenes (blue points)in this example are located in a pair of upper clusters,the spatial mean (red point)is reasonably far away from the clusters.If the two outliers are removed,then the spatial mean (yellow point)is located closer to the two clusters.A similar method uses the median of the points.The median is not so strongly affected by outliers and hence is a more stable measure of the middle.[3]6Control number:#72727 Alternatively,we can circumvent the stability problem by incorporating the 2-D analog of standard deviation called the standard distance:σSD=d center,iNwhere N is the number of crimes committed and d center,i is the distance from the spatial center to the i th crime.By incorporating the standard distance,we get an idea of how“close together”the data is.If the standard distance is small,then the kills are close together. However,if the standard distance is large,then the kills are far apart. Unfortunately,this leads to another problem.Consider the following data set (shown in Figure2):Figure2:Crimes scenes that are located very close together can yield illogical results for the spatial mean.In this image,the spatial mean is located at the same point as one of the crime scenes at(1,1).In this example,the kills(blue)are closely clustered together,which means that the centrography model will yield a center of mass that is in the middle of these crimes(in this case,the spatial mean is located at the same point as one of the crimes).This is a somewhat paradoxical result as research in criminology suggests that there is a buffer area around a serial criminal’s place of residence where he or she avoids the commission of crimes.[3,1]That is,the potential kill area is an annulus.This leads to Rossmo’s formula[1],another mathematical model that predicts the location of a criminal.7Control number:#727284.3Rossmo’s FormulaRossmo’s formula divides the map of a crime scene into grid with i rows and j columns.Then,the probability that the criminal is located in the box at row i and column j isP i,j=kTc=1φ(|x i−x c|+|y j−y c|)f+(1−φ)(B g−f)(2B−|x i−x c|−|y j−y c|)gwhere f=g=1.2,k is a scaling constant(so that P is a probability function), T is the total number of crimes,φputs more weight on one metric than the other,and B is the radius of the buffer zone(and is suggested to be one-half the mean of the nearest neighbor distance between crimes).[1]Rossmo’s formula incorporates two important ideas:1.Criminals won’t travel too far to commit their crimes.This is known asdistance decay.2.There is a buffer area around the criminal’s residence where the crimesare less likely to be committed.However,Rossmo’s formula has two drawbacks.If for any crime scene x c,y c,the equality2B=|x i−x c|+|y j−y c|,is satisfied,then the term(1−φ)(B g−f)(2B−|x i−x c|−|y j−y c|)gis undefined,as the denominator is0.Additionally,if the region associated withij is the same region as the crime scene,thenφi c j c is unde-fined by the same reasoning.Figure3illustrates this:This“delta function-like”behavior is disconcerting as it essentially states that the criminal either lives right next to the crime scene or on the boundary defined by Rossmo.Hence,the B-value becomes exceptionally important and needs its own heuristic to ensure its accuracy.A non-optimal choice of B can result in highly unstable search zones that vary when B is altered slightly.5AssumptionsOur model is an expansion and adjustment of two existing models,centrography and Rossmo’s formula,which have their own underlying assumptions.In order to create an effective model,we will make the following assumptions:1.The buffer area exists-This is a necessary assumption and is the basisfor one of the mathematical components of our model.2.More than5crimes have occurred-This assumption is importantas it ensures that we have enough data to make an accurate model.Ad-ditionally,Rossmo’s model stipulates that5crimes have occurred[1].8Control number:#72729Figure3:The summand in Rossmo’s formula(2B=6).Note that the function is essentially0at all points except for the scene of the crime and at the buffer zone and is undefined at those points3.The criminal only resides in one location-By this,we mean thatthough the criminal may change residence,he or she will not move toa completely different area and commit crimes there.Empirically,thisassumption holds,with a few exceptions such as David Berkowitz[1].The importance of this assumption is it allows us to adapt Rossmo’s formula and the centrography model.Both of these models implicitly assume that the criminal resides in only one general location and is not nomadic.4.The criminal is a marauder-This assumption is implicitly made byRossmo’s model as his spatial partition method only considers a small rectangular region that contains all of the crimes.With these assumptions,we present our model,the Gaussian Rossmooth method.9Control number:#7272106Gaussian Rossmooth6.1Properties of a Good ModelMuch of the literature regarding criminology and geographic profiling contains criticism of existing models for catching criminals.[1,2]From these criticisms, we develop the following criteria for creating a good model:1.Gives an accurate prediction for the location of the criminal-This is vital as the objective of this model is to locate the serial criminal.Obviously,the model cannot give a definite location of the criminal,but it should at least give law enforcement officials a good idea where to look.2.Provides a good estimate of the location of the next crime-Thisobjective is slightly harder than thefirst one,as the criminal can choose the location of the next crime.Nonetheless,our model should generate a region where law enforcement can work to prevent the next crime.3.Robust with respect to outliers-Outliers can severely skew predic-tions such as the one from the centrography model.A good model will be able to identify outliers and prevent them from adversely affecting the computation.4.Consitent within a given data set-That is,if we eliminate data pointsfrom the set,they do not cause the estimation of the criminal’s location to change excessively.Additionally,we note that if there are,for example, eight murders by one serial killer,then our model should give a similar prediction of the killer’s residence when it considers thefirstfive,first six,first seven,and all eight murders.5.Easy to compute-We want a model that does not entail excessivecomputation time.Hence,law enforcement will be able to get their infor-mation more quickly and proceed with the case.6.Takes into account empirical trends-There is a vast amount ofempirical data regarding serial criminals and how they operate.A good model will incorporate this data in order to minimize the necessary search area.7.Tolerates changes in internal parameters-When we tested Rossmo’sformula,we found that it was not very tolerant to changes of the internal parameters.For example,varying B resulted in substantial changes in the search area.Our model should be stable with respect to its parameters, meaning that a small change in any parameter should result in a small change in the search area.10Control number:#7272116.2Outline of Our ModelWe know that centrography and Rossmo’s method can both yield valuable re-sults.When we used the mean and the median to calculate the centroid of a string of murders in Yorkshire,England,we found that both the median-based and mean-based centroid were located very close to the home of the criminal. Additionally,Rossmo’s method is famous for having predicted the home of a criminal in Louisiana.In our approach to this problem,we adapt these methods to preserve their strengths while mitigating their weaknesses.1.Smoothen Rossmo’s formula-While the theory behind Rossmo’s for-mula is well documented,its implementation isflawed in that his formula reaches asymptotes when the distance away from a crime scene is0(i.e.point(x i,y j)is a crime scene),or when a point is exactly2B away froma crime scene.We must smoothen Rossmo’s formula so that idea of abuffer area is mantained,but the asymptotic behavior is removed and the tolerance for error is increased.2.Incorporate the spatial mean-Using the existing crime scenes,we willcompute the spatial mean.Then,we will insert a Gaussian distribution centered at that point on the map.Hence,areas near the spatial mean are more likely to come up as hot zones while areas further away from the spatial mean are less likely to be viewed as hot zones.This ensures that the intuitive idea of centrography is incorporated in the model and also provides a general area to search.Moreover,it mitigates the effect of outliers by giving a probability boost to regions close to the center of mass,meaning that outliers are unlikely to show up as hot zones.3.Place more weight on thefirst crime-Research indicates that crimi-nals tend to commit theirfirst crime closer to their home than their latter ones.[5]By placing more weight on thefirst crime,we can create a model that more effectively utilizes criminal psychology and statistics.6.3Our Method6.3.1Rossmooth MethodFirst,we eliminated the scaling constant k in Rossmo’s equation.As such,the function is no longer a probability function but shows the relative likelihood of the criminal living in a certain sector.In order to eliminate the various spikes in Rossmo’s method,we altered the distance decay function.11Control number:#727212We wanted a distance decay function that:1.Preserved the distance decay effect.Mathematically,this meant that thefunction decreased to0as the distance tended to infinity.2.Had an interval around the buffer area where the function values wereclose to each other.Therefore,the criminal could ostensibly live in a small region around the buffer zone,which would increase the tolerance of the B-value.We examined various distance decay functions[1,3]and found that the func-tions resembled f(x)=Ce−m(x−x0)2.Hence,we replaced the second term in Rossmo’s function with term of the form(1−φ)×Ce−k(x−x0)2.Our modified equation was:E i,j=Tc=1φ(|x i−x c|+|y j−y c|)f+(1−φ)×Ce−(2B−(|x i−x c|+|y j−y c|))2However,this maintained the problematic region around any crime scene.In order to eliminate this problem,we set an EPSILON so that any point within EPSILON(defined to be0.5spatial units)of a crime scene would have a weighting of a constant cap.This prevented the function from reaching an asymptote as it did in Rossmo’s model.The cap was defined asCAP=φEPSILON fThe C in our modified Rossmo’s function was also set to this cap.This way,the two maximums of our modified Rossmo’s function would be equal and would be located at the crime scene and the buffer zone.12Control number:#727213This function yielded the following curve (shown in in Figure4),which fit both of our criteria:Figure 4:The summand in smoothed Rossmo’s formula (2B =6,φ=0.5,and EPSILON =0.5).Note that there is now a region around the buffer zone where the value of the function no longer changes very rapidly.At this point,we noted that E ij had served its purpose and could be replaced in order to create a more intuitive idea of how the function works.Hence,we replaced E i,j with the following sum:Tc =1[D 1(c )+D 2(c )]where:D 1(c )=min φ(|x i −x c |+|y j −y c |),φEPSILON D 2(c )=(1−φ)×Ce −(2B −(|x i −x c |+|y j −y c |))2For equal weighting on both D 1(c )and D 2(c ),we set φto 0.5.13Control number:#7272146.3.2Gaussian Rossmooth MethodNow,in order to incorporate the inuitive method,we used centrography to locate the center of mass.Then,we generated a Gaussian function centered at this point.The Gaussian was given by:G=Ae −@(x−x center)22σ2x+(y−y center)22σ2y1Awhere A is the amplitude of the peak of the Gaussian.We determined that the optimal A was equal to2times the cap defined in our modified Rossmo’s equation.(A=2φEPSILON f)To deal with empirical evidence that thefirst crime was usually the closest to the criminal’s residence,we doubled the weighting on thefirst crime.However, the weighting can be represented by a constant,W.Hence,ourfinal Gaussian Rosmooth function was:GRS(x i,y j)=G+W(D1(1)+D2(1))+Tc=2[D1(c)+D2(c)]14Control number:#7272157Gaussian Rossmooth in Action7.1Four Corners:A Simple Test CaseIn order to test our Gaussain Rossmooth(GRS)method,we tried it against a very simple test case.We placed crimes on the four corners of a square.Then, we hypothesized that the model would predict the criminal to live in the center of the grid,with a slightly higher hot zone targeted toward the location of the first crime.Figure5shows our results,whichfits our hypothesis.Figure5:The Four Corners Test Case.Note that the highest hot spot is located at the center of the grid,just as the mathematics indicates.15Control number:#727216 7.2Yorkshire Ripper:A Real-World Application of theGRS MethodAfter the model passed a simple test case,we entered the data from the Yorkshire Ripper case.The Yorkshire Ripper(a.k.a.Peter Sutcliffe)committed a string of13murders and several assaults around Northern England.Figure6shows the crimes of the Yorkshire Ripper and the locations of his residence[1]:Figure6:Crimes and residences of the Yorkshire Ripper.There are two res-idences as the Ripper moved in the middle of the case.Some of the crime locations are assaults and others are murders.16Control number:#727217 When our full model ran on the murder locations,our data yielded the image show in Figure7:Figure7:GRS output for the Yorkshire Ripper case(B=2.846).Black dots indicate the two residences of the killer.In this image,hot zones are in red,orange,or yellow while cold zones are in black and blue.Note that the Ripper’s two residences are located in the vicinity of our hot zones,which shows that our model is at least somewhat accurate. Additionally,regions far away from the center of mass are also blue and black, regardless of whether a kill happened there or not.7.3Sensitivity Analysis of Gaussian RossmoothThe GRS method was exceptionally stable with respect to the parameter B. When we ran Rossmo’s model,we found that slight variations in B could create drastic variations in the given distribution.On many occassions,a change of 1spatial unit in B caused Rossmo’s method to destroy high value regions and replace them with mid-level value or low value regions(i.e.,the region would completely dissapper).By contrast,our GRS method scaled the hot zones.17Control number:#727218 Figures8and9show runs of the Yorkshire Ripper case with B-values of2and 4respectively.The black dots again correspond to the residence of the criminal. The original run(Figure7)had a B-value of2.846.The original B-value was obtained by using Rossmo’s nearest neighbor distance metric.Note that when B is varied,the size of the hot zone varies,but the shape of the hot zone does not.Additionally,note that when a B-value gets further away from the value obtained by the nearest neighbor distance metric,the accuracy of the model decreases slightly,but the overall search areas are still quite accurate.Figure8:GRS method run on Yorkshire Ripper data(B=2).Note that the major difference between this model and Figure7is that the hot zones in this figure are smaller than in the original run.18Control number:#727219Figure9:GRS method run on Yorkshire Ripper data(B=4).Note that the major difference between this model and Figure7is that the hot zones in this figure are larger than in the original run.7.4Self-Consistency of Gaussian RossmoothIn order to test the self-consistency of the GRS method,we ran the model on thefirst N kills from the Yorkshire Ripper data,where N ranged from6to 13,inclusive.The self-consistency of the GRS method was adversely affected by the center of mass correction,but as the case number approached11,the model stabilized.This phenomenon can also be attributed to the fact that the Yorkshire Ripper’s crimes were more separated than those of most marauders.A selection of these images can be viewed in the appendix.19Control number:#7272208Predicting the Next CrimeThe GRS method generates a set of possible locations for the criminal’s resi-dence.We will now present two possible methods for predicting the location of the criminal’s next attack.One method is computationally expensive,but more rigorous while the other method is computationally inexpensive,but more intuitive.8.1Matrix MethodGiven the parameters of the GRS method,the region analyzed will be a square with side length n spatial units.Then,the output from the GRS method can be interpreted as an n×n matrix.Hence,for any two runs,we can take the norm of their matrix difference and compare how similar the runs were.With this in mind,we generate the following method.For every point on the grid:1.Add crime to this point on the grid.2.Run the GRS method with the new set of crime points.pare the matrix generated with these points to the original matrix bysubtracting the components of the original matrix from the components of the new matrix.4.Take a matrix norm of this difference matrix.5.Remove the crime from this point on the grid.As a lower matrix norm indicates a matrix similar to our original run,we seek the points so that the matrix norm is minimized.There are several matrix norms to choose from.We chose the Frobenius norm because it takes into account all points on the difference matrix.[6]TheFrobenius norm is:||A||F=mi=1nj=1|a ij|2However,the Matrix Method has one serious drawback:it is exceptionally expensive to compute.Given an n×n matrix of points and c crimes,the GRS method runs in O(cn2).As the Matrix method runs the GRS method at each of n2points,we see that the Matrix Method runs in O(cn4).With the Yorkshire Ripper case,c=13and n=151.Accordingly,it requires a fairly long time to predict the location of the next crime.Hence,we present an alternative solution that is more intuitive and efficient.20Control number:#7272218.2Boundary MethodThe Boundary Method searches the GRS output for the highest point.Then,it computes the average distance,r,from this point to the crime scenes.In order to generate a resonable search area,it discards all outliers(i.e.,points that were several times further away from the high point than the rest of the crimes scenes.)Then,it draws annuli of outer radius r(in the1-norm sense)around all points above a certain cutoffvalue,defined to be60%of the maximum value. This value was chosen as it was a high enough percentage value to contain all of the hot zones.The beauty of this method is that essentially it uses the same algorithm as the GRS.We take all points on the hot zone and set them to“crime scenes.”Recall that our GRS formula was:GRS(x i,y j)=G+W(D1(1)+D2(1))+Tc=2[(D1(c)+D2(c))]In our boundary model,we only take the terms that involve D2(c).However, let D 2(c)be a modified D2(c)defined as follows:D 2(c)=(1−φ)×Ce−(r−(|x i−x c|+|y j−y c|))2Then,the boundary model is:BS(x i,y j)=Tc=1D 2(c)9Boundary Method in ActionThis model generates an outer boundary for the criminal’s next crime.However, our model does notfill in the region within the inner boundary of the annulus. This region should still be searched as the criminal may commit crimes here. Figure10shows the boundary generated by analyzing the Yorkshire Ripper case.21。
[DOC]-数学建模美赛论文标准格式参考--中英文对照
[DOC]-数学建模美赛论文标准格式参考--中英文对照数学建模美赛论文标准格式参考--中英文对照Your Paper's Title Starts Here: Please Centeruse Helvetica (Arial) 14论文的题目从这里开始:用Helvetica (Arial)14号FULL First Author1, a, FULL Second Author2,b and Last Author3,c 第一第二第三作者的全名1Full address of first author, including country第一作者的地址全名,包括国家2Full address of second author, including country第二作者的地址全名,包括国家3List all distinct addresses in the same way第三作者同上aemail, bemail, cemail第一第二第三作者的邮箱地址Keywords: List the keywords covered in your paper. These keywords will also be used by the publisher to produce a keyword index.关键字: 列出你论文中的关键词。
这些关键词将会被出版者用作制作一个关键词索引。
For the rest of the paper, please use Times Roman (Times New Roman) 12论文的其他部分请用Times Roman (Times New Roman) 12号字Abstract. This template explains and demonstrates how to prepareyour camera-ready paper for Trans Tech Publications. The best is to read these instructions and follow the outline of this text.Please make the page settings of your word processor to A4 format(21 x 29,7 cm or 8 x 11 inches); with the margins: bottom 1.5 cm (0.59 in) and top 2.5 cm (0.98 in), right/left margins must be 2 cm (0.78 in).摘要:这个模板解释和示范供稿技术刊物有限公司时,如何准备你的供相机使用文件。
数学建模美赛三等奖论文
Water, Water, EverywhereSummaryDue to population growth, economic development, rapid urbanization, large-scale industrialization and environmental concerns water stress has emerged as a real threat. [1]This paper was motivated by the increasing awareness of the need for fresh water since fresh water crisis is already evident in many areas on the world, varying in scale and intensity.Firstly, we testify water demand and supply sequence are stable by means of unit root test, then predict the freshwater demand and supply in 2025 by using ARMA Model and Malthus Population Model .Secondly, we give more concern on four aspects: Diversion Project, Desalinization, Sewage treatment and Conservation of water resources, building some models such as Cost-benefits analysis and Tiered water pricing model. Comparing the cost-benefit ratio, the sewage treatment cost-benefitratio is the smallest--0.142, that is to say it is more cost-efficient.Finally, we use our models to analyze the impacts of these strategies, we can conclude that conservation of water resources is the most feasible.Keywords:Cost-benefit analysis ARMA ModelTiered water pricing modelA Letter to a governmental leadershipFebruary 4, 2013Dear Sir,During the four days working, our team spares no effort using cost and benefits analysis determine water strategy for 2013 about how to use water efficiently to meet the need in 2025. Now, we outline our conclusion to you.z Diversion ProjectThe South-North Water Transfer Project is a multi-decade infrastructure project solved the unbalance of water resource. The cost is 6.2yuan/3m, and it will much higher while the distance is more than 40 kilometers.z DesalinizationDesalinization utilizes the enormous seawater and provides freshwater in a cheaper price. However, interior regions with water scarcity can hardly benefit from it as most desalinization manufacturers located on eastern coastal areas. The cost of production is 5.446 yuan/t, but the transport costs less the cost-efficient competitiveness. The cost can be decreased by using more advanced technology.z Sewage treatmentSewage treatment can relief the environmental impact of water pollution by removing contaminants from water, the cost of Sewage treatment is 0.5yuan/t. z Conservation of water resourcesConservation makes sure of the source of rational use of water. There are several approaches on water resources conservation, the main problem is the lack of supervision. The benefit-cost ratio is between 0.95 and 3.23, and it has a high return-investment ratio.z Each of the above water strategy has its own advantages and disadvantages, we should consider the aspects of economic, physical, environmental, geographical, and technique factors overall, then choose the optimal strategy for different area.Yours sincerely,COMAP #23052ContentI Introduction (2)II Assumptions (3)III Models (3)3.1 The prediction of freshwater shortage in 2025 (3)3.1.1 The prediction of freshwater demand (3)3.1.1.1 The description of basic model (3)3.1.1.2 Model building (4)3.1.1.3 Model prediction (5)3.1.2 The prediction of freshwater supply (7)3.1.2.1 Model building (7)3.1.2.2 Model prediction (8)3.1.3. Conclusion (9)3.2Water strategy (9)3.2.1 Diversion Project (9)3.2.2 Desalinization (14)3.2.3 Sewage Treatment (16)3.2.4 Conservation of water resources (19)3.2.4.1 Agricultural water saving (20)3.2.4.2 Life water saving (21)IV The influence of our strategy (25)4.1 The influence of Water Diversion Project (25)4.2 The influence of desalination (25)4.3 The influence of sewage treatment (26)4.4 Water-saving society construction (26)V References (27)VI Appendix (28)I IntroductionAccording to relevant data shows that 99 percent of all water on earth is unusable, which is located in oceans, glaciers, atmospheric water and other saline water. And even of the remaining fraction of 1 percent, much of that is not available for our uses. For a detailed explanation, the following bar charts show the distribution of Earth's water: The left-side bar shows where the water on Earth exists; about 97 percent of all water is in the oceans. The middle bar shows the distribution of that 3 percent of all Earth's water that is fresh water. The majority, about 69 percent, is locked up in glaciers and icecaps, mainly in Greenland and Antarctica.[2] Except for the deep groundwater which is difficult to extract, what can be really used in our daily life is just 0.26 percent of all water on earth.Figure 1 The distribution of Earth's waterFreshwater is an important natural resource necessary for the survival of all ecosystems. There is a variety of unexpected consequence due to the lack of freshwater: 6,000 children die every day from diseases associated with unsafe water and poor sanitation and hygiene; Unsafe water and sanitation leads to 80% of all the diseases in the developing world;[3]Species which live in freshwater may be extinct, thus, breaking the food chain balance severely; The development of economic slow down in no small measure.It is with these thoughts in mind, many people think freshwater is very important than ever before.So, how to use freshwater efficiently? What is the best water strategy? Readmore and you will find more.II AssumptionsIn order to streamline our model we have made several key assumptions :1. We chose China as the object study.2. The water consumption of the whole nation could be approximate regardedas the demand of water .3. The Precipitation is in accordance with the supply of water .4. No considering about sea level rising because of global warmingIII Models3.1 The prediction of freshwater shortage in 2025How much freshwater should our strategy supply? Firstly, our work is to predict the gap between freshwater demand and supply in 2025. We obtain thefreshwater consumption data from China Statistical Yearbook. 3.1.1 The prediction of freshwater demandWe forecast the per capita demand for freshwater by building the ARMA Model .3.1.1.1 The description of basic modelThe notation ARMA(p, q) refers to the model with p autoregressive termsand q moving-average terms. This model contains the AR(p) and MA(q) models,mathematical formula is:qt q t t t p t p t t t y y y y −−−−−−−−−−+++=εθεθεθεφφφ......22112211 (1) AR(p) modelt p t p t t t y y y y εφφφ+++=−−−...2211 (2) MA(q) model q t q t t t t y −−−−−−−=εθεθεθε....2211 (3)),.....,2,1(p i i =φ ,),.....,2,1(q j j =θare undetermined coefficients of themodel, t ε is error term, t y is a stationary time series.3.1.1.2 Model buildingAll steps achieved by using EviewsStep1: ADF test stability of sequenceNull hypothesis:1:0=ρH , 1:1≠ρH , ρis unit root.Table 1 Null Hypothesis: Y has a unit root Exogenous: Constant Lag Length: 3 (Automatic based on SIC, MAXLAG=3) t-Statistic Prob. Augmented Dickey-Fuller test statistic -5.3783580.0040 Test critical values: 1% level-4.582648 5% level -3.32096910% level -2.801384We know Prob=0.0040 that we can reject the null hypothesis, and thenydoesn’t have a unit root, in other words, is stationary series. Step 2: Building the ARMA ModelThen we try to make sure of p and q by using the stationary series y .Table 2Date: 02/02/13 Time: 11:08Sample(adjusted): 2001 2011Included observations: 11 after adjusting endpointsConvergence achieved after 12 iterationsBackcast: 1998 2000Variable Coefficie nt Std. Error t-StatisticProb.AR(1) 1.0105040.005813173.8325 0.0000MA(3) 0.9454040.03650725.89639 0.0000R-squared 0.831422 Mean dependent varAdjustedR-squared 0.812692 S.D. dependent varS.E. of regression 5.085256 Akaike info criterionSo, we can get the final model, is:310.9454041.010504−−+=t t t d y y ε (4)3.1.1.3 Model predictionStep 1: The prediction of per capita freshwater demandWe use model (4) to predict the per capita demand of freshwater in the year2025, the result as Figure3.Figure 2 sequence diagram of dynamic predictionFrom the diagram, we can see the per capita freshwater demand is raising.The detailed data as Table3: Table 3 2010 2011 2012 2013 2014 2015 2016 2017 483.3584 488.4357 493.5662 498.7507503.9896509.2836514.6332 520.03892018 2019 2020 2021 2022 2023 2024 2025 525.5015 531.0214 536.5993 542.2358547.9315553.6871559.503 565.3801(cu.m/person)Through the above efforts, we get the 2025 per capita freshwater demand is565.3801 cu.mStep 2: The prediction of the whole freshwater demandThe relationship among d Q ,t N ,daverage Q is: daverage t d Q N Q ×= (5)d Q is the whole demand of freshwater, t N is the total population ,daverage Q is per capita of freshwater demand.Then we etimate the total population by the Malthus Population Model . rt e N t N 0)(=[4] (6))(t N is the population at time t,0N is the population at time 0,r is net relative growth rate of the populationrt e N N 2011)2025(= (7)By calculating, we get:(billion)42.11.347)2025(1500479.0≈=×e N (8)At last,we could get the whole demand of freshwater while the time is 2025.38.5652.14)2025(×=×=daverage d Q N Q ()cu.m million 100 8028.396= (9)3.1.2 The prediction of freshwater supplySimilarily,we predict freshwater supply using the ARMA Model. 3.1.2.1 Model buildingStep1: ADF test stability of sequenceNull hypothesis:1:0=ρH , 1:1≠ρH , ρis unit root. Table 4 Null Hypothesis: D(Y) has a unit root Exogenous: Constant Lag Length: 2 (Automatic based on SIC, MAXLAG=3)t-Statistic Prob. Augmented Dickey-Fuller test statistic-9.433708 0.0002 Test critical values: 1% level -4.803492 5% level -3.40331310% level -2.841819From the table, we find that first difference of supply data is smooth, we canreject the null hypothesis, that is ()y D is a smooth series.Step 2: Building the ARMA ModelWe use the smooth series ()y D to make sure the number of order.Table 5Date: 02/02/13 Time: 14:16Sample(adjusted): 2002 2010 Backcast: 1999 2001Variable CoefficientStd. Error t-Statistic Prob. AR(1) 0.6351030.158269 4.012804 0.0051 MA(3) -0.9923370.069186-14.34306 0.0000 R-squared 0.812690 Mean dependent var 50.51111Adjusted R-squared 0.785931 S.D. dependent var 119.1793S.E. of regression 55.14139 Akaike info criterion 11.05081Sum squared resid 21284.01 Schwarz criterion11.09464 Log likelihood -47.72864 Durbin-Watson stat 2.895553Then ,we get the final model is:)0.992337D(-)0.635103D()(31−−=t t t s y y D ε (10) 3.1.2.2 Model predictionWe use the effective model to predict freshwater supply in short-term until theyear 2025.Figure 3 sequence diagram of dynamic predictionFrom the diagram, we can see the supply remains unchanged basically .T The detailed data as Table6: Table 6 2010 2011 2012 2013 2014 2015 2016 2017 5630.203 5630.594 5630.843 5631.0015631.1025631.1655631.206 5631.2322018 2019 2020 2021 2022 2023 2024 2025 5631.248 5631.258 5631.265 5631.2695631.2725631.2735631.275 5631.275(100 million cu.m)According to the above data,we gain the supply of freshwater 2025, is5631.275(100 million cu.m)3.1.3. ConclusionFrom the above result,we find a serious issue:Table 7Year Demand offreshwater Supply of freshwater Net demand Unit2025 8028.396 5631.275 2397.121(100 million cu.m)In the year 2025, China will face the serious situation of freshwater shortage, the gap will reach 2397.121(100 million cu.m), therefore, in order to avoid this, we need to determine a series strategy to utilize freshwater efficiently.3.2Water strategy3.2.1 Diversion ProjectOn one hand, in view of Figure4, we can get information: Southeast coast is of the maximum precipitation, followed by the northern region, the western least.Figure 4 Precipitation Allocation Map of Major CitiesOn the other hand, in view of Figure 5, we can get information: The northern region and the southern coastal areas have the most water consumption, the western use less.Figure 5 Water Use MapDetailed data see to attached Table8 and Table9.South-to-North Water Diversion ProjectThe South–North Water Transfer Project is a multi-decade infrastructure project of China to better utilize water resources. This is because heavily industrialized Northern China has a much lower rainfall and its rivers are running dry. The project includes a Eastern, a Central and a Western route.Figure 6 The route of South-to-North Water Diversion ProjectHere, we take Western Route Project (WRP) as a representative, analysis the cost and benefits. As the strategic project to solve the problem of poorer water Northwest and North China, WRP will divert water from the upper reach of Yangtze River into Yellow Rive.Cost and benefits analysisThe direct quantitative economic benefits include urban water supply economic benefits, ecological environment water supply economic benefits, and the Yellow River mainstream hydroelectric economic benefits.[5]Urban water supply economic benefits:(1) Calculation MethodIn view of the water shadow price is difficult to determine, the equivalent engineering is not easy to choose, and the lack of water loss index is unpredictable, combined with the stage job characteristics, we select the method of sharing coefficient to calculate the urban water supply economic benefits.(2) Calculation ParametersThe Water consumption quota of per ten thousand yuan industrial output value is based on status quota, the predicted water consumption quota of per ten thousand yuan output value according to reach in 2 0 2 0 is :Lanzhou tom/ ten thousand yuan, gantry to Sanmenxia HeKouZhen river section for 26 3m/ ten thousand yuan. After a comprehensive analysis, set the reach for 20 3industrial water supply benefit allocation coefficient values 2.0 %.(3) Calculation ResultsAccording to (1) and (2), get table 10:Table 10water supply 3.2 billion 3.mproject benefits 20 billion yuan.8yuan /3maverage economic benefit 70z Ecological environment water supply economic benefits:(1) Calculation methodTake Forestry and animal husbandry as the representative, calculate whoseirrigation Economic benefits, and consider the allocation function of water supply. Analyse forestry benefits in reference with the increased wood savings, Animal husbandry in reference with the increased output of animals which were feeded by the incresed irrigation pasture (represented by sheep), both Forestry and animal husbandry account for half of the Ecological environment water supply.(2) Calculation parameters Set the water consumption quotas of Forestry irrigation unified as 233750hm m , the water supply sharing coefficient of Xiang irrigation as 0.60. In the calculation of forestry benefit, the increase of accumulated timber amount is ()a hm m ⋅235.22, timber price is 3300m yuan ; in the calculation of animal husbandry benefit , the increased stocking rates of unit pasture area is 25.22hm , taken a standard sheep price as yuan 260.(3) Calculation ResultsAccording to (1) and (2), the ecological environment water supply economic benefits is 714.1 billion, in which, The Yellow River replenishment economic benefits is 008.1billion yuan.z Hydroelectric economic benefits.(1) Diversion increased energy indicators:The increased electricity indicators is 306.9billion h kw ⋅, capacity enlargement the scale of 241 ten thousand kw .(2) Calculation methodTake the Optimal equivalent alternative engineering cost method, chosen fire electricity as an alternative project which can meet the power requirements of grid electricity equally. The sum of alternative engineering required annualinvestment translation and the annual running costs is increased annual power generating efficiency of the Yellow River cascade hydropower stations. (3) Calculation parametersThe power plant construction investment of kw $450, duration of five years, the investment proportion were 10%, 25%, 35%, 25%, 5%. Both the economic life of mechanical and electrical equipment and the metal structures equipment are taken as 20 years, considering the update ratio as 80% of the original investment. Standard coal price is taken as 160 dollars, standard coal consumption is taken as ()h kw g ⋅350. The fixed run rates take 4.5%, thesocial discount rate is 12%, the hydropower economic useful life of 5 years.(4) Calculation ResultsBy analysis and calculation, the first phase of water regulation produce the hydropower economic benefit is 3.087 billion.z Total economic benefits:Preliminary cost estimates of the project diversionOn the basis of economic nature classification, the total cost includes themachinery depreciation charges, wages and welfare costs, repair costs, thecost of materials,water district maintenance fees, management fees, water fees, interest expense and other . Analysis in the light of various estimates condition, the cost of water diverted into the Yellow River is 31~7.0m yuan c =The cost-benefit rate ()85.8~2.61∈=rc ω (11) 3.2.2 DesalinizationThough diversion project can balance water supply between places one has enough water and the other has water shortage, the costs will higher than desalinization when the distance more than 40 kilometers.Desalinization and comprehensive utilization of the work are increasingly taking centre stage on the problem of solving freshwater scarcity. Many countries and areas devote to optimize an effective way by enhancing the development of science and technology.According to the International Desalination Association, in 2009,14,451 desalination plants operated worldwide, producing 59.9 million cubic meters per day, a year-on-year increase of 12.3%.[6] The production was 68 million 3m in 2010, and expected to reach 120million 3m by 2020; some 40 million 3m is planned for the Middle East.[7]China has built more than 70 sets of sea water desalinization device with the design capacity of 600,000m3 and an average annual growth rate of more than 60%; technology with independent intellectual property rights of a breakthrough in the reverse osmosis seawater membranes, high pressure pumps, devices for energy recovery achieved significant progress, the desalinization rate raises from 99.2% to 99.7%; conditions of industrial development and the desalination market has been basically formed.MethodsDe-salinization refers to any of several processes that remove some amount of salt and other minerals from saline water. More generally, desalination may also refer to the removal of salts and minerals.[8] Most of the modern interest in desalination is focused on developing cost-effective ways of providing fresh water for human use.There are two main methods of desalinization:1. Extract freshwater from saline water: Distillation (Multi-stage flash distillation, Vapor compression distillation, Low temperature multi-effect distillation), Reverse osmosis, Hydrate formation process, Solvent extraction, Freezing.2. Remove salt from saline water: Ion exchange process, Pressure infiltration method, Electroosmosis demolition method.For desalination, energy consumption directly determines the level of the cost of the key. Among the above methods, reverse osmosis is more cost-effective than the other ways of providing fresh water for human use. So, reverse osmosis technology has become the dominant technology in international desalinization of seawater.The following two figures show the working principle diagram of a reverse osmosis system.Figure7 working principle diagram of a reverse osmosis systemCost and benefits analysisTable 12 general costs for a reverse osmosis systemItem Unitprice(yuan/t)Chemicals cost 0.391electric charge 2.85Wages 0.034 Labor costWelfare 0.04 Administrative expenses 0.0008maintenance costs 0.23Membrane replacement cost 0.923Depreciationexpense Fixed assets depreciation0.97expenseTotal costs 5.446Table 13 general benefit for a reverse osmosis systemItem ValueHourly output(t) 10Working hours/day24 Daily output(t)240 Working days/year 365 Yearly output(t)87600 Yearly other benefits(yuan)310980 Unit water other benefits3.55 Water Price(yuan/t)8 Unit water total benefits11.55 Unit water total benefit 55.11=rWater cost-benefit ratio 4715.055.11446.52===r c w (12) 3.2.3 Sewage TreatmentSewage treatment is an important process of water pollution treatment. It uses physical, chemical, and biological ways removing contaminants from water . Its objective is to relief the environment impact of water pollution.This diagram shows a typical sewage treatment process.Figure 8 Sewage treatment flow mapTake Sewage Treatment Plant in east china as an example to analysis the cost and benefit of sewage treatment.Suppose:Sewage treatment scale d t x 100001=,The Sewage Treatment Plant workdays in a year 300=d ,Concession period is twenty to thirty years, generally 251=t years, Construction period is one to three years, generally 32=t years.Operation period = Concession period - Construction period.Cost estimation Table 14 fixed investment estimate c1(ten thousand Yuan)number project ConstructioninvestmentEquipment investment 1 Preprocessing stage38 27 2Biological treatment section 42 134 3End-product stage 11 44 4 Sludge treatment section 6323 5 accessory equipment 456 Line instrument 687 Construction investment 3008 Unexpected expense 809 Other expense 10010 Total investment975 Table 15 Operating expense estimate c2 (ten thousand Yuan)[9]number project expenses1 maintenance expenses 6.52 wages 103 Power Consumption 404Agent cost 10 5 Small meter operating cost 66.56 Amortization of intangibles 127Amortization of Construction 6.6 8Amortization of Equipment 19.8 9Annual total cost 104.9 10 Tons of water operation cost 0.29Annual total investment 15022213=+÷=c c c ten thousand YuanAnnual amount of sewage treatment t x x 3000000100003003001=×=×= Unit sewage investment t yuan t yuan x c c 5.03000000150000034=÷=÷= Benefit analysisSewage mainly comes from domestic sewage(40%), industrial sewage(30%), and the others(including stormwater , 30%)Sewage treatment price: domestic sewage is about t yuan 8.0, industrialsewage is about t yuan 5.1, and other is about t yuan 5.2.Unit sewage treatment approximate price t yuan t yuan t yuan tyuan p 52.1%302%305.1%408.01=×+×+×=Unit Sewage treatment benefit:t yuan p p r 52.321=+= Cost-benefit ratio 142.052.35.043===r c ω (13) 3.2.4 Conservation of water resourcesTo realize the sustainable development of water resources, one of the important aspects is the conservation of water resources. Saving water is thekey of conservation, so, we the construction of water-saving society is the keyof water resources conservation strategy.To construct the water-saving society, we give more concern about two aspects:agricultural water saving and life water saving. Finally, we analysis the cost andbenefit about water-saving society by building model.3.2.4.1 Agricultural water savingStrategic suggestions of water-saving agriculture1. Strengthen the government policies and public finance support2. Mobilizing all social forces to promote water-saving agriculture development3. Innovating enterprises to improve the science and technology4. Suggesting countries to regard water saving as a basic state policy5. Implement the strategy of science and technology innovationwater saving function product research and development as the key point, the research and development of a batch of suitable for high efficiency and low energy consumption, low investment, multi-function water saving and high efficient agriculture key technology and major equipment. Micro sprinkler irrigation water saving technology and equipment is the typical technology.[10] Typical analysis: drip irrigation technologyIrrigation uniformity DU and field irrigation water utilization αE can be expressed as the technical elements of the function :[11]),,,,,,(01co c in t F I S n L q f DU α=),,,,,,,(0SMD t F I S n L q f E co c in αα=RD SMD fc )(θθ−=in q is single discharge into earth,L is (channel) long,n is manning coefficient,0S is tiny terrain conditions,c I is soil infiltration parameters,αF is (channel) cross-sectional parameters,co t is irrigation water supply time,SMD is irrigation soil water deficit value,fc θ is the soil field capacity,θis the soil moisture content,RD is the root zone depth.According to the study we found that the use of modern surface irrigation technology such as sprinkler irrigation, micro spray irrigation and pressure irrigation system, can improve the utilization rate of water to 95%, better than common ground water saving irrigation mode, more than 1/2 ~ 2/3 of water-saving irrigation mode, therefore, advanced water saving technology is very important. 3.2.4.2 Life water saving China is a country with a large population and scarce water , so we should use water more reasonably and effectively.Tiered water pricing modelThe model is for all types of users in certain period to regulate basic water consumption, in the basic consumption, we collect fees by the basic price standard, when actual consumption beyond basic consumption, the beyond part will introduce penalty factor: the more water exceed, the higher punishment rate will be. For actual consumption is less than basic consumption, the user can get additional incentives, encouraging people to save water .[12] Three ladder water price modelWe assume that urban resident’s basic water consumption is 1q , the first stage water price is 1P , the second stage water price is 2P , by analogy, q P is used to express the water price in stage q , model formula is()()⎪⎪⎩⎪⎪⎨⎧−++−+−+=−)(11211121111m m q q q p q q p q p q q p q p q p p L L L (14) From the equation (14), that in the tiered water pricing system, as more price levers are divided, it will be more able to reflect the city water supply’s public property and public welfare, be much beneficial to motive users to save water . On the other hand, much more price levers will be bound to increase the transaction cost of both the water supplier and the water user . Seeing from practical application effects of the current step water price model , Three ladder water price model much meets the actual functional requirements of urban water supply system in our country, the specific pricing method see Figure 9.Figure 9 Taking three step level water price model, can to some extent, Contain people waste the limited water resources , promote enterprises into taking all kinds of advanced technologies to improve the Comprehensive utilization of water resources, and realize the goal of urban water conservation and limited water resources Sustainable and high-efficiency using and saving. In conclude, it’s an effective and feasible strategy at present.Cost-Benefit Analysis of water-saving society construction1. Cost-Benefit Analyses ModelThe benefit of the water-saving society construction n s B B B −= (15) :s B water use benefit of the whole society in Water-saving condition。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Team Control NumberFor office use only 13215For office use onlyT1 ________________ F1 ________________T2 ________________F2 ________________T3 ________________ Problem ChosenF3 ________________T4 ________________F4 ________________C2012 Mathematical Contest in Modeling (MCM) Summary Sheet(Attach a copy of this page to each copy of your solution paper.) Type a summary of your results on this page. Do not include the name of your school, advisor, or team members on this page.Message Network Modeling for Crime BustingAbstractA particularly popular and challenging problem in crime analysis is to identify the conspirators through analysis of message networks. In this paper, using the data of message traffic, we model to prioritize the likelihood of one’s being conspirator, and nominate the probable conspiracy leaders.We note a fact that any conspirator has at least one message communication with other conspirators, and assume that sending or receiving a message has the same effect, and then develop Model 1, 2 and 3 to make a priority list respectively and Model 4 to nominate the conspiracy leader.In Model 1, we take the amount of one’s suspicious messages and one’s all messages with known conspirators into account, and define a simple composite index to measure the likelihood of one’s being conspirator.Then, considering probability relevance of all nodes, we develop Model 2 based on Law of Total Probability . In this model, probability of one’s being conspirator is the weight sum of probabilities of others directly linking to it. And we develop Algorithm 1 to calculate probabilities of all the network nodes as direct calculation is infeasible.Besides, in order to better quantify one’s relationship to the known conspirators, we develop Model 3, which brings in the concept “shortest path” of graph theory to create an indicator evaluating the likelihood of one’s being conspirator which can be calculated through Algorithm 2.As a result, we compare three priority lists and conclude that the overall rankings are similar but quite changes appear in some nodes. Additionally, when altering the given information, we find that the priority list just changes slightly except for a few nodes, so that we validate the models’ stability.Afterwards, by using Freeman’s centrality method, we develop Model 4 to nominate three most probable leaders: Paul, Elsie, Dolores (senior manager).What’s more, we make some remarks about the models and discuss what could be done to enhance them in the future work. In addition, we further explain Investigation EZ through text and semantic network analysis, so to illustrate the models’ capacity of applying to more complicated cases. Finally, we briefly state the application of our models in other disciplines.IntroductionICM is investigating a conspiracy whose members all work for the same noted company which majors in developing and marketing computer software for banks and credit card companies. Conspirators commit crimes by embezzling funds from the company and using internet fraud to steal funds from credit cards. It is a kind of commercial fraud. Fraud is a human endeavor, involving deception, purposeful intent, intensity of desire, risk of apprehension, violation of trust, rationalization, etc. Psychological factors influence the behaviors of fraud perpetrators (Sridhar Ramamoorti, 2008).ICM provides us the following information that they havemastered ●All 83 office workers’ names;●15 short descriptions of the topics ( Topic 7, 11, and 13 have been deemed to be suspicious);●400 links of the nodes that transmit messages and the topic code numbers;●7 known conspirators: Jean, Alex, Elsie, Paul, Ulf, Yao, and Harvey;●8 known non-conspirators: Darlene, Tran, Jia, Ellin, Gard, Chris, Paige and Este;●Jerome, Delores, and Gr etchen are the senior managers of the company.For crime busting, we develop models to● Identify all conspirators as accurately as possible, make a priority list that shows the likelihood of one’s being conspirator, so that erroneous judgments or miss-j udgments won’t happen easily;●Nominate the conspiracy leader.Declaration of the given data●“Topics.xls” contains only 15 topics, but “topic 18” appears in line 215 of “Messages.xls”. To fix this error, we decide to neglect this invalid data and delete it.●In page 5, line 2 of “2012_ICM_ Problem.pdf”, it says that “Elsie” is one of the known conspirators. However we find two “Elsie” with node number “7” and “37”. Throughout some basic statistics about the message traffic containing suspicious topics, it appears that “7 Elsie” is more likely to be a known conspirator rather than “37 Elsie”. Therefore, we assume that “Elsie” in “2012_ICM_Problem.pdf” indicates “Elsie” with node number 7 in “names.xls”.●As the problem paper point out, “Delores” is a senior manager. But “Delores” can’t be found in “names.xls” while “Dolores” is found. So we consider it as misspelling and replace “Delores” with “Dolores”.●“Gretchen” is also one of the senior managers. But two “Gretchen” are found in “names.xls” with different node number “4” and “32”. In consideration of this redundancy, we determine to pick out node 32 for “Gretchen” indicated in the problem paper artificially. In addition, our basic statistics also shows that “32 Gretchen” has more message exchanges than “4 Gretchen”, which may imply that “32 Gretchen” is more probably the senior manager than “4 Gretchen” due to managers often contact others more than ordinary office workers.Problem analysis and assumption Commercial fraud is committed by those intelligent people who are confident with their professional skills. Meanwhile, this kind of crime couldn’t involve only one person, but always need cooperation of a whole group. Thus, communication with other conspirators would be inevitable. However, they obviously know that they are linked together and if one person discloses their secrets, none of them can get off. So they are conscious when they communicate with their colleagues who aren’t their companions, especially when they talk about sensitive issues. And the higher intellectual level of perpetrators with rich society experience, the more conscious they are (Zhigang Lin,2010). And ICM can figure out suspicious topic which stands a good chance of being related to the conspiracy by some content analysis method. On the one hand, although Conspirators would try to avoid involving suspicious topics in their messages, they have to convey this kind of information sometimes due to the business or other reason. On the other hand, trust and close relationship play an important role in a conspiracy group, so normal messages exchanges can also reflect the conspiracy relationship.Based on psychology analysis above, we can state that all conspirators have at least one message communication with other conspirators, whether suspicious or unsuspicious message.In addition, we make the assumption that sending and receiving messages have same effect when we evaluate the likelihood of one’s being conspirator; ModelsModel 1Establishment of modelAccording to the analysis of the problem, the likelihood of one’s being conspirator is related to various factors, such as what topics are contained in the worker messages, how many messages and suspicious messages are the worker re lated with, who did the worker contact with, etc. To evaluate the likelihood of one’s being conspirators, we use the following equation which combines two quantity indexes:1n np =1i+2i,i= 0,1,2,...,82(1)i2max{n}max{n}i1i i2iWhere n1i is the suspicious message number that office worker i sent or received and n2i is message number that office worker i sent to or received by known conspirators.In order to get each value of n1i and n2i , we make data statistics and draw Figure 1:Team # 13215Page 3 of 18Figure. 1Result and analysisFigure 1 shows all the values of n1i and n2i . Using equation (1) we have put forward, we can easily calculate all the values of p i and make a priority list as Table 1 (note that p i is not a probability but a metric to evaluate the likelihood, though it value is between 0 and 1)Table 1No node p No node p No node p No node p 121121 300.1534 43 10.090957 720.0313 2670.9091 21 330.1534 44 600.076757 750.0313 3540.6761 21 350.1534 44 690.076757 780.0313 470.6307 21 440.1534 44 820.076757 790.0313 5430.4915 21 460.1534 47 50.062568 260 6180.42927 60.1392 47 80.062568 520 7490.3835 27 190.1392 47 90.062568 530 881 0.3381 27 370.1392 47 110.062568 550 9480.32127 380.1392 47 400.062568 580 10 30.2784 27 410.1392 47 420.062568 590 10 10 0.2784 27 500.1392 47 800.062568 610 12 20 0.2756 33 00.1364 54 250.045568 620 1320.2159 34 150.12554 660.045568 630 13 34 0.2159 34 220.12554 730.045568 640 15 16 0.2017 36 140.1222 57 120.031368 680 15 17 0.2017 36 450.1222 57 230.031368 700 17 28 0.1705 38 310.10857 240.031368 710 17 47 0.1705 38 360.10857 390.031368 740 19 40.1563 38 650.10857 510.031368 760 19 13 0.1563 41 290.0938 57 560.031368 770 21 27 0.1534 41 320.0938 57 570.0313As shown in Table 1, all the known conspirators (heavy tape and red mark) are ranked in the very front of the list, which indicates the model is effective to some extent that it can recognize some workers who is most likely to be conspirators. However, some non-conspirators (green mark and Italic type) are also up at the front,Team # 13215Page 4 of 18like node 48 and node 2, which shows that the model has a certain limitation and some wrong recognition.Model 2In order to establish an improved model, we make one more assumptionsExcept for the known conspirators and non-conspirators, one’s probability of being conspirator is relate to those who have direct message contact with him/her. And the probability is both affected by the probability of his/her linking persons and the topic nature of the linking messages.Introduction of Law of Total ProbabilityIn probability theory, the law of total probability or the formula of total probability is a fundamental regulation relating marginal probabilities. It can be described as follows:if {B n : n= 1,2,3,...} is a finite or countably infinite partition of a sample space and each event B n in it is measurable, then for any event A of the same probability space:P( A) =∑P( A | B n ) P(B n )(2)nEstablishment of modelAccording to the material we get hold of , since Topic 7, 11, and 13 have been deemed to be suspicious ,we name S={7,11,13} the suspicious topic set and U={1,2,3,4,5,6,8,9,10,12,14,15} the unsuspicious topic set. In addition, we categorize all 83 office workers into three groups: conspirators, non-conspirators and unknown ones.p a,p b and P j( j =0,1,...,83, except 15 known persons) indicate the probability of three kind of office workers commit crime. We have p a=1,p b=0 and P j equaled different unknown numbers which between 0 and 1. The greater probability the unknown one is conspirator, the greater P j is. A person is much more suspicious ifhe/she sends or receives suspicious messages more frequently. We can use w ji to represent the suspicious extent and it can be calculated by the following equations:w ji= n a⋅ a + n b⋅ b, i =1,2,(3) Where n a ( n b )is the number of suspicious(unsuspicious) messages a unknown one sends or receives, a is the weight of elements in the set of S, and b is the weight of elements in the set of U.Next, we will explain how “probability” works out in the messages networ k with Figure 2.。