差动电感传感器的特性曲线1

合集下载

第03章电感式传感器

第03章电感式传感器

双T电桥电路
脉冲调制电路
组成=转子+定子(如图)
长感应同步器示意图 a)定尺 b)转尺
圆感应同步器示意图 a)定子 b)转子
感应同步器的优点
①具有较高的精度与分辨力。 ②抗干扰能力强。 ③使用寿命长,维护简单。 ④可以作长距离位移测量。 ⑤工艺性好,成本较低,便于复制和成批生产。
由于感应同步器具有上述优点,长感应同步器目前被广泛地应用于 大位移静态与动态测量中 ;圆感应同步器则被广泛地用于机床和仪器的 转台以及各种回转伺服控制系统中。
• 图为典型的角位移型电容式传感器 当动板有一转角时,与定板之间相互覆盖的面积
就发生变化,因而导致电容量变化。
4.2.2 变面积型电容式传感器
+ + +
4.2.2 变面积型电容式传感器
• 线位移型电容式传 感器
• 平面线位移型和圆 柱线位移型两种。
4.2.3 变介电常数型电容传感器
• 变介电常数型电容传感器的结构原理如图 所示
0
(4-3)
4.2.1 极距式电容传感器
由式(4-3)可知, 传感器的输出特性C = f (δ)
不是线性关系,而是双曲线关系
此时C1与Δδ近似呈线性关系, 所以变极距型电
容式感器只有在Δδ / δ0很小时, 才有近似的线 性输出
4.2.1 极距式电容传感器
另外, 由式(4 - 3)可以看出, 在δ0较小时, 对 于同样的Δδ变化所引起的ΔC可以增大, 从而使传
4.2.1 极距式电容传感器
一般变极板间距离电容式传感器
• 起始电容在 20~100pF之间, • 极板间距离在25~200μm的范围内, • 最大位移应小于间距的1/10,

测试技术差动电感式传感器位移特性试验

测试技术差动电感式传感器位移特性试验

差动电感式传感器位移特性试验
一、实验目的
了解差动电感式传感器的原理。

比较和差动变压器传感器的不同,
二、实验仪器:
差动传感器、信号源、相敏检波模块、差动变压器实验模块、电压表、示波器、测微头、。

三、实验原理
差动螺管式电感传感器由电感线圈的二个次级线圈反相串接而成,工作在自感基础上,由于衔铁在线圈中位置的变化使二个线圈电感量发生变化,包括两个线圈在内组成的电桥电路的输出电压信号因而发生相应变化。

四、试验内容与步骤
1、将传感器安装在差动变压器模块上,将传感器引线插入试验模块插座中。

2、连接主机与试验模块电源线,按下图连线组成测试系统,两个次级线圈必须接成差动状态。

3、使差动传感器的铁芯偏在一边,使差分放大器有一个较大的输出,调节移相器使输入输出同相或者反相,然后调节电感传感器铁芯到中间位置,直至差分放大器输出波形最小。

4、调节RW1和RW2使电压表显示为零,当衔铁在线圈中左右位移时,L2≠L3,电桥失衡,输出电压信号的大小与衔铁位移量成比例。

5、以衔铁位置居中为起点,分别向左、向右各位移5㎜,记录U、X值并填入下表(每位移0.5㎜记录一个数值):
五、试验报告:
根据实验记录的数据依次作出U-X曲线,求出灵敏度S,指出线性工作范围。

第3章电感式传感器原理及其应用详解

第3章电感式传感器原理及其应用详解

变面积式自感传感器:
铁芯 衔铁
线圈
δ
L N 2S0 2
变面积式自感传感器结构
灵敏度为: k dL N20 dS 2
由于漏感等原因,其线性区范围较小,灵敏度也较低,因 此,在工业中应用得不多。
螺管式自感传感器:
传感器工作时,衔铁在线圈中伸入长度的变化将引起螺 管线圈电感量的变化。
对于长螺管线圈l>>r,当衔铁工作在螺管的中部时, 可以认为线圈内磁场强度是均匀的,线圈电感量L与衔铁的 插入深度l大致上成正比。
δ
由于 Nm LI,
Fm
NI,m
Fm Rm
可得: L N 2
Rm
磁路的总磁阻可表示为:
Rm
li 2 iSi 0S
近似计算出线圈的电感量为:
L N 2S0 2
当线圈匝数N为常数时,电感L仅仅是磁路中
磁阻的函数,只要改变 或S均可导致电感变化。
因此变磁阻式传感器又可分为变气隙 厚度的
传感器和变气隙面积S的传感器。
差动式与单线圈电感式传感器相比,具有以下优点。 (1)线性度高。 (2)灵敏度高,即衔铁位移相同时,输出信号大一倍。 (3)温度变化、电源波动、外界干扰等对传感器精度
的影响,由于能互相抵消而减小。 (4)电磁吸力对测力变化的影响也由于能相互抵消而
减小。
3.2.4电感式传感器的测量电路
➢ 自感式传感器实现了把被测量的变化为电感量的变 化。为了测出电感量的变化,就要用转换电路把电感 量的变化转换成电压(或电流)的变化,最常用的 转换电路有调幅、调频和调相电路。
通过一定的转换电路转换成电压或电流输出。 ➢ 传感器在使用时,其运动部分与动铁心(衔铁)相
连,当动铁芯移动时,铁芯与衔铁间的气隙厚度

电感式传感器原理及特性

电感式传感器原理及特性
第4章 电感式传感器
4.1 变磁阻式传感器 4.2 差动变压器式传感器 4.3 电涡流式传感器
电感式传感器的工作基础:电磁感应 即利用线圈电感或互感的改变来实现非电量测量
被测物理量 (非电量:位移、 电磁感应
振动、压力、
流量、比重)
线圈自感系数L/ 测量电路 互感系数M
电压或电流 (电信号)
• 分为变磁阻式、变压器式、涡流式等 • 特点:
W2b
W1
W2a
0
x
Uo
E2b
E2a
理论特性曲线
Δ U o
o
Uo E2a E2b
实际特性曲线
x
差动变压器的输出特性
当活动衔铁向上移动时,由于磁阻的影响,W2a中磁通 将大于W2b,使M1>M2,因而E2a增加,而E2b减小。反之, E2b增加,E2a减小。因为Uo=E2a-E2b,所以当E2a、E2b 随着 衔铁位移x变化时, Uo也必将随x而变化。
4.1.3 测量电路
电感式传感器的测量电路有交流电桥式、 变压器式交 流电桥以及谐振式等。
1. 交流电桥式测量电路
Z1 Z Z1 Z2 Z Z2 Z R jwL0
Z1 jwL1 Z2 jwL2 Z jwL0
Z 1 Z 2
U o
Z =R 3
Z= 4
R
U
U0
U
Z2 Z1 Z2
线圈中电感量可由下式确定:
L W
II
(4-1)
根据磁路欧姆定律: IW
Rm
(4-2)
式中, Rm为磁路总磁阻。
气隙很小,可以认为气隙中的磁场是均匀的。 若忽略磁 路磁损, 则磁路总磁阻为
Rm
L1
1 A1

差动变压器式电感传感器的静态位移性能实验实验报告

差动变压器式电感传感器的静态位移性能实验实验报告

差动变压器式电感传感器的静态位移性能实验实验报告差动变压器式电感传感器的静态位移性能实验实验报告实验三电感式传感器实验传感器实验三、电感传感器实验——差动变压器性能实验(一)实验内容1.项目一、差动变压器式电感传感器性能实验2.项目二、差动螺管式电感传感器的静态位移性能实验 (二)实验目的1.了解差动变压器式电感传感器的原理和工作情况2.了解差动螺管式电感传感器测量系统的组成和工作情况 (三)实验原理螺旋测微器产生位移,经弹性梁带动衔铁在线圈中移动,交流电源激励,数字电压表显示数字,计算机自动生成示波器显示波形。

(四)实验操做步骤实验项目一、1.将音频振荡器LV输出接至数字频率计和数据采集CH1,由频率计显示频率,计算机自动生成示波器显示波形,调节音频振荡器频率为4kHz,峰峰值为5V。

2.将音频振荡器LV输出接差动变压器一次绕组,输出接CH1。

3.调螺旋测微器使衔铁处于中心位置(输出为零),向下每1mm读一个数。

实验项目二、1.按图接线2.将音频振荡器输出接至CH1,调节峰峰值为2V。

3.V/F表调至20V档。

4.接好电桥平衡网络、放大器、相敏检波器、LPF、V/F表、示波器。

5.将螺旋测微器与梁脱离,使梁处于自由状态;调节W1、W2,使输出最小(灵敏度最大)。

6.将螺旋测微器与梁相吸,调节螺旋测微器使输出最小(CH1示),再向上移2.5mm。

7.调节移相器使输出最大(CH2示);观察检波器波形,若两半波不对称,则微调放大器调零电位器。

8.向下每0.5mm读一个数。

项目一数据表第 1 页共 1 页项目二数据表篇二:传感器与检测技术实验报告准考证号:100214101370 姓名:倪帅彪院校:河南科技大学专业名称:080302机械制造及自动化(独立本科段)《传感器与检测技术》实验报告实验一常用传感器(电感式、电阻式或电容式)静态性能测试一、实验目的:1(进一步认识电阻式、电感式、电容式传感器的工作原理、基本结构、性能与应用。

变磁阻式传感器

变磁阻式传感器

变磁阻式传感器一、变磁阻式传感器特点变磁阻式传感器是自感式传感器的一种,自感式传感器又属于电感式传感器类别. 电感式传感器是利用电磁感应把被测的物理量,如位移、压力、流量、振动等,转换成线圈的自感系数L 或互感系数M 的变化,再由转换电路转换为电压或电流的变化量输出,实现非电量到电量的转换。

电感式传感器具有以下特点:1、结构简单、传感器无活动的电接触点,因此工作可靠寿命长;2、灵敏度和分辨率高,能测出0.01μm 的位移变化,传感器的输出信号强,电压灵敏度一般每毫米的位移可达到数百毫伏的输出;3、线性度和重复性都比较好,在一定位移范围(几十微米至数毫米)内,传感器非线性误差仅达到0.05%—0.1%,并且稳定性也较好.同时,这种传感器能实现信息的远距离传输、记录、显示和控制,他在工业自动控制系统中广泛被采用;但是它有频率响应较低、不宜快速动态测控等缺点。

二、结构和工作原理变阻式传感器的结构和工作原理如图1所示,它由线圈、铁芯和衔铁三部分组成。

铁芯和衔铁都由导磁材料,如硅钢片和坡莫合金制成。

在铁芯和活动衔铁之间有气隙,气隙厚度为δ。

传感器的运动部分与衔铁相连,当衔铁移动时,气隙厚度δ发生变化,从而使磁路中磁阻变化,导致电感线圈的电感值变化,这样可以由此判别被测量的位移大小。

线圈的电感值L 可按如下电工学公式计算: 2M N L=R (1)式中 N ——线圈匝数;R M —-单位长度上的磁路总磁阻。

图1是变磁阻式传感器基本结构图。

图1 变磁阻式传感器基本结构图磁路总磁阻可写成:M F R =R +R δ (2) 式中F R —-铁芯磁阻;R δ-—空气气隙磁阻;其中F R 和R δ可以分别由下式求出: 12F 1122L L R =A A μμ+ (3) F 02R =A δμ (4)式(3)中,第一项为铁芯磁阻,第二项为衔铁磁阻;1L —-磁通通过铁芯的长度(m );1A ——铁芯横截面积(m 2);1μ-—铁芯材料的导磁率(H/m );2L --磁通通过衔铁的长度(m );2A -—衔铁横截面积(m 2);2μ——衔铁材料的导磁率(H/m );A ——气隙横截面积(m 2); 0μ-—空气的导磁率(4π×10。

实验二差动变压器式电感传感器的静态位移性能

实验二差动变压器式电感传感器的静态位移性能

实验二差动变压器式电感传感器的静态位移性能一、实验目的1、了解差动变压器式电感传感器的基本原理及工作情况。

2、了解差动变压器式电感传感器测量系统的组成和作用。

二、基本原理差动变压器的工作原理类似变压器的作用原理。

差动变压器器的结构如图2-1所示,由一个一次绕组1和二个二次绕组2、3及一个衔铁4组成。

差动变压器一、二次绕组间的耦合能随衔铁的移动而变化,即绕组间的互感随被测位移的变化而变化。

由于把二次绕组反相串接(同名端相接),以差动电势输出,所以称为差动变压器式电感传感器。

图2-1 差动变压器结构示意图图2-2 差动变压器等效电路图当差动变压器工作在理想状态下(忽略涡流损耗、磁滞损耗和分布电容等影响),它的等效电路如图2-2所示。

当衔铁处于中间位置,两个次级线圈互感相同,因而产生的感应电势相同。

由于二次绕组反相串接,所以差动输出电势为零。

当衔铁移向一侧,这时输出电势不为零,位移越大,输出电动势越大。

当衔铁移向另一侧,由于移动方向改变,所以输出电动势反相。

因此,可以通过差动变压器输出电动势的大小和相位可以知道衔铁位移的大小和方向。

差动变压器的输出特性曲线如图2-3所示。

图中E21、E22分别为两个二次绕组的输出感应电动势,E2 为差动输出电动势,x表示衔铁偏离中心位置的距离。

E2的实线表示理想的输出特性,虚线为实际的输出特性。

E0为零点残余电势。

图2-3 差动变压器输出特性三、所需单元和部件差动变压器式电感传感器、音频振荡器、电桥、差动放大器、相敏检波器、移相器、低通滤波器、V/F表、测微器、双线示波器。

四、注意事项1.音频振荡器的信号必须从“LV”输出端输出。

2.差动变压器的两个次级线圈必须接成差动形式。

3.为了便于观察,实验中需要调节示波器的灵敏度。

4.检查所有处理电路单元的开关按钮在释放位(关状态);5.根据图2-4连接好测量电路后,经同伴检查确认,才可打开电源进行调整及测量工作,以免烧毁仪器元件。

自感式电感传感器

自感式电感传感器

1.1.4 差动式电感传感器
用两个相同的传感线圈共用一个衔铁,构成差动式 电感传感器,这样可以提高传感器的灵敏度,减小测量
误差。下图是变间隙型、变面积型及螺管型三种类型 的差动结构。
l 23
l
3
4 3
4
4 l2
a)
b)
c)
图4.1.5 差动式电感传感器 a) 变间隙型 b) 变面积型 c) 螺管型
LL
b) 变压器式电桥
c) 紧耦合电感臂电桥
1.2.1 电阻平衡臂电桥
电 阻 平 衡 臂 电 桥 如 上 图 a 所 示 , 工 作 时 , Z1=Z+△Z 和 Z2=Z—△Z,当ZL→∞时,电桥的输出电压为
.
.
U0
Z1
.
U
R1
.
U
Z1 2R R(Z1
Z
2
)
.
U
U
Z
Z1 Z2 R1 R2
Rm
l1
1 A
l2
2 A
2 0 A
因此:
L N2 Rm
l1
N2
l2 2
1 A 2 A 0 A
线圈的电感值可近似地表示为
L N 20 A 2
因此,其灵敏度随气隙的增大而减小。
1.1.2 变面积型电感传感器
铁心与衔铁之间相对覆盖面积随被测量的变化
面改变,导致线圈的电感量发生变化,这种形式称
之为变面积型电感传感器,见图1.2。L与δ是非线
性的,但与A成正比,特性曲线参见图1.ห้องสมุดไป่ตู้。
2
1
L
3
δ
L=f(A)
图4.1.2 变面积型电感传感器
1-衔铁 2-铁芯 3-线圈

传感器的一般特性(1)

传感器的一般特性(1)

12
编辑ppt
减少非线性误差的方法:
通常采用差动测量方法来减少传感器的非线性 误差。 例如,某传感器的特性方程为
Y 1 a 0 a 1 X a 2 X 2 a 3 X 3 a 4 X 4
另一个与之相同,但感受方向相反,特性方程为:
Y 2 a 0 a 1 X a 2 X 2 a 3 X 3 a 4 X 4
令直线方程:
Ya0 KX
实际校准点:
n个
任意校准点Yi与拟合直线 Ya0 KX间偏差:
iY ia0KiX
n
最小二乘法拟合直线的原则就是使
2 i
为最小值,
i1
即使
对n
2 i
和 K的一a 0 阶偏导数等于零,从而
求出
和 i1
K
的表a 0 达式。
11
编辑ppt
最小二乘法拟合直线: y
y=a0+kx
x
H
Hmax10% 0 YFS
或H
Hmax10% 0 2YFS
式中 Hmax—输出值在正反行 最程 大间 偏的 差;
H —传感器的迟滞。
迟滞现象反映了传感器机械结构和制造工艺上的缺陷,如轴承摩擦 、间隙、螺钉松动、元件腐蚀或者碎裂及积尘等。
21
编上辑一pp页t
下一页
返回
六、重复性
重复是指在同一工作条件下,输入量按同一方向在全测量范围
(3)具有 X偶次阶项的非线性[图1-1(c)]
Y a 1 X a 2 X 2 a 4 X 4
(4)具有 X奇、偶次阶项的非线性[图1-1(d)]
Y a 1 X a 2 X 2 a 3 X 3 a 4 X 4
6
编辑ppt

螺线管式电感传感器

螺线管式电感传感器
答:线圈骨架长度约为被测变化量的10倍左右,选 2mm×2=40mm。
测量电路
(以动整 流为例)
图中的R P起什 么作用?
C1、C2虚焊,Ua o、 Ub o将变成什么波形?
测量电路
(以差动整 流为例)
请将单相变压器的二次线圈N21、N22 的有关端点按全波整流电路的要求正确地 连接起来。
请将单相变压器的二次线圈N21、N22 的有关端点按全波整流电路的要求正确地 连接起来。 10V Uo =20V 10V
差动变压器的工作原理
差动变压器是把被测位移量转换为一次线 圈与二次线圈间的互感量M的变化的装置。由 于两个二次线圈采用差动接法,故称为差动变 压器。目前应用最广泛的结构型式是螺线管式 差动变压器。 在差动变压器的线框上绕有一组输入线圈 (称一次线圈);在同一线框的上端和下端再 绕制两组完全对称的线圈(称二次线圈),它 们反向串联,组成差动输出形式。图中标有黑 点的一端称为同名端,通俗的说法是指线圈的 “头”。
3
电感传感器的基本工作原理演示
F
准备工作
220V
电感传感器的基本工作原理演示
F
气隙变小,电感变大,电流变小
回顾与总结
由电工知识可知,当铁心的气隙较大时, 磁路的磁阻Rm较大,线圈的电感量L和感抗 XL就较小,所以电流I较大。 当铁心闭合时,磁阻变小、电感变大, 电流减小。我们可以利用上述实验中自感量 随气隙而改变的原理来制作测量位移的自感 传感器 。
第三章 电感传感器
本章介绍电感传感器的类型、基本原理、特性 和应用。 电感传感器可以用于测量微小的位移以及与位 移有关的工件尺寸、压力等参数。 电感传感器种类很多,人们习惯上讲的电感传 感器通常是指自感传感器。而互感量传感器是利用 了变压器原理,又往往做成差动式,故常称为差动 变压器。 电感传感器属于接触式测量,需要 较大的驱动力。它的最大特点是分辨 力高,可达0.1μm。

差动变压器式传感器

差动变压器式传感器
2019/2/28 44
差动变压器式传感器的应用
Hale Waihona Puke 差动变压器式电感测微仪2019/2/28
45
3.3 电涡流传感器


根据法拉第电磁感应原理,块状金属导体置于变 化的磁场中或在磁场中作切割磁力线运动时,导 体内将产生呈涡旋状的感应电流,此电流叫电涡 流,这种现象称为电涡流效应。 根据电涡流效应制成的传感器称为电涡流式传感 器。按照电涡流在导体内的贯穿情况, 此传感器 可分为高频反射式和低频透射式两类,但从基本 工作原理上来说仍是相似的。电涡流式传感器最 大的特点是能对位移、厚度、表面温度、速度、 应力、材料损伤等进行非接触式连续测量,另外 还具有体积小、灵敏度高、频率响应宽等特点, 应用极其广泛。

当差动式传感器的 活动铁芯处于中间 位置时,传感器两 个差动线圈的阻抗 Z1=Z2=Z0,其 等效电路如图所示。
铁芯处于初始平衡位置时的等效电路
2019/2/28
21
(2)活动铁芯向一边移动时

当活动铁芯向 线圈的一个方 向移动时,传 感器两个差动 线圈的阻抗发 生变化,等效 电路如图4-9 所示。
36
2019/2/28
典型电路
差动整流电路
2019/2/28 37
2.差动检波电路
差动相敏检波电路
等效电路
2019/2/28
38
(2)工作原理

传感器衔铁上移
RL u2 uL n1 ( R 2 RL )

传感器衔铁下移
RL u2 uL n1 ( R 2 RL )
2019/2/28
1、2—L1、L2的特性 3—差动特性
2019/2/28
13

传感器题库及答案

传感器题库及答案

第一章检测技术的基本概念一、填空题:1、传感器有、、组成2、传感器的灵敏度是指稳态标准条件下,输出与输入的比值。

3、从输出曲线看,曲线越陡,灵敏度。

4、下面公式是计算传感器的。

5、某位移传感器的输入变化量为5mm,输出变化量为800mv,其灵敏度为。

二、选择题:12A3、?PA0.54A3倍5A微差式678A9A三、123、同一台仪表,不同的输入输出段灵敏度不同()4、灵敏度其实就是放大倍数()5、测量值小数点后位数越多,说明数据越准确()6、测量数据中所有的非零数字都是有效数字()7、测量结果中小数点后最末位的零数字为无效数字()四、问答题1、什么是传感器的静态特性,有哪些指标。

答:指传感器的静态输入、输出特性。

有灵敏度、分辨力、线性度、迟滞、稳定性、电磁兼容性、可靠性。

2、产生随机误差的原因是什么,如何减小随机误差对测量结果的影响。

答:是测量中独立的、微小的、偶然的因素引起的结果。

既不能用实验的方法消除,也不能修正。

可以通过增加测量次数,利用概率论的一些理论和统计学的方法进行数据结果处理,服从正态分布。

3、系统误差分几类,怎样减小系统误差。

答:分为恒值误差,例如刻度盘分度差错。

变值误差,环境温度的影响、零点漂移等。

系统误差有规律。

可以通过实验的方法引入修正值的方法计算修正,也可以重新调整测量仪表的有关部件予以剔除。

4、如何判断系统中存在粗大误差。

答:粗大误差是测量人员的粗心大意及电子测量仪器收到突然强大的干扰所引起的,粗大误差明显超过正常条件下的误差。

五、分析与计算题1、有一温度计,它的测量范围为0—2000C,精度为0.5级,求1)该表可能出现的最大绝对误差。

2)当示值分别为200C、1000C的示值相对误差。

2、预测123、围为04电桥5、12.03mV、6012.15mV、31234123、4、电阻应变片配有桥式测量转换电路的作用是。

5、应变测量电桥的三种接法是、、。

输出电压分别为、、。

《差动式传感器》课件

《差动式传感器》课件
详细描述
光电式差动传感器通常由光源、光路和光电元件组成。当被测量发生变化时,光 束的遮挡或透过情况会相应改变,从而引起输出信号的变化。这种传感器常用于 测量位移、速度、角度等参数。
压阻式差动传感器
总结词
利用压阻效应原理,通过测量电阻值的变化来检测被测量的传感器。
详细描述
压阻式差动传感器通常由敏感元件和测量电路组成。当被测量发生变化时,敏感元件的电阻值会相应改变,从而 引起输出信号的变化。这种传感器常用于测量压力、加速度、力等参数。
02
它通常由两个或多个电感线圈或 电容极板组成,通过比较两个或 多个输出信号的差值来检测被测 量物体的变化。
差动式传感器的工作原理
当被测量物体发生变化时,差动式传 感器中的电感线圈或电容极板会相应 地发生变化,从而引起输出信号的变 化。
差动式传感器通过比较两个或多个输 出信号的差值来检测被测量物体的变 化,具有较高的灵敏度和线性度。
电容式差动传感器
总结词
利用电容原理,通过测量电容器极板间距的变化来检测被测 量的传感器。
详细描述
电容式差动传感器通常由两个平行板电极组成,通过可动电 极的位移来改变电容器极板间距,从而引起电容量的变化。 这种传感器常用于测量位移、压力、重量等参数。
光电式差动传感器
总结词
利用光电效应原理,通过测量光束的遮挡或透过情况来检测被测量的传感器。
在加速度测量中的应用
总结词
差动式传感器能够准确测量加速度值,且具有高灵敏度 的优点。
详细描述
差动式传感器通过测量电感线圈之间互感系数的变化来 检测物体的加速度。当被测物体发生加速度时,传感器 的电感线圈受到惯性力的作用而发生形变,进而改变互 感系数,输出相应的电信号。由于其高灵敏度和低噪声 的特点,差动式传感器在加速度测量中展现出准确测量 加速度值的能力,广泛应用于振动监测、地震检测等领 域。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复习电工知识: 全波整流电路中用到的“单相变压器” 有一个一次线圈,有两个二次线圈。 当一次线圈加上交流激磁电压Ui后, + 将在二次线圈中产生感应电压UO。在全波整流 电路中,两个二次线圈串联,总电压等于两个 二次线圈的电压之和。
普通的全波整流电路及波形电路
只能得到单一方向的直流电,不能反映输 入信号的相位。
答:线圈骨架长度约为被测变化量的10倍左右,选 2mm×2=40mm。
测量电路
(以差动整 流为例)
图中的R P起什 么作用?
C1、C2虚焊,Ua o、 Ub o将变成什么波形?
测量电路
(以差动整 流为例)
U U U I Z X L 2 fL
(31)
6
自感式电感传感器常见的形式
变隙式
变截面式
螺线管式
1-线圈 2-铁心 3-衔铁 4-测杆 5-导轨 6-工件 7-转转轴
最常用的电感传感器 ——螺线管式电感传感器
单线圈螺线管式电感传感器的结构如图3-2c所示。 主要元件是一只螺线管和一根柱形衔铁。传感器工 作时,衔铁在线圈中伸入长度的变化将引起螺线管 电感量的变化。电感量L在几毫米的范围内与衔铁 插入深度l1大致成正比。测量范围越大,分辨力越 低。
小贴士
电感传感器的衔铁 较重,响应较慢, 不宜用于快速动态 测量

上述3种电感传感器使用时,由于线圈中通有交 流励磁电流,因而衔铁始终承受电磁吸力,会引起 振动。温度升高时,线圈的尺寸增大,电感量随之 增大,将引起测量误差。 在实际使用中常采用差动形式,两个完全相同的 线圈共用一根活动衔铁,构成差动式电感传感器, 既可以提高传感器的灵敏度,又可以减小测量误差。 差动式电感传感器的结构如图3-3所示。
差动电感传感器的特性
请分析: 从曲线图可以看出, 与非差动电感传感器相 比较,差动式电感传感 器的灵敏度、线性度有 何变化?
曲线1、2为L1、L2 的特性,3为差动特性
测量转换电路
测量转换电路的作用是将电感量的变化 转换成电压或电流的变化,以便用仪表指示 出来。但若仅采用电桥电路和普通的检波电 路,则只能判别位移的大小,却无法判别输 出的相位和位移的方向。 如果在输出电压送到指示仪前,经过一个 能判别相位的检波电路,则不但可以反映幅值 (位移的大小),还可以反映输出电压的相位 (位移的方向)。这种检波电路称为相敏检波 电路。
第三章 电感传感器
本章介绍电感传感器的类型、基本原理、特性 和应用。 电感传感器可以用于测量微小的位移以及与位 移有关的工件尺寸、压力等参数。 电感传感器种类很多,人们习惯上讲的电感传 感器通常是指自感传感器。而互感量传感器是利用 了变压器原理,又往往做成差动式,故常称为差动 变压器。 电感传感器属于接触式测量,需要 较大的驱动力。它的最大特点是分辨 力高,可达0.1μm。
回顾一下
在模拟电子学中,采用两个参数完全相同的三 极管组成差动放大电路,可以克服温漂以及电源 不稳定等外界因数引起的输出电压漂移。
9
差动电感传感器的特点
当衔铁偏离中间位 置时,两个线圈的电感 量一个增加,一个减小, 形成差动形式。
差动式电感传感器 对外界影响,如温度的 变化、电源频率的变化 等基本上可以互相抵消, 1-差动线圈 2-铁心 衔铁承受的电磁吸力也 3-衔铁 4-测杆 5-工件 较小,从而减小了测量 误差。
12
普通的全波整流电路及波形电路
只能得到单一方向的直流电,不能反映输 入信号的相位。
相敏检波输出特性曲线
a)非相敏检波 b)相敏检波 1—理想特性曲线 2—实际特性曲线
实测得到的 相敏检波电路 的特性曲线
通过调零 电路,可使输 出曲线平移到 原点。
标定位移时的实验数据及曲线
第二节
差动变压器传感器
3
电感传感器的基本工作原理演示
F
准备工作
220V
电感传感器的基本工作原理演示FLeabharlann 气隙变小,电感变大,电流变小
回顾与总结
由电工知识可知,当铁心的气隙较大时, 磁路的磁阻Rm较大,线圈的电感量L和感抗 XL就较小,所以电流I较大。 当铁心闭合时,磁阻变小、电感变大, 电流减小。我们可以利用上述实验中自感量 随气隙而改变的原理来制作测量位移的自感 传感器 。
1
第一节
自感传感器
电感传感器种类很多,可分为自感式和互感 量式两大类。人们习惯上讲电感传感器通常是 指自感传感器。
小实验
为了观察铁心气隙与电感的关系,我们先来做 一个实验。将一只 380V 交流接触器线圈与交流毫 安表串联后,接到机床用控制变压器的36V交流电 压源上,如图 3-1 所示。这时毫安表的示值约为几 十毫安。用手慢慢将接触器的活动铁心(称为衔 铁)往下按,将会发现毫安表的读数逐渐减小。 当衔铁与固定铁心之间的气隙等于零时,毫安表 的读数只剩下十几毫安。
差动变压器式传感器的等效电路及接线
结构特点: 两个二次线圈 反向串联,组成 差动输出形式。 请将二次 线圈N21、N22的 有关端点正确地 连接起来,并指 出哪两个为输出 端点。
uo= u21-u22
灵敏度与线性度
差动变压器的灵敏度一般可达0.5~5V/mm, 行程越小,灵敏度越高。 为了提高灵敏度,励磁电压在10V左右为 宜。电源频率以1~10kHz为好。 差动变压器线性范围约为线圈骨架长度的 1/10左右。 例:欲测量Φ120mm2mm轴的直径误差,应选择 线圈骨架长度为多少的差动变压器(或电感传感 器)为宜 ?
请将单相变压器的二次线圈N21、N22 的有关端点按全波整流电路的要求正确地 连接起来。
请将单相变压器的二次线圈N21、N22 的有关端点按全波整流电路的要求正确地 连接起来。 10V Uo =20V 10V
差动变压器的工作原理
差动变压器是把被测位移量转换为一次线 圈与二次线圈间的互感量M的变化的装置。由 于两个二次线圈采用差动接法,故称为差动变 压器。目前应用最广泛的结构型式是螺线管式 差动变压器。 在差动变压器的线框上绕有一组输入线圈 (称一次线圈);在同一线框的上端和下端再 绕制两组完全对称的线圈(称二次线圈),它 们反向串联,组成差动输出形式。图中标有黑 点的一端称为同名端,通俗的说法是指线圈的 “头”。
相关文档
最新文档