系统辨识基础--经典辨识方法
系统辨识方法
系统辨识方学习总结一.系统辨识的定义关于系统辨识的定义,Zadeh是这样提出的:“系统辨识就是在输入和输出数据观测的基础上,在指定的一组模型类中确定一个与所测系统等价的模型”。
L.Ljung也给“辨识即是按规定准则在一类模型中选择一个与数据拟合得最好的模型。
出了一个定义:二.系统描述的数学模型按照系统分析的定义,数学模型可以分为时间域和频率域两种。
经典控制理论中微分方程和现代控制方法中的状态空间方程都是属于时域的范畴,离散模型中的差分方程和离散状态空间方程也如此。
一般在经典控制论中采用频域传递函数建模,而在现代控制论中则采用时域状态空间方程建模。
三.系统辨识的步骤与内容(1)先验知识与明确辨识目的这一步为执行辨识任务提供尽可能多的信息。
首先从各个方面尽量的了解待辨识的系统,例如系统飞工作过程,运行条件,噪声的强弱及其性质,支配系统行为的机理等。
对辨识目的的了解,常能提供模型类型、模型精度和辨识方法的约束。
(2)试验设计试验设计包括扰动信号的选择,采样方法和间隔的决定,采样区段(采样数据长度的设计)以及辨识方式(离线、在线及开环、闭环等的考虑)等。
主要涉及以下两个问题,扰动信号的选择和采样方法和采样间隔(3)模型结构的确定模型类型和结构的选定是决定建立数学模型质量的关键性的一步,与建模的目的,对所辨识系统的眼前知识的掌握程度密切相关。
为了讨论模型和类型和结构的选择,引入模型集合的概念,利用它来代替被识系统的所有可能的模型称为模型群。
所谓模型结构的选定,就是在指定的一类模型中,选择出具有一定结构参数的模型M。
在单输入单输出系统的情况下,系统模型结构就只是模型的阶次。
当具有一定阶次的模型的所有参数都确定时,就得到特定的系统模型M,这就是所需要的数学模型。
(4)模型参数的估计参数模型的类型和结构选定以后,下一步是对模型中的未知参数进行估计,这个阶段就称为模型参数估计。
(5)模型的验证一个系统的模型被识别出来以后,是否可以接受和利用,它在多大程度上反映出被识别系统的特性,这是必须经过验证的。
系统辨识经典辨识方法
经典辨识方法报告1. 面积法辨识原理分子多项式为1的系统 11)(111++++=--s a sa s a s G n n nn Λ……………………………………………()由于系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取微分方程的系数来辨识系统的传递函数。
在求得系统的放大倍数K 后,要先得到无因次阶跃响应y(t)(设τ=0)。
大多数自衡的工业过程对象的y(t)可以用下式描述来近似1)()()()(a 111=++++--t y dtt dy a dt t y d a dt t y d n n n nK ……………………………() 面积法原则上可以求出n 为任意阶的各系数。
以n=3为例,注意到1|)(,0|)(d |)(d |)(d 23====∞→∞→∞→∞→t t t t t y dtt y dt t y dt t y …………………………() 将式()的y(t)项移至右边,在[0,t]上积分,得⎰-=++t dt t y t y a dtt dy a dt t y d a 01223)](1[)()()(…………………………………() 定义⎰-=tdt t y t F 01)](1[)(……………………………………………………………()则由式()给出的条件可知,在t →∞⎰∞-=01)](1[a dt t y ……………………………………………………………()将式a 1y(t)移到等式右边,定义 )()]()([)()(a 201123t F dt t y a t F t y a dtt dy t =-=+⎰…………………………………()利用初始条件()当t →∞时)(a 22∞=F …………………………………………………………………… ()同理有a 3=F 3(∞)以此类推,若n ≥2,有a n =F n (∞)分子、分母分别为m 阶和n 阶多项式的系统当传递函数的形式如下所示时111111)()(11)(u h K m n s a s a s a s b s b s b K s G n n n n m m m m ∞=≥++++++++=----ΛΛ…………………………………定义∑∞=----+=++++++++==1111111111)()(1)(i ii m m m m n n nn s c s b s b s b s a s a s a s P s P Ks G ΛΛ………………………………由于⎰∞--=-0**)](1[)](1[dte t h t h L st …………………………………………则)](1[*t h -的Laplace 变换为: ∑∑∞=∞=-+=-=-111*1)(11)](1[i iii i i s C sC s sP s t h L ……………………………………定义一阶面积1A 为:11110011lim )](*1[lim )](*1[c sC sC t h L dt t h A i ii i i i s s =+=-=-=∑∑⎰∞=∞=-→∞→………令 )1(1)]([1*1s c s t h L +=……………………………………………………………定义二阶面积为:2122**0012)1)(1()]()([limc s c s c sc dtd h h A i i i i i i is t=++=-=∑∑⎰⎰∞=∞=-→∞τττ…同理,令 )...1(1)]([11221*1---++++=i i i s c s c s c s t h L ……………………………………定义i 阶面积为i i c A =。
系统辨识之经典辨识法
系统辨识作业一学院信息科学与工程学院专业控制科学与工程班级控制二班XX学号2021 年 11 月系统辨识所谓辨识就是通过测取研究对象在认为输入作用的输出响应,或正常运行时的输入输出数据记录,加以必要的数据处理和数学计算,估计出对象的数学模型。
辨识的内容主要包括四个方面:①实验设计;②模型构造辨识;③模型参数辨识;④模型检验。
辨识的一般步骤:根据辨识目的,利用先验知识,初步确定模型构造;采集数据;然后进展模型参数和构造辨识;最终验证获得的最终模型。
根据辨识方法所涉及的模型形式来说,辨识方法可以分为两类:一类是非参数模型辨识方法,另一类是参数模型辨识方法。
其中,非参数模型辨识方法又称为经典的辨识方法,它主要获得的是模型是非参数模型。
在假定过程是线性的前提下,不必事先确定模型的具体构造,广泛适用于一些复杂的过程。
经典辨识方法有很多,其中包括阶跃响应法、脉冲响应法、相关分析法和普分析法等等,本次实验所采用的辨识方法为阶跃响应法和脉冲响应法。
1.阶跃响应法阶跃响应法是一种常用非参数模型辨识方法。
常用的方法有近似法、半对数法、切线法、两点法和面积法等。
本次作业采用面积法求传递函数。
1.1面积法①当系统的传递函数无零点时,即系统传递函数如下:G(S) = a a a a+a a−1a a1−1+⋯+a1a+1(1-1) 系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取微分方程的系数来辨识系统的传递函数。
在求得系统的放大倍数K后,要得到无因次阶跃响应y(t)(设τ=0),其中y(t)用下式描述:a a a(a) a−1 (a)a a aa a a aa(1-2) 面积法原那么上可以求出n为任意阶的个系数。
以n为3为例。
有:a3a(a) a2a(a) aa(a){ aa|a→∞ =aa|a→∞ = aa|a→∞ = 0a(a)|a→∞ = 1将式〔1〕中的y(t)移至右边,在[0,t]上积分,得a2a(a)a3 aa aa (1-4) 定义:a1(a) = ∫0a[1 − a(a)]aa (1-5) 由式〔1-3〕条件可知,当t→∞时,a aa (1-6)同理,定义a2aa (1-7) 由式〔1-,3〕条件可知,当t→∞时,a aa (1-8)因此,可得a a(a) = ∫0a[a a−1(a) − a a−1a(a)] dt (1-9)a a= a a(∞) (1-10)②当系统的传递函数存在零点时,传递函数如下:G〔s〕=kb s mmn +ba s mn-1-1s mn-1-1 ++LL ++a sbs1+1+1,〔n m〕〔1-11〕1a s n +其中,K h= ( )/ U0定义1G(s)=KP(s)其中,P(s) = b sa s n mn ++ba s mn-1-1s mn-1-1++LL ++a sbs11 +1+1 = +1 i=1 C s i i〔1-12〕m根据[1−h*(t)]的Laplace变换,求出一阶面积A1,确定L[h〔*1 t ]〕,并定义二阶面积A2 ,以此类推,得到i 阶面积A i 。
系统辨识的经典方法
⎧T
⎨⎩τ
= 2(t2 − t1) = 2t1 − t2
对于以上结果,也可在
⎧⎪⎨tt34
≤τ,
= 0.8T
+τ
,
⎪⎩t5 = 2T +τ ,
y(t3 ) = 0 y(t4 ) = 0.55 y(t5 ) = 0.87
这几点上对实际曲线的拟合精度进行检验。
系统辨识的经典方法
频率响应法
频率响应法-1
; 阶跃响应法辨识原理
¾ 在系统上施加一个阶跃扰动信号,并测定出对象的响应随时间 而变化的曲线,然后根据该响应曲线,通过图解法而不是通过 寻求其解析公式的方法来求出系统的传递函数,这就是阶跃响 应法系统辨识。
¾ 如果系统不含积分环节,则在阶跃输入下,系统的输出将渐进 于一新的稳定状态,称系统具有自平衡特性,或自衡对象。
+ b1s + a1s
+ +
b0 a0
,
n>m
¾ 对应的频率特性可写成:
G(
jω)
=
bm ( an (
jω)m +" + b2 ( jω)2 + b1( jω)n +" + a2 ( jω)2 + a1(
jω) + b0 jω) + a0
=
(b0 − b2ω 2 (a0 − a2ω 2
+ b4ω 4 + a4ω 4
系统辨识的经典方法
肖志云
内蒙古工业大学信息工程学院自动化系
系统辨识的经典方法
1
引言
2
阶跃响应法
3
频率响应法
4
相关分析法
系统辨识基础
系统辨识基础第 1 页第四讲系统辨识基础一、自校正控制与系统辨识1、自校正控制自校正控制是一类重要的自适应控制方案。
自校正的概念最早是由Kalman 在1958年首先提出的,主要用于信号去噪。
而自校正控制是由瑞典学者阿斯特罗姆(K.J.Astrom )和威特马克(B.Wittenmark )在1973年首次提出的,并在工业上得到了广泛的应用。
在自校正控制系统中,被控对象的参数被在线地辨识,然后经过控制器的在线设计过程,对控制器参数进行在线调整,使其始终能适应被控对象模型的变化。
必须注意的是:自校正调节过程是一个迭代优化的过程,通过边辨识、边综合,使得控制器参数能够逐步趋向于最优值。
自校正控制的实现需要满足以下假定:● 被控对象的模型时变速度缓慢● 被控对象可辨识● 由控制器和被控对象构成的系统是稳定的因此,可认为在自校正调节过程中,被控对象的模型是不变的,在此条件下,自校正控制的过程为:(1)在t 时刻根据u(t)和y(t)估计被控对象参数?()t θ;(2)根据?()t θ设计控制器参数?()ct θ;(3)由?()ct θ和r(t +1),可计算出t +1时刻的控制量u (t +1);(4)根据t +1时刻的u (t +1)和y (t +1)再次估计被控对象参数?(1)t θ+;(5)返回步骤2,继续进行递推,直至被控对象参数估计值?()t θ收敛到其真值θ。
第 2 页2、系统辨识由自校正控制的原理可知,系统辨识是自校正控制的基础。
系统辨识是根据一个系统的输入/输出数据建立系统最优数学模型的理论和方法,它不能确保获得系统“真实”的数学模型,但可以在输入/输出关系,也即系统动态响应的意义上获得一个与系统等价的最优的数学模型,而“最优”需要有确定的准则来评判。
系统辨识的内容可以划分为以下三个层次:层次一:模型结构的选择层次二:系统阶次的确定层次三:系统参数的估计由于系统的输入/输出信息都只能依靠测量技术采集,而采集到的数据总是包含各种干扰因素的影响,所以系统辨识是一个“不确定”的过程,具有随机性特征,只能用统计方法来进行研究。
系统辨识经典辨识方法
r =
1.0000 0.9996
0.9996 1.0000
此时原传递函数和辨识所得传递函数的阶跃响应对比如下图:
图1.2原传递函数和辨识所得传递函数的阶跃响应对比
由上图可以看出,在未加入噪声之前,采用面积法辨识结果很精确,并且,分子可以为阶次低于分母的任意阶次。
1.2.2加入噪声为便于对来自,仍取系统传递函数如下:b1=M(1,1)
b2=M(2,1)
%求分母系数a1,a2,a3
N=[1 0 0;A1 1 0;A2 A1 1]*[b1;b2;0]+[A1;A2;A3];
fprintf('分母多项式系数为:')
a1=N(1,1)
a2=N(2,1)
a3=N(3,1)
%求辨识所得传递函数
num1=[b2 b1 1];
当传递函数的形式如下所示时
…………………………………(1.9)
定义
………………………………(1.10)
由于 …………………………………………(1.11)
则 的Laplace变换为:
……………………………………(1.12)
定义一阶面积 为:
………(1.13)
令
……………………………………………………………(1.14)
a3=sum3
%绘制辨识后的传递函数
dt=0.01;
t=0:dt:50;
num2=1;
den2=[a3 a2 a1 1];
fprintf('系统辨识后的传递函数为:')
G=tf(num2,den2)
h=step(num2,den2,t);%辨识所得传递函数阶跃响应
plot(t,y,'black',t,h,'blue');
系统辨识理论及应用
系统辨识理论及应用引言系统辨识是通过对已知输入和输出进行处理,从而识别出系统的数学模型并进行建模的过程。
在现代科学和工程应用中,系统辨识技术被广泛应用于控制系统设计、信号处理、预测和模型识别等领域中。
本文将介绍系统辨识的理论基础、常用方法以及在实际应用中的案例分析,以便读者能够更好地了解系统辨识技术的原理和应用。
系统辨识的理论基础系统辨识的定义系统辨识是一种通过对系统的输入和输出数据进行处理,来推导出系统的数学模型的方法。
系统辨识可以用来描述和预测系统的行为,从而实现对系统的控制和优化。
系统辨识的基本原理系统辨识建模的基本思想是将输入和输出之间的关系表示为一个数学模型。
这个模型可以是线性模型、非线性模型、时变模型等。
在系统辨识中,常用的数学模型包括差分方程模型、状态空间模型、传递函数模型等。
系统辨识的基本原理是通过收集系统的输入和输出数据,然后利用数学方法来推导出系统的数学模型。
这个过程可以看作是一个参数优化的过程,通过不断调整模型参数,使得模型的输出与实际系统的输出尽可能接近。
系统辨识的常用方法系统辨识的常用方法包括参数估计方法、频域分析方法和结构辨识方法。
参数估计方法是最常用的系统辨识方法之一,它通过最小化模型的预测误差来估计模型参数。
常用的参数估计方法包括最小二乘法、最大似然估计法、最小二乘法等。
频域分析方法是基于系统的频率响应特性进行辨识的方法。
常用的频域分析方法包括递归最小二乘法、频域辨识方法等。
结构辨识方法是用来确定系统的结构的方法。
结构辨识方法可以分为模型选择方法和模型结构确定方法。
常用的结构辨识方法包括正则化算法、信息准则准则方法等。
系统辨识的应用控制系统设计系统辨识技术在控制系统设计中起着重要的作用。
通过对系统辨识建模,可以对系统进行建模和优化。
控制系统设计中的系统辨识可以用来预测系统的响应、设计合适的控制器以及优化控制算法。
信号处理系统辨识技术在信号处理中也有广泛的应用。
通过对信号进行系统辨识建模,可以分析信号的特性、提取信号中的有用信息以及去除信号中的干扰等。
第一章_系统辨识常用输入信号及古典辨识方法1(王)
辨识中常用的输入信号有白噪声或伪随机信号
4
2.1 谱密度与相关函数
1.帕塞瓦尔(Parseval)定理与功率谱
Parseval定理:确定性信号x(t)的总能量为:
x ( t ) dt
2
1 2
|| X ( j ) ||
2
d
5
2.维纳—辛钦关系式:
物理上是不存在的,常见的往往是有色噪声。
有色噪声的表示定理:设平稳噪声序列{e(k)}的谱密度
S e ( ) 是ω的实函数,则必定存在一个渐近稳定的线性环节
,使得在输入为白噪声序列的情况下,环节的输出是谱密度 S e ( ) 的平稳噪声序列{e(k)}。 为
白噪声 线性环节 (成形滤波器) {w(k)} H(z-1 ) 有色噪声
R w ( ) ( ) ,其中,
2
( )
为Dirac函数,即
( )
( )
∞,τ=0 0,τ≠0
2
且
( ) d 1
的傅立叶变换为1,
,频谱宽度无限。
8
S w ( )
2. 有色噪声
有色噪声是指每一时刻的噪声和另一时刻的噪声相关, 因而其谱密度也不再是常数。在工业生产实际中,白噪声在
plot(k,v,k,v,'r');
12
13
Li1.m A=19;N=200;x0=37;f=2;M=512; for k=1:N x2=A*x0 x1=mod(x2,M) v1=x1/512 v(:,k)=(v1-0.5)*f x0=x1 v0=v1 end v2=v k1=k k=1:200; plot(k,v)
系统辨识基础--经典辨识方法
当特征方程具有重根时,传递函数可以写成
cn − r cn − r +1 cn − r + 2 cn c1 c2 G (s ) = + +L+ + + +L+ 2 s − s1 s − s2 s − s n − r s − s 0 (s − s 0 ) (s − s0 )r
相应的脉冲响应为
(t ) = c1e s t + c2e s t + L + cn−r e s g
∗ i −1 1 2
1
2
+ L + ci −1s i −1
)
进一步利用下式
− st
e
s s s 2 i = 1 + (− t ) + (− t ) + L + (− t ) + L 1! 2! i!
L 1 − h (t ) = ∫ 1 − h (t ) e dt = ∑ M i s
* * − st 0 i =0
ˆ ˆ ˆ g (k ) + α1 g (k + 1) + L + α n g (k + n ) = 0
其中 α1 , α 2 ,..., α n 为待定系数。如果特征方程
1 + α1 xT0 + α 2 x 2T0 + L + α n x nT0 = 0
有一个单根为
x
T0 i ,则
xikT0 必是AR模型的解,它们的线性组合
g (t )
A+
0
ξ = log(A A
+
−
)
π + [log(A A
系统辨识课件-经典的辨识方法
T1 S2 T3 U2 0 U4
S 2 T3 T3 S4 S 4 T5 0 U4 U4 0 0 U6
ˆ b0 S 0 ˆ T b1 1 ˆ S2 b2 ˆ 0 a ˆ 1 U 2 a 2 0 ˆ a3
2 T ˆ ( )u (t )d g ( )u (t )d lim ( ) z (t ) g dt 0 T 0 T 0
1 T ˆ lim ( ) z (t ) g ( )u (t )d u (t )dtd 0 0 g ( ) 0 T T 0 1 T ˆ ( )u (t )d u (t )dt 0 lim ( ) z (t ) g 0 0 T T
4.2 阶跃响应法 4.2.1 阶跃响应的辨识 通过手动操作,使过程工作在所需测试的负荷下,稳定运行一段时间 ,快速改变过程的输入量,并用记录仪或数据采集系统同时记录过程输入 和输出的变化曲线。
4.2.2 阶跃响应求过程的传递函数 ● 归一化: u (t ) u(t ) / U0 U 0 为输入信号幅度 输入:
0 1 An 2
0 0 A1
b1 0 A1 b2 0 A2 bm 1 An 0
● 传递函数阶次的确定: 判别各阶面积是否大于零
● Laplace极限定理求过程的传递函数 设:
K 1 lim h1 (t )
hr (t ) [ K r 1 hr 1 ( )]d
0
系统辨识 分类
一4.1经经典典的的辨辨识识方方法法
1.经典的辨识方法 :
思路:首先获得系统的非参数模型(频率响应,阶跃 响应,脉冲响应),然后通过特定的方法将非参数模型转化 成参数模型(如传递函数)。包括下述几类方法:
① 阶跃响应辨识方法 ② 脉冲响应辨识方法 ③ 频率响应辨识方法 ④ 相关分析辨识方法 ⑤ 谱分析辨识方法 ⑥ 最小二乘法 ⑦ 极大似然法
① 集员系统辨识法
② 多层递阶系统辨识法
③ 神经网络系统辨识法
④ 遗传算法系统辨识法
⑤ 模糊逻辑系统辨识法
⑥ 小波网络系统辨识法
42.2.1.1集集员员系系统统辨辨识识
1.简介
在1979年集员辨识首先出现于Fogel撰写的文中,1982 年Fogel和Huang又对其做了进一步的改进。集员辨识是假 设在噪声或噪声功率未知但有UBB(Unknown But Bounded) 的情况下,利用数据提供的信息给参数或传递函数确定一个 总是包含真参数或传递函数的成员集(例如椭球体、多面体、 平行六边体等)。不同的实际应用对象,集员成员集的定义也 不同。集员辨识理论已广泛应用到多传感器信息融合处理、 软测量技术、通讯、信号处理、鲁棒控制及故障检测等方 面。
42.2.1.1集集员员系系统统辨辨识识
3.特点
对于实际复杂系统,由于所建数学模型的未建模动态和 统计特性未知噪声的存在,常用的参数辨识方法而不能达到 故障检测与隔离的效果,采用集员辨识法则能够达到较好的 效果。所给检测方法可快速且有效地检测出传感器故障、 参数跳变故障和参数缓变故障等。
42.2.1.1集集员员系系统统辨辨识识
2.应用
在实际应用中,飞行器系统是一个较复杂的非线性系统,噪 声统计分布特性难以确定,要较好地描述未知参数的可行解, 用统计类的辨识方法辨识飞行器动参数很难达到理想效果。 采用集员辨识可解决这种问题。首先用迭代法给出参数的中 心估计,然后对参数进行集员估计(即区间估计)。这种方法能 处理一般非线性系统参数的集员辨识,已经成功地应用于飞行 器动参数的辨识。
现代控制工程-第8章系统辨识
航空航天领域
总结词
系统辨识在航空航天领域中具有重要应用价值,主要用于飞行器控制、导航和监测系统 的设计和改进。
详细描述
通过对飞行器动力学特性进行系统辨识,可以精确建模飞行器的动态行为,为飞行控制 系统提供准确的数学模型。同时,系统辨识技术还可以用于导航和监测系统的误差分析
和修正,提高航空航天器的安全性和精度。
感谢您的观看
THANKS
环境监测系统
总结词
系统辨识在环境监测系统中应用广泛,主要用于建立环 境参数的数学模型,实现环境质量的实时监测和预警。
详细描述
通过系统辨识技术对环境监测数据进行处理和分析,可 以精确获取环境参数的变化趋势和规律,为环境治理和 保护提供科学依据。同时,系统辨识技术还可以用于建 立环境质量预警系统,及时发现环境异常情况并采取应 对措施,保障生态安全和人类健康。
模糊逻辑系统辨识
模糊逻辑系统辨识是基于模糊逻辑理论的系统 辨识方法。它通过建立模糊逻辑模型来描述系 统的动态行为,能够处理不确定性和模糊性。
模糊逻辑系统辨识的优势在于能够处理语言变 量和不确定信息,同时具有较强的推理能力和 鲁棒性。
然而,模糊逻辑系统辨识也存在一些挑战,例 如隶属度函数的选择和模糊规则的制定等。
提高控制性能
准确的数学模型有助于设计出性能更优的控制策略。
预测与优化
通过系统辨识,可以对未来系统行为进行预测,并优 化系统性能。
故障诊断
系统辨识可用于诊断系统故障,提高系统的可靠性和 安全性。
系统辨识的基本步骤
01
数据采集
采集系统的输入和输出数据,确保 数据的准确性和完整性。
模型建立
根据处理后的数据,选择合适的数 学模型进行建模。
系统辨识之经典辨识法
.系统辨识作业一学院信息科学与工程学院专业控制科学与工程班级控制二班姓名学号2018 年 11 月系统辨识所谓辨识就是通过测取研究对象在认为输入作用的输出响应,或正常运行时的输入输出数据记录,加以必要的数据处理和数学计算,估计出对象的数学模型。
辨识的内容主要包括四个方面:①实验设计;②模型结构辨识;③模型参数辨识;④模型检验。
辨识的一般步骤:根据辨识目的,利用先验知识,初步确定模型结构;采集数据;然后进行模型参数和结构辨识;最终验证获得的最终模型。
根据辨识方法所涉及的模型形式来说,辨识方法可以分为两类:一类是非参数模型辨识方法,另一类是参数模型辨识方法。
其中,非参数模型辨识方法又称为经典的辨识方法,它主要获得的是模型是非参数模型。
在假定过程是线性的前提下,不必事先确定模型的具体结构,广泛适用于一些复杂的过程。
经典辨识方法有很多,其中包括阶跃响应法、脉冲响应法、相关分析法和普分析法等等,本次实验所采用的辨识方法为阶跃响应法和脉冲响应法。
1.阶跃响应法阶跃响应法是一种常用非参数模型辨识方法。
常用的方法有近似法、半对数法、切线法、两点法和面积法等。
本次作业采用面积法求传递函数。
1.1面积法①当系统的传递函数无零点时,即系统传递函数如下:G(S) = a a a a+a a−1a a1−1+⋯+a1a+1(1-1) 系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取微分方程的系数来辨识系统的传递函数。
在求得系统的放大倍数K后,要得到无因次阶跃响应y(t)(设τ=0),其中y(t)用下式描述:a a a(a)a−1(a)a a aa a a aa (1-2) 面积法原则上可以求出n为任意阶的个系数。
以n为3为例。
有:a3a(a) a2a(a) aa(a){aa|a→∞ = aa|a→∞ = aa|a→∞ = 0a(a)|a→∞ = 1将式(1)中的y(t)移至右边,在[0,t]上积分,得a2a(a)a3 aa aa (1-4) 定义:a1(a) = ∫0a[1 − a(a)]aa (1-5) 由式(1-3)条件可知,当t→∞时,a aa (1-6)同理,定义a2aa (1-7)由式(1-,3)条件可知,当t→∞时,a aa (1-8)因此,可得a a(a) = ∫0a[a a−1(a) − a a−1a(a)] dt (1-9)a a= a a(∞) (1-10)②当系统的传递函数存在零点时,传递函数如下:=kG(s)b s mmn +ba s mn-1-1s mn-1-1 ++LL ++a sbs1+1+1,(n m)(1-11)1a s n +其中,K h= ( ) / U0定义1G(s)=KP(s)其中,P(s) = b sa s n mn ++ba s mn-1-1s mn-1-1++LL ++a sbs11 +1+1 = +1 i=1 C s i i(1-12)m根据[1−h*(t)]的Laplace变换,求出一阶面积A1,确定L[h(*1 t ]),并定义二阶面积A2 ,以此类推,得到i 阶面积A i 。
系统辨识算法
传统系统辨识算法1. 引言迄今为止,已经有许多不同的辨识方法。
这些辨识方法就其所涉及的模型的形式来说可以分为两类。
一类是非参数模型的辨识方法,一类是参数模型的辨识方法。
非参数模型的辨识方法(亦称经典的辨识放法)获得的模型是非参数模型。
它在假定过程是线性的前提下,不必事先确定模型的具体结构,因而这类方法可适用于任意复杂的过程,工程上至今仍经常采用。
参数模型的辨识方法(亦称现代的辨识方法)必须假定一种模型结构,通过极小化模型与过程之间的误差准则函数来确定模型的参数。
如果模型的结构无法实现确定,则必须利用结构辨识方法先确定模型的结构参数(比如阶次、纯延迟等),再进一步确定模型参数。
参数模型的辨识方法又可以分为:最小二乘法辨识、梯度校正法辨识以及极大似然法辨识。
根据计算机与过程之间的不同联接方式,辨识又可以分为离线辨识和在线辨识。
离线辨识首先将采集到的数据储存在磁盘或磁带中,然后将数据成批输入计算机进行辨识计算。
这种辨识方式多采用成批处理的算法,或称一次完成算法,其缺点是占用内存较大。
在线辨识通常要在正常运行工况下进行,它一般采用实际处理算法,即每采样一组数据就进行一次辨识计算。
这种辨识方式占用内存量比较小;尤其对时变过程的辨识或自适应控制问题来说,它比离线辨识方式具有更多的优势。
本次作业使用经典的辨识中的一些方法对系统进行辨识。
在经典的控制理论中,线性过程的动态特性通常用:传递函数G(s)频率响应G(jw)脉冲响应g(t)阶跃响应h(t)来表示。
后三种为非参数模型,其表现形式是以时间或频率为自变量的实验曲线。
对过程施加特定的实验信号,同时测定过程的输出,可以求得这些非参数模型。
经过适当的数学处理,它们又可以转变成参数模型——传递函数的形式。
获取上述非参数模型,并把它们转化成传递函数的主要方法有:阶跃响应法脉冲响应法频率响应法相关分析法谱分析法这些辨识方法在工程上有广泛的应用,至今仍受到普遍重视。
在本次作业中,我主要使用了阶跃响应法中的面积法和脉冲响应法来对系统进行辨识,并且对系统施加一定的噪声干扰,比较在有误噪声情况下辨识结果的不同。
系统辨识经典辨识方法
经典辨识方法报告1. 面积法1.1 辨识原理1.1.1 分子多项式为1的系统 11)(111++++=--s a sa s a s G n n nn ……………………………………………(1.1)由于系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取微分方程的系数来辨识系统的传递函数。
在求得系统的放大倍数K 后,要先得到无因次阶跃响应y(t)(设τ=0)。
大多数自衡的工业过程对象的y(t)可以用下式描述来近似1)()()()(a 111=++++--t y dtt dy a dt t y d a dt t y d n n n n ……………………………(1.2) 面积法原则上可以求出n 为任意阶的各系数。
以n=3为例,注意到1|)(,0|)(d |)(d |)(d 23====∞→∞→∞→∞→t t t t t y dtt y dt t y dt t y …………………………(1.3) 将式(2.1.2)的y(t)项移至右边,在[0,t]上积分,得⎰-=++t dt t y t y a dtt dy a dt t y d a 01223)](1[)()()(…………………………………(1.4)定义⎰-=tdt t y t F 01)](1[)(……………………………………………………………(1.5)则由式(2.1.3)给出的条件可知,在t →∞⎰∞-=01)](1[a dt t y ……………………………………………………………(1.6)将式a 1y(t)移到等式右边,定义 )()]()([)()(a 201123t F dt t y a t F t y a dtt dy t =-=+⎰…………………………………(1.7)利用初始条件(2.1.3)当t →∞时)(a 22∞=F …………………………………………………………………… (1.8)同理有a 3=F 3(∞)以此类推,若n≥2,有a n =F n (∞)1.1.2 分子、分母分别为m 阶和n 阶多项式的系统当传递函数的形式如下所示时111111)()(11)(u h K m n s a s a s a s b s b s b K s G n n n n m m m m ∞=≥++++++++=---- …………………………………(1.9) 定义∑∞=----+=++++++++==1111111111)()(1)(i ii m m m m n n nn s c s b s b s b s a s a s a s P s P Ks G ………………………………(1.10)由于⎰∞--=-0**)](1[)](1[dte t h t h L st …………………………………………(1.11)则)](1[*t h -的Laplace 变换为: ∑∑∞=∞=-+=-=-111*1)(11)](1[i iii i i s C sC s sP s t h L ……………………………………(1.12)定义一阶面积1A 为:11110011lim )](*1[lim )](*1[c s C sC t h L dt t h A i ii i i i s s =+=-=-=∑∑⎰∞=∞=-→∞→………(1.13)令 )1(1)]([1*1s c s t h L +=……………………………………………………………(1.14)定义二阶面积为:2122**0012)1)(1()]()([limc s c s c sc dtd h h A i i i i i i is t=++=-=∑∑⎰⎰∞=∞=-→∞τττ…(1.15)同理,令 )...1(1)]([11221*1---++++=i i i s c s c s c s t h L …………………………………… (1.16)定义i 阶面积为i i c A =。
系统辨识 分类
集员系统辨识 4.2.1 集员系统辨识
2.应用 在实际应用中,飞行器系统是一个较复杂的非线性系统,噪 声统计分布特性难以确定,要较好地描述未知参数的可行解, 用统计类的辨识方法辨识飞行器动参数很难达到理想效果。 采用集员辨识可解决这种问题。首先用迭代法给出参数的中 心估计,然后对参数进行集员估计(即区间估计)。这种方法能 处理一般非线性系统参数的集员辨识,已经成功地应用于飞行 器动参数的辨识。
4.2 现代辨识方法
随着智能控制理论研究的不断深入及其在控制领域的广 泛应用,从逼近理论和模型研究的发展来看,非线性系统建模 已从用线性模型逼近发展到用非线性模型逼近的阶段。由于 非线性系统本身所包含的现象非常复杂,很难推导出能适应 各种非线性系统的辨识方法,因此非线性系统的辨识还没有 构成完整的科学体系。下面简要介绍几种方法。 ① 集员系统辨识法 ② 多层递阶系统辨识法 ③ 神经网络系统辨识法 ④ 遗传算法系统辨识法 ⑤ 模糊逻辑系统辨识法 ⑥ 小波网络系统辨识法
4.2.1 集员系统辨识
1.简介 在1979年集员辨识首先出现于Fogel撰写的文中,1982 年Fogel和Huang又对其做了进一步的改进。集员辨识是假 设在噪声或噪声功率未知但有UBB(Unknown But Bounded) 的情况下,利用数据提供的信息给参数或传递函数确定一个 总是包含真参数或传递函数的成员集(例如椭球体、多面体、 平行六边体等)。不同的实际应用对象,集员成员集的定义也 不同。集员辨识理论已广泛应用到多传感器信息融合处理、 软测量技术、通讯、信号处理、鲁棒控制及故障检测等方 面。
4.2.3 神经网络系统辨识法
3.特点 与传统的基于算法的辨识方法相比较,人工神经网络 用于系统辨识具有以下优点: ① 不要求建立实际系统的辨识格式,可以省去对系统 建模这一步骤; ② 可以对本质非线性系统进行辨识; ③ 辨识的收敛速度仅与神经网络的本身及所采用的学 习算法有关; ④ 通过调节神经元之间的连接权即可使网络的输出来 逼近系统的输出; ⑤ 神经网络也是系统的一个物理实现,可以用在在线 控制。 因此,人工神经网络在非线性系统辨识中的应用具有 很重要的研究价值和广泛的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中
Lh i 1t s1c1 sc2s2 1 ci 1 si 1
h
9
进一步利用下式
e s t 1 s ts2 t2 si ti
1 ! 2 !
i!
可得 得
L1h*t 1h*testdt Misi
0
i0
Mi
0
1h*t
ti
i!
dt
1Aisi1Misi11
i1 i0
a4 4 4.1207
b1 7.5 7.50402
b2 17.5 17.5233
h
15
4.3 脉冲响应法
ut
yt
1 ut
过 程 yt
0
t
0
t
gk1hkhk1
T0
h
16
ut
过程
yt
gt,0
模型参数 调整机构
~yt +
-
模型
gt,
图4.6 “学习法”原理
h
17
由脉冲响应求过程的传递函数-一阶过程
条件
增益K
a1
噪声 情况
无测量噪 声
有测量噪 声(方差 为0.01)
采样时间 4秒 1.5秒
1.5秒
数据长度 12 30
30
1.0 0.999984 0.999965
1.00204
10.0 11.7097 10.2171
11.5776
a2
6.5 6.52053 6.49897
6.47451
参数
真值 估 计 值
h
14
例 4.2
G s4s41 1s.5 5 3 7s 21 .7 5 7 .s 52 s 7 1.5s1
若传递函数的阶次取n=6,m=0,采样时间取0.2秒,数据长度取400, 调用相应的子程序,其辨识结果如表4.2所示。
参数 估计值
增益K 1.0000
a1 0.00003
a2 0.0034
a3
s0
Lh t s
cisi2
lim i1
s0
h
1c1s1
cisi
i1
c2
8
同理,令
Lh2t 可得三阶面积A3为
1
s1c1sc2s2
A 1 0 0 t0 h 2 h d2 d c t3
以此类推,i阶面积Ai为:
A i 0 0 t 0 h i 1 h d i 1 d c t i
1、一阶过程 Gs K
Ts1
g t
K T 按指数函数延伸
loggt
log K T
0.37K T
0T
0 t
T log K
t
T
图4.8
一阶过程的脉冲响应与传递函数参数的关系
h
18
由脉冲响应求过程的传递函数-二阶过程
Gss220 20 s0 2,01
则传递函数的参数 ,0 也可以直接由脉冲响应曲线确定,即有
ansnan1sn1a1s1
bmsmbm1sm1b1s11 Aisi
h
i1
11
比较上式两边s各次幂的系数,有
a1 A1 b1 a2 A2 b2 b1 A1 a3 A3 b3 b2 A1 b1 A2
i 1
ai Ai bi bj Ai j , i 1,2,, n m j 1
h
10
显然上式左边s各次幂项的系数均为零,故有
即 可得
A1 M 0 A2 M 1 A1M 0 A3 M 2 A1M 1 A2M 0
i 2
A i M i 1 A i j 1 M j j0
A i 01 h * t i t1 i ! 1d itj 2 0A i j 11 h * t jt!jd t
0
t
图 4.2 测试线路
h
3
由阶跃响应求 过程的传递函数
近似法 半对数法 切线法 两点法 面积法
阶跃响应曲线比较规则 阶跃响应曲线不规则
h
4
Kupfm uller[Rake,1980]
直接从阶跃曲 线上求取参数
Gs K es
1Ts
Gs1KTsn es Gs1Ts1KbTns1
K,T,
n,K,T,,b
令 t1 t A1
则
A iA 1 i 01 h *t1 it 1 1 i !1 i t12 i ! 2ij 3 0A A 1 ii jj 1 1 tj1 !j d1
h
13
例4.1
Gs
1
1 0s26.5s1
采样时间取4秒、数据长度取12(此时阶跃响应已进入稳态)时, 调用相应的子程序,其辨识结果如表4.1所示。
则由上式可求出a1,a2,…,an, b1,b2,…,bn 上式可写成矩阵形式
b1 An
b2
An1
An1
An
Anm11An1 Anm2 An2
bm
Anm1
Anmh2 Leabharlann AnAnm12
a1 1
a2
A1
an
An1
0 1 An2
A001 100bbb0m12 AAA1n2
KhU0
定义:
Gs
K
1
Ps
其中
P s b a m n s s m n a b m n 1 1 s s n m 1 1 a b 1 1 s s 1 1 1 i 1c isi,n m
则 1h(t)的Laplace变换为
L1ht
1s sP1s h
i1 1
cisi1
cisi
7
i1
则一阶面积A1为
A101ht
d t lim L1ht s 0
cisi1 ls i0m 1i 1cisi c1
再令
Lh1t
1
s1c1s
i1
并定义二阶面积A2为
A1
0
t 0
h1hddtlsi m 0L
t 0
h1thtdt
limLh1 t
h
5
面积法的基本原理 u(t)
U0
0
u*(t)=u(t)/U0 1
t
0
t
h(t)
h
0
h*tht/h
1
t
0
t
把阶跃响应转化成无因次的形式
h
6
设过程的传递函数为
显然
G sK b a m n s sm n a b m n 1 1 s sn m 1 1 a b 1 1 s s 1 1,nm
a4
a5
a6
15.0000 -108.499 551.327 -2235.99
若传递函数的阶次取n=4,m=2,采样时间取0.2秒,数据长度取400, 调用相应的子程序,其辨识结果如表4.3所示。
参数 真值 估计值
增益K 1.0
1.0000
a1 7.5 7.50405
a2 17.5 17.5269
a3 15 15.0258
系统辨识基础 -------经典的辨识方法
h
1
引言
u(t) 输入量
过程
y(t) + 输出量
n(t) 附加噪声
+ z(t)
输出测量值
图4.1 SISO过程
h
2
4.2 阶跃响应法---实验测取过程的阶跃响应
u(t)
y(t)
z(t) z(t)
调节阀
过程
变送器
电/气 转换器
0
t
u(t)
操作器 u(t) U0