长郡中学高一入学分班考试测试卷 (30)
湖南省长郡中学2020-2021学年高一入学分班考试数学试题 答案和解析
湖南省长郡中学2020-2021学年高一入学分班考试数学试题答案和解析湖南省长郡中学高一入学分班考试数学试题一、单选题1.已知方程组$\begin{cases} x+y=-7-a \\ x-y=1+3a\end{cases}$的解x为非正数,y为非负数,则a的取值范围是()。
A。
$-2<a\leq3$ B。
$-2\leq a<3$ C。
$-2<a<3$ D。
$a\leq-2$2.已知$a^2+b^2=6ab$,且$a>b>0$,则$\dfrac{a+b}{a-b}$的值为()。
A。
2 B。
$\pm2$ C。
$2\sqrt{2}$ D。
$\pm2\sqrt{2}$3.经过某十字路口的汽车,它可能继续直行,也可能向左或向右转,若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为()。
A。
$\dfrac{1}{3}$ B。
$\dfrac{2}{3}$ C。
$\dfrac{1}{9}$ D。
$\dfrac{1}{6}$4.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便,原理是:如对于多项式$x-y$,因式分解的结果是$(x-y)(x+y)(x^2+y^2)$,若取$x=9$,$y=9$时,则各个因式的值是:$x-y=0$,$xy=81$,$x^2+y^2=162$,于是就可以把“”作为一个六位数的密码,对于多项式$x-xy$,取$x=20$,$y=10$时,用上述方法产生的密码不可能是()。
A。
B。
C。
D。
5.如果四个互不相同的正整数$m,n,p,q$,满足$(5-m)(5-n)(5-p)(5-q)=4$,那么$m+n+p+q=$()。
A。
24 B。
21 C。
20 D。
226.若$x_1,x_2$($x_1<x_2$)是方程$(x-a)(x-b)=1$($a<b$)的两个根,则实数$x_1,x_2,a,b$的大小关系为()。
长郡中学高一入学分班考试测试卷
测试卷1一、选择题1、已知 a 355 ,b444 , c 533 , 则有()A 、 a b cB、 c b aC、 c a bD、 a c b2、假如方程 x 2 px 10( p 0) 的两根之差是 1,那么 p 的值为()A 、 2B、 4C、 3D、 53、假如不等式组9x a 01,2,3,那么合适这个不等式组的整数a,b 的有序数对( a 、8x b 的整数解仅为b )共有()A 、17 个B、64 个C 、72个D 、81个4、若正整数正整数 x, y 知足 x 2y 2 64, 则这样的正整数对x, y的个数是()A 、 1B、 2C 、 3D、 45、如图 1— 1 所示, P 是ABCD 内的一点(不在线段BD 上),S APB 2,则 S CPD ( )S ABCD5SABCDA 、1B、1C、3D、35101056、每面标有 1~6 点的三个骰子堆成一串,他、如图1— 2 所示,此中可见7 个面,而 11 个面是看不到的(反面、底面之间的面) ,试问看不见的面其点数总和是()A 、 37B、 38C 、39 D、 417、方程 7 x 2 (k 13)xk 2 k2 0( k 是实数)有两个实根, ,且01, 12, 那么 k的取值范围是()A 、 3< k <4B 、— 2< k <—1C 、 3< k <4 或— 2< k <— 1 D、无解8 已知一个梯形的四条边的长分别为 1,2, 3, 4,则此梯形的面积等于()A 、 4B、 6C、82D、 10 233二、填空题ab ab9、若 ab >0,则b的值等于 ________________ ;aab10、已知实数 a , b 知足 a 24b 2 a 4b5 0 ,那么— ab 的平方根是 _____________.411、等腰三角形一腰上的中线把这个三角形的周长分红 12cm 和 21cm 两部分,则这个等腰三角形的底边长是 ________________.12、计算:1 115________________.2313、已知实数 x,y 知足 x22 y3, y 22 x3, 且 xy, 则:xy的值是 _____________.y x14、小华有若干个苹果向若干只篮子里散发,若每只篮子分 4 个苹果,还剩 20 个未分完;若每只篮子分 8 个苹果,则还有一只篮子没有放够,那么小华本来共有苹果 _____________ 个.15、若 2x 34x 13 ,则 y 的最大值是 _____________.16、已知对于 x 的方程: m 2 2m 3 x3( x 2)m 4有独一解,则 m 的取值范围 _______.三、解答题17、某校初三( 1)班余班费 m ( m 为小于 400 的整数)元,打算为每位同学买一真相册。
长郡高一分班考试英语试卷
长郡中学高一新生入学考试英语卷考生须知:1、本试卷共五个大题,总分100分,考试时间90分钟。
请将答案做在答题卷上。
2、答题前,先用钢笔或圆珠笔在答题卷规定位置上填写姓名、考场号、座位号。
一、单项选择(本题有15小题,每小题1分,共计15分)从A、B、C、D四个选项中,选出可以填入空白处的最佳答案。
1.I’ll spend as much time as I can _____ after the flowers in the garden.A. lookB. to lookC. lookingD. looked2. I ____ a bad cold for a week and still can’t get rid of it.A. caughtB. have caughtC. had caughtD. have had3. Riding a horse is very . People often get when they tooka horse-riding.A. exciting; excitedB. exciting; excitingC. excited; excitingD. excited; excited4. Let me tell you __________________.A. how much is the carB. how much does the car costC. how much did I pay for the carD. how much I spent on the car5. -- important tool the computer is!--I think so.A. What aB. HowC. What anD. How an6. It ___ me about ten minutes to go to school by bike every day.A. paysB. spendsC. costsD. takes7. The radio is too noisy. Would you please ___ a little?A. turn it offB. turn it downC. stop it fromD. pick it up8. Mr. Bush, headmaster of the school,_____ accepts suggestions made by hisstudents, does he?A. seldomB. oftenC. usuallyD. always9. My CD doesn’t work well.I’ll go and ___________ this evening.A.have them repaired B.to repairC.have it repaired D.have it repair10. The young lady _____ we met yesterday is our new maths teacher.A whatB whoseC whomD which11. I have ______ for my pen everywhere, but I just can’t _____ it..A. found,find B. found, look .C. looked,find D. looked,look 12. We couldn’t see________ because the light in the room was poor..A. enough clear B. clear enough . C. enough clearly .D. clearly enou gh13. --Look! That man looks like Mr Brown.--It _____ be him, for he _____ America..A. can’t; has gone to . B. may not; has gone. C. mustn’t; has been to .D. can’t; has been to14. We should keep on _____ English every day..A. to practise to speak .B. to practise speaking.C. practising to speak .D. practising speaking15. ─Mike wants to know if ____ a p icnic tomorrow.─Yes. But if it _______, we'll visit the museum instead.A. you have; will rainB. you will have; will rainC. you will have; rainsD. will you have; rains二、完形填空(本题有15小题,每小题1分,共计15分)阅读下面短文,然后在各题所给的四个选项中选出一个最佳答案。
2023年成都市长郡中学高一入学分班考试英语试卷及答案
2023年成都市长郡中学高一入学分班考试英语试卷及答案第一部分选择题(共40分)请在答题卡上将正确选项的编号涂黑。
1. — ________________ you leave now, you'll be late for the meeting.A. IfB. UnlessC. ThoughD. Since2. I didn't know anyone at the party, so I felt ________________.A. scaredB. annoyedC. embarrassedD. lonely3. My cousin is a talented musician. He can play________________ musical instruments.A. a fewB. a littleC. a number ofD. a great deal ofA. importantB. unimportantC. more importantD. most important5. It's essential that you ________________ your seatbelt during the entire flight.A. are wearingB. will wearC. wearD. have worn...第二部分非选择题(共60分)请在答题纸上作答。
阅读理解阅读下面短文,并根据短文后的问题选择正确答案。
In the world of sports, there are winners and losers. The winners are the ones who have trained harder, practiced longer, and wanted victory more than anything else. They have devoted their time and energy to reaching their goals.Being a winner is not just about achieving your own goals. True winners inspire and motivate others. They set positive examples and always give their best effort. They understand the value of teamwork and support their fellow teammates.Winners also know that failure is not the end. They see failure as an opportunity to learn and grow. They are not afraid to take risks and push themselves beyond what they thought was possible. They persevere through challenges and setbacks, always determined to succeed.In conclusion, being a winner requires hard work, dedication, and a positive attitude. It is about setting goals, staying focused, and never giving up. Winners inspire others and see failure as a stepping stone to success.6. According to the passage, what is the key to success?A. Being lucky.B. Setting well-defined goals and making plans.C. Having natural talent.D. Having a positive attitude.7. What do winners understand about failure?A. Failure is the end.B. Failure is a sign of weakness.C. Failure is an opportunity to learn and grow.D. Failure is something to be afraid of....写作请根据所给的提示,以"Three Ways to Protect the Environment"为题,写一篇80词左右的短文。
长郡中学高一入学分班考试测试卷
测试卷25一、选择题1.如图25-1所示;在矩形ABCD 中;E 在AD 上;EF ⊥BE;交CD 于F;连接BF;则图中与△ABE 一定相似的三角形是A. △EFBB. △DEFC. △CFBD. △EFB 和△DEF 2.如图25-2所示;直角梯形ABCD 中;AD//BC;AB ⊥BC;AD=2;BC=3;将腰CD 以D 为中心逆时针旋转90°至ED;连接AE 、CE;则△ADE 的面积是A.1B.2C.3D.不能确定 3.若A),35(),1(),413(321y C y B y 、、--为二次函数542+--=x x y 的图像上的三点;则321,,y y y 的大小关系是A.321y y y <<B.123y y y <<C.213y y y <<D.312y y y <<4.计算机中常用的十六进制是逢16进1的计数制;采用数字0~9和字母A~F 共16个记数符号;这些记数符号与十进制的数之间的对应关系如下表:例如:十进制中的26=16+10;可用十六进制表示为1A ;在十六进制中;E+D=1B 等..由上可知;在十六进制中;2×F=A.30B.1EC.E1D.2F5.如图25-3所示;在ABC Rt ∆中;AC=5;BC=12; ⊙O 分别与边AB 、AC 相切;切点分别为E 、C;则⊙O 的半径是 A.310 B.316 C.320 D.323 6.将n 个边长都为1cm 的正方形按图25-4所示摆放;点n A A A ,,,21 分别是正方形的中心;则n 个这样的正方形重叠部分的面积和为A.241cm B.24cm n C.241cm n -D.241cm n⎪⎭⎫⎝⎛ 7.方程113162=---x x 的解是 A.1=x B.4-=x C.4,121-==x x D.以上答案都不对 8.已知关于x 的方程)(22x m mx -=+的解满足,0121=--x 则m 的值是A.5210--或 B.5210-或 C..5210或- D.10或52 二、填空题9.点P 是△ABC 中AB 边上的一点;过点P 作直线不与直线AB 重合截△ABC;使截得的三角形与△ABC 相似..满足这样条件的直线最多有_____________条..10.如图25-5所示;△OAP 、△ABQ 均是等腰直角三角形;点P 、Q 在函数)0(4>=x xy 的图像上;直角顶点A 、B 均在x 轴上;则点B 的坐标为_____________. 11.观察下列各等式的数字特征:17107101710710,1192911929,85358535⨯=-⨯=-⨯=-将你所发现的各等式的规律用含字母b a ,的等式表示出来:_______________.12.甲、乙两种糖果;售价分别为20元/kg 和24元/kg;根据市场调查发现;将两种糖果按一定的比例混合后销售;取得了较好的销售效果..现在糖果的售价有了调整:甲种糖果的售价上涨了8%;乙种糖果的售价下跌了10%..若这种混合糖果的售价恰好保持不变;则甲、乙两种糖果的混合比例应为甲:乙=___________.13.如图25-6所示;小李和小陈做转盘游戏;他们同时分别转动一个转盘;当两个转盘都停下来时;指针所指的数字都是奇数的概率是____________.14.若圆锥的底面周长为20π;侧面展开后所得扇形的圆心角为120°;则圆锥的侧面积为________________.15.若___________,,123232222=++++=++=++c b a ca bc ab c b a c b a 则且..16如果α、β是一元二次方程0132=-+x x 的两个根;那么β-+a a 22的值是_____________. 二、解答题 17.1化简求值:42232-÷⎪⎭⎫⎝⎛--+x x x x x x ;其中.3-=x 2某酒店的客房有三人普通间、双人普通间客房;收费数据如下表:一个50人的旅游团到该酒店入住;住了一些三人普通间和双人普通间客房..若每间客房正好住满;且三人普通间住了x 间;双人普通间y 间.. ① 用含x 的代数式表示y.② 若该旅游团一天的住宿费要低于3000元;且旅客要求住进的三人普通间不多于双人普通间;18.1已知:如图25-7所示;在平行四边形ABCD 中;E 是AD 中点;连接BE 、CE;∠BEC=90°. ①求证:BE 平分∠ABC ②若EC=4;且,3=ABBE求平行四边形ABCE 的面积.. 2已知关于x 的方程03)1(222=-+--m x m x 有两个不相等的实数根..①求实数m 的取值范围..②已知a 、b 、c 分别是△ABC 的内角∠A 、∠B 、∠C 的对边;∠C=90°;且43tan =B ;c —b=4;若方程的两个实数根的平方和等于△ABC 的斜边c 的平方;求m 的值..19.已知:如图25-8所示;抛物线c bx ax y ++=2的顶点C 在以D )2,2--为圆心;4为半径的圆上;且经过⊙D 与x 轴的两个交点A 、B;连接AC 、BC 、OC.. ﹙1﹚求点C 的坐标﹙2﹚求图中阴影部分面积..﹙3﹚在抛物线上是否存在点P;使DP 所在直线平分线段OC 若存在;求出点P 的坐标;如果不存在;请说明理由..。
长郡中学高一试题及答案
长郡中学高一试题及答案一、选择题(每题3分,共30分)1. 下列哪项是长郡中学的校训?A. 求实创新B. 勤奋严谨C. 厚德博学D. 团结协作答案:C2. 长郡中学位于哪个城市?A. 长沙B. 武汉C. 广州D. 南京答案:A3. 长郡中学的校徽颜色是什么?A. 蓝色B. 红色C. 绿色D. 黄色答案:B4. 长郡中学的校歌是由哪位校友创作的?A. 李四光B. 钱学森C. 陈独秀D. 鲁迅5. 长郡中学的图书馆藏书量大约是多少?A. 5万册B. 10万册C. 15万册D. 20万册答案:B6. 下列哪项不是长郡中学的体育项目?A. 篮球B. 足球C. 乒乓球D. 橄榄球答案:D7. 长郡中学的校园占地面积是多少?A. 50亩B. 100亩C. 150亩D. 200亩答案:C8. 长郡中学的校庆日是每年的哪一天?A. 5月4日B. 10月1日C. 6月1日D. 9月10日答案:A9. 长郡中学的校史馆位于校园的哪个位置?B. 体育馆C. 图书馆D. 艺术楼答案:A10. 长郡中学的校花是什么?A. 牡丹B. 玫瑰C. 桂花D. 菊花答案:C二、填空题(每题2分,共20分)1. 长郡中学的校训是“厚德博学,______”。
答案:求实创新2. 长郡中学的校歌中提到了“______,自强不息”。
答案:厚德载物3. 长郡中学的校园内有一座名为“______”的雕塑。
答案:求知4. 长郡中学的校庆日是为了纪念学校成立______周年。
答案:1005. 长郡中学的校徽上的图案是______。
答案:凤凰6. 长郡中学的校史馆内收藏了学校的______。
答案:历史文献7. 长郡中学的校园内有一个名为“______”的亭子。
答案:思源8. 长郡中学的校歌是由______创作的。
答案:李四光9. 长郡中学的图书馆藏书量超过______册。
答案:10万10. 长郡中学的校园占地面积超过______亩。
答案:150三、简答题(每题10分,共20分)1. 请简述长郡中学的办学理念。
长沙长郡中学2023-2024学年高一上学期入学检测物理试卷
长郡中学2023-2024学年新高一入学检测物理试卷一.单项选择题(共10 小题,满分20 分,每小题 2 分)1.(2分)中华诗词蕴含着丰富的物理知识,以下诗词中有关物态变化的分析正确的是()A.“青青园中葵,朝露待日晞”—露的形成是汽化吸热B.“春蚕到死丝方尽,蜡炬成灰泪始干”—蜡炬成灰泪始干是晶体熔化放热C.“雾凇沆砀,天与云与山与水,上下一白”—雾凇的形成是凝固放热D.“月落乌啼霜满天,江枫渔火对愁眠”—霜的形成是凝华放热2.(2分)如图所示是一款磁悬浮蓝牙音箱,它由一个球形音箱和一个磁悬浮底座组成。
音箱悬浮在空中,一边旋转一边播放歌曲。
下列说法错误的是()A.磁悬浮蓝牙音箱是高科技产品,不需要振动就能发声B.歌声是通过空气传到人耳的C.调节音量开关使音量增大,声音的响度会变大D.人们可以分辨出音箱播放的乐曲是钢琴还是小提琴演奏的,是根据音色不同判断的3.(2分)电子车票,也称“无纸化”车票,乘客网上购票后,直接通过“刷身份证”或“扫手机”即可顺利进站。
如图甲所示是乘客通过“刷身份证”进站时的情景,将身份证靠近检验口,机器感应电路中就会产生电流,从而识别乘客身份。
图乙中能说明这一原理的是()4.(2分)水上蹦床是一种水上娱乐项目,游客站在上面可以自由蹦跳(如图)。
对于蹦床运动的分析,下列说法错误的是()A.游客接触蹦床向下运动到最低点时,蹦床的弹性势能最大B.游客离开蹦床向上运动过程中,他的动能减小,重力势能增大C.游客在最高点时受到的是平衡力D.游客想弹得更高,就要在蹦床上发力,此过程将消耗游客体能5.(2分)防控疫情期间,为了严格控制外来车辆出入小区,很多小区安装了门禁系统,如图所示。
系统可以通过电子眼自动识别车辆,若是小区内部车辆,则由自动开关S1控制电动机启动横杆;若是外部车辆,需要工作人员按动按钮开关S2,控制电动机启动横杆。
在如图所示的四个电路中,能正确模拟门禁系统内部控制电A .6.(2 分)2022 年,兼顾低碳装置、环保宜教、复合空间、可拆卸、可移动、可长期使用的成都高新区“10m 2的地球”低碳小屋在大源中央公园落成。
长郡中学高一入学分班考试测试卷 参考答案
长郡篇答案试卷11.C2.D3.C4.B5.B6.D7.C8.D9.1或—3 10.12± 11.5cm 12.13.2+ 14.44 15.—9 16.2m ≠-≠且m 0 17.该班有42名同学,每本相册的零售价为9元。
18.21224(1)(710).(2)BE=7(3)255DEF S BE FG x x x ∆==-+≤≤存在。
此时不存在。
19.13771.(2)1.,2.2266m m m -<<==() 试卷21.10.1611.23y x =- 12.7(注:填-1不给分) 13.014.第45行,第13列 15.10a a >-≠且 16.17.甲库原来最少存粮153袋 18.当点P 运动时,CD 的长保持不变。
19.(1)所求b 值为2-± (2)最小值为6测试卷311.9<AC<19 12.9213.3 14.一 15.14或—6 16.1 17.(1)甲工厂每天加工16件,乙工厂每天加工24件。
(2)乙工厂所报加工费每天最多为1225元,可满足该公司要求,有望加工这批产品。
18.(1)21000y x =-+ (2)当x=35时,每天可获得最大利润4500元 (3)3134,3639x x ≤≤≤≤或19.(1)抛物线和直线的解析式分别为2233y x x y x =-++=-和(2)11k k =-=或测试卷41.A2.A3.A4.C5.B6.C7.B8.D9.3 10.100° 11.12. 13.6 14.30°或150° 15.616.-3,-2,-1,1 17.2时 18.最大产值为1050千元,空调、彩电、冰箱各生产30台、270台、60台。
19.(1)D (1,-4a ) (2)2y 23x x =-++ (3)存在,12339115(0,3)(,)(,)2424P P P -- 测试卷5 1.B 2.B 3.D 4.C 5.C 6.A 7.C 8.A 9.105k k ≤≠且 10.20π 11.外切或内切 12.—7 13.10或—2 14.2 15.5 16.12x y =-⎧⎨=⎩17.(1)方案一:生产A 种产品30件,生产B 种产品20件;方案二:生产A 种产品31件,生产B 种产品19件;方案三:生产A 种产品32件,生产B 种产品18件;(2)7001200(50)50060000y x x x =+-=-+,即生产A 种产品30件,B 种产品20件时获总利润最大为45000元。
长郡中学年高一分班考试英语试卷完整版
长郡中学年高一分班考试英语试卷HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】英语试题时量90 分钟满分100 分Ⅰ.知识运用(分两节,共 20 小题,计 20 分)第一节单项从 A、B、C 三个选项中选出最佳答案。
(共 10 小题,计10 分)1.Greens were having supper when theycame to visit them.A./ ; theB. The; /C. /; /2.M ay I have a talk with you , sir I have to tell you.A.nothing importantB. important somethingC. somethingimportant3.I want to know do to improve my English.A.what I canB. what can IC. how I can4.H ow glad we were each other again in Changjun Middle School!A.meetingB. metC. to meet5.—Must I finish the work today, mom6.—No, you .You can finish it tomorrow.A.don’t have toB. can’tC. mustn’t7.This morning I got up early be latefor the English exam.A.in order to notB. so as toC. so as not to8.—Do you still remember where we first met?9.—Sure, just in the library. And it at that time.A.rainedB. was rainingC. has rained10.—What would you like, oranges or bananas?11.—. Give me an apple, please.A.BothB. NeitherC. Either12.Sarah pretended to be cheerful,nothing about the argument.A.sayingB. saidC.says10.—What are you looking for?B.—I’m looking for the watch I bought yesterday.A.which B.who C.whose 第二节完形填空通读下面的短文,掌握其大意,然后从所给的 A、B、C 三个选项中选出一个最佳答案。
长郡高中入学考试试卷
长郡高中入学考试试卷一、选择题(共20分,每题2分)1. 下列哪个选项是长郡高中的校训?A. 勤奋、求实、创新B. 诚信、友善、和谐C. 博学、审问、慎思D. 明德、至善、笃行2. 长郡高中成立于哪一年?A. 1905年B. 1910年C. 1920年D. 1930年3. 长郡高中的校徽中包含哪种动物形象?A. 龙B. 虎C. 鹰D. 凤凰4. 长郡高中的校歌中提到了哪些元素?A. 山川、河流B. 星辰、大海C. 历史、未来D. 知识、智慧5. 长郡高中的办学理念是什么?A. 培养全面发展的人才B. 培养专业技能人才C. 培养艺术特长人才D. 培养体育竞技人才二、填空题(共20分,每题4分)6. 长郡高中的校训是“________、________、________”。
7. 长郡高中的校徽设计灵感来源于________。
8. 长郡高中的校歌中提到“________,________,________”,表达了对学子的期望。
9. 长郡高中的办学理念强调了________的重要性。
10. 长郡高中的校园占地面积约为________平方米。
三、简答题(共30分,每题10分)11. 请简述长郡高中的历史沿革。
12. 描述长郡高中的校园环境特点。
13. 阐述长郡高中在培养学生方面的主要做法。
四、论述题(共30分)14. 结合自身经历,谈谈你对长郡高中办学理念的理解,并举例说明如何在学习和生活中践行这一理念。
考生须知:1. 请在答题卡上作答,确保字迹清晰可辨。
2. 请按照题目要求,认真审题,规范答题。
3. 考试结束后,将试卷和答题卡一并交回。
4. 请保持考场安静,严禁作弊行为。
5. 考试时间:120分钟。
祝各位考生考试顺利!。
高一分班考试题目及答案
高一分班考试题目及答案一、选择题(每题3分,共30分)1. 下列哪项不是高一分班考试的目的?A. 评估学生的学习能力B. 选拔优秀学生C. 确定学生分班依据D. 增加学生的考试压力答案:D2. 高一分班考试通常包括哪些科目?A. 语文、数学、英语B. 物理、化学、生物C. 历史、地理、政治D. 所有以上选项答案:D3. 高一分班考试的总分是多少?A. 300分B. 450分C. 600分D. 750分答案:C4. 以下哪项不是高一分班考试的准备方法?A. 复习课本知识B. 做历年真题C. 参加课外辅导班D. 忽视考试的重要性答案:D5. 高一分班考试的成绩通常在考试结束后多久公布?A. 一周内B. 两周内C. 一个月内D. 两个月内答案:A6. 高一分班考试的难度与下列哪项考试相似?A. 中考B. 高考C. 模拟考试D. 竞赛答案:C7. 高一分班考试的监考老师通常由谁担任?A. 班主任B. 任课老师C. 学校领导D. 家长代表答案:B8. 高一分班考试的考场布置通常包括哪些要素?A. 考生座位B. 监考老师C. 考试时间提示D. 所有以上选项答案:D9. 高一分班考试中,考生应注意哪些事项?A. 携带身份证和准考证B. 遵守考场纪律C. 按时交卷D. 所有以上选项答案:D10. 高一分班考试后,学生应如何调整心态?A. 过度焦虑B. 放松休息C. 积极准备下一阶段学习D. 忽视成绩答案:C二、填空题(每题2分,共20分)1. 高一分班考试的目的是__________学生分班依据,评估学生的学习能力。
答案:确定2. 高一分班考试通常包括__________、__________、__________三门主要科目。
答案:语文、数学、英语3. 高一分班考试的总分通常为__________分。
答案:6004. 高一分班考试的准备方法包括复习课本知识、做历年真题、__________。
答案:参加课外辅导班5. 高一分班考试的成绩通常在考试结束后__________内公布。
长郡高一分班考试试卷
湖南省长沙市长郡教育集团高一新生分班考试试卷理综试卷时量:120分钟 总分:200分考生注意:全卷共九道大题,50道小题。
其中第1~15、42~50为化学试题;16~41题为物理试题。
一、选择题(每小题3分,每小题只有一个正确答案,共75分。
其中第1~15题为化学题,第16~25题为物理题)1.古诗词是古人为我们留下的宝贵精神财富。
下列诗句中只涉及物理变化的是 ( )A. 野火烧不尽,春风吹又生B. 春蚕到死丝方尽,蜡炬成灰泪始干C. 只要功夫深,铁杵磨成针D. 爆竹声中一岁除,春风送暖人屠苏2. 2003年,湟中县田家寨镇一农民把工业用盐亚硝酸钠误当作食盐用于做饭,造成两死一伤的重大中毒事件。
在亚硝酸钠(NaNO 2)中,氮元素的化合价为 ( )A. -3价B. +2价C. +3价D. +5价3. 农作物栽培中使用的化肥种类很多。
下列属于复合肥料的是 ( )A. KNO 3B. CO(NH 2)2C. NH 4ClD. NH 4NO 34. 实验操作有误或不规范,很可能造成实验失败或酿成事故。
下列实验操作中正确的是 ( )5. 我国“神舟五号”裁人飞船发射成功。
它用物质M 作为高能燃料,M 燃烧的化学方程式O H 2N O M 2222+===+点燃。
则M 的化学式是 ( )A. NH 2B. N 2H 2C. N 2H 4D. N 2H 66. 空气中含量最多的元素和地壳中含量最多的金属元素及地壳中含量最多的非金属元素,共同形成化合物,其化学式为 ( )A. Al(OH)3B. Fe(NO 3)3C. Al(NO 3)3D. Al 2O 37. 某元素的原子结构示意图如右图,下列说法正确的是 ( )A. 第一层上有6个电子B. 该元素为金属元素C. 该原子核电荷数为16D. 这种原子容易失电子8. 下列操作或现象或分子对应的特性不一致的选项是 ( )9. 2003年初一场突如其来的“非典型肺炎”严重威胁着人们的身体健康,年底,广东又发现了SARS 疑似病例。
长郡中学2024-2025学年高一上学期入学分班考试数学试卷与答案
时量:90分钟 满分100长郡中学2024-2025学年高一上学期入学分班考试数学试卷分一、选择题:本题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个选项是符题目要求的.1. 《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿日兆.”说明了大数之间的关系:1亿1=万1万,1兆1=万1×万1×亿.若1兆10m=,则m 的值为( ) A. 4B. 8C. 12D. 162. 二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒大寒),若从二十四个节气中随机抽取一个节气,则抽到的节气在夏季的概率为( ) A.12B.112C.16D.143. 如图,矩形ABCD 中,3AB =,1AD =,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 所表示的数为( )A. 2B.1−C.D.14. 若关于x 的不等式组()532223x x x x a + ≥−+<+恰好只有四个整数解,则a 的取值范围是( )A. 53a <−B. 5433a −≤<− C. 523a −<−≤D. 523a −<<−5. 在ABC ,3AC =,4BC =,5AB =,点P 在ABC 内,分别以A ,B ,P 为圆心画圆,圆A 的半径为1,圆B 的半径为2,圆P 的半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是( ) A. 内含B. 相交C. 外切D. 相离6. 对于正整数k 定义一种运算:1()[][]44k k f k +=−,例:313(3)[][]44f +=−,[]x 表示不超过x 的最大整数,例:[3.9]3=,[ 1.8]2−=−.则下列结论错误的是( ) A. ()10f =B. ()0f k =或1C. ()()4f k f k +=D. ()()1f k f k +≥7. 如图,点A 为反比例函数()10y x x=−<图象上的一点,连接AO ,过点O 作OA 的垂线与反比例函数()40yx x=>的图象交于点B ,则AO BO 的值( )A12B.14C.D.138. 若二次函数的解析式为()()()2215y x m x m =−−≤≤,且函数图象过点(),p q 和点()4,p q +,则q 的取值范围是( ) A. 124q −≤≤B. 50q −≤≤C. 54q −≤≤D. 123q −≤≤二、填空题:本题共4小题,每小题4分,共16分.9 分解因式:432449a a a −+−=______.10. 直线1:1l y x =−与x 轴交于点A ,将直线1l 绕点A 逆时针旋转15°,得到直线2l ,则直线2l 对应的函数表达式是______. 11. 若关于x 分式方程22411x a x ax x −−+−=−+的解为整数,则整数a =______. 12. 如图,已知两条平行线1l ,2l ,点A 是1l 上的定点,2AB l ⊥于点B ,点C ,D 分别是1l ,2l 上的动点,且满足AC BD =,连接CD 交线段AB 于点E ,BH CD ⊥于点H ,则当BAH ∠最大时,sin BAH ∠的值为______...的三、解答题:本题共4小题,共52分.应写出文字说明、证明过程或演算步骤.13. 某学校举办的“青春飞扬”主题演讲比赛分为初赛和决赛两个阶段.(1)初赛由10名教师评委和45名学生评委给每位选手打分(百分制),对评委给某位选手的打分进行整理、描述和分析下面给出了部分信息.a 教师评委打分:86 88 90 91 91 91 91 92 92 98b .学生评委打分的频数分布直方图如下(数据分6组:第1组8285x ≤<,第2组8588x ≤<,第3组8891x ≤<,第4组9194x ≤<,第5组9497x ≤<,第6组97100x ≤≤);平均数中位数众数教师评委 91 91 m 学生评委90.8n93c .评委打分的平均数、中位数、众数如上: 根据以上信息,回答下列问题:①m 的值为______,n 的值位于学生评委打分数据分组的第______组;②若去掉教师评委打分中的最高分和最低分,记其余8名教师评委打分的平均数为x ,则x ______91(填“>”“=”或“<”);(2)决赛由5名专业评委给每位选手打分(百分制).对每位选手,计算5名专业评委给其打分的平均数和方差.平均数较大的选手排序靠前,若平均数相同,则方差较小的选手排序靠前,5名专业评委给进入决.赛的甲、乙、丙三位选手的打分如下: 评1 评委2 评委3 评委4 评委5 甲 93 90 92 93 92 乙 91 92 92 92 92 丙90949094k若丙在甲、乙、丙三位选手中的排序居中,则这三位选手中排序最靠前的是______,表中k (k 为整数)的值为______.14. 根据以下素材,探索完成任务——如何设计摇椅的椅背和坐垫长度?素材一:某公司设计制作一款摇椅,图1为效果图,图2为其侧面设计图,其中FC 为椅背,EC 为坐垫,C ,D 为焊接点,且CD 与AB 平行,支架AC ,BD 所在直线交于圆弧形底座所在圆的圆心O .设计方案中,要求A ,B 两点离地面高度均为5厘米,A ,B 两点之间距离为70厘米;素材二:经研究,53OCF ∠=°时,舒适感最佳.现用来制作椅背FC 和坐垫EC 的材料总长度为160厘米,设计时有以下要求: (1)椅背长度小于坐垫长度;(2)为安全起见,摇椅后摇至底座与地面相切于点A 时(如图3),F 点比E 点在竖直方向上至少高出12厘米.(sin530.8°≈,cos530.6°≈,tan53 1.3°≈)任务:(1)根据素材求底座半径OA ; (2)计算图3中点B 距离地面的高度;(3)①求椅背FC 的长度范围;(结果精确到0.1m ) ②设计一种符合要求的方案.15. 定义:在平面直角坐标系中,直线x m =与某函数图象交点记为点P ,作该函数图象中点P 及点P 右侧部分关于直线x m =的轴对称图形,与原函数图象上的点P 及点P 右侧部分共同构成一个新函数的图象,称这个新函数为原函数关于直线x m =的“迭代函数”.例如:图1是函数1y x =+的图象,则它关于直线0x =的“迭代函数”的图象如图2所示,可以得出它的“迭代函数”的解析式为()()10,10.x x y x x +≥ =−+<(1)函数1y x =+关于直线1x =的“迭代函数”的解析式为______.(2)若函数243y x x =−++关于直线x m =的“迭代函数”图象经过()1,0−,则m =______. (3)已知正方形ABCD 的顶点分别为:(),A a a ,(),B a a −,(),C a a −−,(),D a a −,其中0a >.①若函数6y x=关于直线2x =−的“迭代函数”的图象与正方形ABCD 的边有3个公共点,求a 的值; ②若6a =,函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,求n 的取值范围.16. 已知抛物线2y x bx c =−++与x 轴交于点()1,0A −,()3,0B .(1)如图1,抛物线与y 轴交于点C ,点P 为线段OC 上一点(不与端点重合),直线PA ,PB 分别交抛物线于点E ,D ,设PAD △面积为1S ,PBE △面积为2S ,求12S S 的值; (2)如图2,点K 是抛物线对称轴与x 轴的交点,过点K 的直线(不与对称轴重合)与抛物线交于点M ,N ,过抛物线顶点G 作直线//l x 轴,点Q 是直线l 上一动点求QM QN +的最小值.的一、选择题:本题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个选项是符题目要求的.1. 《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿日兆.”说明了大数之间的关系:1亿1=万长郡中学2024-2025学年高一上学期入学分班考试数学试卷答案1万,1兆1=万1×万1×亿.若1兆10m=,则m 的值为( ) B. 8 C. 12 D. 16【分析】由指数幂的运算性质即可求解. 【详解】1万=410,所以1亿=810A. 4【答案】D, 所以1兆=8816101010×=, 所以16m =. 故选:D2. 二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒大寒),若从二十四个节气中随机抽取一个节气,则抽到的节气在夏季的概率为( ) A.12B.112C.16D.14【详解】从二十四个节气中随机抽取一个节气,则抽到的节气在夏季的概率为【答案】D 【分析】根据概率的计算公式即可求解.61244=, 故选:D3. 如图,矩形ABCD 中,3AB =,1AD =,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 所表示的数为( )B.1−C.D.1【分析】利用勾股定理和数轴的知识求得正确答案A. 2【答案】B.【详解】由于AC =,所以点M所表示的数为)231+−=−.故选:B4. 若关于x 的不等式组()532223x x x x a + ≥−+<+恰好只有四个整数解,则a 的取值范围是( )A. 53a <−B. 5433a −≤<− C. 523a −<−≤D. 523a −<<−【分析】化简不等式组,由条件列不等式求a 的取值范围【答案】C. 【详解】解不等式532x x +≥−,得11x ≤, 解不等式()223x x a +<+,得23x a >−, 由已知可得7238a ≤−<, 所以523a −<−≤.故选:C.5. 在ABC ,3AC =,4BC =,5AB =,点P 在ABC 内,分别以A ,B ,P 为圆心画圆,圆A 的半径为1,圆B 的半径为2,圆P 的半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是( ) B. 相交 C. 外切 D. 相离A. 内含【答案】B【分析】由题意条件分析两圆圆心距与两半径和差的大小关系即可得. 【详解】由圆A 与圆P 内切,则312PA =−=,5AB =, 又点P 在ABC 内,则PA PB AB +>,且PB AB <, 所以523PB AB PA >−=−=,且5PB <, 则3232PB −<<+,由圆B 的半径为2,圆P 的半径为3, 所以圆P 与圆B 相交. 故选:B.6. 对于正整数k 定义一种运算:1()[][]44k k f k +=−,例:313(3)[][]44f +=−,[]x 表示不超过x 的最大整数,例:[3.9]3=,[ 1.8]2−=−.则下列结论错误的是( ) A. ()10f =B. ()0f k =或1C. ()()4f k f k +=D. ()()1f k f k +≥【详解】对于A ,【答案】D 【分析】根据给定的定义,逐项计算判断即可.11(1)[][]00024f =−=−=,A 正确; 对于B ,取4,1,2,3,4k n i i =+=,n 为自然数, 当4i =时,1()[1][1][1]044f k n n ++−+,当3i =时,33()[1][]1([])144f k n n n n =+−+=+−+=,当1,2i =时,11()[][][]([])04444i i i if k n n n n ++=+−+=+−+=,B 正确; 对于C ,11(4)[1][1]1[](1[])()4444k k k kf k f k +++=+−+=+−+=,C 正确; 对于D ,414313(31)[][]0,(3)[][]14444f f +++=−==−=,即(31)(3)f f +<,D 错误.故选:D7. 如图,点A 为反比例函数()10y x x=−<图象上的一点,连接AO ,过点O 作OA 的垂线与反比例函数()40yx x=>的图象交于点B ,则AO BO 的值( )A.12B.14C.D.13【分析】设【答案】A121214,,,A x B x x x −,由,A B 两点分别做x 轴的垂线,垂足分别为,E F ,由AO BO ⊥,得∽∠ AOE OBF ,由==AEEO AO OFBF BO,可得答案. 【详解】设AA �xx 1,−1xx 1�,BB �xx 2,4xx 2�(xx <0,xx 2>0),由,A B 两点分别做x 轴的垂线,垂足分别为,E F , 且()()12,0,,0E x F x ,因为AO BO ⊥,所以,∠=∠∠=∠AOE OBF OAE BOF , 所以∽∠ AOE OBF ,所以AE EO OF BF =,可得112214−−=x x x x ,即22124x x =,所以122x x =−, 所以12121211==−==−=A Ex x x OA BO OFx.故选:A.8. 若二次函数的解析式为()()()2215y x m x m =−−≤≤,且函数图象过点(),p q 和点()4,p q +,则q 的取值范围是( ) A. 124q −≤≤ B. 50q −≤≤C. 54q −≤≤D. 123q −≤≤【答案】A 【分析】由二次函数解析式可求得对称轴为x =m +1,进而可得412p p m ++=+,由函数图象过点(),p q ,可得2(1)4q m =−−+,可求q 的取值范围.【详解】因为二次函数解析式为()()()2215y x m x m =−−≤≤, 所以二次函数的对称轴为1x m =+,函数图象过点(),p q 和点()4,p q +,故点(),p q 和点()4,p q +关于直线1x m =+对称, 所以412p p m ++=+,所以1[0,4]p m −∈, 又()()()()2222121223(1)4q p m p m m m m m m =−−=−−−−=−++=−−+, 当1m =,max 4q =,当5m =,min 12q =−,所以124q −≤≤. 故选:A.二、填空题:本题共4小题,每小题4分,共16分.9. 分解因式:432449a a a −+−=______. 【答案】2(23)(1)(3)a a a a −++−【详解】【分析】根据给定条件,利用公式法及十字相乘法分解因式即可得解.43222222449(2)9(23)(23)(23)(1)(3)a a a a a a a a a a a a a −+−=−−=−+−−=−++−. 故答案为:2(23)(1)(3)a a a a −++−的10. 直线1:1l y x =−与x 轴交于点A ,将直线1l 绕点A 逆时针旋转15°,得到直线2l ,则直线2l 对应的函数表达式是______.【答案】y=【详解】直线【分析】先求得l 2的倾斜角,进而求得直线l 2对应的函数表达式.1:1l y x =−与x 轴交于点 1,0A , 直线1:1l y x =−的斜率为1,倾斜角为45°, 所以2l 的倾斜角为60°所以直线2l对应的函数表达式是)1y x =−=.故答案为:y=−22411x ax a x x −−+−=−+的解为整数,则整数a =______.【分析】由分式方程有意义可知1x ≠且1x ≠−,再化简方程求解11. 若关于x 的分式方程【答案】±12x a=,由,a x 均为整数可求.【详解】则方程241x a x −−−1x ≠且1x ≠−. 方程可化为222211x a x ax x −−+−=+−+,即2211a a x x −+=−+, 解得2x a=,由1x ≠且1x ≠−,所以2a ≠且2a ≠−.由a 为整数,且x 为整数,则当1a =−,2x =−,或当1a =,2x =时满足题意. 所以1a =±. 故答案为:1±.12. 如图,已知两条平行线1l ,2l ,点A 是1l 上的定点,2AB l ⊥于点B ,点C ,D 分别是1l ,2l 上的动点,且满足AC BD =,连接CD 交线段AB 于点E ,BH CD ⊥于点H ,则当BAH ∠最大时,sin BAH ∠的值为______.【答案】13【分析】因为BH CD ⊥于点H ,所以点 H 在以BE 为直径的圆上运动, 当 AH 与圆 O 相切时, BAH ∠ 最大,据此在OHA 求解即可. 【详解】12//,//,AC BD l l∴ 四边形 ACBD 是平行四边形 12AE BE AB ∴==A 为定点, 且 2//AB l AE ∴ 为定值,BH CD ⊥ 90BHE ∠∴=, 如图,取BE 的中点O ,则点 H 在以BE 为直径的圆上运动,此时 1123OE BE OA ==, 当 AH 与圆 O 相切时, BAH ∠ 最大1sin 3OH BAH OA ∠∴==故答案为:13.三、解答题:本题共4小题,共52分.应写出文字说明、证明过程或演算步骤.13. 某学校举办的“青春飞扬”主题演讲比赛分为初赛和决赛两个阶段.(1)初赛由10名教师评委和45名学生评委给每位选手打分(百分制),对评委给某位选手的打分进行整理、描述和分析下面给出了部分信息.a .教师评委打分:86 88 90 91 91 91 91 92 92 98b .学生评委打分的频数分布直方图如下(数据分6组:第1组8285x ≤<,第2组8588x ≤<,第3组8891x ≤<,第4组9194x ≤<,第5组9497x ≤<,第6组97100x ≤≤);平均数中位数众数教师评委 91 91 m 学生评委90.8n93c .评委打分的平均数、中位数、众数如上: 根据以上信息,回答下列问题:①m 的值为______,n 的值位于学生评委打分数据分组的第______组;②若去掉教师评委打分中的最高分和最低分,记其余8名教师评委打分的平均数为x ,则x ______91(填“>”“=”或“<”);(2)决赛由5名专业评委给每位选手打分(百分制).对每位选手,计算5名专业评委给其打分的平均数和方差.平均数较大的选手排序靠前,若平均数相同,则方差较小的选手排序靠前,5名专业评委给进入决赛的甲、乙、丙三位选手的打分如下:评1评委2评委3评委4评委5甲 93 90 92 93 92 乙9192929292丙 90 94 90 94 k则1(8890919191919292)90.758x =×+++++++=,91x ∴<.【小问2详解】甲选手的平均数为1(9390929392)925×+++=, 乙选手的平均数为1(9192929292)91.85×++++=, 因为丙在甲、乙、丙三位选手中的排序居中,所以三位选手中排序最靠前的是甲,且丙的平均数大于或等于乙的平均数, 因为5名专业评委给乙选手的打分为91,92,92,92,92, 乙选手的方差2221[4(9291.8)(9191.8)]0.165S =××−+−=乙, 5名专业评委给丙选手的打分为90,94,90,94,k , 所以乙选手的方差小于丙选手的方差,所以丙选手的平均数大于乙选手的平均数,小于或等于甲选手的平均数,∴9390929392909490949192929292k ++++≥++++>++++,9291k ∴≥>, k 为整数,若丙在甲、乙、丙三位选手中的排序居中,则这三位选手中排序最靠前的是______,表中k (k 为整数)的值为______.【答案】(1)①91;4;②<(2)甲;92【分析】(1)①根据众数以及中位数的定义解答即可;②根据算术平均数的定义求出8名教师评委打分的平均数,即可得出答案;(2)根据方差的定义和平均数的意义求解即可.【小问1详解】①由题意得,教师评委打分中91出现的次数最多,故众数m =91;45名学生评委打分数据的中位数是第23个数,故n 的值位于学生评委打分数据分组的第4组;②若去掉教师评委打分中的最高分和最低分,记其余8名教师评委打分的平均数为x ,k ∴的值为92.14. 根据以下素材,探索完成任务——如何设计摇椅的椅背和坐垫长度?素材一:某公司设计制作一款摇椅,图1为效果图,图2为其侧面设计图,其中FC 为椅背,EC 为坐垫,C ,D 为焊接点,且CD 与AB 平行,支架AC ,BD 所在直线交于圆弧形底座所在圆的圆心O .设计方案中,要求A ,B 两点离地面高度均为5厘米,A ,B 两点之间距离为70厘米;素材二:经研究,53OCF ∠=°时,舒适感最佳.现用来制作椅背FC 和坐垫EC 的材料总长度为160厘米,设计时有以下要求: (1)椅背长度小于坐垫长度;(2)为安全起见,摇椅后摇至底座与地面相切于点A 时(如图3),F 点比E 点在竖直方向上至少高出12厘米.(sin530.8°≈,cos530.6°≈,tan53 1.3°≈)任务:(1)根据素材求底座半径OA ; (2)计算图3中点B 距离地面的高度;(3)①求椅背FC 的长度范围;(结果精确到0.1m ) ②设计一种符合要求的方案. 【答案】(1)125厘米;(3)①64.580FC ≤<;②70cm ,90cm (答案不唯一).【分析】(1)根据四边形AHNB 为矩形,35AG BG ==厘米,5AH GM ==厘米,设底座半径(2)19.6厘米OA r =厘米,则OM OA r ==厘米,由勾股定理求出r 即可得出答案;(2)由四边形ANBK 为矩形,进而得AK BN h ==,()125cm,125cm OK h OB =−=,然后在直角三角形中由勾股定理列出关于h 的方程,解方程求出h 即可得出答案;(3)①过F 作FP OA ⊥于P ,过点E 作EQ OA ⊥于Q ,先求出cos cos 0.28QCD OAB ∠=∠=,设椅背FC x =厘米,则坐垫(160)EC x =−,即可得0.60.28(160)12x x −−≥,由此解得64.5x ≥,据此可得椅背FC 的长度范围;②在①中椅背FC 的长度范围任取一个FC 的值,再计算出EC 的值即可,例如取70FC =厘米,则1607090EC =−=(厘米);(答案不唯一,只要在FC 的长度范围内即可). 【小问1详解】过点A 作AH 垂直地面于H ,过点O 作OG AB ⊥于G ,OG 的延长线于地面交于点M ,如图所示:AB 平行于地面,∴四边形AHNB 为矩形,1352AG BG AB ===厘米, 5AH GM ==厘米,设底座半径OA r =厘米,则OM OA r ==厘米,(5)OG OM GM r ∴=−=−厘米,在Rt OAG ∆中,OA r =厘米,35AG =厘米,(5)OGr =−厘米, 由勾股定理得:222OA OG AG =+,即:222(5)35r r =−+, 解得:125r =,∴底座半径OA 的长度为125厘米;【小问2详解】过点B 作BN 垂直地面于N ,BK OA ⊥于K ,如图所示:设BN h =,底座与地面相切于点A ,OA ∴垂直地面于点A ,∴四边形ANBK 为矩形,AK BN h ∴==,由任务一可知:125cm,125OA OB OK OA AK h ==∴==--, 在Rt ABK △中,cm,=70cm AK h AB =, 由勾股定理得:2222270BK AB AK h =−=−,在Rt OBK 中,()125cm,125cm OK h OB =−=, 由勾股定理得:22222125(125)BK OB OK h =−=−−,222270125(125)h h ∴−=−−,解得:19.6h =,∴点B 距离地面的高度为19.6厘米;【小问3详解】①过F 作FP OA ⊥于P ,过点E 作EQ OA ⊥于Q ,如图所示://CD AB ,QCD OAB ∴∠=∠,由任务②可知:19.6AK h ==厘米,70AB =厘米, 在Rt ABK △中,19.6cos 0.2870AK OAB AB ∠===, cos cos 0.28QCD OAB ∴∠=∠=,椅背FC 和坐垫EC 的材料总长度为160厘米, ∴设椅背FC x =厘米,则坐垫(160)EC x =−, 椅背长度小于坐垫长度,160x x ∴<−,解得:80x <,在Rt CQE △中,cos 0.28CQQCD CE∠==, 0.280.28(160)CQ CE x ∴==−厘米,在Rt CFP △中,cos CPOCF CF∠=, cos cos530.6CP CF OCF x x ∴=⋅∠=⋅°≈(厘米), F 点比E 点在竖直方向上至少高出12厘米,12AP AN ∴−≥,即:()12AC CP AC CQ +−+≥,12CP CQ ∴−≥,0.60.28(160)12x x ∴−−≥,解得:64.5x ≥, 又80x < ,64.580x ∴≤≤,即:64.580FC ≤≤,∴椅背FC 的长度范围是:64.580FC ≤<;②由于64.580FC ≤<,故取70cm FC =,则1607090cm EC ==-.15. 定义:在平面直角坐标系中,直线x m =与某函数图象交点记为点P ,作该函数图象中点P 及点P 右侧部分关于直线x m =的轴对称图形,与原函数图象上的点P 及点P 右侧部分共同构成一个新函数的图象,称这个新函数为原函数关于直线x m =的“迭代函数”.例如:图1是函数1y x =+的图象,则它关于直线0x =的“迭代函数”的图象如图2所示,可以得出它的“迭代函数”的解析式为()()10,10.x x y x x +≥ =−+<(1)函数1y x =+关于直线1x =的“迭代函数”的解析式为______.(2)若函数243y x x =−++关于直线x m =的“迭代函数”图象经过()1,0−,则m =______.(3)已知正方形ABCD 的顶点分别为:(),A a a ,(),B a a −,(),C a a −−,(),D a a −,其中0a >.①若函数6y x=关于直线2x =−的“迭代函数”的图象与正方形ABCD 的边有3个公共点,求a 的值; ②若6a =,函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,求n 的取值范围.【答案】(1)1,13,1x x y x x +≥ =−+<(2)m =m =,()5,1,12−∞−∪−.【分析】(1)取点()2,3M ,()3,4N ,求两点关于1x =的对称点,利用待定系数法求左侧图象的解析式,(3)①3;②由此可得结论;(2)判断点()1,0−与函数243y x x =−++的图象的关系,再求()1,0−关于直线x m =的对称点,由条件列方程求m 即可;(3)①求函数6y x=关于直线2x =−的“迭代函数”的解析式,作函数图象,观察图象确定a 的值; ②分别在0n >,0n =,0n <时求函数6y x=关于直线x n =的“迭代函数”解析式,讨论n ,由条件确定n 的范围.小问1详解】在函数1y x =+的图象上位于1x =右侧的部分上取点()2,3M ,()3,4N , 点()2,3M 关于直线1x =对称点为(0,3), 点()3,4N 关于直线1x =的对称点为()1,4−,设函数1y x =+,1x >的图象关于1x =对称的图象的解析式为,1y kx b x =+<, 则34b k b = −+=,解得13k b =− = ,所以函数1y x =+关于直线1x =的“迭代函数”的解析式为1,13,1x x y x x +≥ =−+<;【的【小问2详解】取1x =−可得,2431432y x x =−++=−−+=−, 故函数243y x x =−++的图象不过点()1,0−, 又点()1,0−关于直线x m =的对称点为()21,0m +, 由已知可得()()20214213m m =−++++,1m >−,所以m =或m =,【小问3详解】①当0x >或20x −≤<时,函数6y x =关于直线2x =−的“迭代函数”的图象的解析式为6y x =, 当2x <−时,设点EE (xx ,yy )在函数6y x=关于直线2x =−的“迭代函数”的图象上,则点()4,x y −−在函数6y x=的图象上,所以64y x=−−, 所以函数6y x =关于直线2x =−的“迭代函数”的解析式为[)()()6,2,00,6,,24x xy x x∞∞ ∈−∪+ =∈−− −− , 作函数6y x=关于直线2x =−的“迭代函数”的图象如下:观察图象可得3a =时,函数6y x=关于直线2x =−的“迭代函数”的图象与正方形ABCD 的边有3个公共点,②若0n >,当x n ≥时,函数6y x =关于直线x n =的“迭代函数”的图象的解析式为6y x=, 当0x <或0x n <<时,设点EE (xx ,yy )在函数6y x=关于直线x n =的“迭代函数”的图象上,则点()2,n x y −在函数6y x=的图象上,所以62y n x=−, 所以函数6y x =关于直线x n =“迭代函数”的解析式为()()()6,,6,,00,2x n xy x n n x∞∞ ∈+ =∈−∪ − , 当6n >时,作函数6y x=关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有2个公共点,的当6n =时,作函数6y x=关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有2个公共点,当16n <<时,作函数6y x=关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有2个公共点,当1n =时,作函数6y x=关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有3个公共点,当01n <<时,作函数6y x=关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,当0n =时,函数6y x =关于直线xx =0的“迭代函数”的解析式为6,06,0x xy x x> =−< , 作函数6y x=关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,若0n <,当0n x ≤<或0x >时,函数6y x =关于直线x n =的“迭代函数”的图象的解析式为6y x=, 当x n <时,设点EE (xx ,yy )在函数6y x=关于直线x n =的“迭代函数”的图象上, 则点()2,n x y −在函数6y x=的图象上, 所以62y n x=−,所以函数6y x =关于直线x n =的“迭代函数”的解析式为[)()()6,,00,6,,2x n xy x n n x∞∞ ∈∪+ = ∈− − ,当10n −<<时,作函数6y x=关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,当1n =−时,作函数6y x=关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有5个公共点,当512n−<<−时,作函数6yx=关于直线x n=的“迭代函数”的图象可得,函数6yx=关于直线x n=的“迭代函数”的图象与正方形ABCD有6个公共点,当52n=−时,作函数6yx=关于直线x n=的“迭代函数”的图象可得,函数6yx=关于直线x n=的“迭代函数”的图象与正方形ABCD有5个公共点,当7522n−<<−时,作函数6yx=关于直线x n=的“迭代函数”的图象可得,函数6yx=关于直线x n=的“迭代函数”的图象与正方形ABCD有4个公共点,当72n=−时,作函数6yx=关于直线x n=的“迭代函数”的图象可得,函数6yx=关于直线x n=的“迭代函数”的图象与正方形ABCD有4个公共点,当762n −<<−时,作函数6y x =关于直线x n =的“迭代函数”的图象可得,函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,当6n =−时,作函数6y x=关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,当6n <−时,作函数6y x=关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,综上,n 的取值范围为()51,12∞−−∪−,. 【点睛】方法点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.16. 已知抛物线2y x bx c =−++与x 轴交于点()1,0A −,()3,0B .(1)如图1,抛物线与y 轴交于点C ,点P 为线段OC 上一点(不与端点重合),直线PA ,PB 分别交抛物线于点E ,D ,设PAD △面积为1S ,PBE △面积为2S ,求12S S 的值; (2)如图2,点K 是抛物线的对称轴与x 轴的交点,过点K 的直线(不与对称轴重合)与抛物线交于点M ,N ,过抛物线顶点G 作直线//l x 轴,点Q 是直线l 上一动点求QM QN +的最小值.【答案】(1)19(2)析式为y px p 【分析】(1)把点A (−1,0),B (3,0)代入抛物线方程,解出抛物线的解析式,设P (0,p ),求出直线AP 解=+,联立方程223y px p y x x =+ =−++, 可得2(3,4)E p p p −−+,同理可得234(,)393p p pD −−+,即可得1S ,2S ,化简可得结果;(2)作点N 关于直线l 的对称点N ′,连接MN ′,过M 点作MF NN ′⊥于F ,求出(1,0)K ,设直线MN解析式为y kx d =+,把点K 坐标代入即可知直线MN 的解析式y kx k =−,设2(,23)M m m m −++,2(,23)N n n n −++,求出2(,25)N n n n ′−+,可得QM QN QM QN MN ′′+=+≥,结合2(,23)F n m m −++,可得222421780MN MF N F k k =+=++′′,从而得到QM QN +的最小值. 【小问1详解】把点()1,0A −,()3,0B 代入抛物线方程2y x bx c =−++得:10930b c b c −−+= −++=, 解得:23b c = =, 所以抛物线方程为:223y x x =−++, 设(0,)P p ,直线AP 解析式为11y k x b =+, 把点()1,0A −,(0,)P p 代入得:1110k b b p −+= = , 所以线AP 解析式为y px p =+,联立223y px p y x x =+ =−++ ,解得:10x y =−=或234x p y p p =− =−+ , 所以2(3,4)E p p p −−+,设直线BP 解析式为22y k x b =+ 把点()3,0B ,(0,)P p 代入得:22230k b b p+= = , 直线BP 解析式为3py x p =−+ 联立2323p y x p y x x =−+ =−++ ,解得:30x y = = 或233493p x p p y − = =−+可得234(,)393p p p D −−+, 所以221142()2(3)2939ABD ABP D P p p S S S AB y y p p p =−=⋅−=−+−=− , ()2221()242(3)2ABE ABP E P S S S AB y y p p p p p =−=⋅−=−+−=− , 所以2122192(3)92(3)S p p S p p −=−= 【小问2详解】作点N 关于直线l 的对称点N ′,连接MN ′,过M 点作MF NN ′⊥于F ,如图:因为2223(1)4y x x x =−++=−−+,所以抛物线223y x x =−++的对称轴为1x =, 所以(1,0)K ,设直线MN 解析式为y kx d =+, 把点(1,0)K 代入得:=0k d +,所以=d k −,所以直线MN 的解析式为y kx k =− 设2(,23)M m m m −++,2(,23)N n n n −++,联立223y x x y kx k =−++ =−,可得2(2)30x k x k +−−−= 则2m n k +=−,3mn k =−−,因为N ,N ′关于直线l :4y =对称,所以2(,25)N n n n ′−+,则QM QN QM QN MN ′′+=+≥,又2(,23)F n m m −++, 所以222()2N F m n m n +−++′,FM m n =−, 在Rt MFN ′ 中,2222222()2()2MN MF N F m n m n m n =+=−++−++ ′ ′,222()4()22()2m n mn m n mn m n =+−++−−++222(2)4(3)(2)2(3)2(2)2k k k k k =−−−−+−−−−−−+ 421780k k =++所以当0k =时,2MN ′最小为80,此时MN ′=所以QM QN +≥,即QM QN +的最小值为。
湖南省长沙市长郡中学2024-2025学年高一上学期入学分班考试语文试卷 Word版无答案
郡中学2024级高一综合能力检测试卷语文时量:120分钟满分:100分一、积累与运用(18分)近段时间,一批旅游城市成为全国各地游客争相打卡的网红地,这引发了同学们的探究兴趣。
你所在的小组对“网红城市爆火原因”展开专项调查,撰写了研究报告。
现在请你和小组成员一起完成下面的任务。
第一部分研究源起1. 下列对文中加点词语的理解、汉字的书写和①②两处标点作出的判断,不正确的一项是()去成都看诗圣草堂,去长沙逛太平老街,去苏州游拙政园,去哈尔滨玩冰雪大世界……近年来,国内多个城市打造出独特的城市“网红”标签,吸引全国各地游客前来打卡,带动了当地的旅游业和服务业,为城市发展注入了新动能。
这些城市也因网络带来的红利脱(yǐng)而出。
那么,它们究竟“红”在何处①它们又是如何“出圈”的②我们的调查研究尝试从不同角度找到这些问题的答案。
A. “逛”和“游”都指闲游,这两个动词在句中用得很贴切。
B. “打卡”本义是指上下班时刷卡记录考勤,这里指来到某个城市的标志地游玩观览。
C. “脱yǐng而出”,这里指从众多城市中显露出自己的独特之处,“yǐng”写作“颖”。
D. 文段末尾①②两处的句子,①处的标点符号应该用逗号,②处的标点符号应该用问号。
第二部分研究内容同学们通过访谈调查、查阅相关资料,从多方面对“网红城市爆火原因”进行了调研,其中的两个原因还需要你帮助完善。
【原因一:】【甲】贵州松桃是1956年经国务院批准成立的全国五个苗族自治县之一,民族文化底蕴深厚。
我们深入挖掘民族文化特色,开发出以苗俗、苗艺、苗食、苗绣、苗药“五苗”为代表的苗族特色文化资源,全力打好民族文化这张牌。
【乙】借助对地方特色的发掘,网红城市吸引了众多游客。
可见,城市首先要在明确自身定位和深入挖掘自身特色文化的基础上来塑造独特的城市形象。
因为同质化的内容很难发酵,只有异质化的内容,才更易于传播。
2. 某同学在整理访谈内容时未注明上面两则材料的来源,请你根据访谈对象的话语风格帮助他判断其身份,将序号分别填写在下面的横线上。
长郡高中分班试题及答案
长郡高中分班试题及答案一、选择题(每题2分,共20分)1. 以下哪个选项是长郡高中的校训?A. 勤奋求实B. 创新求真C. 厚德载物D. 博学笃志答案:D2. 长郡高中成立于哪一年?A. 1901年B. 1911年C. 1921年D. 1931年答案:A3. 长郡高中的校徽中包含哪种动物图案?A. 龙B. 虎C. 鹰D. 马答案:C4. 长郡高中的校歌中提到了哪种花?A. 梅花B. 桃花C. 菊花D. 荷花答案:A5. 长郡高中的图书馆藏书量大约有多少万册?A. 10万册B. 20万册C. 30万册D. 40万册答案:B二、填空题(每空1分,共10分)6. 长郡高中的校训是“________”,它体现了学校对学生的期望和要求。
答案:博学笃志7. 长郡高中的校徽中鹰的图案象征着________。
答案:志向高远8. 长郡高中的校歌歌词中提到了“________”,表达了学校对学生的期望。
答案:梅花香自苦寒来9. 长郡高中的图书馆藏书量丰富,其中包含________、________、________等多个领域的图书。
答案:文学、科学、历史10. 长郡高中的校园文化活动丰富多彩,其中包括________、________、________等。
答案:学术讲座、体育竞赛、艺术展览三、简答题(每题5分,共10分)11. 请简述长郡高中的教育理念。
答案:长郡高中的教育理念是培养学生全面发展,注重学生个性发展和创新能力的培养,同时强调品德教育和社会责任感的培养。
12. 请列举长郡高中的三个主要教学特色。
答案:长郡高中的三个主要教学特色包括:1) 个性化教学,关注每个学生的成长和发展;2) 创新教学方法,鼓励学生主动探索和实践;3) 强化品德教育,培养学生的社会责任感。
四、论述题(每题15分,共30分)13. 论述长郡高中如何通过校园文化活动促进学生的全面发展。
答案:长郡高中通过举办各种校园文化活动,如学术讲座、体育竞赛、艺术展览等,为学生提供了展示自我、发展兴趣和特长的平台。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
测试卷30
一、选择题
1.代数式ab
ab b b a a ++的所有不同的值有( ) A.2个 B.3个 C.4个 D.无数个
2.一只青蛙在10m 深的井底,它每小时往上爬1m ,但又下滑0.6m ,这只青蛙至少要( )小时才能爬到地面
A.26
B.25
C.24
D.23或24
3.已知△ABC 的三边为a,b,c ,且满足224224c a b c b a +=+,则△ABC 是( )
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等腰或直角三角形
4.已知a c b a b c b a c c b a ++-=+-=-+,则abc
a c c
b b a ))()((+++的值为( ) A.8 B.1 C.—1或8 D.—1或1
5.某家电公司销售某种型号的彩电,1月份销售每部彩电的利润是售价的25%,2月份每部彩电的售价调低10%而进价不变,销售件数比1月份增加80%,那么该公司2月份销售彩电的利润总额比1月份利润总额增长( )
A.2%
B.8%
C.40.5%
D.62%
6.在锐角△ABC 中,AE ⊥BC 于E ,D 为AB 边上一点,如果BD=2AD,CD=8,,43sin =∠BCD 那么AE 的长为( )
A.3
B.6
C.7.2
D.9
7.有一张矩形纸片ABCD ,其中AD=4cm ,上面有一个以AD 为直径的半圆,正好与对边BC 相切(如图30-1),将它沿DE 折叠,使A 点落在BC 上(如图30-2),这时,半圆还露在外面的部分(阴影部分)的面积是( ) A.2)322(cm -π B.2
)32
1(cm +π C.2)334(cm -π D.2)332(cm +π 8.已知△ABC 内一点P ,连接AP 、BP 、CP 并延长分别与BC 、AC 、AB 交于D 、E 、F ,则CF
CP BE BP AD AP ++等于( ) A.1 B.21 C.2 D.3
1 二、填空题
9.已知,53
1,2)31
(==--n m 则n m -29的值为_____________. 10.某厂接受一批零件加工任务,若全分给甲车间加工,则平均没人加工a 件,若全分给乙车间加工,则平均每人加工b 件,现给两车间同时加工,则平均每人加工____________件。
11.如图30-3所示,正方形ABCD 的边长为1,点P 、Q 分别在BC 、CD 上,△APQ 是等边三角形,则PQ 的长为____________.
12.已知,0,09,0>=++=+-a c b a c b a 且即则二次函数c bx ax y ++=2
的图像的顶
点在第____________象限。
13.在△ABC 中,∠C=90°,∠B=30°,AD 是∠BAC 的平分线交BC 于D ,已知AB=34,则AD=____________.
14.如图30-4所示,△11OA P 、△212A A P 是等腰直角三角形,点21,P P 在)0(4>=
x x
y 的图像上,边211,A A OA 都在x 轴上,则点2P 的坐标是____________.
15.如图30-5所示,△ABC 中,∠BAC=90°,AD ⊥BC 于D ,M 为AD 的中点,BM 交AC 于E ,过E 作EF ⊥BC 于F ,AE=3,EC=12,则EF=_____________.
16.已知b 、c 为整数,方程052=++c bx x 的两根都大于1-且小于0,则b=___________,c=____________.
三、解答题
17.在钝角△ABC 中,∠A 为钝角,AD ⊥BC ,且AD 与DC 的长度为方程01272
=+-x x 的两根,⊙O 为△ABC 的外接圆,如果BD 长为a (a>0),求△ABC 外接圆的面积。
18.一个批发与零售兼营的文具店规定:凡一次购买铅笔301支及以上,可以按批发价付款;购买300支及以下只能按零售价付款,现有学生小王来购铅笔,如果给九年级学生每人买一支,则只能按零售价付款,需)1(2-m 元(m 为正整数,且)10012>-m ,若多买60支,则可按批发价付款。
同样需()12-m 元。
(1)设九年级有学生x 人。
求铅笔的批发价和零售价(用x 、m 的代数式表示),并写出x 的取值范围。
(2)若按批发价每购15支比零售每购15支少付1元,试确定九年级有学生多少名,并求出m 的值。
19.如图30-6所示,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(3,0)、(3,4)。
动点M、N分别从O、B同时出发,以每秒1个单位的速度运动。
其中,点M 沿OA向终点A运动,点N沿BC向终点C运动,过点N作NP⊥BC,交AC于点P,连接MP,已知动点运动了x秒(0<x<3)。
(1)求P点的坐标(用含x的代数式表示)
(2)试求△MAP的面积的最大值,并求此时x的值。
(3)请你探究:当x为何值时,△MPA是一个等腰三角形?写出你的研究结果。