数字信号处理习题集附答案)

合集下载

数字信号处理习题集大题及答案

数字信号处理习题集大题及答案

1设序列x(n)={4,3,2,1} , 另一序列h(n) ={1,1,1,1},n=0,1,2,3 (1)试求线性卷积 y(n)=x(n)*h(n) (2)试求6点圆周卷积。

(3)试求8点圆周卷积。

解:1.y(n)=x(n)*h(n)={4,7,9,10,6,3,1}2.6点圆周卷积={5,7,9,10,6,3}3.8点圆周卷积={4,7,9,10,6,3,1,0}2二.数字序列 x(n)如图所示. 画出下列每个序列时域序列: (1) x(n-2); (2)x(3-n);(3)x[((n-1))6],(0≤n ≤5);(4)x[((-n-1))6],(0≤n ≤5);n12340.5x(3-n)x[((n-1))]n43210.5n12340.5x[((-n-1))6]3.已知一稳定的LTI 系统的H(z)为)21)(5.01()1(2)(111------=z z z z H试确定该系统H(z)的收敛域和脉冲响应h[n]。

解:0.52ReIm系统有两个极点,其收敛域可能有三种形式,|z|<0.5, 0.5<|z|<2, |z|>2 因为稳定,收敛域应包含单位圆,则系统收敛域为:0.5<|z|<211111213/25.013/4)21)(5.01()1(2)(--------=---=z z z z z z H)1(232)()5.0(34)(--+=n u n u n h n n4.设x(n)是一个10点的有限序列x (n )={ 2,3,1,4,-3,-1,1,1,0,6},不计算DFT ,试确定下列表达式的值。

(1) X(0), (2) X(5), (3)∑=9)(k k X ,(4)∑=-95/2)(k k j k X eπ解:(1) (2)(3)(4)5. x(n)和h(n)是如下给定的有限序列 x(n)={5, 2, 4, -1, 2}, h(n)={-3, 2, -1 }(1) 计算x(n)和h(n)的线性卷积y(n)= x(n)* h(n); (2) 计算x(n)和h(n)的6 点循环卷积y 1(n)= x(n)⑥h (n); (3) 计算x(n)和h(n)的8 点循环卷积y 2(n)= x(n)⑧h (n); 比较以上结果,有何结论? 解:(1)14][]0[190===∑=n Nn x X W 12][][]5[119180510-=-===⎩⎨⎧-=∑∑====奇偶奇数偶数n n n n n n x n x X n n W20]0[*10][][101]0[99===∑∑==x k X k X x k k 0]8[*10][][101]))210[((][]))[((2)10/2(92)10/2(9010)/2(===-⇔--=-=-∑∑x k X ek X ex k X e m n x k j k k j k m N k j N πππ5 2 4 -1 2-3 2 15 2 4 -1 210 4 8 -2 4-15 -6 -12 3 -6-15 4 -3 13 -4 3 2y(n)= x(n)* h(n)={-15,4,-3,13,-4,3,2}(2)5 2 4 -1 2-3 2 15 2 4 -1 210 4 8 -2 4-15 -6 -12 3 -6-15 4 -3 13 -4 3 22-13 4 -3 13 -4 3 2y1(n)= x(n)⑥h(n)= {-13,4,-3,13,-4,3}(3)因为8>(5+3-1),所以y3(n)= x(n)⑧h(n)={-15,4,-3,13,-4,3,2,0}y3(n)与y(n)非零部分相同。

数字信号处理习题集(附答案)1

数字信号处理习题集(附答案)1

1.如果一台通用机算计的速度为:平均每次复乘需100s μ,每次复加需20s μ,今用来计算N=1024点的DFT )]({n x 。

问直接运算需( )时间,用FFT 运算需要( )时间。

解:(1)直接运算:需复数乘法2N 次,复数加法)(1-N N 次。

直接运算所用计算时间1T 为s s N N N T 80864.12512580864020110021==⨯-+⨯=μ)((2)基2FFT 运算:需复数乘法N N2log 2次,复数加法N N 2log 次。

用FFT 计算1024点DTF 所需计算时间2T 为s s N N N NT 7168.071680020log 100log 2222==⨯+⨯=μ2.N 点FFT 的运算量大约是( )。

解:N N2log 2次复乘和N N 2log 次复加 5.基2FFT 快速计算的原理是什么?它所需的复乘、复加次数各是多少?解:原理:利用knN W 的特性,将N 点序列分解为较短的序列,计算短序列的DFT ,最后再组合起来。

复乘次数:NN 2log 2,复加次数:N N 2log计算题:2.设某FIR 数字滤波器的冲激响应,,3)6()1(,1)7()0(====h h h h6)4()3(,5)5()2(====h h h h ,其他n 值时0)(=n h 。

试求)(ωj e H 的幅频响应和相频响应的表示式,并画出该滤波器流图的线性相位结构形式。

解: {}70,1,3,5,6,6,5,3,1)(≤≤=n n h ∑-=-=10)()(N n nj j e n h e H ωω⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+=+++++++=---------------ωωωωωωωωωωωωωωωωωωω2121272323272525272727277654326533566531j j j j j j j j j j j j j j j j j j j e e e e e e e e e e e ee e e e e e e)(27)(27cos 225cos 623cos 102cos 12ωφωωωωωωj j e H e=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=- 所以)(ωj eH 的幅频响应为ωωωωωω2727cos 225cos 623cos 102cos 12)(j eH -⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛= )(ωj e H 的相频响应为ωωφ27)(-=13.用双线性变换法设计一个3阶Butterworth 数字带通滤波器,抽样频率Hz f s 720=,上下边带截止频率分别为Hz f 601=,Hz f 3002=。

数字信号处理习题与答案

数字信号处理习题与答案

==============================绪论==============================1. A/D 8bit 5V00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。

(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。

(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。

③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。

3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。

移位翻转:①已知x(n)波形,画出x(-n)的波形图。

②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。

卷积和:①h(n)*求x(n),其他02n 0n 3,h(n)其他03n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=}23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。

数字信号处理习题集大题及答案

数字信号处理习题集大题及答案

1设序列x(n)={4,3,2,1} , 另一序列h(n) ={1,1,1,1},n=0,1,2,3 (1)试求线性卷积 y(n)=x(n)*h(n) (2)试求6点圆周卷积。

(3)试求8点圆周卷积。

解:1.y(n)=x(n)*h(n)={4,7,9,10,6,3,1}2.6点圆周卷积={5,7,9,10,6,3}3.8点圆周卷积={4,7,9,10,6,3,1,0} 2二.数字序列 x(n)如图所示. 画出下列每个序列时域序列: (1) x(n-2); (2)x(3-n); (3)x[((n-1))6],(0≤n ≤5);(4)x[((-n-1))6],(0≤n ≤5);n12340.5x(3-n)x[((n-1))]n43210.5n12340.5x[((-n-1))6]3.已知一稳定的LTI 系统的H(z)为)21)(5.01()1(2)(111------=z z z z H试确定该系统H(z)的收敛域和脉冲响应h[n]。

解0.52ReIm系统有两个极点,其收敛域可能有三种形式,|z|<0.5, 0.5<|z|<2, |z|>2 因为稳定,收敛域应包含单位圆,则系统收敛域为:0.5<|z|<211111213/25.013/4)21)(5.01()1(2)(--------=---=z z z z z z H)1(232)()5.0(34)(--+=n u n u n h n n4.设x(n)是一个10点的有限序列x (n )={ 2,3,1,4,-3,-1,1,1,0,6},不计算DFT ,试确定下列表达式的值。

(1) X(0), (2) X(5), (3) ∑=90)(k k X,(4)∑=-95/2)(k k j k X eπ解:(1) (2)(3)(4)5. x(n)和h(n)是如下给定的有限序列 x(n)={5, 2, 4, -1, 2}, h(n)={-3, 2, -1 } (1) 计算x(n)和h(n)的线性卷积y(n)= x(n)* h(n); (2) 计算x(n)和h(n)的6 点循环卷积y 1(n)= x(n)⑥h (n); (3) 计算x(n)和h(n)的8 点循环卷积y 2(n)= x(n)⑧h (n); 比较以上结果,有何结论? 解:(1)5 2 4 -1 2-3 2 15 2 4 -1 210 4 8 -2 4-15 -6 -12 3 -6-15 4 -3 13 -4 3 214][]0[190===∑=n N n x X W 12][][]5[119180510-=-===⎩⎨⎧-=∑∑====奇偶奇数偶数n n n n n n x n x X n n W20]0[*10][][101]0[99===∑∑==x k X k X x k k 0]8[*10][][101]))210[((][]))[((2)10/2(92)10/2(910)/2(===-⇔--=-=-∑∑x k X ek X ex k X e m n x k j k k j k m N k j N πππy(n)= x(n)* h(n)={-15,4,-3,13,-4,3,2} (2)5 2 4 -1 2-3 2 15 2 4 -1 210 4 8 -2 4-15 -6 -12 3 -6-15 4 -3 13 -4 3 22-13 4 -3 13 -4 3 2y 1(n)= x(n)⑥h (n)= {-13,4,-3,13,-4,3}(3)因为8>(5+3-1),所以y 3(n)= x(n)⑧h (n)={-15,4,-3,13,-4,3,2,0} y 3(n)与y(n)非零部分相同。

数字信号处理习题及解答

数字信号处理习题及解答
的关系为
只有在如上周期延拓序列中无混叠的点上, 才满足f(n)=fl(n),所以 f(n)=fl(n)=x(n)*y(n) 7≤n≤19

数字信号处理习题及解答
第二章Z变换及离散时间系统分析
3 解答
n≥0时, 因为c内无极点,x(n)=0; n≤-1时, c内有极点0 , 但z=0是一个n阶极点, 改为求
圆外极点留数, 圆外极点有z1=0.5, z2=2, 那么
数字信号处理习题及解答
第二章Z变换及离散时间系统分析 3 解答 (2) 收敛域0.5<|z|<2:
数字信号处理习题及解答
第三章信号的傅里叶变换 1 解答
(1) (2) (3)
数字信号处理习题及解答
第三章信号的傅里叶变换 2 试求如下序列的傅里叶变换:
(1) x1(n)=δ(n-3)
(2)
数字信号处理习题及解答
第三章信号的傅里叶变换 2 解答
(1) (2)
数字信号处理习题及解答
第三章信号的傅里叶变换
第一章离散时间信号与离散时间系统
4 解答
数字信号处理习题及解答
第二章Z变换及离散时间系统分析 1
数字信号处理习题及解答
第二章Z变换及离散时间系统分析 1 解答
数字信号处理习题及解答
第二章Z变换及离散时间系统分析 1 解答
数字信号处理习题及解答
第二章Z变换及离散时间系统分析 2
数字信号处理习题及解答
第二章Z变换及离散时间系统分析 2 解答
数字信号处理习题及解答
第二章Z变换及离散时间系统分析 2 解答
数字信号处理习题及解答
第二章Z变换及离散时间系统分析 3 已知
求出对应X(z)的各种可能的序列表达式。

数字信号处理试题及答案

数字信号处理试题及答案

数字信号处理试题及答案一、选择题1. 数字信号处理中的离散傅里叶变换(DFT)是傅里叶变换的______。

A. 连续形式B. 离散形式C. 快速算法D. 近似计算答案:B2. 在数字信号处理中,若信号是周期的,则其傅里叶变换是______。

A. 周期的B. 非周期的C. 连续的D. 离散的答案:A二、填空题1. 数字信号处理中,______是将模拟信号转换为数字信号的过程。

答案:采样2. 快速傅里叶变换(FFT)是一种高效的______算法。

答案:DFT三、简答题1. 简述数字滤波器的基本原理。

答案:数字滤波器的基本原理是根据信号的频率特性,通过数学运算对信号进行滤波处理。

它通常包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等类型,用于选择性地保留或抑制信号中的某些频率成分。

2. 解释什么是窗函数,并说明其在信号处理中的作用。

答案:窗函数是一种数学函数,用于对信号进行加权,以减少信号在离散化过程中的不连续性带来的影响。

在信号处理中,窗函数用于平滑信号的开始和结束部分,减少频谱泄露效应,提高频谱分析的准确性。

四、计算题1. 给定一个信号 x[n] = {1, 2, 3, 4},计算其 DFT X[k]。

答案:首先,根据 DFT 的定义,计算 X[k] 的每个分量:X[0] = 1 + 2 + 3 + 4 = 10X[1] = 1 - 2 + 3 - 4 = -2X[2] = 1 + 2 - 3 - 4 = -4X[3] = 1 - 2 - 3 + 4 = 0因此,X[k] = {10, -2, -4, 0}。

2. 已知一个低通滤波器的截止频率为0.3π rad/sample,设计一个简单的理想低通滤波器。

答案:理想低通滤波器的频率响应为:H(ω) = { 1, |ω| ≤ 0.3π{ 0, |ω| > 0.3π }五、论述题1. 论述数字信号处理在现代通信系统中的应用及其重要性。

答案:数字信号处理在现代通信系统中扮演着至关重要的角色。

数字信号处理(第三版)-课后习题答案全-(原题+答案+图)

数字信号处理(第三版)-课后习题答案全-(原题+答案+图)
=2x(n)+x(n-1)+ x(n-2)
将x(n)的表示式代入上式, 得到 1 y(n)=-2δ(n+2)-δ(n+1)-0.5δ(2n)+2δ(n-1)+δ(n-2)
+4.5δ(n-3)+2δ(n-4)+δ(n-5)
第 1 章 时域离散信号和时域离散系统
8. 设线性时不变系统的单位脉冲响应h(n)和输入x(n)分别有以下三种情况,
第 1 章 时域离散信号和时域离散系统
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
输出为
x(n-n1)
y′(n)=x(n-n1-n0) y(n-n1)=x(n-n1-n0)=y′(n) 故延时器是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0) =aT[x1(n)]+bT[x2(n)]
(5)y(n)=x2(n)
(6)y(n)=x(n2)
(7)y(n)=
n
(8)y(n)=x(n)sin(ωxn(m) )
m0
解: (1) 令输入为
输出为
x(n-n0)
y′(n)=x(n-n0)+2x(n-n0-1)+3x(n-n0-2) y(n-n0)=x(n-n0)+2x(n—n0—1)+3(n-n0-2)
x(m)h(n-m)
m
第 1 章 时域离散信号和时域离散系统
题7图
第 1 章 时域离散信号和时域离散系统
y(n)={-2,-1,-0.5, 2, 1, 4.5, 2, 1; n=-2, -1, 0, 1, 2, 3, 4, 5}

数字信号处理习题及答案解析

数字信号处理习题及答案解析

==============================绪论==============================1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。

(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。

(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。

③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。

3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。

移位翻转:①已知x(n)波形,画出x(-n)的波形图。

②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。

卷积和:①h(n)*求x(n),其他02n 0n 3,h(n)其他03n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤= }23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4.如果输入信号为,求下述系统的输出信号。

数字信号处理试题和答案

数字信号处理试题和答案
210 点的基 2 FFT 需要 10 级蝶形运算,总的运算时间是______μs。
二.选择填空题
1、δ(n)的 z 变换是 A 。
A. 1
B.δ(w)
C. 2πδ(w)
D. 2π
2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率 fs
与信号最高频率 fmax 关系为: A 。
A. fs≥ 2fmax
A.h(n)=δ(n)
B.h(n)=u(n)
C.h(n)=u(n)-u(n-1)
D.h(n)=u(n)-u(n+1)
21.一个线性移不变系统稳定的充分必要条件是其系统函数的收敛域包括( A )。
A.单位圆
B.原点
C.实轴
D.虚轴
22.已知序列 Z 变换的收敛域为|z|<1,则该序列为( C )。
A.有限长序列

A. 2y(n),y(n-3) B. 2y(n),y(n+3)
C. y(n),y(n-3)
D. y(n),y(n+3)
9、用窗函数法设计 FIR 数字滤波器时,加矩形窗时所设计出的滤波器,其过渡带
比加三角窗时
,阻带衰减比加三角窗时

A. 窄,小
B. 宽,小
C. 宽,大
D. 窄,大
10、在 N=32 的基 2 时间抽取法 FFT 运算流图中,从 x(n)到 X(k)需 B 级蝶形运
B。
A. N/2
B. (N-1)/2
C. (N/2)-1
D. 不确定
7、若正弦序列 x(n)=sin(30nπ/120)是周期的,则周期是 N= D 。
A. 2π
B. 4π
C. 2

数字信号处理习题集大题与答案

数字信号处理习题集大题与答案

1设序列x(n)={4,3,2,1} , 另一序列h(n) ={1,1,1,1},n=0,1,2,3 (1)试求线性卷积 y(n)=x(n)*h(n) (2)试求6点圆周卷积。

(3)试求8点圆周卷积。

解:1.y(n)=x(n)*h(n)={4,7,9,10,6,3,1}2.6点圆周卷积={5,7,9,10,6,3}3.8点圆周卷积={4,7,9,10,6,3,1,0}2二.数字序列 x(n)如图所示. 画出下列每个序列时域序列: (1) x(n-2); (2)x(3-n); (3)x[((n-1))6],(0≤n ≤5); (4)x[((-n-1))6],(0≤n ≤5);n12340.543210-1-2-3x(3-n)x[((n-1))6]n54321043210.5n12340.5543210x[((-n-1))6]3.已知一稳定的LTI 系统的H(z)为)21)(5.01()1(2)(111------=z z z z H试确定该系统H(z)的收敛域和脉冲响应h[n]。

解:0.52ReIm系统有两个极点,其收敛域可能有三种形式,|z|<0.5, 0.5<|z|<2, |z|>2 因为稳定,收敛域应包含单位圆,则系统收敛域为:0.5<|z|<211111213/25.013/4)21)(5.01()1(2)(--------=---=z z z z z z H )1(232)()5.0(34)(--+=n u n u n h n n4.设x(n)是一个10点的有限序列x (n )={ 2,3,1,4,-3,-1,1,1,0,6},不计算DFT ,试确定下列表达式的值。

(1) X(0), (2) X(5), (3)∑=9)(k k X,(4)∑=-95/2)(k k j k X eπ解:(1) (2)(3)(4)5. x(n)和h(n)是如下给定的有限序列 x(n)={5, 2, 4, -1, 2}, h(n)={-3, 2, -1 }(1) 计算x(n)和h(n)的线性卷积y(n)= x(n)* h(n); (2) 计算x(n)和h(n)的6 点循环卷积y 1(n)= x(n)⑥h (n); (3) 计算x(n)和h(n)的8 点循环卷积y 2(n)= x(n)⑧h (n); 比较以上结果,有何结论?14][]0[19===∑=n N n x X W 12][][]5[119180510-=-===⎩⎨⎧-=∑∑====奇偶奇数偶数n n n n n n x n x X n n W20]0[*10][][101]0[99===∑∑==x k X k X x k k 0]8[*10][][101]))210[((][]))[((2)10/2(92)10/2(9010)/2(===-⇔--=-=-∑∑x k X ek X ex k X e m n x k j k k j k m N k j N πππ解:(1)5 2 4 -1 2-3 2 15 2 4 -1 210 4 8 -2 4-15 -6 -12 3 -6-15 4 -3 13 -4 3 2y(n)= x(n)* h(n)={-15,4,-3,13,-4,3,2}(2)5 2 4 -1 2-3 2 15 2 4 -1 210 4 8 -2 4-15 -6 -12 3 -6-15 4 -3 13 -4 3 22-13 4 -3 13 -4 3 2y1(n)= x(n)⑥h(n)= {-13,4,-3,13,-4,3}(3)因为8>(5+3-1),所以y3(n)= x(n)⑧h(n)={-15,4,-3,13,-4,3,2,0}y3(n)与y(n)非零部分相同。

数字信号处理试卷及答案

数字信号处理试卷及答案

数字信号处理试卷及答案一、选择题(共20题,每题2分,共40分)1.在数字信号处理中,什么是采样定理?–[ ] A. 信号需要经过采样才能进行数字化处理。

–[ ] B. 采样频率必须是信号最高频率的两倍。

–[ ] C. 采样频率必须是信号最高频率的四倍。

–[ ] D. 采样频率必须大于信号最高频率的两倍。

2.在数字信号处理中,离散傅立叶变换(DFT)和离散时间傅立叶变换(DTFT)之间有什么区别?–[ ] A. DFT和DTFT在计算方法上有所不同。

–[ ] B. DFT是有限长度序列的傅立叶变换,而DTFT是无限长度序列的傅立叶变换。

–[ ] C. DFT只能用于实数信号的频谱分析,而DTFT可以用于复数信号的频谱分析。

–[ ] D. DFT和DTFT是完全相同的。

3.在数字滤波器设计中,零相移滤波器主要解决什么问题?–[ ] A. 相位失真–[ ] B. 幅度失真–[ ] C. 时域响应不稳定–[ ] D. 频域响应不稳定4.数字信号处理中的抽样定理是什么?–[ ] A. 抽样频率必须大于信号最高频率的两倍。

–[ ] B. 抽样频率必须是信号最高频率的两倍。

–[ ] C. 抽样频率必须是信号最高频率的四倍。

–[ ] D. 信号频率必须是抽样频率的两倍。

5.在数字信号处理中,巴特沃斯滤波器的特点是什么?–[ ] A. 频率响应为低通滤波器。

–[ ] B. 具有无限阶。

–[ ] C. 比其他类型的滤波器更加陡峭。

–[ ] D. 在通带和阻带之间有一个平坦的过渡区域。

…二、填空题(共5题,每题4分,共20分)1.离散傅立叶变换(DFT)的公式是:DFT(X[k]) = Σx[n] * exp(-j * 2π * k * n / N),其中X[k]表示频域上第k个频率的幅度,N表示序列的长度。

2.信号的采样频率为fs,信号的最高频率为f,根据采样定理,信号的最小采样周期T应满足:T ≤ 1 / (2* f)3.时域上的离散信号可以通过使用巴特沃斯滤波器进行时域滤波。

数字信号处理习题集附答案

数字信号处理习题集附答案

第一章数字信号处理概述简答题:1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用?2.答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。

此滤波器亦称为“抗混叠”滤波器。

在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器。

判断说明题:2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。

()答:错。

需要增加采样和量化两道工序。

3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。

()答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。

因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。

故离散时间信号和系统理论是数字信号处理的理论基础。

第二章离散时间信号与系统分析基础一、连续时间信号取样与取样定理计算题:1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混叠效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。

(a ) 如果kHz rad n h 101,8)(=π截止于,求整个系统的截止频率。

(b ) 对于kHz T 201=,重复(a )的计算。

解 (a )因为当0)(8=≥ωπωj e H rad 时,在数 — 模变换中所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为 因此 Hz Tf c c 6251612==Ω=π 由于最后一级的低通滤波器的截止频率为Tπ,因此对T8π没有影响,故整个系统的截止频率由)(ωj e H 决定,是625Hz 。

(b )采用同样的方法求得kHz 201=,整个系统的截止频率为 二、离散时间信号与系统频域分析 计算题:1.设序列)(n x 的傅氏变换为)(ωj e X ,试求下列序列的傅里叶变换。

(完整版)数字信号处理题库(附答案).doc

(完整版)数字信号处理题库(附答案).doc

数字信号处理复习题一、选择题1、某系统 y(n) g( n) x(n), g( n) 有界,则该系统(A )。

A. 因果稳定B.非因果稳定C.因果不稳定D. 非因果不稳定2、一个离散系统(D)。

A. 若因果必稳定B. 若稳定必因果C.因果与稳定有关D. 因果与稳定无关3、某系统 y(n) nx(n), 则该系统(A )。

A. 线性时变B. 线性非时变C. 非线性非时变D. 非线性时变 4.因果稳定系统的系统函数 H ( z) 的收敛域是( D)。

A. z 0.9B. z 1.1C. z1.1D.z 0.95. x 1 (n) 3sin(0.5 n) 的周期( A)。

A.4B.3C.2D.16.某系统的单位脉冲响应h(n) ( 1) nu(n), 则该系统(C )。

2A. 因果不稳定B.非因果稳定C.因果稳定D. 非因果不稳定7.某系统 y(n) x(n) 5 ,则该系统(B )。

A. 因果稳定B.非因果稳定C.因果不稳定D. 非因果不稳定8.序列 x(n) a n u( n 1), 在 X ( z) 的收敛域为( A)。

A. z aB. zaC.z a D. z a9.序列 x(n)(1) nu(n) ( 1)n u( n 1), 则 X (z) 的收敛域为( D )。

1 3 12 1 1 1B. zC. z zA. z3 2 D. 223 10.关于序列 x( n) 的 DTFT X (ej) ,下列说法正确的是(C )。

A. 非周期连续函数B.非周期离散函数C.周期连续函数,周期为 2D.周期离散函数,周期为211.以下序列中( D )的周期为 5。

A. x( n)cos( 3n)B. x(n)sin( 3 n)5 588C. x( n) e j ( 2n)x(n)j (2n) 58D. e 5812. x(n)ej (n)3 6,该序列是( A )。

A. 非周期序列B.周期 N6C.周期 N6D.周期N 213. ((4)) 4 ________ 。

数字信号处理习题集大题及答案

数字信号处理习题集大题及答案

文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.1文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.1设序列x(n)={4,3,2,1} , 另一序列h(n) ={1,1,1,1},n=0,1,2,3 (1)试求线性卷积 y(n)=x(n)*h(n) (2)试求6点圆周卷积。

(3)试求8点圆周卷积。

解:1.y(n)=x(n)*h(n)={4,7,9,10,6,3,1}2.6点圆周卷积={5,7,9,10,6,3} 3.8点圆周卷积={4,7,9,10,6,3,1,0} 2二.数字序列 x(n)如图所示. 画出下列每个序列时域序列: (1) x(n-2); (2)x(3-n); (3)x[((n-1))6],(0≤n ≤5);(4)x[((-n-1))6],(0≤n ≤5);3.已知一稳定的LTI 系统的H(z)为)21)(5.01()1(2)(111------=z z z z H试确定该系统H(z)的收敛域和脉冲响应h[n]。

解系统有两个极点,其收敛域可能有三种形式,|z|<0.5, 0.5<|z|<2, |z|>2 因为稳定,收敛域应包含单位圆,则系统收敛域为:0.5<|z|<24.设x(n)是一个10点的有限序列x (n )={ 2,3,1,4,-3,-1,1,1,0,6},不计算DFT ,试确定下列表达式的值。

(1) X(0), (2) X(5), (3) ∑=90)(k k X,(4)∑=-95/2)(k k j k X eπ解:(1) (2)(3) (4) 5. x(n)和h(n)是如下给定的有限序列 x(n)={5, 2, 4, -1, 2}, h(n)={-3, 2, -1 } (1) 计算x(n)和h(n)的线性卷积y(n)= x(n)* h(n);(2) 计算x(n)和h(n)的6 点循环卷积y 1(n)= x(n)⑥h (n); (3) 计算x(n)和h(n)的8 点循环卷积y 2(n)= x(n)⑧h (n); 比较以上结果,有何结论? 解:(1)y(n)= x(n)* h(n)={-15,4,-3,13,-4,3,2} (2)y 1(n)= x(n)⑥h (n)= {-13,4,-3,13,-4,3} (3)因为8>(5+3-1),所以y 3(n)= x(n)⑧h (n)={-15,4,-3,13,-4,3,2,0} y 3(n)与y(n)非零部分相同。

数字信号处理习题及答案

数字信号处理习题及答案

==============================绪论==============================1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。

(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。

(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。

③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。

3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。

移位翻转:①已知x(n)波形,画出x(-n)的波形图。

②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。

卷积和:①h(n)*求x(n),其他02n 0n 3,h(n)其他03n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=}23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。

数字信号处理习题集(附标准答案)

数字信号处理习题集(附标准答案)

第一章数字信号处理概述简答题:1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用?答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。

此滤波器亦称为“抗混叠”滤波器。

在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器。

判断说明题:2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。

()答:错。

需要增加采样和量化两道工序。

3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。

()答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。

因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。

故离散时间信号和系统理论是数字信号处理的理论基础。

第二章 离散时间信号与系统分析基础一、连续时间信号取样与取样定理计算题:1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混叠效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。

(a ) 如果kHz rad n h 101,8)(=π截止于,求整个系统的截止频率。

(b ) 对于kHz T 201=,重复(a )的计算。

解 (a )因为当0)(8=≥ωπωj e H rad 时,在数 — 模变换中)(1)(1)(Tj X Tj X Te Y a a j ωω=Ω=所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为8π=ΩT c因此 Hz Tf c c 6251612==Ω=π 由于最后一级的低通滤波器的截止频率为Tπ,因此对T8π没有影响,故整个系统的截止频率由)(ωj e H 决定,是625Hz 。

数字信号处理习题及答案完整版

数字信号处理习题及答案完整版

数字信号处理习题及答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】==============================绪论============================== 1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统================== 1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用(n) 表示y (n )={2,7,19,28,29,15} 2. ①求下列周期②判断下面的序列是否是周期的; 若是周期的, 确定其周期。

(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。

(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。

③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。

3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。

移位翻转:①已知x(n)波形,画出x(-n)的波形图。

②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。

卷积和:①h(n)*求x(n),其他2n 0n 3,h(n)其他3n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15} ③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=4. 如果输入信号为,求下述系统的输出信号。

数字信号处理课后习题答案 全全全

数字信号处理课后习题答案   全全全
1 0.5
1
1 >
. . z
z
(3) , | | 0.5
1 0.5
1
1 <
. . z
z
(4)
, | | 0
1 0.5
1 (0.5 )
1
1 10
>
.
.
.
.
z
z
z
1.8 (1) ) , 0
1
( ) (1 2
1 3 3
3.014 2.91 1.755 0.3195
0.3318 0.9954 0.9954 0.3318
1 0.9658 0.5827 0.1060
z z z
z z z
z z z
z z z
. . .
. . .
. . .
. . .
. + .
=
= . . +
= . . . +
..
.
..
. π
2.13
0,1,2, , 1
( ) ( )
= .
=
k N
Y rk X k
..
2.14
Y(k) = X ((k)) R (k) k = 0,1, ,rN .1 N rN ..
2.15 (1) x(n) a R (n) N
= n y(n) b R (n) N
= n
(2) x(n) =δ (n) y(n) = Nδ (n)
2.16 ( )
1
1 a R N
a N
n
. N
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章数字信号处理概述简答题:1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用?答:在A/D变化之前让信号通过一个低通滤波器,是为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。

此滤波器亦称位“抗折叠”滤波器。

在D/A变换之后都要让信号通过一个低通滤波器,是为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故友称之为“平滑”滤波器。

判断说明题:2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。

()答:错。

需要增加采样和量化两道工序。

3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。

()答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。

因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。

故离散时间信号和系统理论是数字信号处理的理论基础。

第二章 离散时间信号与系统分析基础一、连续时间信号取样与取样定理计算题:1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混迭效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。

(a ) 如果kHz rad n h 101,8)(=π截止于,求整个系统的截止频率。

(b ) 对于kHz T 201=,重复(a )的计算。

解 (a )因为当0)(8=≥ωπωj e H rad 时,在数 — 模变换中)(1)(1)(Tj X Tj X Te Y a a j ωω=Ω=所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为8π=ΩT c因此 Hz Tf c c 6251612==Ω=π由于最后一级的低通滤波器的截止频率为Tπ,因此对T8π没有影响,故整个系统的截止频率由)(ωj e H 决定,是625Hz 。

(b )采用同样的方法求得kHz 201=,整个系统的截止频率为 Hz Tf c 1250161==二、离散时间信号与系统频域分析计算题:1.设序列)(n x 的傅氏变换为)(ωj e X ,试求下列序列的傅里叶变换。

(1))2(n x (2))(*n x (共轭) 解:(1))2(n x 由序列傅氏变换公式 DTFT ∑∞-∞=-==n nj j en x e X n x ωω)(()]([)可以得到DTFT 2)()2()]2([n j n n jn en x en x n x '-∞-∞='-∑∑'==ωω为偶数)()(21)(21)(21)(21)(21)]()1()([2122)2(2)2(22ωωπωωπωωωj j j j n j n n jn n j nn e X e X e X e X e n x e n x e n x n x -+=+=+=-+=++-∞-∞=∞-∞=--∞-∞=∑∑∑(2))(*n x (共轭)解:DTFT )(**])([)(*)(*ωωωj n n jn jn e X e n x en x n x -∞-∞=∞-∞=-===∑∑2.计算下列各信号的傅里叶变换。

(a )][2n u n- (b )]2[)41(+n u n(c )]24[n -δ (d )nn )21(解:(a )∑∑-∞=--∞-∞==-=2][2)(n n j nnj n ne en u X ωωωωωj nn j e e 2111)21(0-==∑∞=(b )∑∑∞-=--∞-∞==+=2)41(]2[41)(n n j n nj n n e e n u X ωωω)( ωωωj j m m j m e e e -∞=---==∑41116)41(20)2(2 (c )ωωωδω2]24[][)(j n nj nj n e en en x X -∞-∞=--∞-∞==-==∑∑(d )]121112111[21)(ˆ--+-==--∞-∞=∑ωωωωj j n j n n e e e X)( 利用频率微分特性,可得22)211(121)211(121)()(ωωωωωωωj j j j e e e e d X d jX ---+--=-=3.序列)(n x 的傅里叶变换为)(jwe X ,求下列各序列的傅里叶变换。

(1))(*n x - (2))](Re[n x (3) )(n nx解: (1))(*])([)(*)(*jw n n jw n jwne X en x en x =-=-∑∑∞-∞=--∞-∞=-(2)∑∑∞-∞=-*-*∞-∞=-+=+=n jw jw jwn n jwne X e X e n xn x en x )]()([21)]()([21)](Re[(3)dw e dX j e n x dw d j dw e n dx j en nx jw n jwnn jwn n jwn)()()(1)(==-=∑∑∑∞-∞=-∞-∞=-∞-∞=- 4.序列)(n x 的傅里叶变换为)(jwe X ,求下列各序列的傅里叶变换。

(1))(n x * (2))](Im[n x j (3) )(2n x解:(1))(])([])([)()())((jw n n w j n n w j n jwne X e n x en x en x -**∞-∞=--∞-∞=*---∞-∞=-*===∑∑∑(2)[])()(21)()(21])()([21)]()([21)(jw jw n n w j jwn n jwn jwn jwn n e X e X e n x e X e n x e n x e n x n x -**∞-∞=--∞-∞=∞-∞=-*--∞-∞=*-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=-=--∑∑∑∑(3))()(21)()(21)()(21)()()(2jw j w j j n n n w j j n jwne X e X d e X e X e n x d e X en x *==⎥⎦⎤⎢⎣⎡=⎰∑⎰∑∑--∞-∞=-∞-∞=--∞-∞=-θππθθππθθπθπθπ5.令)(n x 和)(jw e X 表示一个序列及其傅立叶变换,利用)(jwe X 表示下面各序列的傅立叶变换。

(1))2()(n x n g =(2)()⎩⎨⎧=为奇数为偶数n n n x n g 02)(解:(1)∑∑∑∞-∞=-∞-∞=-∞-∞=-===为偶数k k w k j n jnwn jnwjwek x en x en g e G 2)()2()()([]⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡+=+=+=-+=-∞-∞=--∞-∞=-∞-∞=-∞-∞=-∑∑∑∑)()(2121)(21)(21)(21))((21)(21)()1()(2122)2(2)2(2222wj w j wj w j k wjk w j k wjk j k w jk k w kj ke X e X e X e X e k x e X e e k x e k x e k x k x πππ(2))()()2()()(222w j r wjr r rwj n jnwjwe X er x er g en g e G ====∑∑∑∞-∞=-∞-∞=-∞-∞=-6.设序列)(n x 傅立叶变换为)(jwe X ,求下列序列的傅立叶变换。

(1))(0n n x - 0n 为任意实整数 (2)()⎩⎨⎧=为奇数为偶数n n n x n g 02)((3))2(n x解:(1)0)(jwn jw e e X -⋅(2) )2(n x n 为偶数=)(n g ↔)(2w j e X 0 n 为奇数 (3))()2(2jw e X n x ↔7.计算下列各信号的傅立叶变换。

(1){})2()3()21(--+n u n u n (2))2sin()718cos(n n +π(3)⎪⎩⎪⎨⎧≤≤=其它-041)3cos()(n n n x π 【解】(1){}∑∞-∞=---+=n kn N j n e n u n u k X π2)2()3()21()(∑∑∞=-∞-=--=2232)21()21(n knN j n n kn N j n ee ππ k Nj k N j k Nj k N j e ee eππππ222223211412118------=k Nj kN j kN j e e e πππ225523211)21(18----= (2)假定)718cos(n π和)2sin(n 的变换分别为)(1k X 和)(2k X ,则∑∞-∞=⎥⎦⎤⎢⎣⎡--+--=k k k N k k Nk X )27182()27182()(1πππδπππδπ∑∞-∞=⎥⎦⎤⎢⎣⎡-++--=k k k N k k N j k X )222()222()(2ππδππδπ所以 )()()(21k X k X k X +=∑∞-∞=⎥⎦⎤⎢⎣⎡-++-----+--=k k k N j k k N j k k N k k N )22()222()27182()27182(ππδππδπππδπππδπ(3)∑-=-=4423cos )(n k Njnnek X ππ∑-=--+=44233)(21n k N jn n j nj e ee πππ∑∑=++=--+=90)23()32(490)23()32(42121n nN j k N j n n k N j k N j e e e e ππππππππ)23()23()32(4)23()23()32(41121112199k Nj k N j k N j k Nj k N j k N j ee e ee eππππππππππππ+++---+-++-=8.求下列序列的时域离散傅里叶变换)(n x -*, [])(Re n x , )(0n x解:)()()()(ωωj n j e X e n x n x **∞∞---∞∞-*=⎪⎭⎫⎝⎛-=-∑∑[]()())()()(21)()(21)(Re ωωωωj e j j n j e X e X e X e n x n x n x =+=+=-*∞∞--*∞∞-∑∑ ()[])(Im )()(21)(0ωωωj n j j e X j e n x n x en x =--=∑∑∞∞--*∞∞--三、离散时间系统系统函数填空题:1.设)(z H 是线性相位FIR 系统,已知)(z H 中的3个零点分别为1,0.8,1+j ,该系统阶数至少为( )。

相关文档
最新文档