高一上学期数学期中考试试题及答案
湖南省长沙市2024-2025学年高一上学期11月期中考试数学试卷含答案
2024-2025学年湖南省长沙市百强校(YZ)高一上期中考试数学试题❖一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知集合{|21}A x x =-<≤,{|03}B x x =<≤,则A B = ()A.(]2,3- B.()2,0- C.(]0,1 D.(]1,3【答案】C 【解析】【分析】由交集的运算法则求解即可.【详解】解:{}{}2103A x x B x x =-<≤=<≤ ,,{}01A B x x ∴⋂=<≤,故选:C.2.函数1()2f x x =+-的定义域为()A.2|2}3{x x x >≠且 B.2{|2}3x x x <>且C.3{|2}2x x ≤≤ D.3{|2}2x x x ≥≠且【答案】D 【解析】【分析】利用函数有意义,列出不等式组求解即得.【详解】函数1()2f x x =+-的意义,则230x -≥且20x -≠,解得32x ≥且2x ≠,所以原函数的定义域为3{|2}2x x x ≥≠且.故选:D 3.已知()()5,62,6x x f x f x x -≥⎧=⎨+<⎩,则()4f =()A.3 B.2C.1D.0【答案】C 【解析】【分析】根据分段函数解析式列式求解即可.【详解】由题意可得:()()46651f f ==-=.故选:C.4.设x ∈R ,则“2x ≤”是“11x -≤”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】从充分性和必要性两个方面考虑.【详解】先说充分性:当2x ≤,比如2x =-,此时:12131x -=--=≤不成立,所以“2x ≤”不是“11x -≤”的充分条件;再说必要性:11x -≤⇒111x -≤-≤⇒02x ≤≤,所以2x ≤成立,所以“2x ≤”是“11x -≤”的必要条件.故“2x ≤”是“11x -≤”的必要不充分条件.故选:B5.若不等式210x tx -+<对一切132x ⎛⎫∈ ⎪⎝⎭,恒成立,则实数t 的取值范围为()A.52t ≥B.52t >C.2t ≥D.103t ≥【答案】D 【解析】【分析】首先分离参数,然后结合对勾函数的性质求得函数的最值,从而可确定t 的取值范围.【详解】因为不等式210x tx -+<对一切132x ⎛⎫∈ ⎪⎝⎭,恒成立,所以211x t x x x+>=+在区间132⎛⎫ ⎪⎝⎭,上恒成立,由对勾函数的性质可知函数1y x x =+在区间112⎛⎫⎪⎝⎭上单调递减,在区间()13,上单调递增,且当12x =时,15222y =+=,当3x =时,110333y =+=,所以1103x x +<,故103t ≥,故选:D6.若实数,x y 满足221x y xy ++=,则x y +的最大值是A.6B.3C.4D.23【答案】B 【解析】【分析】根据22x y xy +⎛⎫≤ ⎪⎝⎭,将等式转化为不等式,求x y +的最大值.【详解】()22211x y xy x y xy ++=⇒+-=,22x y xy +⎛⎫≤ ⎪⎝⎭,()2212x y x y +⎛⎫∴+-≤ ⎪⎝⎭,解得()2314x y +≤,x y ≤+≤x y ∴+故选B.【点睛】本题考查了基本不等式求最值,属于基础题型.7.已知函数()1f x +是偶函数,当121x x <<时,()()()12120f x f x x x -->⎡⎤⎣⎦恒成立,设12a f ⎛⎫=-⎪⎝⎭,(2)b f =,(3)c f =,则a ,b ,c 的大小关系为()A.c b a << B.b a c<< C.b c a<< D.a b c<<【答案】B 【解析】【分析】根据题意先求出函数()f x 在(1,)+∞上为单调增函数且关于直线1x =对称,然后利用函数的单调性和对称性即可求解.【详解】∵当121x x <<时,()()()12120f x f x x x -->⎡⎤⎣⎦恒成立,∴当121x x <<时,()()210f x f x ->,即()()21f x f x >,∴函数()f x 在(1,)+∞上为单调增函数,∵函数(1)f x +是偶函数,即()()11f x f x +=-,∴函数()f x 的图象关于直线1x =对称,∴1522a f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,又函数()f x 在(1,)+∞上为单调增函数,∴5(2)(3)2f f f ⎛⎫<<⎪⎝⎭,即1(2)(3)2f f f ⎛⎫<-< ⎪⎝⎭,∴b a c <<,故选:B.8.幂函数()()22251m m f x m m x+-=--在区间()0,∞+上单调递增,且0a b +>,则()()f a f b +的值()A.恒大于0B.恒小于0C.等于0D.无法判断【答案】A 【解析】【分析】由已知条件求出m 的值,则可得幂函数的解析式,再利用幂函数的性质判断即可【详解】由函数()()22251m m f x m m x+-=--是幂函数,可得211m m --=,解得2m =或1m =-.当2m =时,()3f x x =;当1m =-时,()6f x x -=.因为函数()f x 在()0,∞+上是单调递增函数,故()3f x x =.又0a b +>,所以a b >-,所以()()()f a f b f b >-=-,则()()0f a f b +>.故选:A .二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得2分,有选错的得0分.9.下列说法正确的是()A.{}0∅∈B.集合{|2,Z}{|Z}2xx x n n x =∈=∈C.集合{}{}3,44,3= D.集合22{|}{|}x y x y y x ===【答案】BC 【解析】【分析】根据集合间的基本关系逐一判定即可.【详解】解:对于A ,{}0∅⊆,故A 错误;对于B ,由Z 2x ∈,可得x 为偶数,所以集合{|2,Z}{|Z}2xx x n n x =∈=∈,故B 正确;对于C ,集合{}{}3,44,3=,故C 正确;对于D ,集合2{|}R x y x ==,2{|}{|0}y y x y y ==≥,故D 错误.故选:BC.10.已知20ax bx c ++>的解集是()2,3-,则下列说法正确的是()A.>0B.不等式20cx bx a ++<的解集是11,23⎛⎫- ⎪⎝⎭C.1234b b ++的最小值是83D.当2c =时,()236f x ax bx =+,[]12,x n n ∈的值域是[]3,1-,则21n n -的取值范围是[]2,4【答案】BCD 【解析】【分析】对A ,B ,利用一元二次不等式与相应函数和方程的关系求解判断;对C ,利用基本不等式求最值,对D ,利用二次函数图象与性质,进行分析可得结果.【详解】对于A ,由题意可知:2,3-是关于x 的方程B 2+B +=0的两个根,且0a <,故A 错误;对于B ,由题意可知:16bac a⎧-=⎪⎪⎨⎪=-⎪⎩,可得,6b a c a =-=-,0a <.不等式20cx bx a ++<化为:260ax ax a --+<,由0a <可得2610x x +-<,解得1123x -<<,所以不等式20cx bx a ++<的解集为1123⎛⎫- ⎪⎝⎭,,故B 正确;对于C ,因为=-b a ,0b >,可得()121214483434343333b b b b +=++-≥-=++,当且仅当()12134343b b =++,即23b =时,等号成立,所以1234b b ++的最小值是83,故C 正确;对于D ,当2c =时,13b a =-=,则()222362(1)1f x ax bx x x x =+=-+=--+,当=1时,()f x 取到最大值()11f =,由()3f x =-得,=−1或3x =,()[]212,36f x ax bx x n n =+∈,的值域是[]3,1-,因()f x 在[]12,n n 上的最小值为3-,最大值为1,从而得121,13n n =-≤≤或1211,3n n -≤≤=,因此2124n n ≤-≤,故D 正确.故选:BCD.11.已知函数()f x 是定义在R 上的奇函数,当>0时,()21f x x x =-+,则下列结论正确的是()A.()02f =-B.()f x 的单调递增区间为()1,0-,()1,+∞C.当0x <时,()21f x x x=+-D.()0xf x <的解集为()()1,00,1-⋃【答案】BCD 【解析】【分析】由奇函数()f x 在=0处有定义,可得()00f =,可判断A ;由>0的函数的解析式,结合奇函数的定义可得0x <时的函数解析式,可判断C ;判断>0时的()f x 的单调性,可得0x <时的()f x 的单调性,不等式()0xf x <等价为>0且()0f x <,0x <且()0f x >,结合()()110f f -==,解不等式可判断D ;由()y f x =的图象与=op 的图象特点,结合单调性可判断B.【详解】对于A ,函数()f x 是定义在R 上的奇函数,可得()00f =,故A 错误;对于C ,当>0时,()21f x x x =-+,设0x <,则0x ->,()21f x x x-=---,又−=−,所以0x <时,()21f x x x=+-,故C 正确;对于D ,由>0时,()21f x x x =-+,可得1=0,又y x =和21y x =-+在()0,∞+递增,可得()f x 在()0,∞+递增,由奇函数的图象关于原点对称,可得()f x 在(),0∞-递增,且()10f -=,所以()0xf x <等价为>0op <0=o1)或<0op >0=o −1),解得01x <<或10x -<<,故D 正确;对于B ,因为()f x 在(),0∞-和()0,∞+上递增,且()()110f f =-=,由()y f x =的图象可看做=op 的图象位于x 轴上方的图象不变,将x 轴下方的图象翻折到x 轴上方得到,所以()y f x =的递增区间为()1,0-,1,+∞,故B 正确.故选:BCD.三、填空题:本题共3小题,每小题5分,共15分.12.已知a =,b =,则a ______b .(填“>”或“<”)【答案】<【解析】【分析】对,a b 进行分子有理化,然后通过比较分母的大小,从而可得结果.【详解】a ==b ==,>0+>,<<所以a b <.故答案为:<13.已知()5311f x ax bx cx x=-+++,且()35f -=-,则()3f =__________.【答案】7【解析】【分析】根据题意,由函数的解析式可得()()2f x f x -+=,结合()35f -=-即可求解.【详解】()5311f x ax bx cx x=-+++,则()()531()()1f x a x b x c x x ⎛⎫-=---+-+-+ ⎪⎝⎭5311ax bx cx x ⎛⎫=--+++ ⎪⎝⎭则有()()2f x f x -+=,若()35f -=-,则()()3257.f =--=故答案为:7.14.定义{},min ,=,>a a b a b b a b≤⎧⎨⎩,若函数(){}2min 33,33f x x x x =-+--+,且()f x 在区间[],m n 上的值域为37,44⎡⎤⎢⎥⎣⎦,则区间[],m n 长度的最大值为________.【答案】74.【解析】【分析】根据定义作出函数()=y f x 的图像,根据函数值域,求出对应点的坐标,利用数形结合进行判断即可.【详解】根据定义作出函数()=y f x 的图像如图:(实线部分的曲线).其中()()1,13,3A B 、,即23|3|,13()=3+3,1<<3x x x f x x x x --≤≥-⎧⎨⎩或.当()34f x =时,当1x ≤或3x ≥时,由3334x --=,解得:34C x =或214G x =;当()74f x =时,当13x <<时,由27334x x -+=解得:52E x =.由图像知,若函数()f x 在区间[],m n 上的值域为37,44⎡⎤⎢⎥⎣⎦,则区间[],m n 长度的最大值为537244E C x x -=-=.故答案为:74四、解答题:本题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤.15.(1)计算:111224127()10()()20024-+⨯⨯(2)已知11223x x-+=,求22122x x x x --+-+-的值.【答案】(1)25;(2)9.【解析】【分析】(1)(2)利用指数性质、运算法则直接求解.【详解】(1)原式131144221103(1)151025.2++=+⨯⨯-=+-+=(2)由11223x x-+=,得129x x -++=,则17x x -+=,2247x x -+=,所以22124729272x x x x --+--==+--.16.若关于x 的不等式2310ax x +->的解集是112A x x ⎧⎫=<<⎨⎬⎩⎭.(1)求a 的值;(2)设集合=2<<1−,若“x A ∈”是“x B ∈”的充分条件,求实数m 的取值范围.【答案】(1)−2(2)0m ≤【解析】【分析】(1)根据一元二次不等式的解集,利用根与系数的关系,即可求得答案;(2)由题意可得A B ⊆,由此列不等式求解,即得答案.【小问1详解】因为关于x 的不等式2310ax x +->的解集是112x x ⎧⎫<<⎨⎬⎩⎭,故2310ax x +-=的两根为1,12,且0a <,故11122a a⨯=-⇒=-;【小问2详解】由题意集合{}21B x m x m =<<-,“x A ∈”是“x B ∈”的充分条件,故A B ⊆,由于112A xx ⎧⎫=<<⎨⎬⎩⎭,故B 不为空集,则1221121m m m m ⎧≤⎪⎪-≥⎨⎪<-⎪⎩,解得0m ≤.17.函数()29x x ax f b--=是定义在区间()3,3-上的奇函数,且()11.4f =(1)确定()f x 的解析式,并用定义证明()f x 在区间()3,3-上的单调性;(2)解关于t 的不等式()()10.f t f t -+<【答案】(1)()229xf x x =-;证明见解析(2)12,2⎛⎫- ⎪⎝⎭【解析】【分析】(1)利用函数在()3,3-上有定义且为奇函数,则()00f =,求出b 的值,再由()114f =求出a 的值,即可确定()f x 的解析式;直接利用定义法证明函数()f x 在()3,3-上的单调性;(2)由奇函数的性质知()()1f t f t -<-,由函数单调性得313331t t t t -<-<⎧⎪-<<⎨⎪-<-⎩,求解即可.【小问1详解】根据题意,函数()29ax bf x x -=-是定义在()3,3-上的奇函数,则()009bf -==,解可得0b =;又由()114f =,则有()1184a f ==,解可得2a =,则()229xf x x=-,又()()()222299x xf x f x x x --==-=----,符合题意,故()229xf x x=-.设1233x x -<<<,则()()()()()()2212211212222212122929229999x x x x x x f x f x x x x x ----=-=----()()()()121222122999x x x x x x +-=--,又由1233x x -<<<,则1290x x +>,120x x -<,2190x ->,2290x ->,则()()120f x f x -<,即()()12f x f x <,则函数()f x 在()3,3-上为增函数;【小问2详解】由(1)知()f x 为奇函数且在()3,3-上为增函数.则()()()()101f t f t f t f t -+<⇒-<-()()1f t f t ⇒-<-,故313331t t t t-<-<⎧⎪-<<⎨⎪-<-⎩,解可得:122t -<<,即不等式的解集为12,2⎛⎫- ⎪⎝⎭.18.某机床厂今年年初用100万元购入一台数控机床,并立即投入生产使用.已知该机床在使用过程中所需要的各种支出费用总和t (单位:万元)与使用时间x (*,20x x ∈≤N ,单位:年)之间满足函数关系式为:228.t x x =+该机床每年的生产总收入为50万元.设使用x 年后数控机床的盈利额为y 万元.(盈利额等于总收入减去购买成本及所有使用支出费用).(1)写出y 与x 之间的函数关系式;(2)从第几年开始,该机床开始盈利(盈利额为正值)?(3)该机床使用过程中,已知年平均折旧率为4%(固定资产使用1年后,价值的损耗与前一年价值的比率).现对该机床的处理方案有两种:第一方案:当盈利额达到最大值时,再将该机床卖出;第二方案:当年平均盈利额达到最大值时,再将该机床卖出.研究一下哪种处理方案较为合理?请说明理由.(参考数据:70.960.751≈,80.960.721≈,90.960.693≈,100.960.665≈)【答案】(1)2242100y x x =-+-,()*,20x x ∈≤N (2)第3年(3)选第一方案较为合理,理由见解析【解析】【分析】(1)利用盈利额等于总收入减去购买成本及所有使用支出费用,得到y 与x 之间的函数关系式;(2)令0y >,解一元二次不等式即可;(3)利用二次函数求最值,求出第一方案总获利,由100100242422y x x x x x ⎛⎫=-+-=-+ ⎪⎝⎭,利用函数单调性求出第二方案总获利,再比较即可.【小问1详解】由题意,使用过程中所需要的各种支出费用总和t 与使用时间x 之间的函数关系式为228t x x =+,且该机床每年的生产总收入为50万元,设使用x 年后数控机床的盈利额为y 万元,可得y 与x 之间的函数关系式()225028100242100y x x x x x =-+-=-+-,()*,20x x ∈≤N ;【小问2详解】由(1)知:2242100y x x =-+-,()*,20x x ∈≤N ,令0y >,可得22421000x x -+->,解得212412124122x -+<<,因为1516<<,所以521322-<<,213718.22+<<因为*x ∈N ,所以318x ≤≤且*x ∈N ,故从第3年开始盈利.【小问3详解】由(1)知2242100y x x =-+-,()*,20x x ∈≤N ,因为22212412421002()22y x x x =-+-=--+,所以当10x =或11x =时,营利额达到最大值为120万元,使用10年后机床剩余价值为:10100(14%)66.5-≈(万元),所以按第一方案处理,总获利为12066.5186.5+=(万元);又由100100242422y x x x x x ⎛⎫=-+-=-+ ⎪⎝⎭,令()100422h x x x ⎛⎫=-+⎪⎝⎭,()020x <≤,12020x x ∀<<≤,则()()()()12121212121250100100222x x x x h x h x x x x x x x --⎛⎫⎛⎫-=-+++=- ⎪ ⎪⎝⎭⎝⎭,当120x x <<<时,12120,500x x x x -<-<,则()()120h x h x -<,即()()12h x h x <,因此可得ℎ在(上单调递增;1220x x <<≤时,12120,500x x x x -<->,则()()120h x h x ->,即()()12h x h x >,因此可得ℎ20⎤⎦上单调递减;又78<<,当7x =时,年平均盈利为967万元,当8x =时,年平均盈利为272万元,又962772>,所以当第7年时,年平均盈利额达到最大值,此时机床剩余价值为:7100(14%)75.1-≈(万元),所以按第二方案处理,总获利为96775.1171.17⨯+=(万元).由于186.5171.1>,则选第一方案较为合理.【点睛】方法点睛:解答函数应用题的一般步骤:(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)求模:求解数学模型,得出数学结论;(4)还原:将数学问题还原为实际问题的意义.19.定义:对于定义在区间I 上的函数()f x 和正数(01)αα<≤,若存在正数M ,使不等式()()1212|f x f x M x x |α-≤-对任意1x ,2x I ∈恒成立,则称函数()f x 在区间I 上满足α阶李普希兹条件.(1)判断函数y x =,3y x =在R 上是否满足1阶李普希兹条件;(2)证明函数y =在区间[)1,+∞上满足12阶李普希兹条件,并求出M 的取值范围;(3)若函数y =[)1,+∞上满足α阶李普希兹条件,求α的范围.【答案】(1)y x =满足1阶李普希兹条件,3y x =不满足1阶李普希兹条件.(2)证明见解析,1M ≥(3)112α≤≤.【解析】【分析】(1)结合题意根据1阶李普希兹条件的含义即可求解;(2)结合已知条件以及题干定义即可求解.(3)分情况讨论α的取值范围结合定义从而即可求解.【小问1详解】y x =满足1阶李普希兹条件,3y x =不满足1阶李普希兹条件.理由:对于y x =,1212||||x x M x x -≤-,只需1M ≥,所以存在正数1M ≥,对任意1x ,2R x ∈使()()1212f x f x M x x -≤-成立,所以y x =满足1阶李普希兹条件;对于3y x =,331212||||x x M x x -≤-,不妨设12x x >,则≥12+12+22=1+22−12>()21234x x +,()[)212304y x x ∞=+∈+,,即不存在正数M ,使不等式()()1212f x f x M x x -≤-对任意1x ,2x I ∈恒成立,所以3y x =不满足1阶李普希兹条件.【小问2详解】证明:不妨设121x x >≥,()()12f x f x ∴-=()()()()()1212212120,1f x f x x x x x -∴=--,故1M ≥时,对1x ∀,[)21,x ∈+∞,均有()()121212()f x f x M xx -≤-,故函数y =在区间[)1,+∞上满足12阶李普希兹条件,1M ≥;【小问3详解】①首先证明102α<<时不成立,假设函数y =在区间[)1+∞,上满足1(02αα<<阶李普希兹条件,12()M x x α≤-,令124x x =,则有22(4)M x x α-≤-,即122221.3M x α-≥>=取()212231x M α-=+,则1221133x M α-=+,则13M M >+,矛盾,所以假设不成立.②然后证明112α≤≤时成立,不妨设12121(x x x x >≥=时显然成立),令212(1)x k x k =>,()()(121f x f x k ∴-==-()22122221x x k x x k x ∴-=-=-;要证函数y =在区间[)1,∞+上满足112αα⎛⎫≤≤⎪⎝⎭阶李普希兹条件,只需证存在正数M12()M x x α≤-成立,即证(221(1)k M k x αα--,又1222211(1)(1)k k x k k ααα---≤--,当(k ∈时,22(1)1k k α-≥-,所以221111(1)11k k k k k α--≤=<--+;当)2k ∈时,1222(1)(1)k k α-≥-,所以211(1)k k α-≤=<-;当[)2,k ∞∈+时,121(1)(1)1(1)(1)(1)k k k k k k ααααα----=≤<-++,故取1M≥,不等式即可成立.综上,α的取值范围为1 1. 2α≤≤【点睛】难点点睛:本题考查函数新定义问题,难度大.解答时要根据题目所给α阶李普希兹条件的定义分析所给函数的结合不等式分析可解答.。
北京市2024-2025学年高一上学期期中考试数学试卷含答案
2024年高一第一学期期中试卷数学(答案在最后)一、选择题(共10小题,每小题4分,共40分)1.已知集合{}31M x x =-<<,{}14N x x =-≤<,则M N = ()A.{}31x x -<< B.{}3x x >- C.{}11x x -≤< D.{}4x x <2.设命题p : n ∃∈N ,225n n >+,则p 的否定是()A. n ∀∈N ,225n n >+ B. n ∀∈N ,225n n ≤+C.n ∃∈N ,225n n ≤+ D.n ∃∈N ,N 225n n <+3.下列各组函数中,两个函数相同的是()A.3y =和y x=B.2y =和y x=C.y =和2y =D.y =和2x y x=4.下列函数在区间()0,+∞上为增函数的是()A.2xy = B.()21y x =- C.1y x-= D.3xy -=5.若实数a ,b 满足a b >,则下列不等式成立的是()A.a b> B.a c b c+>+ C.22a b > D.22ac bc>6.“4a ≥”是“二次函数()2f x x ax a =-+有零点”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.在下列区间中,一定包含函数()25xf x x =+-零点的区间是()A.()0,1 B.()1,2 C.()2,3 D.()3,48.已知函数()1,01,0x f x x x≤⎧⎪=⎨>⎪⎩,则使方程()x f x m +=有解的实数m 的取值范围是()A.()1,2 B.(),2-∞- C.()(),12,-∞+∞ D.(][),12,-∞+∞ 9.定义在R 上的偶函数()f x 满足:对任意的[)()1212,0,x x x x ∈+∞≠,都有()()21210f x f x x x -<-,且()30f =,则不等式()0f x >的解集是()A.()(),30,3-∞-B.()()3,03,-+∞C.()3,3- D.()(),33,-∞-+∞ 10.现实生活中,空旷田野间两根电线杆之间的电线与峡谷上空横跨深涧的观光索道的钢索有相似的曲线形态,这类曲线在数学上常被称为悬链线.在合适的坐标系中,这类曲线可用函数()()2e 0,e 2.71828ex xa bf x ab +=≠=⋅⋅⋅来表示.下列结论正确的是()A.若0ab >,则()f x 为奇函数B.若0ab >,则()f x 有最小值C.若0ab <,则()f x 为增函数D.若0ab <,则()f x 存在零点二、填空题(共5小题,每小题5分,共25分)11.函数()f x =的定义域为__________.12.已知函数()()1104f x x x x=++>,则当且仅当x =_________时,()f x 有最小值________.13.已知集合{}2,0A a =,{}3,9B a =-,若满足{}9A B = ,则实数a 的值为________.14.已知函数()y f x =在R 上是奇函数,当0x ≤时,()21xf x =-,则()1f =________;当0x >时,()f x =________.15.已知非空集合A ,B 满足以下四个条件:①{}1,2,3,4,5,6A B = ;②A B =∅ ;③A 中的元素个数不是A 中的元素;④B 中的元素个数不是B 中的元素.(ⅰ)如果集合A 中只有1个元素,那么集合A 的元素是__________;(ⅱ)有序集合对(),A B 的个数是__________.三、解答题(共6小题,第16题9分,第17-19题6分,第20题7分,第21题6分)16.已知集合{}14A x x =-≤≤,{}11B x a x a =-≤≤+.(1)若4a =,求A B ;(2)若A B A = ,求a 的取值范围.17.解下列关于x 的不等式:(1)2112x x +≤-(2)213x -≥(3)()()2220ax a x a +--≥∈R 18.已知函数()22xxf x a -=⋅-是定义在R 上的奇函数.(1)求a 的值,并用定义法证明()f x 在R 上单调递增;(2)解关于x 的不等式()()23540f x x f x -+->.19.某工厂要建造一个长方体的无盖贮水池,其容积为34800m ,深为3m ,如果池底造价为每平方米150元,池壁每平方米造价为120元,怎么设计水池能使总造价最低?最低造价是多少?20.已知函数()()21f x mx m x m =--+.(1)若不等式()0f x >的解集为R ,求m 的取值范围;(2)若不等式()0f x ≤对一切()0,x ∈+∞恒成立,求m 的取值范围;21.设k 是正整数,集合A 至少有两个元素,且* N A ⊆.如果对于A 中的任意两个不同的元素x ,y ,都有x y k -≠,则称A 具有性质()P k .(1)试判断集合{}1,2,3,4B =和{}1,4,7,10C =是否具有性质()2P ?并说明理由;(2)若集合{}{}1212,,,1,2,,20A a a a =⋅⋅⋅⊆⋅⋅⋅,求证:A 不可能具有性质()3P ;(3)若集合{}1,2,,2023A ⊆⋅⋅⋅,且同时具有性质()4P 和()7P ,求集合A 中元素个数的最大值.高一第一学期期中试卷数学参考答案与试题解析一、选择题(共10小题)CBAABABDCD二、共填空题(共5小题)11.[)1,+∞12.12;213.-314.12;()12xf x -=-15.5;10三、解答题(共6小题)17.(1){}23A B x x =≤≤ .(2)a 的取值范围是7,2⎛⎤-∞ ⎥⎝⎦.16.(1)()3,2-;(2)(][),12,-∞-+∞ (3)综上所述:当0a =时,不等式解集为(],1-∞-;当0a >时,不等式解集为(]2,1,a ⎡⎫-∞-+∞⎪⎢⎣⎭;当20a -<<时,不等式解集为2,1a⎡⎤-⎢⎥⎣⎦;当2a =-时,不等式解集为{}1-;当2a <-时,不等式解集为21,a⎡⎤-⎢⎥⎣⎦.18.(1)1a =,证明略(2)()()()()()2235403544f x x f x f x x f x f x -+->⇒->--=-∴23542x x x x ->-⇒>或23x <-.19.水池总造价()()16001502331207201600150x f x xy x y x ⎛⎫=⨯++⨯=+⨯+⨯ ⎪⎝⎭72024000057600240000297600≥+=+=元.当且仅当40x m =,40y m =时取等号.∴设计水池底面为边长为40m 的正方形能使总造价最低,最低造价是297600元.20.(1)m 的取值范围为1,3⎛⎫+∞ ⎪⎝⎭;(2)m 的取值范围为(],1-∞-;21.(1)集合B 不具有性质()2P ,集合C 具有性质()2P (2)证明:将集合{}1,2,,20⋅⋅⋅中的元素分为如下11个集合,{1,4},{2,5},{3,6},{7,10},{8,11}.{9,12},{13,16},{14,17},{15,18},{19},{20},所以从集合{}1,2,,20⋅⋅⋅中取12个元素,则前9个集合至少要选10个元素,所以必有2个元素取自前9个集合中的同一集合,即存在两个元素其差为3,所以A 不可能具有性质()3P ;(3)先说明连续11项中集合A 中最多选取5项,以1,2,3……,11为例.构造抽屉{1,8},{2,9},{3,10},{4,11},{5},{6},{7}.①5,6,7同时选,因为具有性质()4P 和()7P ,所以选5则不选1,9;选6则不选2,10;选7则不选3,11;则只剩4,8.故1,2,3……,11中属于集合A 的元素个数不超过5个.②5,6,7选2个,若只选5,6,则1,2,9,10,7不可选,又{4,11}只能选一个元素,3,8可以选,故1,2,3……,11中属于集合A 的元素个数不超过5个.若选5,7,则只能从2,4,8,10中选,但4,8不能同时选,故1,2,3……,11中属于集合A 的元素个数不超过5个.若选6,7,则2,3,10,11,5不可选,又{1,8}只能选一个元素,4,9可以选,故1,2,3……,11中属于集合A 的元素个数不超过5个.③5,6,7中只选1个,又四个集合{1,8},{2,9},{3,10},{4,11}每个集合至多选1个元素,故1,2,3……,11中属于集合A 的元素个数不超过5个.由上述①②③可知,连续11项自然数中属于集合A 的元素至多只有5个,如取1,4,6,7,9.因为2023=183×11+10,则把每11个连续自然数分组,前183组每组至多选取5项;从2014开始,最后10个数至多选取5项,故集合A 的元素最多有184×5=920个.给出如下选取方法:从1,2,3……,11中选取1,4,6,7,9;然后在这5个数的基础上每次累加11,构造183次.此时集合A的元素为:1,4,6,7,9;12,15,17,18,20;23,26,28,29,31;……;2014,2017,2019,2020,2022,共920个元素.经检验可得该集合符合要求,故集合A的元素最多有920个.。
浙江省嘉兴市2024-2025学年高一上学期期中联考数学试题含答案
2024学年第一学期嘉兴八校联盟期中联考高一年级数学学科试题(答案在最后)考生须知:1.本卷满分150分,考试时间120分钟.2.答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号并填涂相应数字3.所有答案必须写在答题纸上,写在试卷上无效.4.考试结束后,只需上交答题纸.选择题部分(共58分)一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个合题目要求的.1.设集合{}{}21,2,1,0,1,2A x x B =-<<=--,则A B = ()A .{}1,0-B .{}0C .{}0,1D .{}1,0,1-2.已知1,12是方程20x bx a -+=的两个根,则a 的值为()A .12-B .2C .12D .2-3.“1x =”是“21x =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知幂函数ay x =的图象过点(9,3),则a 等于()A .3B .2C .32D .125.已知0.20.50.23,3,log 5a b c ===,则,,a b c 的大小关系是()A .a b c <<B .c a b <<C .c b a <<D .a c b <<6.方程2ln 50x x +-=的解所在区间为()A .(4,5)B .(3,4)C .(2,3)D .(1,2)7.已知函数()22xf x =-,则函数()y f x =的图象可能是()A .B .C .D .8.已知函数()f x 为定义在R 上的奇函数,且在[0,1)为减函数,在[1,+)∞为增函数,且(2)0f =,则不等式(1)()0x f x +≥的解集为()A .(,2][0,1][2,)-∞-+∞B .(,1][0,1][2,+)-∞-∞C .(,2][1,0][1,)-∞--+∞ D .(,2][1,0][2,)-∞--+∞ 二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列叙述正确的是()A .2,230x R x x ∃∈-->B .命题“,12x R y ∃∈<≤”的否定是“,1x R y ∀∈≤或2y >”C .设,x y R ∈,则“2x ≥且2y ≥”是“224x y +≥”的必要不充分条件D .命题“2,0x R x ∀∈>”的否定是真命题10.已知集合{}1,2,3A =,集合{},B x y x A y A =-∈∈,则()A .{}1,2,3AB = B .{}1,0,1,2,3A B =-C .0B∈D .1B-∈11.下列说法不正确的是()A .函数1()f x x=在定义域内是减函数B .若函数()g x 是奇函数,则一定有(0)0g =C .已知函数25,1(),1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩在R 上是增函数,则实数a 的取值范围是[3,1]--D .若函数()f x 的定义域为[2,2]-,则(21)f x -的定义域为13[,22-非选择题部分(共92分)三、填空题:本大题共3小题,每小题5分,共15分.12.函数22,1()23,1x x f x x x ⎧-≤=⎨+>⎩,则((2))f f -的值是▲.13.计算:0ln 2lg 252lg 2eπ+-+=▲.14.x R ∀∈,用函数()m x 表示函数()f x 、()g x 中的最小者,记为{}()min (),()m x f x g x =.若()min m x ={}21,(1)x x -+--,则()m x 的最大值为▲.四、解答题:本大题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤15.(本题满分13分)已知集合{}13A x x =<<,集合{}21B x m x m =<<-.(1)当1m =-时,求A B ;(2)若A B ⊆.求实数m 的取值范围.16.(本题满分15分)已知函数2()23()f x x ax a R =-+∈.(1)若函数()f x 在(,2]-∞上是减函数,求a 的取值范围;(2)当[1,1]x ∈-时,讨论函数()f x 的最小值.17.(本题满分15分)已知函数()af x x x=+,且(1)2f =.(1)求a ;(2)根据定义证明函数()f x 在区间(1,)+∞上单调递增;(3)在区间(1,)+∞上,若函数()f x 满足(2)(21)f a f a +>-,求实数a 的取值范围.18.(本题满分17分)已知函数()ln(1)ln(1)f x x x =--+,记集合A 为()f x 的定义域.(1)求集合A ;(2)判断函数()f x 的奇偶性;(3)当x A ∈时,求函数221()(2x xg x +=的值域.19.(本题满分17分)某校学生社团心理学研究小组在对学生上课注意力集中情况的调查研究中,发现注意力指数p 与听课时间t 之间的关系满足如图所示的曲线.当(0,14]t ∈时,曲线是二次函数图象的一部分,当[14,45]t ∈时,曲线是函数log (5)83a y t =-+,(0a >且1a ≠)图象的一部分.根据专家研究,当注意力指数p 大于80时听课效果最佳.(1)试求()p f t =的函数关系式;(2)老师在什么时段内讲解核心内容能使学生听课效果最佳?请说明理由.2024学年第一学期嘉兴八校联盟期中联考高一年级数学学科试题答案1234567891011A C A DBCBDABDCDABC12.713.114.015.解:(1)当{}1,22m B x x =-=-<<∵{}13A x x =<<∴{}23A B x x =-<< (2)∵A B⊆2113m m ≤⎧⎨-≥⎩,122m m ⎧≤⎪⎨⎪≤-⎩∴2m ≤-∴(,2]m ∈-∞-16.(1)对称轴:x a =∵为减函数∴2a ≥∴[2,)a ∈+∞(2)①当1a <-时,在[1,1]-,则min ()(1)24f x f a =-=+②当11a -≤≤,在[1,1]-有最低点,2min ()()3f x f a a ==-+③1a >时,在[1,1]-,min ()(1)24f x f a ==-+17.(1)∵(1)2f =∴21a=+∴1a =(2)1()f x x x=+12,(1,)x x ∀∈+∞,且12x x <,则12()()f x f x --121211x x x x =+--211212x x x x x x -=-+12121()(1)x x x x =--∵1212,(1,)x x x x <∈+∞∴121212110,01,10x x x x x x -<<<->∴12()()0f x f x -<,即12()()f x f x <故()f x 在(1,)+∞(3)∵在(1,)+∞,(2)(1)f a f a +>-∴211121a a a a +>⎧⎪->⎨⎪+>-⎩,12a a >-⎧⎪>⎨⎪⎩任意成立∴2a >18.(1)1010x x ->⎧⎨+>⎩,11x x <⎧⎨>-⎩,{}11A x x =-<<(2)1()ln()1xf x x-=+可知定义域关于原点对称111()ln(ln(ln ()111x x xf x f x x x x+---====-+++故()f x 为奇函数.(3)令22t x x =+,对称轴1x =-t 在(1,1)-上,故(1,3)t ∈-又1()2ty =在R 上递减故221()(2x xg x +=的值域是:1(,2)8.19.(1)当(0,14]t ∈,设2()f t at bt c =++代入顶点(12,82)1481(,,)可得:21()[12)824f t t =--+当[14,45]t ∈,由log (5)83(01)a y t a a =-+>≠且代入(14,81),13a =,故:1()log (5)833f t t =-+综上2131(12)82,((0,14])4()log (5)83,([14,45])t t p f t t t ⎧--+∈⎪==⎨-+∈⎪⎩(2)当014t <≤,21()(12)82804f t t =--+>∴1214t -<≤当[14,45]t ∈,13()log (5)8380f t t =-+>∴1432t ≤<∴在(1232)-这段时间安排核心内容效果最佳.。
福建省厦门2024-2025学年高一上学期11月期中考试 数学含答案
福建省厦门2024-2025学年高一上学期11月期中考试数学试题(答案在最后)(时间:120分钟满分:150分)注意事项:1.答卷前,考生务必将己的姓名、考生号、考场号和座位号填写在答题卡上.2.选择题答案必须用2B 铅笔将答题卡对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔作答.答案必须写在各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新答案,不准使用铅笔和涂改液,不按以上方式作答无效.4.考试结束后,将答题卡交回.一、单项选择题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1},{2}M xx N x x =≥=<∣∣,则R ()M N ⋂=ð()A.[1,2)B.(,1)[2,)-∞+∞ C.[0,1]D.(,0)[2,)-∞⋃+∞2.命题“20,310x x x ∃>-->”的否定是()A.20,310x x x ∃>--≤B.20,310x x x ∃≤--≤C.20,310x x x ∀>--≤ D.20,310x x x ∀≤--≤3.函数()22()log 2f x x x =--的单调递减区间是()A.1,2⎛⎫-∞ ⎪⎝⎭B.(,1)∞-- C.1,2⎛⎫+∞⎪⎝⎭D.(2,)+∞4.已知函数()()()f x x a x b =--(其中a ,b 为常数,且b a <),若()f x 的图象如图所示,则函数()x g x a b =+的图象是()A.B.C.D.5.已知132a -=,21log 3b =,121log 3c =,则().A.a b c >> B.a c b>> C.c a b>> D.c b a>>6.“函数()2()lg 1f x ax ax =-+的定义域为R ”是“04a <<”的()A .充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.若函数)3()ln1f x mx n x =++(m ,n 为常数)在区间[]1,3上有最大值7,则()f x 在区间[3,1]--上()A.有最大值6B.有最大值5C.有最小值5- D.有最小值7-8.已知函数()f x 对于任意x 、R y ∈,总有()()()2f x f y f x y +=++,且当0x >时,()2f x >,若已知()23f =,则不等式()()226f x f x +->的解集为()A.()2,∞+ B.()1,+∞ C.()3,+∞ D.4,+∞二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.设正数m ,n 满足1m n +=,则()A.12m n+的最小值为3+B.+C.的最大值为14D.44m n +的最小值为410.声强级Li (单位:dB )与声强I (单位:2/m ω)之间的关系是:010lgILi I =⨯,其中0I 指的是人能听到的最低声强,对应的声强级称为闻阈.人能承受的最大声强为21/m ω,对应的声强级为120dB ,称为痛阈.某歌唱家唱歌时,声强级范围为[]70,80(单位:dB ).下列选项中正确的是()A.闻阈的声强为1210-2/m ωB.声强级增加10dB ,则声强变为原来的2倍C.此歌唱家唱歌时的声强范围5410,10--⎡⎤⎣⎦(单位:2/m ω)D.如果声强变为原来的10倍,对应声强级增加10dB11.已知函数()21,2,5,2,xx f x a b c d x x ⎧-≤⎪=<<<⎨->⎪⎩,且()()()()f a f b f d f c ==<,则下列说法正确的是()A.1c ≥ B.0a c +<C.25a d < D.222ab d ++的取值范围为()18,34三、填空题:本题共3小题,每小题5分,共15分.12.已知幂函数()y f x =的图象过点(,则()16f =______.13.411log 2324lg lg245(64)49---+-=__________.14.已知()f x 是定义在上的偶函数,且对x ∀∈R ,都有(2)(2)f x f x -=+,且当[]2,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭.若在区间(]2,6-内关于x 的方程()()()log 201a f x x a -+=>至少有2个不同的实数根,至多有3个不同的实数根,则实数a 的取值范围是______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在①A B A = ,②A B A = ,③A B =∅ 这三个条件中任选一个,补充到下面的问题中,求解下列问题:已知集合{}123A x a x a =-<<+,{}2280B x x x =--≤(1)当2a =时,求A B ;(2)若,求实数a 的取值范围.注:如果选择多个条件解答按第一个解答计分.16.已知函数()()log 1a f x x a =>,关于x 的不等式()1f x <的解集为(),m n ,且103m n +=.(1)求a 的值;(2)是否存在实数λ,使函数()()()2123,,93g x f x f x x λ⎡⎤⎡⎤=-+∈⎣⎦⎢⎥⎣⎦的最小值为34?若存在,求出λ的值;若不存在,说明理由.17.已知()()()1m g x f x g x -=+的定义在上的奇函数,其中()g x 为指数函数,且()g x 的图象过点()2,9.(1)求实数m 的值,并求()f x 的解析式;(2)判断()f x 的单调性,并用单调性的定义加以证明.(3)若对于任意的[]1,2t ∈,不等式()2132104f t t f mt ⎛⎫--+-≤ ⎪⎝⎭恒成立,求实数m 的取值范围.18.随着城市居民汽车使用率的增加,交通拥堵问题日益严重,而建设高架道路、地下隧道以及城市轨道公共运输系统等是解决交通拥堵问题的有效措施.某市城市规划部门为提高早晚高峰期间某条地下隧道的车辆通行能力,研究了该隧道内的车流速度v (单位:千米/小时)和车流密度x (单位:辆/千米)所满足的关系式:()60,030R 80,30120150x v k kx x <≤⎧⎪=∈⎨-<≤⎪-⎩.研究表明:当隧道内的车流密度达到120辆/千米时造成堵塞,此时车流速度是0千米/小时.(1)若车流速度v 不小于40千米/小时,求车流密度x 的取值范围;(2)隧道内的车流量y (单位时间内通过隧道的车辆数,单位:辆/小时)满足y x v =⋅,求隧道内车流量的最大值(精确到1辆/小时),并指出当车流量最大时的车流密度(精确到1辆/千米).2.236≈)19.若函数()f x 与区间D 同时满足:①区间D 为()f x 的定义域的子集,②对任意x D ∈,存在常数0M ≥,使得()f x M ≤成立,则称()f x 是区间D 上的有界函数,其中M 称为()f x 的一个上界.(注:涉及复合函数单调性求最值可直接使用单调性,不需要证明)(1)试判断函数()1923xxf x =-⋅,()22223xf x x x =-+是否为R 上的有界函数?并说明理由.(2)已知函数()121log 1x g x x +=-是区间[]2,3上的有界函数,设()g x 在区间[]2,3上的上界为M ,求M 的取值范围;(3)若函数()2313xxm f x m +⋅=+⋅,问:()f x 在区间[]0,1上是否存在上界M ?若存在,求出M 的取值范围;若不存在,请说明理由.福建省厦门2024-2025学年高一上学期11月期中考试数学试题(时间:120分钟满分:150分)注意事项:1.答卷前,考生务必将己的姓名、考生号、考场号和座位号填写在答题卡上.2.选择题答案必须用2B 铅笔将答题卡对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔作答.答案必须写在各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新答案,不准使用铅笔和涂改液,不按以上方式作答无效.4.考试结束后,将答题卡交回.一、单项选择题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1},{2}M xx N x x =≥=<∣∣,则R ()M N ⋂=ð()A.[1,2)B.(,1)[2,)-∞+∞ C.[0,1]D.(,0)[2,)-∞⋃+∞【答案】B 【解析】【分析】根据集合运算的定义计算.【详解】由已知{|12}M N x x =≤< 所以R (){|1M N x x ⋂=<ð或2}x ≥,故选:B .2.命题“20,310x x x ∃>-->”的否定是()A .20,310x x x ∃>--≤ B.20,310x x x ∃≤--≤C.20,310x x x ∀>--≤ D.20,310x x x ∀≤--≤【答案】C 【解析】【分析】根据存在量词命题的否定形式,即可求解.【详解】命题“20,310x x x ∃>-->”的否定是“20,310x x x ∀>--≤”.故选:C3.函数()22()log 2f x x x =--的单调递减区间是()A.1,2⎛⎫-∞ ⎪⎝⎭B.(,1)∞-- C.1,2⎛⎫+∞⎪⎝⎭D.(2,)+∞【答案】B 【解析】【分析】由对数函数性质计算出定义域后,结合复合函数单调性的判定方法计算即可得.【详解】由题意可得()()22210x x x x --=-+>,解得2x >或1x <-,由2219224y x x x ⎛⎫=--=-- ⎪⎝⎭,则其在(),1∞--上单调递减,在()2,∞+上单调递增,又2log y x =为单调递增函数,故()22()log 2f x x x =--的单调递减区间(),1∞--.故选:B.4.已知函数()()()f x x a x b =--(其中a ,b 为常数,且b a <),若()f x 的图象如图所示,则函数()x g x a b =+的图象是()A. B. C. D.【答案】A 【解析】【分析】由图可得101b a <-<<<,计算出()0g 并结合指数函数性质即可得解.【详解】由图可得101b a <-<<<,则有()0010g a b b =+=+<,且该函数为单调递减函数,故B 、C 、D 错误,A 正确.故选:A.5.已知132a -=,21log 3b =,121log 3c =,则().A.a b c >> B.a c b>> C.c a b>> D.c b a>>【答案】C 【解析】【详解】试题分析:因为13212112(0,1),log 0,log 1,33a b c -=∈==所以.b a c <<选C .考点:比较大小6.“函数()2()lg 1f x ax ax =-+的定义域为R ”是“04a <<”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【详解】若函数()2()lg 1f x ax ax =-+的定义域为,则当0a =,()lg10f x ==,符合要求;当0a ≠时,有2Δ40a a a >⎧⎨=-<⎩,解得04a <<;综上所述,04a ≤<,故“函数()2()lg 1f x ax ax =-+的定义域为”是“04a <<”的必要不充分条件.故选:B .7.若函数)3()ln1f x mx n x =++(m ,n 为常数)在区间[]1,3上有最大值7,则()f x 在区间[3,1]--上()A.有最大值6B.有最大值5C.有最小值5- D.有最小值7-【答案】C【解析】【分析】构造新函数()()1g x f x =-为奇函数,利用奇函数求解.【详解】设3()()1)g x f x mx n x =-=+,则333()))()g x mx n x mx n mx n x g x -=-+-=-+=--+=-,所以()g x 是奇函数,()f x 在[1,3]上有最大值7,则()g x 在[1,3]上有最大值6,所以()g x 在[3,1]--上有最小值6-,于是()f x 在区间[3,1]--上有最小值5-,故选:C .8.已知函数()f x 对于任意x 、R y ∈,总有()()()2f x f y f x y +=++,且当0x >时,()2f x >,若已知()23f =,则不等式()()226f x f x +->的解集为()A.()2,∞+ B.()1,+∞ C.()3,+∞ D.4,+∞【答案】A 【解析】【分析】设()()2g x f x =-,分析出函数()g x 为R 上的增函数,将所求不等式变形为()()324g x g ->,可得出324x ->,即可求得原不等式的解集.【详解】令()()2g x f x =-,则()()2f x g x =+,对任意的x 、R y ∈,总有()()()2f x f y f x y +=++,则()()()g x g y g x y +=+,令0y =,可得()()()0g x g g x +=,可得()00g =,令y x =-时,则由()()()00g x g x g +-==,即()()g x g x -=-,当0x >时,()2f x >,即()0g x >,任取1x 、2x R ∈且12x x >,则()()()12120g x g x g x x +-=->,即()()120g x g x ->,即()()12g x g x >,所以,函数()g x 在R 上为增函数,且有()()2221g f =-=,由()()226f x f x +->,可得()()2246g x g x +-+>,即()()()2222g x g x g +->,所以,()()()32224g x g g ->=,所以,324x ->,解得2x >.因此,不等式()()226f x f x +->的解集为()2,∞+.故选:A.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.设正数m ,n 满足1m n +=,则()A.12m n+的最小值为3+ B.+C.的最大值为14D.44m n +的最小值为4【答案】ABD 【解析】【分析】借助基本不等式中“1”的活用可得A ;由1m n +=+出后利用基本不等式计算可得B ;直接运用基本不等式可得C ;结合基本不等式与同底数幂的乘法运算可得D.【详解】由m ,n 为正数,且满足1m n +=,则有:对A :()121221233n m m n m n m n m n ⎛⎫+=++=+++≥++ ⎪⎝⎭,当且仅当2n mm n=,即2n ==-时,等号成立,故A 正确;对B :21m n +=-,则22122⎛++-= ⎝⎭,当且仅当12m n ==时,等号成立,即22≤+≤,故B 正确;对C :1m n +=≥,当且仅当12m n ==时,等号成立,12≤,故C 错误;对D :444m n ≥==+,当且仅当12m n ==时,等号成立,故D 正确.故选:ABD.10.声强级Li (单位:dB )与声强I (单位:2/m ω)之间的关系是:010lgILi I =⨯,其中0I 指的是人能听到的最低声强,对应的声强级称为闻阈.人能承受的最大声强为21/m ω,对应的声强级为120dB ,称为痛阈.某歌唱家唱歌时,声强级范围为[]70,80(单位:dB ).下列选项中正确的是()A.闻阈的声强为1210-2/m ωB.声强级增加10dB ,则声强变为原来的2倍C.此歌唱家唱歌时的声强范围5410,10--⎡⎤⎣⎦(单位:2/m ω)D.如果声强变为原来的10倍,对应声强级增加10dB 【答案】ACD 【解析】【分析】依题意求出0I ,即可判断A ;将70Li =、80Li =代入求声强范围判断C ;设声强变为原来的k 倍,对应声强级增加10dB ,依题意得到方程,解得k ,即可判断B 、D.【详解】解:由题意0110lg120I =,即01lg 12I =,所以120110I =,所以12010I -=2ω/m ,故1210lg(10)12010lg Li I I ==+,故A 正确;若70Li =dB ,即10lg 50I =-,则510I -=2ω/m ;若80Li =dB ,即10lg 40I =-,则410I -=2ω/m ,故歌唱家唱歌时的声强范围5410,10--⎡⎤⎣⎦(单位:2ω/m ),C 正确;设声强变为原来的k 倍,对应声强级增加10dB ,则()()12010lg 12010lg 10kI I +-+=,解得10k =,即如果声强变为原来的10倍,对应声强级增加10dB ,故D 正确,B 错误;故选:ACD11.已知函数()21,2,5,2,xx f x a b c d x x ⎧-≤⎪=<<<⎨->⎪⎩,且()()()()f a f b f d f c ==<,则下列说法正确的是()A.1c ≥ B.0a c +<C.25a d < D.222ab d ++的取值范围为()18,34【答案】CD 【解析】【分析】作出函数图像判断A ,举反例判断B ,转化为一元函数,利用二次函数的性质判断C ,指数函数的性质判断D 即可.【详解】结合函数()f x 的图象可知,()0,01,4,5a b d <<<∈,由c b >,得不出1c ≥,故A 错误,令1,2a c =-=,此时()()132f a f c =<=,但是0a c +>,故B 错误.因为215a d -=-,所以125a d -=-,所以24a d =-,则()24a d d d =-,又()4,5d ∈,所以()2244()a d d d d d f d =-=-=,由二次函数性质得()f d 在()4,5上单调递增,故()(5)5f d f <=,所以C 正确.因为2121a b-=-,所以222a b +=,故22222a b d d =+++,令2()2d g d +=,由指数函数性质得()g d 在()4,5上单调递增,所以222a b d ++的取值范围为(18,34),故D 正确.故选:CD【点睛】关键点点睛:本题考查求多变元表达式的范围,解题关键是合理利用函数图像找到变量关系,构造一元函数,然后利用指数函数的性质得到所要求的取值范围即可.三、填空题:本题共3小题,每小题5分,共15分.12.已知幂函数()y f x =的图象过点(,则()16f =______.【答案】4【解析】【分析】先由幂函数的定义用待定系数法设出其解析式,代入点的坐标,求出幂函数的解析式,再求(16)f 的值【详解】解:由题意令()a y f x x ==,由于图象过点,2a =,12a =12()y f x x∴==12(16)164f ∴==故答案为:4.【点睛】本题考查幂函数的单调性、奇偶性及其应用,解题的关键是熟练掌握幂函数的性质,能根据幂函数的性质求其解析式,求函数值,属于基础题.13.411log 2324lg lg245(64)49---+-=__________.【答案】3-【解析】【分析】根据条件,利用指对数的运算法则,即可求出结果.【详解】因为4411log 1log 232214lg lg245(64)44lg 2lg 49(lg 5lg 49)44(lg 2lg 5)43492---+-=⨯-+-+-=⨯-+-=-,故答案为:3-.14.已知()f x 是定义在上的偶函数,且对x ∀∈R ,都有(2)(2)f x f x -=+,且当[]2,0x ∈-时,()112x f x ⎛⎫=- ⎪⎝⎭.若在区间(]2,6-内关于x 的方程()()()log 201a f x x a -+=>至少有2个不同的实数根,至多有3个不同的实数根,则实数a 的取值范围是______.2a ≤<【解析】【分析】先根据题意分析函数()f x 的对称性及周期性;再利用函数的对称性和周期性作出函数()f x 在[]2,6-上的图象;最后数形结合列出不等式组求解即可.【详解】由(2)(2)f x f x -=+,可得:()()4f x f x -=+,又因为()f x 是定义在R 上的偶函数,则−=,且函数()f x 图象关于y 轴对称,所以()()4f x f x +=,即()f x 的周期为4,作出函数1()12xf x ⎛⎫=- ⎪⎝⎭在[]2,0x ∈-上的图象,根据()f x 对称性及周期为4,可得出()f x 在[]2,6-上的图象:令()()()log 21a g x x a =+>,若在区间(2,6]-内关于x 的方程()log (2)0(1)a f x x a -+=>至少有2个不同的实数根,至多有3个不同的实数根,则函数()f x 与函数()log (2)(1)a g x x a =+>在(2,6]-上至少有2个不同的交点,至多有3个不同的交点,所以()()()()2266g f g f ⎧≤⎪⎨>⎪⎩,即()()log 223log 623a a ⎧+≤⎪⎨+>⎪⎩2a ≤<.2a ≤<.【点睛】关键点点睛:本题考查函数性质的综合应用,函数与方程的综合应用及数形结合思想.解题关键在于根据题意分析出分析函数()f x 的对称性及周期性,并作出()f x 和()g x 图象;将方程根的问题转化为函数图象交点问题,数形结合解答即可.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在①A B A = ,②A B A = ,③A B =∅ 这三个条件中任选一个,补充到下面的问题中,求解下列问题:已知集合{}123A x a x a =-<<+,{}2280B x x x =--≤(1)当2a =时,求A B ;(2)若,求实数a 的取值范围.注:如果选择多个条件解答按第一个解答计分.【答案】(1){}27A B x x ⋃=-≤<(2)答案见解析【解析】【分析】(1)代入a 的值表示出A ,求解出一元二次不等式的解集表示出B ,根据并集运算求解出结果;(2)若选①:根据条件得到A B ⊆,然后分类讨论A 是否为空集,由此列出不等式组求解出结果;若选②:根据条件得到B A ⊆,然后列出不等式组求解出结果;若选③:根据交集结果分析,A B 集合的端点值的关系,列出不等式并求解出结果.【小问1详解】当2a =时,{}17A x x =<<,{}{}228024B x x x x x =--≤=-≤≤,因此,{}27A B x x ⋃=-≤<.【小问2详解】选①,因为A B A = ,可得A B ⊆.当123a a -≥+时,即当4a ≤-时,A B =∅⊆,合乎题意;当123a a -<+时,即当4a >-时,A ≠∅,由A B ⊆可得12234a a -≥-⎧⎨+≤⎩,解得112a -≤≤,此时112a -≤≤.综上所述,实数a 的取值范围是{4a a ≤-或112a ⎫-≤≤⎬⎭;选②,因为A B A = ,可得B A ⊆.可得12234123a a a a -≤-⎧⎪+≥⎨⎪-<+⎩,此时不等式组无解,所以实数a 的取值范围是∅;选③,当123a a -≥+时,即当4a ≤-时,A =∅,A B =∅ ,满足题意;当123a a -<+时,即当4a >-时,A ≠∅,因为A B =∅ ,则232a +≤-或14a -≥,解得52a ≤-或5a ≥,此时542a -<≤-或5a ≥,综上所述,实数a 的取值范围是52a a ⎧≤-⎨⎩或}5a ≥.16.已知函数()()log 1a f x x a =>,关于x 的不等式()1f x <的解集为(),m n ,且103m n +=.(1)求a 的值;(2)是否存在实数λ,使函数()()()2123,,93g x f x f x x λ⎡⎤⎡⎤=-+∈⎣⎦⎢⎥⎣⎦的最小值为34?若存在,求出λ的值;若不存在,说明理由.【答案】(1)3a =(2)138λ=-或32【解析】【分析】(1)先根据()1f x <,求出不等式的解,结合103n m +=可得a 的值;(2)利用换元法,把函数()g x 转化为二次函数,结合二次函数区间最值法求解.【小问1详解】由log 1a x <可得1log 1a x -<<,又1a >,所以1x a a <<,又因为()1f x <的解集为(),m n ,所以1,n a m a ==,因为103n m +=,所以1103a a +=,即()()231033130a a a a -+=--=,解得3a =或13a =,因为1a >,所以3a =;【小问2详解】由(1)可得()()2331log 2log 3,,93g x x x x λ⎡⎤=-+∈⎢⎥⎣⎦,令31log ,,93t x x ⎡⎤=∈⎢⎥⎣⎦,则[]1,2t ∈-,设()[]223,1,2h t t t t λ=-+∈-,①当1λ≤-时,()h t 在[]1,2-上单调递增,则()()min 31424h t h λ=-=+=,解得138λ=-,符合要求;②当12λ-<<时,()h t 在[]1,λ-上单调递减,在[],2λ上单调递增,()()22min 3234h t h λλλ==-+=,解得32λ=±,又12λ-<<,故32λ=;③当2λ≥时,()h t 在[]1,2-上单调递减,()()min 324434h t h λ==-+=,解得25216λ=<,不合题意;综上所述,存在实数138λ=-或32符合题意.17.已知()()()1m g x f x g x -=+的定义在上的奇函数,其中()g x 为指数函数,且()g x 的图象过点()2,9.(1)求实数m 的值,并求()f x 的解析式;(2)判断()f x 的单调性,并用单调性的定义加以证明.(3)若对于任意的[]1,2t ∈,不等式()2132104f t t f mt ⎛⎫--+-≤ ⎪⎝⎭恒成立,求实数m 的取值范围.【答案】(1)1m =,()1313xxf x -=+(2)()f x 在R 上单调递减,证明见解析(3)178m ≥【解析】【分析】(1)利用待定系数法可求出()g x 的表达式,结合奇函数性质计算即可得解;(2)设12x x <,从而计算()()12f x f x -的正负即可得证;(3)由奇函数性质结合函数单调性可得212134mt t t -≥+对[]1,2t ∈恒成立,构造二次函()()21284h t t m t =+-+,结合二次函数性质可得()()1020h h ⎧≤⎪⎨≤⎪⎩,解出即可得.【小问1详解】设()()0,1x g x a a a =>≠,由()g x 的图象过点()2,9,可得29a =,∴3a =(负值舍去),即()3x g x =,故函数()()()3113xxm g x m f x g x --==++,由()f x 为奇函数,可得()()()01001011m g m f g --===++,∴1m =,即()1313xx f x -=+,满足()()13311313x x x x f x f x -----===-++,即()f x 为奇函数,故1m =;【小问2详解】()f x 在R 上单调递减,证明如下:()()2131321131313x x x x x f x -+-===-+++,设12x x <,则12033x x <<,则()()()()()211212122332213131313x x x x x x f x f x --=-=++++,结合12033x x <<,可得()212330x x ->,∴()()120f x f x ->,即()()12f x f x >,故()f x 在R 上单调递减;【小问3详解】由()2132104f t t f mt ⎛⎫--+-≤ ⎪⎝⎭且()f x 为奇函数,所以()212134f mt f t t ⎛⎫-≤+ ⎪⎝⎭,又()f x 在R 上单调递减,所以212134mt t t -≥+对[]1,2t ∈恒成立,所以()212840t m t +-+≤对[]1,2t ∈恒成立,令()()21284h t t m t =+-+,所以有()()1020h h ⎧≤⎪⎨≤⎪⎩,即1128404241640m m +-+≤⎧⎨+-+≤⎩,解得178m ≥.18.随着城市居民汽车使用率的增加,交通拥堵问题日益严重,而建设高架道路、地下隧道以及城市轨道公共运输系统等是解决交通拥堵问题的有效措施.某市城市规划部门为提高早晚高峰期间某条地下隧道的车辆通行能力,研究了该隧道内的车流速度v (单位:千米/小时)和车流密度x (单位:辆/千米)所满足的关系式:()60,030R 80,30120150x v k k x x <≤⎧⎪=∈⎨-<≤⎪-⎩.研究表明:当隧道内的车流密度达到120辆/千米时造成堵塞,此时车流速度是0千米/小时.(1)若车流速度v 不小于40千米/小时,求车流密度x 的取值范围;(2)隧道内的车流量y (单位时间内通过隧道的车辆数,单位:辆/小时)满足y x v =⋅,求隧道内车流量的最大值(精确到1辆/小时),并指出当车流量最大时的车流密度(精确到1辆/千米).2.236≈)【答案】(1)车流密度x 的取值范围是(]0,90(2)隧道内车流量的最大值约为3667辆/小时,此时车流密度约为83辆/千米.【解析】【分析】(1)根据题意得2400k =,再根据分段函数解不等式即可得答案;(2)由题意得60,030240080,30120150x x y x x x x <≤⎧⎪=⎨-<≤⎪-⎩,再根据基本不等式求解最值即可得答案.【小问1详解】解:由题意知当120x =(辆/千米)时,0v =(千米/小时),代入80150k v x=--,解得2400k =,所以60,030240080,30120150x v x x <≤⎧⎪=⎨-<≤⎪-⎩.当030x <≤时,6040v =≥,符合题意;当30120x <≤时,令24008040150x-≥-,解得90x ≤,所以3090x <≤.所以,若车流速度v 不小于40千米/小时,则车流密度x 的取值范围是(]0,90.【小问2详解】解:由题意得60,030240080,30120150x x y x x x x <≤⎧⎪=⎨-<≤⎪-⎩,当030x <≤时,60y x =为增函数,所以1800y ≤,当30x =时等号成立;当30120x <≤时,()()2150180150450024004500808080180150150150150x x x y x x x xx --+--⎡⎤⎛⎫=-==--+ ⎪⎢⎥---⎝⎭⎣⎦4800(33667≤-≈.当且仅当4500150150x x-=-,即30(583x =-≈时等号成立.所以,隧道内车流量的最大值约为3667辆/小时,此时车流密度约为83辆/千米.19.若函数()f x 与区间D 同时满足:①区间D 为()f x 的定义域的子集,②对任意x D ∈,存在常数0M ≥,使得()f x M ≤成立,则称()f x 是区间D 上的有界函数,其中M 称为()f x 的一个上界.(注:涉及复合函数单调性求最值可直接使用单调性,不需要证明)(1)试判断函数()1923x x f x =-⋅,()22223x f x x x =-+是否为R 上的有界函数?并说明理由.(2)已知函数()121log 1x g x x +=-是区间[]2,3上的有界函数,设()g x 在区间[]2,3上的上界为M ,求M 的取值范围;(3)若函数()2313xx m f x m +⋅=+⋅,问:()f x 在区间[]0,1上是否存在上界M ?若存在,求出M 的取值范围;若不存在,请说明理由.【答案】(1)()1f x 不是R 上的有界函数,()2f x 是R 上的有界函数(2)[)2log 3,+∞(3)答案见解析【解析】【分析】(1)根据有界函数的定义,分别计算出()1f x 及()2f x 的值域即可判断;(2)先求解函数()g x 的值域,进而求解()g x 的取值范围,再根据有界函数的定义确定上界M 的取值范围;(3)先求解函数()f x 及()f x ,再根据有界函数的定义,讨论m 取不同数值时,函数是否存在上界,并求解出对应的上界范围.【小问1详解】()()21923311x x x f x =-⋅=-- ,()1f x ∴的值域为[)1,-+∞()1f x ∴不是R 上的有界函数;()22223x f x x x =-+,则()200f =,当0x ≠时,()22223232x f x x x x x ==-++-,当0x >时,3x x +≥=x =则()2102f x <≤,当0x <时,33x x x x ⎛⎫+=--+≤-- ⎪-⎝⎭,当且仅当x =则()2102f x ->≥,综上可得,()211,22f x ⎡⎤+∈⎢⎥⎣⎦,即有()212f x +≤在R 上恒成立,()2f x ∴是R 上的有界函数;【小问2详解】()112212log log 111x g x x x +⎛⎫==+ ⎪--⎝⎭,易知()g x 在区间[]2,3上单调递增,∴()[][]2log 3,1,2,3g x x ∈--∈,∴()[]1221log 1,log 31x g x x +=∈-,所以上界M 构成的集合为[)2log 3,+∞;【小问3详解】()23113311x x x m f x m m +⋅==++⋅+⋅,当0m =时,()2f x =,()2f x =,此时M 的取值范围是[)2,+∞,当0m >时,()1311x f x m =++⋅在[]0,1上是单调递减函数,其值域为()232,131m m f x m m ++⎡⎤∈⎢⎥++⎣⎦,故()232,131m m f x m m ++⎡⎤∈⎢⎥++⎣⎦,此时M 的取值范围是2,1m m +⎡⎫+∞⎪⎢+⎣⎭,当0m <时,[]1331,1xm m m +⋅∈++,若()f x 在[]0,1上是有界函数,则区间[]0,1为()f x 定义域的子集,所以[]31,1m m ++不包含0,所以310m +>或10+<m ,解得:1m <-或103m -<<,0m <时,()1311x f x m =++⋅在[]0,1上是单调递增函数,此时()f x 的值域为232,131m m m m ++⎡⎤⎢⎥++⎣⎦,①232311m m m m ++≥++,即33m --≤或103m -<<时,()32323131m m f x m m ++≤=++,此时M 的取值范围是32,31m m +⎡⎫+∞⎪⎢+⎣⎭,②232311m m m m ++<++,即313m --<<-时,()2211m m f x m m ++≤=-++,此时M 的取值范围是2,1m m +⎡⎫-+∞⎪⎢+⎣⎭,综上:当0m ≥时,存在上界M ,2,1m M m +⎡⎫∈+∞⎪⎢+⎣⎭;当13m ≤--或103m -<<时,存在上界M ,32,31m M m +⎡⎫∈+∞⎪⎢+⎣⎭;当113m --<<-时,存在上界M ,2,1m M m +⎡⎫∈-+∞⎪⎢+⎣⎭,当113m -≤≤-时,此时不存在上界M .【点睛】关键点点睛,本题关键点在于求出所给函数在对应定义域范围内的值域,从而可结合定义,得到该函数是否为有界函数.。
江苏省扬州市扬州中学2024-2025学年高一上学期11月期中数学试题(含答案)
江苏省扬州中学2024-2025学年第一学期期中试题高一数学 2024.11试卷满分:150分,考试时间:120分钟注意事项:1.作答前,请考生务必将自己的姓名、考试证号等写在答题卡上并贴上条形码2.将选择题答案填写在答题卡的指定位置上(用2B 铅笔填涂),非选择题一律在答题卡上作答(用0.5mm 黑色签字笔作答),在试卷上答题无效。
3.考试结束后,请将答题卡交监考人员。
一、单项选择题:本大题共8小题,每小题5分,共40分。
在每题给出的四个选项中只有一项是最符合题意的。
1.已知集合,,则( )A. B. C. D. 或2. 已知为常数,集合,集合,且,则的所有取值构成的集合元素个数为( )A. 1B. 2C. 3D.43.设为奇函数,且当时,,则当时,( )A. B. C. D. 4.函数的值域为( )A. B. C. D. 5.已知函数的定义域为,则函数)A. B. C. D. 6. 若不等式的解集为,那么不等式的解集为( ){|02}A x x =<<{|14}B x x =<<A B = {|02}x x <<{|24}x x <<{|04}x x <<{2|x x <4}x >a {}260A x x x =+-=∣{20}B x ax =-=∣B A ⊆a ()f x 0x ≥()2f x x x =+0x <()f x =2x x +2x x -2x x --2x x -+x x y 211-++=(]2,∞-()2,∞-()20,[)∞+,2(2)f x +(3,4)-()g x =(1,6)(1,2)(1,6)-(1,4)20ax bx c ++>{}12x x -<<()()2112a x b x c ax ++-+>A. B. 或C. 或 D. 7.命题在单调增函数,命题在上为增函数,则命题是命题的( )条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要8. 已知,则的最大值为( )A. B. C. D.二、多项选择题:本大题共3小题,每小题6分,共18分。
江西省部分学校2024-2025学年高一上学期11月期中考试数学试题(含解析)
江西省2024—2025学年上学期第一次模拟选科联考高一数学试卷共4页,19小题,满分150分。
考试用时120分钟。
注意事项:1.考查范围:必修第一册第一章至第三章第二节。
2.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡指定位置上。
3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
4.考生必须保持答题卡的整洁。
考试结束后,请将答题卡交回。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合,,则A.{2,3,4,5}B.{1,3,4}C.{3,4}D.{3}2.已知命题,,则为A., B.,C., D.,3.已知为定义在R 上的奇函数,当时,,则A. B.C. D.4.已知是幂函数,若,则a =A.B.2C.4D.65.若A. B. C. D.6.已知定义在R 上的函数满足,且,且,,则A. B.C. D.7.若关于x 的不等式的解集为,且,则实数m 的值为}{1,2,3,4,5U =2}{1,M =}2,{3,4N =()U M N = ð:1p x ∃>320x ->p ⌝1x ∀…320x ->1x ∀…320x -…1x ∀>320x -<1x ∀>320x -…()f x 0x >31()1f x x x =-+(1)f -=12-1232-3292()(4)m f x m x -=-()2f a =121a <-=5(1)a -+5(1)a +6(1)a -+6(1)a +()f x (5)(5)f x f x +=-12,(5,)x x ∀∈+∞12x x ≠121[(()()x x x f --2]()0f x >(5.5)(4.5)f f >(2.7)(3.2)f f <(7.3)(7.9)f f >(2.7)(5.2)f f >220()21x m x m m +-+-<12(,)x x 12112x x +=A.-4B.-1C.1D.48.已知函数若存在实数x ,使,则实数a 的取值围为A. B.C. D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列计算中正确的是A.C. D.10.使成立的一个充分条件可以是A.且 B.且C.且 D.且11.已知函数的定义域为R ,且的图象关于原点对称,的图象关于y 轴对称,则A. B.C.函数是增函数D.三、填空题:本题共3小题,每小题5分,共15分.12.已知函数,则________.13.已知幂函数的图象过点,则________.14.对于任意实数x ,表示不小于x 的最小整数,例如(1.2)=2,,表示不大于x 的最大整数,例如[1.2]=1,.已知定义在R 上的函数,若集合,则集合A 中所有元素的和为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数在上单调递减,其中,且.(1)求的解析式;(2)求函数,的值域.16.(15分)已知集合,,且.23,2,(),2,x ax a x f x a x ⎧-++>⎪=…()0f x <(,1)-∞-(,2)(6,)-∞-+∞(,6)(1,)-∞--+∞(,1)(6,)-∞-+∞ 1144-=2=±23(8)4-=23184-=3a b c ->a c >2b c >-2a c >b c >-2a c >b c>-3a c >2b c>()f x (2)4y f x =+-(4)4y f x x =++(2)4f =(6)12f =-()f x (8)(4)824f x f x x -+-=-30,()()1,0,x f x g x x x x ==-<⎪⎩…((1))g f -=()m f x x =3(3,33[(2)]f =()x (0.2)0-=[]x 0.21[]-=-()(2)[3]f x x x =⋅4|(),23A y y f x x ⎧⎫==-<-⎨⎬⎩⎭…()af x b x=+(0,)+∞24a =(1)1f =()f x 2()2()[()]g x f x f x =+[1,4]x ∈(4,29]A m =+{|2233}B x m x m =-+……12B ∈(1)当时,求实数m 的取值范围;(2)设;,若p 是q 的必要不充分条件,求实数m 的取值范围.17.(15分)已知定义在R 上的奇函数与偶函数满足,若.(1)求的解析式;(2)求关于x 的不等式的解集.18.(17分)某糕点连锁店现有五家分店,出售A ,B 两款糕点,A 为特价糕点,为吸引顾客,按进价销售.已知用16000元购进A 糕点与用22000元购进B 糕点的重量相同,且B 糕点每斤的进价比A 糕点每斤的进价多6元.(1)求A ,B 两种糕点每斤的进价;(2)经市场调查发现,B 糕点每斤售价30元时,每月可售出3120斤,售价每提高1元,则每月少售出120斤,售价每降低1元,则每月多售出120斤,糕点店不会低于进价销售.则B 糕点每斤定价为多少元时,糕点店通过卖B 糕点获得的月利润最大?最大是多少?(3)因为使用进价销售的A 糕点物美价廉,所以深受顾客青睐,五个分店每月的总销量为10000斤.今年年初该连锁店用50万购进一批设备,用于生产A 糕点.已知每斤糕点的原材料价格为8元,若生产A 糕点n 个月()所用的原材料之外的各种费用总计为万元,若只考虑A 糕点,记该连锁店前n 个月的月平均利润为z 万元,求z 的最大值.19.(17分)对非空数集A 及实数k ,定义,,已知.(1)当时,若集合A 为单元素集,求A ;(2)当时,若集合,求ab 的所有取值构成的集合;(3)若A 中有3个元素,求实数k 的取值范围.16A ∉:p t A ∈:q t B ∈()f x ()g x ()()2||2f x g x x x +=++()()()h x f x g x =⋅()h x 2(3)(3)0h x tx h x t -+-<*n ∈N 211324n n +2{|,}A k x x a k a A ==-∈ {|,}A k x x k a a A ⊗==-∈A k A k =⊗ 1k =3k ={,}A a b =江西省2024—2025学年上学期第一次模拟选科联考高一数学参考答案及评分细则1.【答案】A【解析】,故选A.2.【答案】D【解析】根据存在量词命题的否定是全称量词命题,得,.故选D.3.【答案】B【解析】因为为定义在R 上的奇函数,所以.故选B.4.【答案】C【解析】因为是幂函数,所以,得,故时,.故选C.5.【答案】C【解析】当时,.故选C.6.【答案】D【解析】由题意得函数在上单调递减,在上单调递增.对选项A ,,A 错误;对选项B ,因为函数在上单调递减,所以,B 错误;对选项C ,因为函数在上单调递增,所以,C 错误;对选项D ,因为,函数在上单调递减,故,D 正确.故选D.7.【答案】B【解析】因为关于x 的不等式的解集为,所以关于x 的方程有两个不相等的实数根,所以,解得,且,,所以,解得.故选B.8.【答案】D【解析】当时,,即,因为,所以,故有解,{3,4,5}{2,3,4}{2,3,4,5}()U M N == ð:1p x ⌝∀>320x -…()f x 311(1)(1)1112f f ⎛⎫-=-=--= ⎪+⎝⎭92()(4)m f x m x-=-41m -=5m =12()f x x ==2=4a =1a <-10a +<3(1)a =--3(1)a =+=336(1)(1)(1)a a a --+=-+()f x (,5)-∞(5,)+∞(5.5)(50.5)f f =+=(50.5)(4.5)f f -=()f x (,5)-∞(2.7)(3.2)f f <()f x (5,)+∞(7.3)(7.9)f f >(5.2)(5f f =+0.2)(50.2)(4.8)f f =-=()f x (,5)-∞(2.7)(4.8)(5.2)f f f >=220()21x m x m m +-+-<12(,)x x 220()21x m x m m +-+-=12,x x 22[2(1)]41()440m m m m ∆=--⨯⋅-=-+>1m <122(1)x x m +=--212x x m m =-1221212112(1)2x x m x x x x m m+--+===-1m =-2x >230x ax a -++<23(1)x a x +<-2x >11x ->231x a x +>-即,因为,当且仅当,即时等号成立,故;当时,有解,即有解,也即,因为单调递增,故时,取最大值-1,故.综上,实数a的取值范围为.故选D.9.【答案】ACD (每选对1个得2分)【解析】对于A ,,A 正确;对于B,B 错误;对于C ,,C 正确;对于D ,,D 正确.故选ACD.10.【答案】AC (每选对1个得3分)【解析】充分性成立,即选项能推出,对于A ,,又,同向不等式相加得,A 成立;对于B ,令,,,满足且,但,B 不成立;对于C ,,又,同向不等式相加得,,C 成立;对于D ,令,,,满足且,但,D 不成立.故选AC.11.【答案】ABD (每选对1个得2分)【解析】A 选项,的定义域为R ,因为的图象关于原点对称,所以为奇函数,所以,故,令,得,A 正确;B 选项,由的图象关于y 轴对称,得为偶函数,所以,即,令,得,得,B 正确;C 选项,因为,C 错误;D 选项,因为,所以,因为,令,得,即,故,,D 正确.故选ABD.12.【答案】-8【解析】,.13.【答案】64【解析】由,所以.14.【答案】67【解析】当时,;当时,,,2min31x ax ⎛⎫+>⎪-⎝⎭223(11)341226111x x x x x x +-++==-+++=--- (4)11x x -=-3x =6a >2x …0a +<a <max (a <y =2x =y =1a <-(,1)(6,)-∞-+∞ 1144-=2=23(8)4-==232311848-===3a b c ->22b c b c <-⇒->a c >3a b c ->3a =7b =1c =-2a c >b c >-433a b c -=-<-=b c b c <-⇒->2a c >3a b c ->5a =8b =1c =-3a c >2b c >33a b c -=-=()f x (2)4y f x =+-(2)4y f x =+-(2)4(2)40f x f x --++-=(2)(2)8f x f x -++=0x =(2)4f =(4)4y f x x =++(4)4y f x x =++(4)4(4)4f x x f x x --=++(4)(4)8f x f x x -=++2x =4(2)(6)16f f ==+(6)12f =-(2)(6)f f >(2)(2)8f x f x -++=()8(4)f x f x =--(4)(4)8f x f x x -=++4x t -=()(8)328f t f t t =-+-()(8)328f x f x x =-+-8(4)(8)328f x f x x --=-+-(8)(4)824f x f x x -+-=-(1)112f -=--=-3((1))(2)(2)8g f g -=-=-=-333m =3m =-3()f x x =333(3(36[(2)](22264f ⨯====2x =-()(4)[6](4)(6)24f x =-⋅-=-⨯-=523x -<<-10423x -<<-(2)3x =-,,;当时,,,,,;当时,,,,,.综上,,集合A 中所有元素的和为67.15.解:(1)由得,(2分)因为函数在上单调递减,所以,故.(5分)由得,所以.(7分)(2),(10分)当时,,,,所以函数,的值域为.(13分)【评分细则】值域写成集合或区间形式均给分.16.解:(1)因为,所以,得,(2分)又因为,所以,即,(5分)故当时,m 的取值范围是.(7分)(2)因为,所以,,若p 是q 的必要不充分条件,则B 是A 的真子集,(10分)故(12分)解得.故实数m 的取值范围是.(15分)【评分细则】结果写成集合或区间或不等式形式均给分.17.解:(1)因为,即,又,得,,(4分)635x -<<-[3]6x =-()(2)[3](3)(6)18f x x x =⋅=-⨯-=5332x -- (10)233x --……(2)3x =-9532x --……[3]5x =-()(2)[3](3)(5)15f x x x =⋅=-⨯-=3423x -<<-8323x -<<-(2)2x =-9342x -<<-[3]5x =-()(2)[3](2)(5)10f x x x =⋅=-⨯-={24,18,15,10}A =24a =2a =±()af x b x=+(0,)+∞0a >2a =(1)21f b =+=1b =-2()1f x x=-222424()2()[()]211g x f x f x x x x ⎛⎫=+=-+-=- ⎪⎝⎭[1,4]x ∈2[1,16]x ∈241,44x ⎡⎤∈⎢⎥⎣⎦2131,34x ⎡⎤-∈-⎢⎥⎣⎦2()2()[()]g x f x f x =+[1,4]x ∈3,34⎡⎤-⎢⎥⎣⎦12B ∈221233m m -+……37m ……16A ∉2916m +<72m <16A ∉73,2⎡⎫⎪⎢⎣⎭37m ……A O ≠B O ≠224,3329,m m m ->⎧⎨++⎩…36m <…(3,6]()()2||2f x g x x x -+-=-+-+()()2||2f x g x x x -+=-++()()2||2f x g x x x +=++()2f x x =()||2g x x =+所以.(5分)(2)因为,所以为奇函数,(7分)又当时,单调递增,故函数在R 上单调递增.(9分)则不等式,可化为,即,即,(11分)①若,即时,;②若,即时,不等式无解;③若,即时,,综上,当时,解集为,当时,解集为,当时,解集为.(15分)【评分细则】1.第一问求出和的解析式分别给2分;2.第一问结果写成分段函数形式不扣分;3.第二间结果不写成集合或区间形式扣1分,未总结,但结果正确均给满分,三种情况每少一种情况扣1分.18.解:(1)设A 糕点每斤的进价为a 元,B 糕点每斤的进价为元,所以,解得,所以A 糕点每斤的进价为16元,B 糕点每斤的进价为22元.(4分)(2)设B 糕点每斤涨价元,蛋糕店通过B 糕点获得的月利润为y 元.由题意,(6分)当时,y 有最大值.(8分)所以B 糕点每斤定价为39元时,月利润最大,最大为34680元.(9分)(3)设前n 个月的总利润为w ,因为A 糕点每斤售价为16元,每月可售出10000斤,故每月可收入16万元,其中原材料为8万元,则,(12分)月平均利润万元,(15分)()()()2(||2)h x f x g x x x =⋅=+()2()(||2)2(||2)()h x x x x x h x -=--+=-+=-()h x 0x …2()24h x x x =+()h x 2(3)(3)0h x tx h x t -+-<2(3)(3)(3)h x tx h x t h t x -<--=-23(3)0x t x t +--<(3)(1)0x t x -+<13t <-3t <-13tx <<-13t=-3t =-13t >-3t >-13t x -<<3t <-|13t x x ⎧⎫<<-⎨⎬⎩⎭3t =-∅3t >-|13t x x ⎧⎫-<<⎨⎬⎩⎭()f x ()g x (6)a +16000220006a a =+16a =(8)x x -…22(3022)(3120120)120216024960120(9)34680y x x x x x =+--=-++=--+9x =22*111311685050()324324w n n n n n n n ⎛⎫=--+-=-+-∈ ⎪⎝⎭N 503131215.2532444w n z n n ==--+-+==…当且仅当,即时等号成立,(16分)所以z 的最大值为5.25.(17分)【评分细则】1.第二问未配方,只要结果正确,就给分;2.第三问未说明等号成立条件扣1分.19.解:(1)时,设,由,得,所以,即,得或1,故或.(4分)(2)时,,由,得,得或即或(5分)当时,是方程的两根,故,(6分)当时,两式相减得,由集合中元素的互异性得,所以,故,即,同理,故是方程的两根,所以,(7分)故ab 的所有取值构成的集合为.(8分)(3)设,由,得,①若故是方程的三个不等的实数根,而此方程最多有两个实数根,不可能有三个实数根,故不成立;(11分)②若,当时,,令,得,(12分)对,,两式相减得,因为,所以,代入,得,同理,5032n n=40n =1k ={}A a =11A A =⊗ 2{1}{1}a a -=-211a a -=-220a a +-=2a =-{2}A =-1}{A =3k ={,}A a b =33A A =⊗ 22{3,3}{3,3}a b a b --=--2233,33a a b b ⎧-=-⎨-=-⎩2233,33,a b b a ⎧-=-⎨-=-⎩2260,60a a b b ⎧+-=⎨+-=⎩226,6,a b b a ⎧=-⎨=-⎩2260,60a ab b ⎧+-=⎨+-=⎩,a b 260x x +-=6ab =-226,6a b b a⎧=-⎨=-⎩22a b a b -=-a b ≠1a b +=266(1)5a b a a =-=--=+250a a --=250b b --=,a b 250x x --=5ab =-{6,5}--{,,}A a b c =A k A k =⊗ 222{,,}{,,}a k b k c k k a k b k c ---=---222,,,a k k a b k k b c k k c ⎧-=-⎪-=-⎨⎪-=-⎩,,a b c 220x x k +-=222,,,a k kb b k k ac k k c ⎧-=-⎪-=-⎨⎪-=-⎩2c k k c -=-220c c k +-=180k ∆=+ (1)8k -…2a k k b -=-2b k k a -=-22a b a b -=-a b ≠1a b +=2a k k b -=-2120a a k -+-=2120b b k -+-=故为方程的两个不相等的实根,令,得,(13分)当时,与均有两个不相等的实根,且这两个方程的根不完全相同,故符合题意;(14分)③若则,根据集合中元素的互异性,两两不相等,不妨设,(ⅰ)当时,,又,所以,这与矛盾,故不成立;(ⅱ)当时,,又,所以,这与矛盾,故不成立;(ⅲ)当时,,又,所以,这与矛盾,故不成立;(ⅳ)当时,,又,所以,这与矛盾,故不成立.(16分)综上,实数k 的取值范围是.(17分)【评分细则】1.第一问只得出一种情况,扣2分;结果不写成集合形式,扣1分;2.第二问求出ab 的一个值,给2分,最后结果不写成集合形式,扣1分;3.第三问结果写成不等式、集合或区间形式,结果正确即给满分.,a b 2120x x k -+-=14(12)0k '∆=-->38k >38k >2120x x k -+-=220x x k +-=222,,,a k k b b k k c c k k a ⎧-=-⎪-=-⎨⎪-=-⎩2222a b b c c a k +=+=+=,,a b c a b c >>0a b c >>>22a b >b c >22c a b b ++>22c a b b ++=0a b c >>>22a b >b c >22c a b b ++>22c a b b ++=0a b c >>>22b c <c a <22b c a c ++<22b c a c ++=0a b c >>>22b c <c a <22b c a c ++<22b c a c ++=3,8⎛⎫+∞ ⎪⎝⎭。
2024-2025学年江苏省苏州市常熟市高一第一学期期中考试数学试题 (含答案)
2024-2025学年江苏省常熟市高一第一学期期中考试数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知命题p:“∃x∈R,x+2≤0”,则命题p的否定为( )A. ∃x∈R,x+2>0B. ∀x∈R,x+2>0C. ∃x∉R,x+2>0D. ∀x∈R,x+2≤02.已知x>0,则x−1+4x的最小值为( )A. 4B. 5C. 3D. 23.已知函数y=f(x)的定义域为[−2,1],则函数y=f(2x+1)的定义域为( )A. RB. [−2,1]C. [−3,3]D. [−32,0]4.若函数f(x)=(m2−2m−2)x2−m是幂函数,且y=f(x)在(0,+∞)上单调递减,则实数m的值为( )A. 3B. −1C. 1+3D. 1−35.常熟“叫花鸡”,又称“富贵鸡”,既是常熟的特产,也是闻名四海的佳肴,以其鲜美、香喷、酥嫩著称。
双十一购物节来临,某店铺制作了300只“叫花鸡”,若每只“叫花鸡”的定价是40元,则均可被卖出;若每只“叫花鸡”在定价40元的基础上提高x(x∈N∗)元,则被卖出的“叫花鸡”会减少5x只.要使该店铺的“叫花鸡”销售收入超过12495元,则该店铺的“叫花鸡”每只定价应为( )A. 48元B. 49元C. 51元D. 50元6.已知f(x)是奇函数,对于任意x1,x2∈(−∞,0)(x1≠x2),均有(x2−x1)(f(x2)−f(x1))>0成立,且f(2)=0,则不等式xf(x−2)<0的解集为( )A. (−2,0)∪(2,4)B. (−∞,−2)∪(2,4)C. (2,4)D. (−2,0)∪(0,2)7.通过研究发现:函数y=f(x)的图象关于点P(a,b)成中心对称图形的充要条件是函数y=f(x+a)−b为奇函数,则函数f(x)=x3−3x2图象的对称中心为( ) 参考公式:(a+b)3=a3+3a2b+3ab2+b3A. (0,0)B. (1,2)C. (1,−2)D. (2,−4)8.已知正实数a,b满足a+b=4,则代数式1b +b+1a的最小值为( )A. 5+12B. 5+14C. 54D. 25+2二、多选题:本题共3小题,共18分。
北京市2024-2025学年高一上学期期中考试数学试卷含答案
北京市2024-2025学年高一上学期期中考试数学试卷(答案在最后)注意事项1.本试卷共四页,共23道小题,满分150分.考试时间120分钟.2.在答题卡上指定位置贴好条形码,或填涂考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.答题不得使用任何涂改工具.出题人:高一备课组审核人:高一备课组一、选择题共12小题,每小题4分,共48分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}1,2,{02}A B x x ==<<,则A B = ()A.{1}B.{1,2}C.{0,1,2}D.{02}x x <≤【答案】A 【解析】【分析】根据交集的运算方法即可计算.【详解】∵集合{}1,2,{02}A B x x ==<<,∴A B = {1}.故选:A .2.设命题2:N,25p n n n ∃∈>+,则p 的否定为()A.2N,25n n n ∀∈>+B.2N,25n n n ∀∈≤+ C.2N,25n n n ∃∈≤+ D.2N,25n n n ∃∈<+【答案】B 【解析】【分析】由特称命题的否定为将存在改任意并否定原结论,即可得答案.【详解】由特称命题的否定为全称命题,则原命题的否定为2N,25n n n ∀∈≤+.故选:B 3.方程组221{9x y x y +=-=的解集是()A.(-5,4)B.(5,-4)C.{(-5,4)}D.{(5,-4)}【答案】D 【解析】【分析】消元法解方程组即可求解【详解】解方程组221{9x y x y +=-=,得()2219x x --=,解得54x y =⎧⎨=-⎩,故方程组的解集为{(5,-4)},故选:D.【点睛】本题考查解二元二次方程组及列举法表示集合,注意解集是点集的形式,是基础题4.已知全集U =R ,集合{}2M x x =>,{}13N x x =<<,那么下面的维恩图中,阴影部分所表示的集合为()A.{}2x x > B.{}2x x ≤ C.{}2x x > D.{}1x x ≤【答案】D 【解析】【分析】根据并集和补集的知识求得正确答案.【详解】{}|1M N x x => ,阴影部分表示集合为(){}|1M N x x ⋃=≤R ð.故选:D 5.不等式302xx -<+的解集为()A.{|2}x x <-B.{|23}x x -<< C.{|2x x <-或3}x > D.{|3}x x >【答案】C【分析】将不等式作等价转换,再求解集即可.【详解】30(2)(3)02xx x x -<⇒+->+,故解集为{|2x x <-或3}x >.故选:C 6.函数26()f x x x=-零点所在的一个区间是()A.(2,1)-- B.(0,1)C.(1,2)D.(2,)+∞【答案】C 【解析】【分析】根据零点存在性定理判断即可.【详解】令26()0f x x x=-=,解得:1360x =>,只有一个零点.而()611501f =-=>,()624102f =-=-<,由零点存在性定理知,函数26()f x x x=-零点所在的一个区间是(1,2).故选:C.7.下列函数中,在区间(0,1)上是增函数的是()A.||y x = B.3y x=- C.1y =-D.24y x =-+【答案】A 【解析】【分析】运用增函数定义,结合函数图像判断即可.【详解】对于A,区间()0,1,y x x ==,在()0,1单调递增,A 正确;对于B,区间()0,1,3y x =-,在()0,1单调递减,B 错误;对于C,区间()0,1,1y =-()0,1单调递减,C 错误;对于D,区间()0,1,24y x =-+,在()0,1单调递减,D 错误.故选:A.8.如果函数2()f x x bx c =++对于任意实数t 都有(2)(2)f t f t +=-,那么()A.f (2)<f (1)<f (4)B.f (1)<f (2)<f (4)C.f (4)<f (2)<f (1)D.f (2)<f (4)<f (1)【答案】A【分析】根据给定条件可得函数()f x 图象对称轴为2x =,再借助对称性、单调性即可比较判断作答.【详解】因函数2()f x x bx c =++对于任意实数t 都有(2)(2)f t f t +=-,则其图象对称轴为2x =,且()f x 在[2,)+∞上递增,于是得(2)(3)(4)f f f <<,而(1)(3)f f =,所以(2)(1)(4)f f f <<.故选:A9.已知0a >,0b >,且28a b +=,那么ab 的最大值等于A.4 B.8C.16D.32【答案】B 【解析】【分析】利用基本不等式可求得ab 的最大值.【详解】由基本不等式可得82a b =+≥8ab ≤,当且仅当2a b =时,等号成立,因此,ab 的最大值为8.故选:B.【点睛】本题考查利用基本不等式求最值,考查计算能力,属于基础题.10.已知,,,R a b c d ∈,则“a c b d +>+”是“a b >且c d >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据不等式的性质,分析条件间的推出关系判断充分、必要性.【详解】当3,2,0,2a b c d ==-==时,a c b d +>+,但c d >不成立,充分性不成立;若a b >且c d >,则必有a c b d +>+,必要性成立;所以“a c b d +>+”是“a b >且c d >”的必要不充分条件.故选:B11.若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是()A.[)1,1][3,-+∞ B.3,1][,[01]--C.[1,0][1,)-⋃+∞D.[1,0][1,3]-⋃【答案】D 【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在 腊语 上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <,所以由(10)xf x -≥可得:0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x =解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.【点睛】本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题.12.设函数266,0()34,0x x x f x x x ⎧-+≥=⎨+<⎩,若互不相等的实数123,,x x x 满足:()()()123f x f x f x ==.则123x x x ++的取值范围是()A.11,66⎛⎤⎥⎝⎦B.11,63⎛⎫⎪⎝⎭C.2026,33⎛⎫⎪⎝⎭ D.2026,33⎛⎤⎥⎝⎦【答案】B 【解析】【分析】根据解析式画出函数草图,结合零点的情况及一次、二次函数性质得236x x +=、1703x -<<,即可得答案.【详解】由解析式,可得如下()f x 图象,令()()()123f x f x f x k ===,要满足题设,则34-<<k ,若123x x x <<,则236x x +=,令343x +=-,则73x =-,故1703x -<<,综上,123x x x ++范围是11,63⎛⎫⎪⎝⎭.故选:B二、填空题共5小题,每小题5分,共25分.13.函数()2f x x =-的定义域是_______.【答案】[)2,+∞【解析】【分析】函数()2f x x =-的定义域满足20x -≥,解得答案.【详解】函数()2f x x =-的定义域满足20x -≥,解得2x ≥,故函数定义域为[)2,+∞.故答案为:[)2,+∞14.已知()f x 是定义在R 上的奇函数,且当x >0时,()f x =2x ,则1()2f -=________.【答案】14-.【解析】【分析】由于函数是奇函数,所以11(()22f f -=-,再由已知的解析式求出1()2f 的值,可得答案【详解】解:因为当x >0时,()f x =2x ,所以2111(()224f ==,因为()f x 是定义在R 上的奇函数,所以111((224f f -=-=-,故答案为:14-15.设函数22y x ax =+在区间(2,)+∞上是增函数,则实数a 的取值范围是______.【答案】2a ≥-【解析】【分析】由题意可知,(2,)+∞为函数单调递增区间的子集,根据子集关系可以求得.【详解】由函数22y x ax =+可知,对称轴为x a =-,因为在区间(2,)+∞上是增函数,则2a -≤,解得2a ≥-,故实数a 的取值范围是2a ≥-.故答案为:2a ≥-16.命题“2[1,2],10x x ax ∀∈-+<”为假命题的一个充分不必要条件是______.【答案】52a <(答案不唯一)【解析】【分析】问题化为1[1,2],x a x x∃∈≤+为真命题,利用对勾函数的单调性求最大值,即可得52a ≤,结合充分不必要条件写出一个符合要求的参数范围即可.【详解】由题设,1[1,2],x a x x ∀∈>+为假命题,故1[1,2],x a x x∃∈≤+为真命题,又1y x x =+在[1,2]x ∈上递增,则max 52y =,只需52a ≤即可,所以,原命题为假命题的一个充分不必要条件是52a <.故答案为:52a <(答案不唯一)17.设函数()()()2,1,242, 1.a x f x x x a x a x ⎧-<⎪=-⎨⎪--≥⎩①若0a =,则(1)2f =;②若1a =,则()f x 的最小值为1-;③存在实数a ,使得()f x 为R 上的增函数;④若()f x 恰有2个零点,则实数a 的取值范围是1,1[2,)2⎡⎫+∞⎪⎢⎣⎭.其中所有正确结论的序号是______.【答案】②③④【解析】【分析】①当0a =时,1x =代入()4()(2)f x x a x a =--中求值即可;②当1a =时,得到21,<1()24(1)(2),1x f x x x x x ⎧-⎪=-⎨⎪--≥⎩.分情况讨论求出各段最小值,最后得到()f x 的最小值.③保证两端都要增,端点考虑即可;④分类讨论,结合二次函数性质可解.【详解】①当0a =时,1x =代入()4()(2)f x x a x a =--中,得到(1)4(10)(10)42f =⨯-⨯-=≠,所以①错误.②当1a =时,21,<1()24(1)(2),1x f x xx x x ⎧-⎪=-⎨⎪--≥⎩.当<1x 时,则21x ->,,所以0<222<x-,1()1f x -<<.当1x ≥时,2231()4(1)(2)4(32)4()24f x x x x x x ⎡⎤=--=-+=--⎢⎥⎣⎦.对于二次函数2314()24y x ⎡⎤=--⎢⎥⎣⎦,对称轴为32x =,在32x =时取得最小值3()12f =-.综上,可得()f x 的最小值为1-,所以②正确.③当1x <时,22()22f x a a x x -=-=---是增函数.当1x ≥时,22()4()(2)432f x x a x a x ax a ⎡⎤=--=-+⎣⎦,其对称轴为32ax =.要使()f x 在R 上是增函数,则24(1)(12)21312a a a a ⎧-≤--⎪⎪-⎨⎪≤⎪⎩.解24(1)(12)21a a a -≤---,即281120a a -+≥,解得115711571616a a +-><或.解312a ≤得23a ≤.显然交集有元素.故存在a 能同时满足这两个条件使得函数在R 上单调递增,所以③正确.④当<1x 时,令2()02f x a x =-=-,则22a x =-,2(2)x a =-,22x a=-.若221x a=-<,即02a <<时,函数()f x 在<1x 时有一个零点.当1x ≥时,()4()(2)f x x a x a =--,令()0f x =,则x a =或2x a =.若1a <且21a ≥,即112a ≤<时,()f x 在1x ≥时有一个零点,结合1x <时的情况,此时()f x 恰有2个零点.若1a ≥,要使()f x 恰有2个零点,则21a >且22a a =-(无解)或者21a >且222a a=-(无解)或者1a >且21a >且221a-≥(即2a ≥).综上,实数a 的取值范围是1[,1)[2,)2+∞ ,所以④正确.故答案为:②③④.三、解答题共6小题,共77分.解答应写出文字说明,演算步骤或证明过程.18.关于x 的一元二次方程()22230x k x k +++=有两个不相等的实数根12,x x .(1)求k 的取值范围;(2)若12111x x +=-,求k 的值.【答案】(1)3(,)4-+∞(2)3【解析】【分析】(1)根据一元二次方程的性质,结合0∆>,即可求解;(2)根据题意,利用根与系数的关系,求得2121223,x x k k x x +=--=,结合12111x x +=-,列出方程,求得k 的值,即可求解.【小问1详解】由一元二次方程22(23)0x k x k +++=有两个不相等的实数根12,x x ,则满足()222340k k ∆=+->,解得34k >-,即实数k 的取值范围为3(,)4-+∞.【小问2详解】因为方程22(23)0x k x k +++=有两个不相等的实数根12,x x ,由(1)知34k >-,且2121223,x x k k x x +=--=,因为12111x x +=-,可得12121x x x x +=-,即1212x x x x +=-,可得223k k --=-,即223k k +=,解得3k =或1k =-,因为34k >-,所以3k =.19.设全集R U =,集合{}2|20A x x x =--<,集合{|||1}B x x m =->,其中R m ∈.(1)当1m =时,求()U A B A B ⋂⋃,ð;(2)若A B ⊆,求m 的取值范围.【答案】(1){|10}A B x x =-<< ,(){12}U A B x =-<≤ ð;(2)3m ≥或2m ≤-.【解析】【分析】(1)由题设得{|12}A x x =-<<,{|0B x x =<或2}x >,根据集合交并补运算求集合;(2)根据包含关系有12m -≥或11m +≤-,即可求参数范围.【小问1详解】由题设{}|(2)(1)0{|12}A x x x x x =-+<=-<<,{|1B x x m =<-或1}x m >+,当1m =时,{|0B x x =<或2}x >,故{|10}A B x x =-<< ,且{|02}U B x x =≤≤ð,故(){12}U A B x =-<≤ ð.【小问2详解】由A B ⊆,则12m -≥或11m +≤-,可得3m ≥或2m ≤-.20.已知函数2()(2)2f x x a x a =-++.(1)当0a =时,分别求出函数()f x 在[1,2]-上的最大值和最小值;(2)求关于x 的不等式()0f x <的解集.【答案】(1)最大值为(1)3f -=,最小值为(1)1f =-;(2)答案见解析.【解析】【分析】(1)根据二次函数的图象及性质确定区间上的最大值和最小值即可;(2)分类讨论求含参一元二次不等式解集.【小问1详解】由题设2()2f x x x =-,开口向上且对称轴为1x =,结合二次函数的图象,在[1,2]-上最大值为(1)3f -=,最小值为(1)1f =-.【小问2详解】由题意2(2)2()(2)0x a x a x a x -++=--<,当2a <时,解集为(,2)a ;当2a =时,解集为∅;当2a >时,解集为(2,)a .21.已知函数21()x f x x+=.(1)判断函数的奇偶性,并加以证明;(2)用定义证明()f x 在(0,1)上是减函数;(3)若函数()y f x m =-在12,3⎡⎤⎢⎥⎣⎦上有两个零点,求m 的范围.(直接写出答案)【答案】(1)()f x 是奇函数,理由见解析(2)答案见解析(3)5(2,]2【解析】【分析】(1)对于本题,需要先求出()f x -,然后与()f x 和()f x -进行比较.(2)利用函数单调性的定义,设12,(0,1)x x ∈且12x x <,然后计算12()()f x f x -,根据其正负判断函数的单调性.(3)函数()y f x m =-在1[,3]2上有两个零点,等价于()y f x =与y m =的图象在1[,3]2上有两个交点,需要先分析()f x 在1[,3]2上的单调性和值域,从而确定m 的范围.【小问1详解】函数21()x f x x+=的定义域为(,0)(0,)-∞+∞ ,关于原点对称.22()11()()x x f x f x x x-++-==-=--.根据奇函数的定义,对于定义域内任意x ,()()f x f x -=-,所以函数()f x 是奇函数.【小问2详解】设12,(0,1)x x ∈且12x x <.则222212122112121211(1)(1)()()x x x x x x f x f x x x x x +++-+-=-=,对分子进行化简:222212211222111212212112(1)(1)()()()(1)x x x x x x x x x x x x x x x x x x x x +-+=+--=-+-=--.因为12,(0,1)x x ∈,所以12(0,1)x x ∈,1210x x ->,210x x ->,120x x >.所以21121212()(1)()()0x x x x f x f x x x ---=>,即12()()f x f x >.所以()f x 在(0,1)上是减函数.【小问3详解】1,32x ⎡⎤∈⎢⎥⎣⎦时,211()2x f x x x x+==+≥,当且仅当1x =取得最小值.当121,[,1)2x x ∈时,且12x x <,121[,1)4x x ∈,1210x x ->,210x x ->.则21121212()(1)()()0x x x x f x f x x x ---=>,即12()()f x f x >,则当1)[1,2x ∈()f x 单调递减;当12,(1,3]x x ∈时,且12x x <,12(1,9]x x ∈,1210x x -<,210x x ->.则21121212()(1)()()0x x x x f x f x x x ---=<,即12()()f x f x <,则当(1,3]x ∈,()f x 单调递增;并且215()11524()112222f +===,(1)2f =,23110(3)33f +==.因为函数()y f x m =-在1[,3]2上有两个零点,所以5(2,]2m ∈.22.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm )满足关系:C (x )=(010),35k x x ≤≤+若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和.(Ⅰ)求k 的值及f(x)的表达式.(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.【答案】40k =,因此40()35C x x =+.,当隔热层修建5cm 厚时,总费用达到最小值为70万元.【解析】【详解】解:(Ⅰ)设隔热层厚度为cm x ,由题设,每年能源消耗费用为()35k C x x =+.再由(0)8C =,得40k =,因此40()35C x x =+.而建造费用为1()6C x x=最后得隔热层建造费用与20年的能源消耗费用之和为140800()20()()2066(010)3535f x C x C x x x x x x =+=⨯+=+≤≤++(Ⅱ)22400'()6(35)f x x =-+,令'()0f x =,即224006(35)x =+.解得5x =,253x =-(舍去).当05x 时,'()0f x ,当510x 时,'()0f x ,故5x =是()f x 的最小值点,对应的最小值为800(5)6570155f =⨯+=+.当隔热层修建5cm 厚时,总费用达到最小值为70万元.23.设函数()f x 是定义在R 上的函数,对任意的实数,x y 都有()(1)(1)f x y f x f y +=+⋅-,且当0x >时()f x 的取值范围是(0,1).(1)求证:存在实数m 使得()1f m =;(2)当0x <时,求()f x 的取值范围;(3)判断函数()f x 的单调性,并予以证明.【答案】(1)证明见解析;(2)(1,)+∞;(3)()f x 单调递减,证明见解析.【解析】【分析】(1)令1x y ==结合题设可得(0)1f =,即可证;(2)令y x =-得到1(1)(1)f x f x --=+,若10t x =+>,结合已知即可求范围;(3)令1x x y =+>21x x =+,应用函数单调性定义求证即可.【小问1详解】令1x y ==,则(11)(11)(11)(2)(2)(0)f f f f f f +=+⋅-⇒=,当0x >时()f x 的取值范围是(0,1),即(2)0f ≠,故(0)1f =,显然存在0m =,使()1f m =,得证;【小问2详解】令y x =-,则()(1)(1)f x x f x f x -=+⋅--,即(1)(1)(0)1f x f x f +⋅--==,若10t x =+>,则10x t --=-<,故1(1)(1)f x f x --=+,即1()()f t f t -=,而()(0,1)f t ∈,则()(1,)f t -∈+∞,当0x <时,()f x 取值范围是(1,)+∞;【小问3详解】()f x 单调递减,证明如下:令1x x y =+>21x x =+,则1210x x y -=->,所以1212()()()f x f x f x x =⋅-,则12212()()()[()1]f x f x f x f x x -=--,由题设及(2)知,212()0,()10f x f x x >--<,则12())0(f x f x -<,即12()()f x f x <,所以()f x 单调递减,得证.。
2024-2025学年四川省成都市高一上学期期中考试数学检测试题(含解析)
一、2024-2025学年四川省成都市高一上学期期中考试数学检测试题单选题1. 已知集合A ={1 ,2,3,4,5},{},|15B x x =<<,则A ∩B 的元素个数为( )A. 2B. 3C. 4D. 5【答案】B【解析】【分析】直接根据集合的交集运算求解即可.【详解】因为集合A ={1 ,2,3,4,5},{}|15B x x =<<所以{}2,3,4A B =I ,即A ∩B 的元素个数为3个.故选:B2. 函数221y x mx =++在[2,+∞)单调递增,则实数m 的取值范围是( )A. [2,)-+¥B. [2,+∞)C. (,2)-¥D. (,2]-¥【答案】A【解析】【分析】直接由抛物线对称轴和区间端点比较大小即可.【详解】函数221y x mx =++为开口向上的抛物线,对称轴为x m=-函数221y x mx =++在[2,+∞)单调递增,则2m -£,解得2m ³-.故选:A.3. 若函数的定义域为{}22M x x =-££,值域为{}02N y y =££,则函数的图像可能是()A. B.的C. D.【答案】B【解析】【分析】根据函数的定义域与值域,结合函数的性质判断即可.【详解】对A,该函数的定义域为{}20x x-££,故A错误;对B,该函数的定义域为{}22M x x=-££,值域为{}02N y y=££,故B正确;对C,当()2,2xÎ-时,每一个x值都有两个y值与之对应,故该图像不是函数的图像,故C错误;对D,该函数的值域不是为{}02N y y=££,故D错误.故选:B.4. 已知函数()af x x=,则“1a>”是“()f x在()0,¥+上单调递增”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】由幂函数的单调性结合充分必要条件的定义判断.【详解】当0a>时,函数()af x x=在()0,¥+上单调递增,则1a>时,一定有()f x在()0,¥+上单调递增;()f x在()0,¥+上单调递增,不一定满足1a>,故“1a>”是“()f x在()0,¥+上单调递增”的充分不必要条件.故选:A.5. 已知0,0x y>>,且121yx+=,则12xy+的最小值为()A. 2B. 4C. 6D. 8【答案】D【解析】【分析】利用不等式的乘“1”法即可求解.【详解】由于0,0x y >>,故11112224448x y x xy y x y xy æöæö+=++=++³+=ç÷ç÷èøèø,当且仅当14,121,xy xy y xì=ïïíï+=ïî即2,14x y =ìïí=ïî时,等号成立,故12x y +的最小值为8.故选:D6. 已知定义域为R 的函数()f x 不是偶函数,则( )A. ()(),0x f x f x "Î-+¹R B. ()(),0x f x f x "Î--¹R C. ()()000,0x f x f x $Î-+¹R D. ()()000,0x f x f x $Î--¹R 【答案】D【解析】【分析】根据偶函数的概念得()(),0x f x f x "Î--=R 是假命题,再写其否定形式即可得答案.【详解】定义域为R 的函数()f x 是偶函数()(),0x f x f x Û"Î--=R ,所以()f x 不是偶函数()()000,0x f x f x Û$Î--¹R .故选:D .7. 若函数()22f x ax bx c=++的部分图象如图所示,则()1f =( ) A. 23- B. 112- C. 16- D. 13-【答案】D【解析】【分析】利用函数图象求得函数定义域,利用函数值可得出其解析式,代入计算即求得函数值.【详解】根据函数图象可知2x =和4x =不在函数()f x的定义域内,因此2x =和4x =是方程20ax bx c ++=的两根,因此可得()()()224f x a x x =--,又易知()31f =,所以可得2a =-;即()()()124f x x x =---,所以()113f =-.故选:D8. 奇函数()f x 在(),0-¥上单调递增,若()10f -=,则不等式()0xf x <的解集是( ).A. ()()101,∪,-¥- B. ()()11,∪,-¥-+¥C. ()()1001,∪,- D. ()()101,∪,-+¥【答案】C【解析】【分析】由()f x 奇偶性,单调性结合题意可得答案.【详解】因奇函数()f x 在(),0¥-上单调递增,()10f -=则()f x 在()0,¥+上单调递增,f (1)=0.得()()()01,01,f x x È¥>ÞÎ-+;()()()0,10,1f x x ¥È<ÞÎ--.则()()000x xf x f x <ì<Þí>î或()()()01,00,10x x f x È>ìÞÎ-í<î.故选:C二、多选题9. 下列关于集合的说法不正确的有( )A. {0}=ÆB. 任何集合都是它自身的真子集C. 若{1,}{2,}a b =(其中,a b ÎR ),则3a b +=D. 集合{}2y y x =∣与{}2(,)x y y x =∣是同一个集合【答案】ABD【解析】【分析】根据集合的定义,真子集的定义,集合相等的定义判断各选项.【详解】{0}中含有一个元素,不是空集,A 错;任何集合都是它自身的子集,不是真子集,B 错;由集合相等的定义得2,1a b ==,3a b +=,C 正确;集合{}2yy x =∣中元素是实数,集合{}2(,)x y y x =∣中元素是有序实数对,不是同一集合,D 错,故选:ABD .10. 已知二次函数()2223y m x mx m =-++-的图象与x 轴有两个交点()()12,0,,0x x ,则下面说法正确的是( )A. 该二次函数的图象一定过定点()1,5--;B. 若该函数图象开口向下,则m 的取值范围为:625m <<;C. 当2m >,且12x ££时,y 的最大值为45m -;D. 当2m >,且该函数图象与x 轴两交点的横坐标12,x x 满足1232,10x x -<<--<<时,m 的取值范围为:21114m <<【答案】ABD【解析】【分析】代入1x =-,解得5y =-,即可求解A ,根据判别式即可求解B ,利用二次函数的单调性即可求解C ,利用二次函数的图象性质即可列不等式求解.【详解】由()2223y m x mx m =-++-可得()22123y m x x =+--,当1x =-时,5y =-,故二次函数的图象一定过定点()1,5--,A 正确,若该函数图象开口向下,且与x 轴有两个不同交点,则()()220Δ44230m m m m -<ìí=--->î,解得:625m <<,故B 正确,当2m >,函数开口向上,对称轴为02m x m =-<-,故函数在12x ££时,单调递增,当2x =时,911y m =-,故y 的最大值为911m -;C 错误,当2m >,则开口向上,又1232,10x x -<<--<<时,则3,4210x y m =-=->,且2,110x y m =-=-<,且1,50x y =-=-<,且0,30x y m ==->,解得21114m <<,m 的取值范围为:21114m <<,D 正确,故选:ABD 11. 已知幂函数()()293m f x m x =-的图象过点1,n m æö-ç÷èø,则( )A. 23m =-B. ()f x 为偶函数C. n =D. 不等式()()13f a f a +>-的解集为(),1-¥【答案】AB【解析】【分析】利用幂函数的定义结合过点1,n m æö-ç÷èø,可求,m n 判断AC ;进而可得函数的奇偶性判断B ;解不等式可求解集判断D.【详解】因为函数()()293m f x m x =-为幂函数,所以2931m -=,解得23m =±,当23m =时,幂函数()23f x x =的图象不可能过点3,2n æö-ç÷èø,故23m ¹,当23m =-,幂函数()23f x x -=的图象过点3,2n æöç÷èø,则2332n -=,解得3232n -æö=±=ç÷èøA 正确,C 错误;()23f x x -=的定义域为{|0}x x ¹,且()2233()()f x x x f x ---=-==,故()f x 为偶函数,故B 正确;函数()23f x x -=在(0,)+¥上单调递减,由()()13f a f a +>-,可得()()13f a f a +>-,所以1310a a a ì+<-ïí+¹ïî,解得1a <且1a ¹-,故D 错误.故选:AB.三、填空题12. 满足关系{2}{2,4,6}A ÍÍ的集合A 有____________个.【答案】4【解析】【分析】由题意可得集合A 为{}2,4,6的子集,且A 中必包含元素2,写出满足条件的集合,即可得答案.【详解】即集合A 为{}2,4,6的子集,且A 中必包含元素2,又因为{2,4,6}的含元素2的子集为:{}2,{}2,4,{}2,6,{2,4,6}共4个.故答案为:4.13. 已知()f x 满足()()()2f x y f x f y +=++,且()22f =,则()3f =______.【答案】4【解析】【分析】令1x y ==得()10f =,再令1x =,2y = 即可求解.【详解】令1x y ==得()()()21122f f f =++=,所以()10f =,令1x =,2y =得()()()31224f f f =++=.故答案为:4.14. 已知函数()()()22223124,,4f x x ax ag x x x a a =-+-=-+-ÎR ,若[]10,1x "Î,[]20,1x $Î,使得不等式()()12f x g x >成立,实数a 的取值范围是__________.【答案】(),6-¥【解析】【分析】由题意将问题转化为()(),min max f x g x >[]0,1x Î,成立,利用二次函数的性质求解即可.【详解】若对任意[]10,1x Î,存在[]20,1x Î,使得不等式()()12f x g x >成立,即只需满足[]min min ()(),0,1f x g x x >Î,()22314g x x x a =-+-,对称轴()1,2x g x =在10,2éö÷êëø递减,在,1,12æùçúèû递增,()2min 18,2g x g a æö==-ç÷èø()[]2224,0,1f x x ax a x =-+-Î,对称轴4a x =,①04a £即0a £时,()f x 在[0,1]递增,()22min min ()04()8f x f a g x a ==->=-恒成立;②014a <<即04a <<时,()f x 在0,4a éö÷êëø递减,在,14a æùçúèû递增,22min min 7()4,()848a f x f a g x a æö==-=-ç÷èø,所以227488a a ->-,故04a <<;③14a ³即4a ³时,()f x 在[0,1]递减,()22min min ()12,()8f x f a a g x a ==--=-,所以2228a a a -->-,解得46a £<,综上(),6a ¥Î-.故答案为:(),6¥-【点睛】方法点睛:本题首先需要读懂题意,进行转化;其次需要分类讨论,结合二次函数的性质最后进行总结,即可求出结果.四、解答题15. 设全集R U =,集合{|23}P x x =-<<,{|31}.Q x a x a =<£+(1)若1a =-,求集合()U P Q I ð;(2)若P Q =ÆI ,求实数a 的取值范围.【答案】(1){|03}x x <<(2)][132,,æö-¥-+¥ç÷èøU 【解析】【分析】(1)先求出U Q ð,再求()U P Q Çð即可;(2)分Q =Æ和Q ¹Æ两种情况求解即可【小问1详解】解:当1a =-时,{|31}{|30}Q x a x a x x =<£+=-<£;{|3U C Q x x =£-或0}x >,又因为{}23P x x =-<<,所以(){|03}.U P Q x x Ç=<<ð【小问2详解】解:由题意知,需分为Q =Æ和Q ¹Æ两种情形进行讨论:当Q =Æ时,即31a a ³+,解得12a ³,此时符合P Q =ÆI ,所以12a ³;当Q ¹Æ时,因为P Q =ÆI ,所以1231a a a +£-ìí<+î或3331a a a ³ìí<+î,解之得3a £-.综上所述, a 的取值范围为][1,3,.2¥¥æö--È+ç÷èø16 已知二次函数()()20f x ax bx c a =++¹满足()()14f x f x x -+=,且()0 1.f =(1)求函数()f x 的解析式;(2)解关于x 的不等式()()2641f x t x t £-+-+.【答案】(1)()2221f x x x =-+(2)答案见解析.【解析】【分析】(1)利用待定系数法计算即可求解析式;(2)根据(1)的结论含参讨论解一元二次不等式即可.【小问1详解】因为()01f =,1c =,所以()21f x ax bx =++,又因为()()14f x f x x -+=,所以()(()22[1)1114a x b x ax bx x ù++++-++=û,所以24ax a b x ++=,所以240a a b =ìí+=î,所以22a b =ìí=-î,即()222 1.f x x x =-+.【小问2详解】由()()2641f x t x t £-+-+,可得不等式()222440x t x t +++£,即()2220x t x t +++£,所以()()20x x t ++£,当2-=-t ,即2t =时,不等式的解集为{|2}x x =-,当2t -<-,即2t >时,不等式的解集为{|2}x t x -££-,当2t ->-,即2t <时,不等式的解集为{|2}x x t -££-,综上所述,当2t =时,不等式的解集为{|2}x x =-,当2t >时,不等式的解集为{|2}x t x -££-,当2t <时,不等式的解集为{|2}.x x t -££-17. 已知函数()221x f x x-=.(1)用单调性的定义证明函数()f x 在()0,¥+上为增函数;(2)是否存在实数l ,使得当()f x 的定义域为11,m n éùêúëû(0m >,0n >)时,函数()f x 的值域为[]2,2m n l l --.若存在.求出l 的取值范围;若不存在说明理由.【答案】(1)证明见详解;(2)存在,()2,+¥.【解析】分析】(1)设()12,0,x x ¥Î+,且12x x <,然后作差、通分、因式分解即可判断()()12f x f x <,得证;(2)根据单调性列不等式组,将问题转化为210x x l -+=存在两个不相等的正根,利用判别式和韦达定理列不等式组求解可得.【小问1详解】()222111x f x x x-==-,设()12,0,x x ¥Î+,且12x x <,【则()()()()22121212122222222212211212111111x x x x x x f x f x x x x x x x x x -+æö--=---=-==ç÷èø,因为120x x <<,所以221212120,0,0x x x x x x <-+>>,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在(0,+∞)上为增函数.【小问2详解】由(1)可知,()f x 在11,m n éùêúëû上单调递增,若存在l 使得()f x 的值域为[]2,2m n l l --,则22112112f m m m f n n n l l ìæö=-=-ç÷ïïèøíæöï=-=-ç÷ïèøî,即221010m m n n l l ì-+=í-+=î,因为0m >,0n >,所以210x x l -+=存在两个不相等的正根,所以21212Δ40100x x x x l l ì=->ï=>íï+=>î,解得2l >,所以存在()2,l ¥Î+使得()f x 的定义域为11,m n éùêúëû时,值域为[]2,2m n l l --.18. 习总书记指出:“绿水青山就是金山银山”.淮安市一乡镇响应号召,因地制宜的将该镇打造成“生态水果特色小镇”.调研过程中发现:某珍稀水果树的单株产量W (单位:千克)与肥料费10x (单位:元)满足如下关系:()252,02()48,251x x W x x x x ì+££ï=í<£ï+î其它成本投入(如培育管理等人工费)为20x (单位:元).已知这种水果的市场售价大约为10元/千克,且供不应求.记该单株水果树获得的利润为()f x (单位:元).(1)求()f x 函数关系式;(2)当投入的肥料费用为多少时,该单株水果树获得的利润最大?最大利润是多少?的【答案】(1)25030100,02()48030,251x x x f x x x x xì-+££ï=í-<£ï+î; (2)当投入肥料费用为30元时,获得的利润最大,最大利润是270元.【解析】【分析】(1)由单株产量W 乘以售价减去肥料费和其它成本投入可得出的函数关系式;(2)利用二次函数的单调性求出当02x ££时,()f x 的最大值,由基本不等式求出当25x <£时,()f x 的最大值,即可得出答案.【小问1详解】(1)由题意可得()()()1020101030f x W x x x W x x=--=-()22105230,025030100,024804830,251030,2511x x x x x x x x x x x x x x ì´+-££ì-+££ïï==íí-<£´-<£ïï+î+î.故()f x 的函数关系式为25030100,02()48030,251x x x f x x x x xì-+££ï=í-<£ï+î.【小问2详解】(2)由(1)22319150,025030100,02102()48030,251651030(1),2511x x x x x f x x x x x x x x ììæö-+££ï-+££ïç÷ïïèø==íí-<£éùïï-++<£+êúïï+ëûîî,当02x ££时,()f x 在30,10éùêúëû上单调递减,在3,210æùçúèû上单调递增,且(0)100(2)240f f =<=,max ()(2)240f x f \==;当25x <£时,16()51030(1)1f x x x éù=-++êú+ëû,16181x x ++³=+Q 当且仅当1611x x=++时,即3x =时等号成立. max ()510308270f x \=-´=.的因为240270<,所以当3x =时,max ()270f x =.当投入的肥料费用为30元时,该单株水果树获得的利润最大,最大利润是270元.19. 已知集合,A B 中的元素均为正整数,且,A B 满足:①对于任意,i j a a A Î,若i j a a ¹,都有i j a a B Î;②对于任意,m k b b B Î,若m k b b <,都有k mb A b Î.(1)已知集合{}1,2,4A =,求B ;(2)已知集合{}()2,4,8,8A t t =>,求t ;(3)若A 中有4个元素,证明:B 中恰有5个元素.【答案】(1){}2,48B =,(2)16t =(3)证明见解析【解析】【分析】(1)根据①可得2,4,8都是B 中的元素,进而证明B 中除2,4,8外没有其他元素即可求解,(2)根据条件①②,即可求解,(3)根据题意可得41a a ,3324421123,,,,a a a a a a a a a a ,4321a a a a 是A 中的元素,进而根据11a =和12a ³可得{}2341111,,,A a a a a =,进而{}3456711111,,,,a a a a a B Í,接下来假设B 中还有其他元素,且该元素为k ,利用k 与31a 的关系得矛盾求解.【小问1详解】由①可得2,4,8都是B 中的元素.下面证明B 中除2,4,8外没有其他元素:假设B 中还有其他元素,分两种情况:第一种情况,B 中最小的元素为1,显然81不是A 中的元素,不符合题意;第二种情况,B 中最小的元素为2,设B 中除2,4,8外的元素为()2k k b b >,因为2k b 是A 中的元素,所以k b 为4或8,而4,8也是B 中的元素,所以B 中除2,4,8外没有其他元素.综上,{}2,4,8B =.【小问2详解】由①可得,8,16,32,2,4,8t t t 都是B 中的元素.显然84,82,162t t t <<<,由(2)可得,422,,8816t t t 是A 中的元素,即,,248t t t 是A 中的元素.因为842t t t t <<<,所以2,4,8842t t t ===,解得16t =.【小问3详解】证明:设{}12341234,,,,A a a a a a a a a =<<<.由①可得,1224,a a a a 都是B 中的元素.显然1224a a a a <,由②可得,2412a a a a 是A 中的元素,即41a a 是A 中的元素.同理可得3324421123,,,,a a a a a a a a a a ,4321a a a a 是A 中的元素.若11a =,则34344122a a a a a a a a =>,所以3412a a a a 不可能是A 中的元素,不符合题意.若12a ³,则32311a a a a a <<,所以321211,a a a a a a ==,即23213121,a a a a a a ===.又因为44443211a a a a a a a <<<<,所以444123321,,a a a a a a a a a ===,即441a a =,所以{}2341111,,,A a a a a =,此时{}3456711111,,,,a a a a a B Í.假设B 中还有其他元素,且该元素为k ,若31k a <,由(2)可得71a A k Î,而7411a a k>,与{}2341111,,,A a a a a =矛盾.若31k a >,因为31k A a Î,所以131,1,2,3,4i k a i a ==,则31,1,2,3,4i k a i +==,即{}45671111,,,k a a a a Î,所以B 中除3456711111,,,,a a a a a 外,没有其他元素.所以{}3456711111,,,,B a a a a a =,即B 中恰有5个元素.【点睛】方法点睛:对于以集合为背景的新定义问题的求解策略:1、紧扣新定义,首先分析新定义的特点,把心定义所叙述的问题的本质弄清楚,应用到具体的解题过程中;2、用好集合的性质,解题时要善于从试题中发现可以使用的集合的性质的一些因素.3、涉及有交叉集合的元素个数问题往往可采用维恩图法,基于课标要求的,对于集合问题,要熟练基本的概念,数学阅读技能、推理能力,以及数学抽象和逻辑推理能力.。
2024-2025学年河南省郑州市高一上学期期中数学质量检测试卷(含解析)
考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:人教A 版必修第一册第一章~第三章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的2024-2025学年河南省郑州市高一上学期期中数学质量检测试卷.1. 已知(){}(){},3,,1A x y x y B x y x y =+==-=∣∣,则A B = ( )A. 2,1x y ==B. ()2,1 C.(){}2,1 D. {}2,1【答案】C 【解析】【分析】利用交集定义即可求得A B⋂【详解】由31x y x y +=⎧⎨-=⎩,可得21x y =⎧⎨=⎩则A B =(){}(){},3,1x y x y x y x y +=⋂-=∣∣()(){}3=,=2,11x y x y x y ⎧⎫+=⎧⎨⎨⎬-=⎩⎩⎭∣故选:C2. 已知a ,b ,c ,d 均为实数,则下列说法正确的是( )A. 若a b >,c d >,则a c b d +>+ B. 若a b >,c d >,则a c b d ->-C. 若a b >,c d >,则ac bd > D. 若ac bc >,则a b>【答案】A 【解析】【分析】根据不等式的性质,结合举反例的方法,可得答案.【详解】对于A ,根据同向不等式具有可加性可知A 正确;对于B ,21a b =>=,24c d =->=-,但45a c b d -=<-=,故B 错误;对于C ,21a b =>=,24c d =->=-,但44ac bd =-==-,故C 错误;对于D ,当0c <时,由ac bc >,得a b <,故D 错误.故选:A .3. 下列函数中,与函数2y x =+是同一函数的是( )A. 22y =+B. 2y =+C. 22x y x=+ D.y =【答案】B 【解析】【分析】通过两个函数三要素的对比可得答案.【详解】2y x =+的定义域为R .对于A ,22y =+的定义域为[)0,+∞,与2y x =+的定义域不同,不是同一函数;对于B ,22y x =+=+定义域为R ,与2y x =+的定义域相同,对应关系相同,是同一函数;对于C ,22x y x=+的定义域为{}0x x ≠,与2y x =+的定义域不同,不是同一函数;对于D,2,2,22,2x x y x x x +≥-⎧==+=⎨--<-⎩与2y x =+对应关系不同,不是同一函数.故选:B .4. 已知p :0a b >> q :2211a b<,则p 是q 的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】根据0a b >>与2211a b <的互相推出情况判断出属于何种条件.【详解】当0a b >>时,220a b >>,所以2211a b<,所以充分性满足,当2211a b<时,取2,1a b =-=,此时0a b >>不满足,所以必要性不满足,所以p 是q 的充分不必要条件,的故选:A.5. 已知函数()f x 为R 上的奇函数,当0x <时,()2f x x =+,则()()03f f +等于( )A. 3- B. 1- C. 1D. 3【答案】C 【解析】【分析】根据(3)f (3)f =--以及(0)0f =可求出结果.【详解】因为函数()f x 为R 上的奇函数,当0x <时,()2f x x =+,所以()()()33321f f =--=--+=.而()00f =,∴()()031f f +=.故选:C .6. 若0x <,则1x x+( )A 有最小值―2B. 有最大值―2C. 有最小值2D. 有最大值2【答案】B 【解析】【分析】运用基本不等式求解即可.【详解】因为0x <,则0x ->,所以1()()2x x -+≥=-,当且仅当1x x -=-即:=1x -时取等号.所以12x x+≤-,当且仅当=1x -时取等号.故选:B.7. 已知函数()f x 的图象由如图所示的两条曲线组成,则( )A. ()()35ff -= B. ()f x 是单调增函数.C. ()f x 的定义域是(][],02,3∞-⋃D. ()f x 的值域是[]1,5【答案】D 【解析】【分析】根据函数的图象,结合函数求值、函数单调性、定义域与值域,可得答案.【详解】对于选项A ,由图象可得()32f -=,所以()()()321ff f -==,A 错误;对于选项B ,()04f =,()21f =,()()02f f >,故()f x 不是单调增函数,B 错误;对于选项C ,由图象可得()f x 的定义域为[][]3,02,3-⋃,C 错误;对于选项D ,由图象可得()f x 的值域为[]1,5,D 正确.故选:D .8. 若定义域为R 的奇函数()f x 在(),0-∞上单调递减,且()20f =,则满足20)(x f x x≥的x 的取值范围是( )A. [][)2,02,-⋃+∞ B. ][3,10,1⎡⎤--⋃⎣⎦C. [)[)2,02,-⋃+∞ D. [)(]2,00,2-U 【答案】D 【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <,由20)(x f x x≥可得()0xf x ≥且0x ≠可得020x x <⎧⎨-≤<⎩或002x x >⎧⎨<≤⎩解得20x -≤<或02x <≤,所以满足20)(x f x x≥的x 的取值范围是[)(]2,00,2-U ,故选:D .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列函数既是偶函数,又在()0,∞+上单调递增的是( )A. y =B. 2y x =C. yD. 1y x=【答案】BC 【解析】【分析】根据函数的单调性和奇偶性逐项分析判断.【详解】对A :=y =在定义域内为奇函数,又∵y =在R 上单调递增,5u x =在R 上单调递增,则y =在R 上单调递增,A 错误;对B :∵()22x x -=,则2y x =在定义域内为偶函数,且在()0,∞+内单调递增,B 正确;对C :y又∵当()0,x ∈+∞,y 在()0,∞+内单调递增,C 正确;对A :∵11=--x x ,则1y x =在定义域内为奇函数,且1y x=在()0,∞+内单调递减,D 错误;故选:BC.10. 下列关于幂函数y x α=的说法正确的是( )A. 幂函数的图象都过点()0,0,()1,1B. 当1,3,1α=-时,幂函数的图象都经过第一、三象限C. 当1,3,1α=-时,幂函数是增函数D. 若0α<,则幂函数的图象不过点()0,0【答案】BD 【解析】【分析】由幂函数的性质逐个判断即可.【详解】对于A ,当0α<时,幂函数的图象不通过点()0,0,A 错误;对于B ,幂指数1,3,1α=-时,幂函数分别为y x =,3y x =,1y x -=,三者皆为奇函数,图象都经过第一、三象限,故B 正确;对于C ,当1α=-时,幂函数1y x -=在(),0∞-,(0,+∞)上皆单调递减,C 错误;对于D ,若0α<,则函数图象不通过点()0,0,D 正确.故选:BD .11. 下列结论正确的是( )A. 函数21x y x+=的最小值是2B. 若0ab >,则2b a a b+≥C. 若x ∈R ,则22122x x +++的最小值为2D. 若0,0a b >>22a b ++≥【答案】BD 【解析】【分析】根据题意,结合基本不等式,逐项判定,即可求解.【详解】对于A 中,当0x <时,可得0y <,所以A 错误;对于B 中,因0ab >,则2b a a b +≥=,当且仅当b a a b =时,即a b =时,等号成立,所以B 正确;对于C中,由221222x x ++≥=+,当且仅当22122x x +=+时,此时方程无解,即等号不成立,所以C 错误;对于D 中,因为0,0a b >>22a b ++≥≥,当且仅当a b =时,等号成立,所以D 正确.故选BD .12. 已知函数()f x 的定义域为A ,若对任意x A ∈,存在正数M ,使得()f x M ≤成立,则称函数为()f x 是定义在A 上的“有界函数”.则下列函数是“有界函数”的是( )A. 3()4x f x x+=- B. ()f x =C. 25()22f x x x =-+ D. ()f x 【答案】BCD 【解析】【分析】“有界函数”值域需要有界,化简各函数,并求出函数的值域,然后进行判断.【详解】对于A ,3(4)77()1444x x f x x x x+--+===-+---,由于704x ≠-,所以()1f x ≠-,所以()[)0,f x ∈+∞,故不存在正数M ,使得()f x M ≤成立.对于B ,令21u x =-,则[]0,1u ∈,()f x =,所以()[]0,1f x ∈,故存在正数1,使得()1f x ≤成立.对于C ,令2222(1)1u x x x =-+=-+,则()5f x u=,易得1u ≥.所以()5051f x <≤=,即()(]0,5∈f x ,故存在正数5,使得()5f x ≤成立.对于D ,令t =[]0,2t ∈,24x t =-,则[]()22117()40,224f x t t t t ⎛⎫=-++=--+∈ ⎪⎝⎭,易得()1724f x ≤≤,所以()172,4f x ⎡⎤∈⎢⎥⎣⎦,故存在正数174,使得()174f x ≤成立.故选:BCD.三、填空题:本题共4小题,每小题5分,共20分.13. 已知命题p :x ∀∈Q ,x N ∈,则p ⌝为______.【答案】x ∃∈Q ,x ∉N 【解析】【分析】由全称命题的否定为特称命题即可求解.【详解】因为p :x ∀∈Q ,x ∈N ,所以p ⌝为x ∃∈Q ,x ∉N .故答案为:x ∃∈Q ,x ∉N .14. 函数()1f x x=+的定义域为_____________.【答案】()(],00,1-∞⋃【解析】【分析】由题意列不等式组即可求得.【详解】要使函数()1f x x=有意义,只需10,0,x x -≥⎧⎨≠⎩解得:1x ≤且0x ≠,从而()f x 的定义域为()(],00,1-∞⋃.故答案为:()(],00,1-∞⋃15. 已知函数()f x 满足下列3个条件:①函数()f x 的图象关于y 轴对称;②函数()f x 在()0,∞+上单调递增;③函数()f x 无最值.请写出一个满足题意的函数()f x 的解析式:______.【答案】()21f x x=-(答案不唯一)【解析】【分析】结合函数的对称性、单调性及常见函数即可求解.【详解】由()f x 的图象关于y 轴对称知()f x 为偶函数,()f x 在(0,+∞)上单调递增,()f x 无最值,根据幂函数性质可知满足题意的一个函数为()21f x x=-.故答案为:()21f x x =-(答案不唯一)16. 已知函数()21x f x x=+,则不等式()211f x -<的解集是____________.【答案】()0,1【解析】【分析】由题可得()f x 为偶函数,且在()0,∞+上单调递增,后利用()()f x f x =可得答案.【详解】因为()f x 的定义域为R ,且()()f x f x -=,所以()f x 是偶函数.的又当0x >时,()21x f x x =+2222211x x x+-==-++单调递增.因为()f x 是偶函数,所以()f x 在(),1-∞单调递减,又因为()11f =,所以()211f x -<()()211f x f ⇔-<211121101x x x ⇔-<⇒-<-<⇒<<.故答案为:()0,1.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 设全集U =R ,集合{}2680A x x x =-+=,31B x x ⎧⎫=<⎨⎬⎩⎭.(1)求()U A B ⋃ð;(2)设集合(){}233,C x x a a x a =+=+∈Z ,若A C 恰有2个子集,求a 的值.【答案】(1)(){03U A B x x ⋃=≤≤ð或}4x = (2)2或4.【解析】【分析】(1)解方程和不等式求出集合,A B ,再由补集、并集运算即可求解;(2)解方程求出集合C ,再通过a 的讨论即可求解.【小问1详解】2680x x -+=,解得2x =或4,则{}2,4A =;由31x<,解得0x <或3x >,则{0B x x =<或}3x >;所以{}03U B x x =≤≤ð,(){03U A B x x ⋃=≤≤ð或}4x =.【小问2详解】因为A C 恰有2个子集,所以A C 仅有一个元素.()()()23330x a a x x x a +=+⇒--=,当3a =时,{}3C =,A C ⋂=∅,不满足题意;当2a =时,{}2,3C =,{}2A C ⋂=,满足题意;当4a =时,{}4,3C =,{}4A C ⋂=,满足题意.综上,a 的值为2或4.18. 已知函数()1f x x x=+.(1)求证:()f x 在()0,1上单调递减,在()1,+∞上单调递增;(2)当1,22x ⎡⎤∈⎢⎥⎣⎦时,求函数()f x 值域.【答案】(1)证明见解析 (2)52,2⎡⎤⎢⎥⎣⎦.【解析】【分析】(1)根据函数单调性的定义,结合作差法,可得答案;(2)根据(1)的单调性,求得给定区间上的最值,可得答案.【小问1详解】证明:()12,0,1x x ∀∈,且12x x <,有()()()121221212121212121121211111x x x x f x f x x x x x x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫---=+-+=-+-=-+=-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由()12,0,1x x ∀∈,且12x x <,得210x x ->,1210x x -<,120x x >,所以()12211210x x x x x x --⋅<,即()()21f x f x <.所以()f x 在()0,1上单调递减.同理,当()12,1,x x ∈+∞,且12x x <,有()()()1221211210x x f x f x x x x x --=-⋅>.故()f x 在()1,+∞上单调递增.【小问2详解】由(1)得()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递减;在[]1,2上单调递增.()12f =,()15222f f ⎛⎫== ⎪⎝⎭,所以()52,2f x ⎡⎤∈⎢⎥⎣⎦.故函数()f x 的值域为52,2⎡⎤⎢⎥⎣⎦.的19. 设函数()223y ax b x =+-+.(1)若关于x 的不等式0y >的解集为{}13x x -<<,求4y ≥的解集;(2)若1x =时,2,0,0y a b =>>,求14a b+的最小值.【答案】(1){}1(2)9【解析】【分析】(1)根据不等式的解集得到方程的根,代入求出,a b ,从而解不等式求出解集;(2)先得到1a b +=,利用基本不等式“1”的妙用求出最小值.【小问1详解】由题知()2230ax b x +-+=的两个根分别是1-,3,则23093630a b a b +-+=⎧⎨+-+=⎩,解得1,4.a b =-⎧⎨=⎩故()2223234y ax b x x x =+-+=-++≥,2210x x -+≤,解得1x =.所求解集为{}1.【小问2详解】1x =时,2y =,即12++=a b ,所以有1a b +=,那么()1414a b a b a b ⎛⎫+=++ ⎪⎝⎭41459b a a b=+++≥+=,当且仅当41b a a b a b ⎧=⎪⎨⎪+=⎩,即1,323a b ⎧=⎪⎪⎨⎪=⎪⎩时,取等号.故14a b+的最小值为9.20. 已知集合(){}40A x x x =-≥,{}121B x a x a =+<<-.(1)若x A ∀∈,均有x B ∉,求实数a 的取值范围;(2)若2a >,设p :x B ∃∈,x A ∉,求证:p 成立的充要条件为23a <<.【答案】(1)5,2⎛⎤-∞ ⎥⎝⎦(2)证明见解析【解析】【分析】(1)根据二次不等式,解得集合的元素,利用分类讨论思想,可得答案;(2)根据充要条件的定义,利用集合之间的包含关系,可得答案.【小问1详解】(){}(][)40,04,A x x x ∞∞=-≥=-⋃+.因为x A ∀∈,均有x B ∉,所以A B =∅ .当2a ≤时,B =∅,满足题意;当2a >时,10214a a +≥⎧⎨-≤⎩,解得512a -≤≤,所以522a <≤.综上,52a ≤,即a 的取值范围是5,2⎛⎤-∞ ⎥⎝⎦.【小问2详解】证明:若p :x B ∃∈,x A ∉为真命题,则p ⌝:x B ∀∈,x A ∈为假命题.先求p ⌝:x B ∀∈,x A ∈为真命题时a 的范围,因为2a >,所以B ≠∅,由p ⌝:x B ∀∈,x A ∈,得B A ⊆.则210a -≤或14a +≥,解得12a ≤或3a ≥,所以3a ≥.因为p ⌝:x B ∀∈,x A ∈为假命题,所以23a <<.综上,若2a >,则p 成立的充要条件为23a <<.21. 某市财政下拨专款100百万元,分别用于植绿护绿和处理污染两个生态维护项目,植绿护绿项目五年内带来的生态收益可表示为投放资金x (单位:百万元)的函数1y (单位:百万元):12710x y x =+,处理污染项目五年内带来的生态收益可表示为投放资金x (单位:百万元)的函数2y (单位:百万元):20.3y x =.设分配给植绿护绿项目的资金为x (单位:百万元),两个生态项目五年内带来的生态收益总和为y (单位:百万元).(1)将y 表示成关于x 的函数;(2)为使生态收益总和y 最大,对两个生态项目的投资分别为多少?【答案】(1)27330(0100)1010x x y x x =-+≤≤+ (2)分配给植绿护绿项目20百万元,处理污染项目80百万元【解析】【分析】(1)由题意列式化简即可;(2)将原式变形构造成对勾函数,利用对勾函数的性质求最值即可.【小问1详解】若分配给植绿护绿项目的资金为x 百万元,则分配给处理污染项目的资金为()100x -百万元,∴272730.3(100)30(0100)101010x x x y x x x x =+-=-+≤≤++.【小问2详解】由(1)得27(10)2703(1010)2703(10)306010101010x x x y x x +-+-+⎡⎤=-+=-+⎢⎥++⎣⎦6042≤-=(当且仅当2703(10)1010x x +=+,即20x =时取等号),∴分配给植绿护绿项目20百万元,处理污染项目80百万元,生态收益总和y 最大.22. 设函数()()2*1488,,N f x mx m mn x m m n =+-++∈ .(1)若()f x 为偶函数,求n 的值;(2)若对*N n ∀∈,关于x 的不等式()0f x ≤有解,求m 的最大值.【答案】(1)2. (2)2.【解析】【分析】(1)根据函数为偶函数可得到14880m mn -+=,变形为714n m=+,结合*,1,N m n m ∈≥,即可确定答案.(2)根据对*N n ∀∈,关于x 的不等式()0f x ≤有解,可得22(1488)40m mn m ∆=-+-≥恒成立,结合二次不等式的解法,讨论n 取值,即可确定答案.【小问1详解】根据题意,函数()()2*1488,R,,N f x mx m mn x m x m n =+-++∈∈为偶函数,即满足()()f x f x -=,即()()22()1488()1488m x m mn x m mx m mn x m -+-+-+=+-++,R x ∈,则14880m mn -+=变形可得:714n m =+ ,又由*,1,N m n m ∈≥ ,则 101m<≤ , 故77111711,44444n m <+≤<≤∴ ,又N n *∈ ,则2n = ;【小问2详解】根据题意,若对*N n ∀∈,关于x 的不等式()0f x ≤有解,由于*,N 0m m ∈>,则22(1488)416[(32)2][(42)2]0m mn m m n m n ∆=-+-=-+-+≥恒成立 ,当1n = 时,32(2)(1)0m m ∆=++≥ ,对*N m ∀∈都成立, 当2n =时,32(2)0m ∆=-+≥,解得2m ≤ ,又*N m ∈,则12m ≤≤ ,当3n ≥时,21232n n <-- ,则223m n ≤- 或 12m n ≥-,当 223m n ≤- 时,又由1m ≥,则n 只能取2,不符合题意,舍去,当 12m n ≥- 时,又由1m ≥,从3n =开始讨论:令1()2g n n =-,由于1()2g n n =-单调递减,故只需1(3)132m g ≥==-,此时m 的取值范围为[1,2] ;综上所述,m 的最大值为2.。
北京市2024-2025学年高一上学期期中考试数学试题含解析
2024-2025学年第一学期高一年级数学学科期中考试命题人:(答案在最后)考生须知1.本试卷分为试题、答题卡两部分.满分150分.考试时间120分钟.2.认真填写所在班级、姓名、学号.3.请用2B 铅笔填涂机读卡,用黑色签字笔在二卷上按要求作答.一、单选题(本大题共10小题,共40分)1.已知集合{1,0,1,2,3},{12}A B xx =-=-<≤∣,则A B = ()A.{1,0}-B.{1,0,1}-C.{0,1}D.{0,1,2}【答案】D 【解析】【分析】根据交集的定义即可求解.【详解】由于{1,0,1,2,3},{12}A B xx =-=-<≤∣,故A B = {0,1,2},故选:D2.已知a b >,则下列关系中正确的是()A.a c b c ->-B.ac bc> C.a b> D.22a b >【答案】A 【解析】【分析】由不等式的性质可判断A ,由特值法可判断BCD.【详解】由a b >,则a c b c ->-,A 正确;当0c =时,ac bc =,故B 错误;当3,7a b =-=-时,a b >,3,7a b ==,则a b <,故C 错误;229,49a b ==,则22a b <,故D 错误.故选:A.3.命题“R m ∀∈,都有2230m m -+>”的否定是()A.R m ∀∈,都有2230m m -+≤B.R m ∃∈,使得2230m m -+≤C.R m ∃∈,使得2230m m -+<D.R m ∃∈,使得2230m m -+>【答案】B 【解析】【分析】根据全称量词命题的否定为存在量词命题即得.【详解】因为全称量词命题的否定为存在量词命题,所以命题“R m ∀∈,都有2230m m -+>”的否定是“R m ∃∈,使得2230m m -+≤”.故选:B.4.已知函数2,()3,2x f x x x ⎧≥⎪=⎨-<⎪⎩,则((1))f f -等于()A.4B.2- C.D.2【答案】D 【解析】【分析】根据分段函数的定义域,先求得(1)f -,再求((1))f f -即可.【详解】因为函数2,()3,2x f x x x ⎧≥⎪=⎨-<⎪⎩,所以()(1)314f -=--=,所以()((1))42f f f -===,故选:D 5.不等式111x >-的解集为()A.()(),12,-∞+∞ B.(),2-∞ C.()1,2 D.()(),01,-∞⋃+∞【答案】C 【解析】【分析】根据根式不等式等价于()()120x x --<,即可求解.【详解】由111x >-可得1120011x x x x -+->⇒<--,故等价于()()120x x --<,解得12x <<,故选:C6.下列函数中,满足“对任意的1x ,()20,x ∈+∞使得()()12120f x f x x x -<-”成立的是().A.()221f x x x =--+ B.()1f x x x=-C.()1f x x =+ D.()2f x x=-【答案】A 【解析】【分析】根据单调性的定义知函数在在(0,)+∞上为减函数,然后逐项分析即可.【详解】根据题意,“对任意的12,(0,)x x ∈+∞,使得()()12120f x f x x x -<-”,则函数()f x 在(0,)+∞上为减函数.对于选项A ,2()21f x x x =--+为二次函数,其开口向下且对称轴为1x =-,所以()f x 在(0,)+∞上递减,符合题意;对于选项B ,1()f x x x=-,因为y x =在(0,)+∞上递增,1y x =-在(0,)+∞上递增,所以由单调性的性质知,()f x 在(0,)+∞上递增,不符合题意;对于选项C ,()1f x x =+为一次函数,所以()f x 在(0,)+∞上递增,不符合题意;对于选项D ,()2f x x=-在(0,)+∞上单调递增,不符合题意.故选:A.7.已知p :02x <<,那么p 的一个充分不必要条件是()A.13x <<B.11x -<< C.01x << D.03x <<【答案】C 【解析】【分析】判断出{}02x x <<的真子集,得到答案.【详解】因为{}01x x <<是{}02x x <<的真子集,故{}01x x <<是p 的一个充分不必要条件,C 正确;ABD 选项均不是{}02x x <<的真子集,均不合要求.故选:C8.函数()y f x =在()0,2上是增函数,函数()2y f x =+是偶函数,则下列结论正确的是()A.()57122f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B.()75122f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭C.75(1)22f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D.()57122f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭【答案】B 【解析】【分析】由()y f x =在()0,2上是增函数,()2y f x =+为偶函数,可知()2y f x =+在()0,2上是减函数,进而可比较函数值的大小.【详解】∵()y f x =在()0,2上是增函数,∴()2y f x =+在()2,0-上是增函数,由函数()2y f x =+是偶函数,知:()2y f x =+在()0,2上是减函数,而()()()73512,2,121212222f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=+=-=+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,由1301222<<<<,∴()75122f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭.故选:B9.已知()2411f x x +=-,则函数()f x 的解析式为()A.()22f x x x=- B.()()211f x x x =-≥C.()()2221f x x x x =-+≥ D.()()221f x x x x =-≥【答案】D 【解析】【分析】根据换元法,设211x t +=≥,得21x t =-,代入即可求解.【详解】设211x t +=≥,则21x t =-,所以()()22112f t t t t =--=-,所以()()221f x x x x =-≥,故选:D .10.已知()222,01,0x ax a x f x x a x x ⎧-+≤⎪=⎨+->⎪⎩,若()0f 是()f x 的最小值,则实数a 的取值范围为()A.[]2,0-B.[]0,1C.[] 2,1- D.[]1,2【答案】B 【解析】【分析】由(0)f 是函数()f x 的最小值,结合二次函数的性质知222()2()f x x ax a x a ==-+-在(-∞,0]上单调递减,从而可得0a ≥,再由分段函数的性质知(0)(1)f f ≤,从而求实数a 的取值范围.【详解】解:(0)f 是函数()f x 的最小值,2()()f x x a ∴=-在(-∞,0]上单调递减,0a ∴≥,当0x >时,1()2f x x a a x=+-≥-在1x =处有最小值,即min ()(1)2f x f a ==-,故(0)(1)f f ≤,即22a a ≤-,解得,21a -≤≤,综上所述,01a ≤≤,故实数a 的取值范围是[0,1],故选:B .二、填空题(本题共6小题,共30分)11.已知集合{}2|10,A x x x R =-=∈,用列举法表示A =_________.【答案】{}1,1-##{}1,1-【解析】【分析】先求解出方程的实数根,然后用列举法表示集合.【详解】解:解方程210x -=得1x =±,所以列举法表示集合为{}1,1A =-,故答案为:{}1,1-12.函数()11f x x =+-的定义域为______.【答案】[)()2,11,-⋃+∞【解析】【分析】由1020x x -≠⎧⎨+≥⎩即可求出.【详解】由1020x x -≠⎧⎨+≥⎩,解得2x ≥-且1x ≠,所以()f x 的定义域为[)()2,11,-⋃+∞.故答案为:[)()2,11,-⋃+∞.13.若函数2()(1)f x x a x a =+-+在区间[2,)+∞上是增函数,则a 的取值范围__________.【答案】[3,)-+∞【解析】【分析】利用二次函数单调性列出不等式,求解不等式即得.【详解】函数2()(1)f x x a x a =+-+图象开口向上,对称轴为12a x -=-,由函数()f x 在区间[2,)+∞上单调递增,得122a --≤,解得3a ≥-,所以a 的取值范围是[3,).-+∞故答案为:[3,)-+∞14.已知正数,x y 满足1x y +=,则14x y+的最小值为_____.【答案】9【解析】【分析】把要求的式子变形为()14414x yx y x y y x ⎛⎫++=+++ ⎪⎝⎭,利用基本不等式即可得到14x y +的最小值.【详解】因为0,0,1x y x y >>+=,所以()1441459x yx y x y y x ⎛⎫++=+++≥+⎪⎝⎭,当且仅当4x y y x =即12,33x y ==时,取等号.故答案为:915.已知函数3()3(g x ax bx a =++,b 为常数),若(2)1g =,则(2)g -=__.【答案】5【解析】【分析】设3()()3f x g x ax bx =-=+,可得函数()f x 为奇函数,从而可得()()0f x f x +-=,即得()3()30g x g x -+--=,代入条件即可得解.【详解】根据题意,设3()()3f x g x ax bx =-=+,有33()()()()()f x a x b x ax bx f x -=-+-=-+=-,则函数()f x 为奇函数,则()()0f x f x +-=,即()3()30g x g x -+--=,变形可得()()6g x g x +-=,则有(2)(2)6g g +-=,(2)1g =,则(2)5g -=;故答案为:5.【点睛】本题主要考查了奇偶性的应用,解题的关键是设3()()3f x g x ax bx =-=+,从而与奇偶性建立联系进而得解,属于基础题.16.若关于x 的不等式2210x x m --+≤在区间[]0,3内有解,则实数m 的取值范围______.【答案】(],2-∞【解析】【分析】根据二次函数的性质,结合配方法进行求解即可.【详解】2221021x x m m x x --+≤⇒≤-++,设()[]()2210,3f x x x x =-++∈,()()222112f x x x x =-++=--+,该二次函数的对称轴为1x =,开口向下,当[]0,3x ∈时,()()max 12f x f ==,要想关于x 的不等式2210x x m --+≤在区间[]0,3内有解,只需()max 2m f x m ≤⇒≤,所以实数m 的取值范围为(],2-∞,故答案为:(],2-∞三、解答题;本题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.17.已知全集U =R ,集合{}23A x x =-<<,{}32B x x =-≤≤,(1)求A B ,A B ⋂;(2)求()U A B ð,()U A B ⋃ð.【答案】17.{}33A B x x =-≤< ,{}22A B x x ⋂=-<≤18.(){}23U A B x x ⋂=<<ð,(){2U A B x x ⋃=≤ð或}3x ≥.【解析】【分析】根据交集、并集、补集的定义一次计算即可.【小问1详解】利用数轴,分别表示出全集U 及集合A ,B ,如图.则{}33A B x x =-≤< ,{}22A B x x ⋂=-<≤.【小问2详解】依题意:{2U A x x =≤-ð或}3x ≥,{3U B x x =<-ð或}2x >,所以(){}23U A B x x =<< ð,(){2U A B x x =≤ ð或}3x ≥.18.已知函数()22f x x x =-.(1)写出()f x 的分段解析式;(2)画出函数()f x 的图象;(3)结合图象,写出函数()f x 的单调区间和值域.【答案】()1函数()f x 的分段解析式为()222020x xx f x x xx ⎧-≥=⎨+<⎩;()2见详解;()3函数()f x 的单调递增区间为[][)1,0,1,-+∞;单调递减区间为(][],1,0,1-∞-;函数()f x 的值域为[)1,-+∞.【解析】【分析】()1去绝对值得到分段函数()f x 的解析式;()2根据解析式,通过描点作图,画出函数()f x 图象;()3结合图象,通过观察,写出函数()f x 的单调区间和值域;【详解】()1由题意可得,当0x ≥时, ;当0x <时,()22f x x x =+;所以函数()f x 的分段解析式为()222020x xx f x x xx ⎧-≥=⎨+<⎩;()2根据()1中函数()f x 的解析式,通过描点作图,得到函数()f x 的图象如下:()3由函数图象可知,函数()f x 的单调递增区间为[][)1,0,1,-+∞;单调递减区间为(][],1,0,1-∞-;函数()f x 的值域为[)1,-+∞.【点睛】本题主要考查二次函数的图象及性质;函数图象的判定和作法,利用函数图象判断函数的性质;属于中档题,常考题型.19.已知关于x 的不等式()222R x x ax a a +>+∈.(1)若1a =,求不等式的解集;(2)解关于x 的不等式.【答案】(1)112x x x ⎧⎫><-⎨⎬⎩⎭或(2)答案见解析【解析】【分析】(1)将1a =代入解不等式即可;(2)因为对应方程的两个根为1,2a -,分12a =-、12a >-、12a <-三种情况解不等式即可.【小问1详解】由()()()()222,2121,210x x ax a x x a x x a x +>+∴+>+∴-+>,当1a =时,可得解集为112x x x ⎧⎫><-⎨⎬⎩⎭或.【小问2详解】对应方程的两个根为1,2a -,当12a =-时,原不等式的解集为12x x ⎧⎫≠-⎨⎬⎩⎭,当12a >-时,原不等式的解集为12x x ⎧<-⎨⎩或}x a >,当12a <-时,原不等式的解集为{x x a <或12x ⎫>-⎬⎭,20.定义在R 上的函数()f x 是奇函数,当0x >时,()41f x x x =+-.(1)利用函数单调性的定义,证明:()41f x x x=+-在[)2,+∞上是单调增函数(2)求函数()f x 的解析式.【答案】(1)证明见解析(2)()41,00,041,0x x x f x x x x x ⎧+->⎪⎪==⎨⎪⎪++<⎩【解析】【分析】(1)任取[)1212,2,,x x x x ∈+∞>,通过判断()()12f x f x -的符号来证明单调性即可;(2)利用()()f x f x =--可得函数解析式.【小问1详解】任取[)1212,2,,x x x x ∈+∞>,则()()()()12121212121244411x x x x f x f x x x x x x x --⎛⎫-=+--+-= ⎪⎝⎭,[)1212,2,,x x x x ∈+∞> ,12120,40x x x x ∴->->,()()120f x f x ∴->,即()()12f x f x >,∴()41f x x x=+-在[)2,+∞上是单调增函数;【小问2详解】当0x <时,由函数()f x 是奇函数得()()4411f x x x x x f x ⎛⎫-+--==++ ⎪⎝⎭-=--,,又()00f =,()41,00,041,0x x x f x x x x x ⎧+->⎪⎪∴==⎨⎪⎪++<⎩.21.某学校为了支持生物课程基地研究植物的生长规律,计划利用学校空地建造一间室内面积为2900m 的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m ,三块矩形区域的前、后与内墙各保留1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留3m 宽的通道,如图.设矩形温室的室内长为x (单位:m ),三块种植植物的矩形区域的总面积为S (单位:2m ).(1)求S 关于x 的函数关系式;(2)求S 的最大值,并求出此时x 的值.【答案】(1)72002916=--+S x x,()8,450x ∈(2)当矩形温室的室内长为60m 时,三块种植植物的矩形区域的总面积最大,最大为2676m .【解析】【分析】(1)三块种植植物的矩形区域的总面积可看做一个矩形面积:900(8)2S x x ⎛⎫=--⎪⎝⎭,根据边长为正得其定义域为(8,450);(2)利用基本不等式求最值即可.【小问1详解】由题设,得()9007200822916S x x x x ⎛⎫=--=--+⎪⎝⎭,()8,450x ∈.【小问2详解】因为8450x <<,所以72002240x x +≥=,当且仅当60x =时等号成立,从而676S ≤.故当矩形温室的室内长为60m 时,三块种植植物的矩形区域的总面积最大,最大为2676m .22.已知函数()f x 满足()()()()1,f x y f x f y x y R +=+-∈,当0x >时,()1f x >,且()12f =.(1)求()()0,1f f -的值,并判断()f x 的单调性;(2)当[]1,2x ∈时,不等式()()231f ax x f x -+<恒成立,求实数a 的取值范围.【答案】(1)()01f =,()10f -=;()f x 在R 上为增函数;(2)34a <.【解析】【分析】(1)利用赋值法求出()()0,1f f -的值,利用函数的单调性定义判断()f x 的单调性即可;(2)利用已知等式把不等式()()231f ax x f x -+<转化为()()221f ax x f -<-,利用函数的单调性,结合常变量分离法、配方法进行求解即可.【详解】(1)令0x y ==,得()()()00001f f f +=+-,得()01f =,令1,1x y =-=,得()()()0111f f f =-+-,得()10f -=;设12,x x 是任意两个不相等的实数,且12x x <,所以210x x ->,所以()()()()212111f x f x f x x x f x -=-+-()()()()21112111f x x f x f x f x x =-+--=--,因为210x x ->,所以()211f x x ->,所以()2110f x x -->,因此()()()()21210f x f x f x f x ->⇒>即()f x 在R 上为增函数;(2)因为()()231f ax x f x -+<,即()2211f ax x -+<,即()220f ax x -<,又()10f -=,所以()()221f ax x f -<-,又因为()f x 在R 上为增函数,所以221ax x -<-在[]1,2x ∈上恒成立;得2210ax x -+<在[]1,2x ∈上恒成立,即221a x x<-在[]1,2x ∈上恒成立,因为2221111x x x ⎛⎫-=--+ ⎪⎝⎭,当2x =时,221x x -取最小值34,所以34a <;即34a 时满足题意.。
上海市第二中学2024-2025学年高一上学期期中考试数学试题(含解析)
2024~2025学年市二中学高一(上)期中考试数学试卷一、填空题(第1-6题每題4分,第7-12题每题5分,满分54分)1.若,,则______.2.不等式的解集是______.3.已知,则______.4.不等式“”是“”______的条件.5.已知集合,集合,若集合M 满足,则这样的集合M 共有______个.6.已知,那么等于______.7.已知,,则用m ,n 表示______.8.若关于x 的不等式恰有两个整数解,则a 的取值范围是______.9.命题“任意,为真命题,则实数a 的取值范围是______.10.碳14是透过宇宙射线撞击空气中的氨14原子所产生.碳14原子经过衰变转变为氨原子.由于其半衰期达5730年,经常用于考古年代鉴定,半衰期(Half-life )是指放射性元素的原子核有半数发生衰变时所需要的时间,对北京人遗址中某块化石鉴定时,碳14含量约为原来的1%,则这块化石距今约为______万年.(四舍五入到0.1万年)11.已知,,,,,若且,,中各元素的和为256,则集合______.12.已知实数a ,b 满足,且,则的最小值为______.二、单选题(本大题共4题,满分20分)13.已知集合,,则( )A .B .C .D .14.关于x 的不等式的解集是,那么()A .1B .C .12D .{}|31A x x =-≥{}|15B x x =<<A B = 304x x -≤+12510a b ==11a b +=23x x ≤|2|1x -<{}2,3,5,8A ={}2,3,5,8,13,21B =A M B ⊂⊆()223350x x x -+=>1133x x -+9log 5m =3log 7n =35log 9=()22120x a x a -++<x ∈R ()()222240a x a x -+--<β14235{,,,,}A a a a a a =4222221235{,,,},B a a a a a =51234a a a a a <<<<i a ∈Z 1,2,3,4,5i ={}14,B a a A = 1410a a +=22a >A B A =11a b -<<<2a b +=1311a ab ++-4|,1P x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭N N {}|14Q x x =-≤≤P Q = {}1,2,4{}0,1,3{}|03x x ≤≤{}|14x x -≤≤2x ax b ≤-{}4log a b =344315.若,,则下列不等式中一定成立的是()A .B .C .D .16.定义集合运算;将称为集合A 与集合B 的对称差,命题甲::命题乙:则下列说法正确的是( )A .甲乙都是真命题B .只有甲是真命题C .只有乙是真命题D ,甲乙都不是真命题三、解答题(本大题共有5题,满分76分)17.已知集合,,若,,则实数a 、b 、c 的值为.18.设关于x 的方程的两个实根分别是,.(1)求实数p 的取值范围;(2)求的取值范围.19.近几年来,“盲盒文化”广为流行,这种文化已经在中国落地生根,并发展处具有中国特色的盲盒经济,某盲盒生产及销售公司今年初用98万购进一批盲盒生产线,每年可有50万的总收入,已知生产此盲盒x 年(x 为正整数)所用的各种费用总计为万元(1)该公司第几年首次盈利(总收入超过总支出,今年为第一年)?(2)该公司第几年年平均利润最大,最大是多少?20.某天数学课上,你突然惊醒,发现黑板上有如下内容:(1)老师请你模仿例题,研究,上的最小值;(提示:,当且仅当时,等号成立);(2)研究,上的最小值;(3)当时,求,的最小值.21.已知有限集,如果A 中的元素满足,就称A 为“完美集”.x a m -<y a n -<2x y m -<2x y n -<x y n m-<-x y n m -<+{}|A B x x A x B -=∈∉且()()A B A B B A ∆=-- ()()()A B C A B A C ∆=∆ △()()()A B C A B A C ∆=∆ {}2|0A x x ax b =++={}2|150B x x cx =++={}3,5A B = {}3A B = 22lg lg 30x x p -+=αβlog log βαβα+2210x x +44x x -()0,x ∈+∞a b c d +++≥a b c d ===3139x x -()0,x ∈+∞0a >3x ax -()0,x ∈+∞{}()12,,2,,n A a a a n n ⋅⋅⋅=≥∈N ()1,2,,i a i n =⋅⋅⋅1212n n a a a a a a ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯(1)判断:集合是否是“完美集”并说明理由:(2)、是两个不同的正数,且是“完美集”,求证:、至少有一个大于2;(3)若为正整数,求:“完美集”A .2024~2025学年市二中学高一(上)期中考试数学试卷一、填空题1.【答案】【解析】由题意知,,所以.2.【答案】【解析】,解得或,所以不等式的解集为.3.【答案】【解析】若,可得,,.4.【答案】必要不充分【解析】,,由于是的真子集,所以“”是“”的必要不充分条件.5.【答案】3【解析】因为集合,所以集合M 中包含2,3,5,8且至少包含13,21中的一个元素,所以或或,所以满足条件的M 个数为3.6.【解析】由,因,故,即得,.7.【答案】【解析】由,,可得,,又由{11---+1a 2a {}12,a a 1a 2a i a ()1,4(),4A =-∞()1,4A B = ()[),43,-∞-+∞ ()()34030440x x x x x -+≤⎧-⎪≤⇔⎨++≠⎪⎩4x <-3x ≥()[),43,-∞-+∞ 1-12510b a ==2log 10a =-5log 10b =-()521111lg 5lg 2lg101log 10log 10a b ⎛⎫+=-+=-+=-=- ⎪⎝⎭{}{}23|0|3x x x x x ≤=≤≤{}{}3|21|1x x x x -<=<<{}|13x x <<{}3|0x x ≤≤23x x ≤21x -<A M B ⊂⊆{}2,3,5,8,13M ={}2,3,5,8,21{}2,3,5,8,13,212112233332527x x x x --⎛⎪+=++⎫⎝⎭+ ==0x >11330x x -+>1133x x -+=22m n+9log 5m =3log 7n =31log 52m =3log 7n =8.【答案】【解析】令,解得或.当,即时,不等式,解得,则不等式中的两个整数解为2和3,有,解得;当,即时,不等式无解,所以不符合题意;当,即时,不等式解得,则不等式中的两个整数解为0和,有,解得.综上,a 的取值范围是9.【答案】【解析】因为“任意,”为真命题,所以不等式在上恒成立,当时,,显然成立,当时,有,解得,综上所述,实数a 的取值范围是.10.【答案】3.8【解析】设第n 个半衰期结束时,碳14含为,由题意可得,第一个半衰期结束时,碳14含量为,第二个半衰期结束时,碳14含量为;以此类推,为以首项,公比为的等比数列,所以第n 个半衰期结束时,碳14含量为,335333log 922log 9log 35log 5log 72m n===++3|21212a a a ⎭<≤⎧⎫-≤<-⎨⎬⎩或()22120x a x a -++=1x =2x a =21a >12a >()22120x a x a -++<12x a <<324a <≤322a <≤21a =12a =()22120x a x a -++<12a =21a <12a <()22120x a x a -++<21a x <<1-221a -≤<-112a -≤<-3|21212a a a ⎭<≤⎧⎫-≤<-⎨⎬⎩或(]2,2-x ∈R ()()222240a x a x -+--<()()222240a x a x -+--<R 2a =40-<2a ≠()()220421620a a a -<⎧⎪⎨∆=-+-<⎪⎩22a -<<(]2,2-n a 112a =214a ={}n a 112a =12q =12n n a ⎛⎫= ⎪⎝⎭令,解得所以这块化石距今约为年,即约为3.8万年:11.【答案】【解析】由,且,得到只可能,即或0,当时,,而,故舍去,则,又,∴,且,∴或,①若时,,不合题意;②若时,此时,,因,从而,又,则,当时,无整数解,当时,,所以,综上,12.【解析】因为,所以,,因为,所以,由,所以所以,11%2n n a ⎛⎫== ⎪⎝⎭2212lg102log 10 6.6410.301lg 2n ---===≈-5730 6.6438047.2⨯={}1,3,5,9,11{}14,A B a a = 12345a a aa a <<<<211a a =1a =11a =0410a ={}14,A B a a = =Z 1a =11410a a +=49a =()24923i a a i ==≤≤23a =33a =33a =22a =23a ={}531,3,,9,A a a ={}22531,9,,81,B a a =22353513981256a a a a +++++++=2255331620a a a a +++-=234a a a <<339a <<3a =4,6,7,85a 35a =511a ={}1,3,5,9,11A ={}1,3,5,9,11A =1-11a b -<<<10a +>10b ->2a b +=()()112a b ++-=2a b +=()32131133111111b a a b a b a b -+=+=+-+-+-+-()()13113311311211a b a b a b ⎡⎤⎢-+-=+++--⎡⎤⎣⎦+-+⎥⎣⎦()31111133432312112a b a b ⎛+- =+++-≥⎝⎛⎫ ⎪⎝+-=+-=- +⎭-当且仅当,即,二、单选题13.【答案】B 【解析】若,则是4的正因数,而4的正因数有1,2,4,所以,因为,所以,故选:B .14.【答案】D【解析】即,因为解集为,则根据韦达定理知,即,则故选:D .15.【答案】D 【解析】运用绝对值三角不等式,由于,,运用不等式性质得到故,故选:D .16.【答案】B【解析】对于甲,,故命题甲正确;对于乙,如图所示:所以,,故命题乙不正确三、解答题17.【答案】,,()31111a b a b +-=+-2a =-+4b =-41y x =+y ∈N 1x +{}4|,0,1,31P x y y x ⎧⎫=∈=∈=⎨⎬+⎩⎭N N {}|14Q x x =-≤≤{}0,1,3P Q = 2x ax b ≤-20x ax b -+≤{}42424a b =⨯⎧⎨=⎩816a b =⎧⎨=⎩32844log log 16log 23a b ===x y x a a y x a a y -=--≤-++-x a m -<y a n -<x a a y m n-+-<+x y m n -<+()()()()A B C A B B C B C A B C A B C ∆=-=- ()()()()()()A B A C A B A C A B A C =-=∆ ()()()A B C A B A C ∆≠∆ ()A B C ∆ ()()A B A C ∆ 6a =-9b =8c =-【解析】因为,所以,所以,得,所以,所以,即有且只有一个实根,所以,,解得,,综上可得,,,.18.【答案】(1);(2)【解析】(1)因为,即,设,则关于t 的方程:的两根为和,所以,解得.(2)由韦达定理,得,所以因为且,所以或,所以或,所以的取值范围为19.【答案】(1)第3年:(2)第7年平均利润最大,为12万元【解析】(1)设利润为y ,则,由整理得,,解得,由于,所以,所以第3年首次盈利.(2)首先,由(1)得平均利润万元,{}3AB = 3B ∈93150c ++=8c =-{}{}28150|3,5B x x x =-+=={}3A =20x ax b ++=3x =33a +=-33b ⨯=6a =-9b =6a =-9b =8c =-1,3⎛⎤-∞ ⎥⎝⎦()[),22,-∞-+∞ 22lg lg 30x x p -+=2lg 2lg 30x x p -+=lg t x =2230t t p -+=lg αlg β()22120p ∆=-≥-13p ≤lg lg 2lg lg 3pαβαβ+=⎧⎨=⎩22lg lg lg lg log log lg lg lg lg αββαβαβααβαβ++=+=2(lg lg )2lg lg 4642lg lg 33p p pβααβαβ+--===-31p ≤30p ≠443p ≥403p<4223p -≥4223p-<-log log αββα+()[),22,-∞-+∞ ()()22*509821024098y x x x x x x =-++=-+-∈N 2240980x x -+->220490x x -+<1010x -<<x *∈N {}|317x x x *∈∈≤≤N {}|317x x x *∈∈≤≤N 4924024012y x x x ⎛⎫=-++≤-⨯+= ⎪⎝⎭当且仅当,万元时等号成立,综上,第7年,平均利润最大,为12万元20.【答案】(1):(2);(3)【解析】(1)因为,利用,于是,,当且仅当时,取得最小值.(2)因为,利用,得到,于是,,当且仅当时,取得最小值.(3)因为利用,得到,于是,,当且仅当时,取得最小值21.【解析】(1)由,,则集合是“完美集”.(2)若、是两个不同的正数,且是“完美集”,设,根据根和系数的关系知,和相当于的两根,由,解得或(舍去),所以,又,均为正数所以、至少有一个大于2.(3)不妨设A中,49x x=7x =3-6-0x >a b c d +++≥41114x x ++≥+444111434433x x x x x x -=+++--≥--=-1x =3-0x >a b c ++≥313339x x ++≥331133363363699x x x x x x -=++--≥--=-3x =6-0x >a b c ++≥3x ax +≥33x ax x ax -=-≥x =((112-+-+=-(112--=-{11--+1a 2a {}12,a a 12120a a a a t +=⋅=>1a 2a 20x tx t -+=240t t ∆=->4t >0t <124a a ⋅>1a 2a 1a 2a 312n a a a a <<<⋅⋅⋅<由,得,当时,即有,又为正整数,所以,于是,则无解,即不存在满足条件的“完美集”;当时,,故只能,,求得,于是“完美集”A 只有一个,为.当时,由,即有,而,又,因此,故矛盾,所以当时不存在完美集A ,综上知,“完美集”A 为1212n n n a a a a a n a a ⋅⋅⋅=++⋅⋅<⋅+121n n a a a -⋅⋅<⋅2n =12a <i a 11a =2211a a +=⨯2a 3n =123a a <11a =2a =23a =3{}1,2,34n ≥()1211231n a a a n n -⋅⋅⋅≥⨯⨯⨯⋅⋅⋅⨯-()1231n n n ≥⨯⨯⨯⋅⋅⋅⨯-()()()221242220n n n n n n ---=-+-=--+<()()()121231n n n n --≤⨯⨯⨯⋅⋅⋅⨯-()1231n n n <⨯⨯⨯⋅⋅⋅⨯-4n ≥{}1,2,3。
2024-2025学年华东师大二附中高一数学上学期期中考试卷及答案解析
上海市华东师范大学第二附属中学2024-2025学年高一上学期期中考试数学试卷1. 用Î或Ï填空:0______f .【答案】Ï【解析】【分析】空集中没有任何元素.【详解】由于空集不含任何元素,∴0ÏÆ.故答案为Ï.【点睛】本题考查元素与集合的关系,关键是掌握空集的概念.2. 实数a ,b 满足31a -££,13b -££,则3a b -的取值范围是________.【答案】[]12,4-【解析】【分析】根据题意利用不等式的性质运算求解.【详解】因为31a -££,13b -££,则933a -££,31b -£-£,可得1234a b -£-£,所以3a b -的取值范围是[]12,4-.故答案为:[]12,4-.3. 若全集{}2,3,5U =,{}2,5A a =-,{}5A =,则a 的值是______.【答案】2或8【解析】【分析】由53a -=即可求解.【详解】因为{}2,3,5U =,{}2,5A a =-,且{}5A =,所以53a -=,解得2a =或8a =.故答案为:2或8.4. 命题“1x >”是命题“11x<”的______条件.【答案】充分不必要【解析】【分析】解出不等式11x<,根据真子集关系即可【详解】11x <,即10x x -<,即()10x x -<,即()10x x -<,解得1x >或0x <,则“1x >”能推出“1x >或0x <”,而“1x >或0x <”不能推出 “1x >”,故命题“1x >”是命题“11x<”的充分不必要条件.故答案为:充分不必要.5. 已知0x >,则812x x --的最大值为_____________.【答案】7-【解析】【分析】利用基本不等式求解即可.【详解】因为0x >,所以828x x +³=,当82x x=,即2x =时等号成立,所以881212187x x x x æö--=-+£-=-ç÷èø,即812x x--的最大值为7-,故答案为:7-.6. 已知(21)y f x =+定义域为(1,3],则(1)y f x =+的定义域为__________.【答案】(2,6]【解析】【分析】根据3217x <+£可得317x <+£,即可求解.【详解】由于(21)y f x =+定义域为(1,3],故3217x <+£,因此(1)y f x =+的定义域需满足317x <+£,解得26x <£,故(1)y f x =+的定义域为(2,6],故答案为:(2,6]7. 已知关于x 的不等式210ax bx ++<的解集为11,43æöç÷èø,则a b +=______.【答案】5【解析】【分析】由题意得11,43是方程210ax bx ++=的两个根,由根与系数的关系求出,a b 即可.【详解】由题意可知,11,43是方程210ax bx ++=的两个根,且0a >,由根与系数的关系得1134b a +=-且11134a´=,解得12,7a b ==-,则5a b +=.故答案为:58. 设1x 、2x 是关于x 的方程22242320x mx m m -++-=的两个实数根,则2212x x +的最小值为______.【答案】89【解析】【分析】根据1x 、2x 是关于x 的方程22242320x mx m m -++-=的两个实数根,由Δ≥0,解得 23m £,然后由()2212121222x x x x x x ++×=- ,将韦达定理代入,利用二次函数的性质就.【详解】因为1x 、2x 是关于x 的方程22242320x mx m m -++-=的两个实数根,所以()()22482320m m m D =-+-³,解得 23m £,所以112222322,2x x x x m m m +=×-=+,则 ()2212121222x x x x x x ++×=- ,()22232222m m m +-=-´, 2232m m =-+, 237248m æö=-+ç÷èø,所以2212x x +的最小值为2237823489æö-+=ç÷èø,故答案为:899. 若函数()f x 满足R x "Î,()()11f x f x +=-,且1x ",[)21,x Î+¥,()()()1212120f x f x x x x x ->¹-,若()()1f m f >-,则m 的取值范围是______.【答案】()(),13,-¥-È+¥【解析】【分析】由题意,()f x 在[)1,+¥上单调递增,函数图像关于1x =对称,利用单调性和对称性解不等式.【详解】因为1x ",[)21,x Î+¥,()()()1212120f x f x x x x x ->¹-,所以()f x 在[)1,+¥上单调递增,R x "Î,()()11f x f x +=-,则函数图像关于1x =对称,若()()1f m f >-,则111m ->--,解得3m >或1m <-.所以m 的取值范围是()(),13,-¥-È+¥.故答案为:()(),13,-¥-È+¥.10. 已知{}{}22230,210,0A x x x B x x ax a =+->=--£>,若A B Ç中恰含有一个整数,则实数a 的取值范围是______.【答案】【解析】【详解】试题分析:由题意,得{}{}223013A x x x x x x =+-=<-或,{}{2210,0=|B x x ax a x a x a =--£££+;因为,所以若A B Ç中恰含有一个整数,则{}2A B Ç=,则,即,两边平方,得,解得,即实数的取值范围为;故填.考点:1.集合的运算;2.一元二次不等式的解法.11. 已知函数()3(1)1f x x =-+,且()()22(1,0)f a f b a b +=>->,则121a b ++的最小值是________.【答案】2【解析】【分析】利用()3(1)1f x x =-+,单调性与对称性,可知,若有()()2f m f n +=,则必有2m n +=成立.再利用基本不等式求121a b ++的最小值即可.【详解】∵3y x =在R 为单调递增奇函数,∴3y x =有且仅有一个对称中心()0,0,∴()3(1)1f x x =-+单调递增,有且仅有一个对称中心()1,1,又∵()()22(1,0)f a f b a b +=>->,∴22a b +=,则()214a b ++=,∴()1211221141a b a b a b æö+=+++éùç÷ëû++èø()411441a b a b +éù=++êú+ë1424é³+=êêë,当且仅当()411a b a b+=+即0,2a b ==时,等号成立,∴121a b++的最小值是2.故答案为:2.12. 如图,线段,AD BC 相交于O ,且,,,AB AD BC CD 长度构成集合{}1,5,9,x,90ABO DCO Ð=Ð=°,则x 的取值个数为________.【答案】6【解析】【分析】画出等效图形,分9AD =和x 两种情况由勾股定理求出对应x 值即可;的【详解】如图,因为90ABO DCO Ð=Ð=°,且,,,AB AD BC CD 长度构成集合{}1,5,9,x ,因为直角三角形ADE 中,斜边AD 一定大于直角边AE 和DE ,所以9AD =或x ,当9AD =时,可分为AE x =,此时由勾股定理可得()222159x ++=,解得x =CE x =,此时由勾股定理可得()222159x ++=,解得5x =;CD x =,此时由勾股定理可得()222519x ++=,解得1x =;当AD x =,可分为()222915x ++=,解得x =()222195x ++=,解得x =;()222519x ++=,解得x =所以x 的取值个数为6,故答案为:6.【点睛】关键点点睛:本题的关键是能够画出等效图形再结合勾股定理解答.13. 下列各组函数中,表示同一个函数的是( )A. 2(),()x f x x g x x== B. ()(),()()f x x x R g x x x Z =Î=ÎC. ,0(),(),0x x f x x g x x x ³ì==í-<î D. 2(),()f x x g x ==【答案】C【解析】【分析】分别求得函数的定义域和对应法则,结合同一函数的判定方法,逐项判定,即可求解.【详解】对于A 中,函数()f x x =的定义域为R ,函数2()x g x x=的定义域为(,0)(0,)-¥+¥U ,两函数的定义域不同,不是同一函数;对于B 中,函数()()f x x x R =Î和()()g x x x Z =Î的定义域不同,不是同一函数;对于C 中,函数,0(),0x x f x x x x ³ì==í-<î与,0(),0x x g x x x ³ì=í-<î定义域相同,对应法则也相同,所以是同一函数;对于D 中,函数()f x x =定义域为R,2()g x =的定义域为[0,)+¥,两函数的定义域不同,不是同一函数.故选:C.【点睛】本题主要考查了同一函数的判定,其中解答中熟记两函数是同一函数的判定方法是解答的关键,着重考查推理与运算能力,属于基础题.14. 设集合A ={x |x =12m ,m ∈N *},若x 1∈A ,x 2∈A ,则( )A. (x 1+x 2)∈AB. (x 1﹣x 2)∈AC. (x 1x 2)∈AD. 12x x ∈A 【答案】C【解析】【分析】利用元素与集合的关系的进行判定.【详解】设112p x =,212q x =, 则12111222p q p qx x +=×=,因为p 、*N q Î,所以*N p q +Î,则x 1x 2∈A ,故选:C .15. 如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚在这个过程中,小球的运动速度v (m /s )与运动时间t (s )的函数图象如图②,则该小球的运动路程y (m )与运动时间t (s )之间的函数图象大致是( )的的A. B.C. D.【答案】C【解析】【分析】根据题意结合图象分析即可.【详解】由题意,小球是匀变速运动,所以图象是先缓后陡,在右侧上升时,先陡后缓.故选:C.16. 设集合A 是集合*N 的子集,对于*i ÎN ,定义1,()0,i i A A i A j Îì=íÏî,给出下列三个结论:①存在*N 的两个不同子集,A B ,使得任意*i ÎN 都满足()0i A B j =I 且()1i A B j =U ;②任取*N 的两个不同子集,A B ,对任意*i ÎN 都有()i A B j =I ()i A j g ()i B j ;③任取*N 的两个不同子集,A B ,对任意*i ÎN 都有()i A B j =U ()+i A j ()i B j ;其中,所有正确结论的序号是( )A. ①②B. ②③C. ①③D. ①②③【答案】A【解析】【分析】根据题目中给的新定义,对于*,0i i N A j Î=()或1,可逐一对命题进行判断,举实例例证明存在性命题是真命题,举反例可证明全称命题是假命题.【详解】∵对于*i ÎN ,定义1,()0,i i A A i A j Îì=íÏî,∴对于①,例如集合A 是正奇数集合,B 是正偶数集合,,*A B A B N \=Æ=I U ,()()01i i A B A B j j \==I U ;,故①正确;对于②,若()0i A B j =I ,则()i A B ÏI ,则i A Î且i B Ï,或i B Î且i A Ï,或i A Ï且i B Ï;()()0i i A B j j \×=;若()1i A B j =I ,则()i A B ÎI ,则i A Î且i B Î; ()()1i i A B j j \×=;∴任取*N 的两个不同子集,A B ,对任意*i ÎN 都有()i i A B A i B j j j =×I ()();正确,故②正确;对于③,例如:{}{}{}1232341234A B A B ===U ,,,,,,,,,,当2i =时,1i A B j =U ();()()1,1i i A B j j ==;()()()i i i A B A B j j j \¹+U ; 故③错误;∴所有正确结论的序号是:①②; 故选:A .【点睛】本题考查了简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.17. 已知关于x 的不等式122x a -£的解集为集合A ,40x B x x ìü-=£íýîþ.(1)若x A Î是x B Î的必要不充分条件,求a 的取值范围.(2)若A B =ÆI ,求a 的取值范围.【答案】(1)[]0,2(2)(](),24,-¥-+¥U 【解析】分析】(1)首先解不等式求出集合A 、B ,依题意B 真包含于A ,即可得到不等式组,解得即可;(2)首先判断A ¹Æ,即可得到240a +£或244a ->,解得即可.【小问1详解】由122x a -£,即1222x a -£-£,解得2424a x a -££+,所以{}2424|A x x a a -=££+,由40x x -£,等价于()400x x x ì-£í¹î,解得04x <£,所以{}40|04x B x x x x ìü-=£=<£íýîþ,【因为x A Î是x B Î的必要不充分条件,所以B 真包含于A ,所以244240a a +³ìí-£î,解得02a ££,即a 的取值范围为[]0,2;【小问2详解】因为A B =ÆI ,显然A ¹Æ,所以240a +£或244a ->,解得2a £-或4a >,即a 的取值范围为(](),24,-¥-+¥U .18. 已知函数()211y m x mx =+-+.(1)当5m =时,求不等式0y >的解集;(2)若不等式0y >的解集为R ,求实数m 的取值范围.【答案】(1){13x x <或x >(2)(22-+【解析】【分析】(1)根据题意易得26510x x -+>,因式分解后利用口诀“大于取两边,小于取中间”即可得解;(2)由题意易得()2110m x mx +-+>的解集为R ,分类讨论1m =-与1m ¹-两种情况,结合二次函数的图像性质即可得解.【小问1详解】根据题意,得2651y x x =-+,由0y >得26510x x -+>,即()()31210x x -->,解得:13x <或12x >,故不等式0y >的解集为{13x x <或x >【小问2详解】由题意得,()2110m x mx +-+>的解集为R ,当1m =-时,不等式可化为10x +>,解得1x >-,即()2110m x mx +-+>的解集为()1,-+¥,不符合题意,舍去;当1m ¹-时,在()211y m x mx =+-+开口向上,且与x 轴没有交点时,()2110m x mx +-+>的解集为R ,所以()210Δ410m m m +>ìí=-+<î,解得22m m >ìïí-<<+ïî22m -<<+,综上:22m -<<+,故实数m的取值范围为(22-+.19. 某化工企业生产过程中不慎污水泄漏,污染了附近水源,政府责成环保部门迅速开展治污行动,根据有关部门试验分析,建议向水源投放治污试剂,已知每投放a 个单位(04a <£且R a Î)的治污试剂,它在水中释放的浓度y (克/升)随着时间x (天)变化的函数关系式近似为()y af x =,其中()[](]1,0,5711,5,112xx xf x x x +ìÎïï-=í-ïÎïî,若多次投放,则某一时刻水中的治污试剂浓度为每次投放的治污试剂在相应时刻所释放的浓度之和,根据试验,当水中治污试剂的浓度不低于4(克/升)时,它才能治污有效.(1)若只投放一次4个单位的治污试剂,则有效时间最多可能持续几天?(2)若先投放2个单位的治污试剂,6天后再投放m 个单位的治污试剂,要使接下来的5天中,治污试剂能够持续有效,试求m 的最小值.【答案】(1)7天; (2)min 2m =.【解析】【分析】(1)根据给定的函数模型求投放一次4个单位的治污试剂的有效时间即可;(2)由题设()5=11413x g x x m x --+׳-,将问题化为()()1375x x m x --³-在[6,11]x Î上恒成立,利用基本不等式求右侧最大值,即可得求参数最小值.【小问1详解】因为一次投放4个单位的治污试剂,所以水中释放的治污试剂浓度为()44,0547222,511xx y f x x x x +죣ï==-íï-<£î,当05x ££时,()4147x x+³-,解得35x ££;当511x ££时,2224x -³,解得59x ££;综上,39x ££,故一次投放4个单位的治污试剂,则有效时间可持续7天.【小问2详解】设从第一次投放起,经过()611x x ££天后浓度为()()()16511[]117613x x g x x m x m x x+--=-+=-+×---.因为611x ££,则130x ->,50x ->,所以511413x x m x --+׳-,即()()1375x x m x --³-,令5x t -=,[]1,6t Î,所以()()281610t t m t tt --æö³-=-+ç÷èø,因为168t t+³=,所以2m ≥,当且仅当16t t =,4t =即9x =时等号成立,故为使接下来的5天中能够持续有效m 的最小值为2.20. 对于函数()f x ,若存在0R x Î,使()00f x x =成立,则称0x 为()f x 的不动点.(1)求函数23y x x =--不动点;(2)若函数()221y x a x =-++有两个不相等的不动点1x 、2x ,求1221x x x x +的取值范围;(3)若函数()()211g x mx m x m =-+++在区间(0,2)上有唯一的不动点,求实数m 的取值范围.【答案】(1)1-和3. (2)()2,+¥(3)(]1,1-U .【解析】【分析】(1)解方程23x x x --=,即可求出不动点;(2)由题意,方程()2310x a x -++=有两个不相等的实数根1x 、2x ,由0D >即可求出a 的范围,结合韦达定理和二次函数图象性质即可求出1221x x x x +的范围;的(3)由题意,()2210mx m x m -+++=在(0,2)上有且只有一个解,令()()221h x mx m x m =-+++,分()()020h h ×<,()00h =,()20h =和0D =四种情况进行讨论即可.【小问1详解】由题意知23x x x --=,即2230x x --=,则()()310x x -+=,解得11x =-,23x =,所以不动点为1-和3.【小问2详解】依题意,()221x a x x -++=有两个不相等的实1x 数根1x 、2x ,即方程()2310x a x -++=有两个不相等的实数根1x 、2x ,所以()22Δ34650a a a =+-=++>,解得5a <-,或1>-a ,且123x x a +=+,121x x =,所以()()2222121212122112232x x x x x x x x a x x x x ++==+-=+-,因为函数()232y x =+-对称轴为3x =-当3x <-时,y 随x 的增大而减小,若5x <-,则2y >;当3x >-时,y 随x 的增大而增大,若1x >-,则2y >;故()()2322,a ¥+-Î+,所以1221x x x x +的取值范围为()2,¥+.【小问3详解】由()()211g x mx m x m x =-+++=,得()2210mx m x m -+++=,由于函数()g x 在(0,2)上有且只有一个不动点,即()2210mx m x m -+++=在(0,2)上有且只有一个解,令()()221h x mx m x m =-+++,①()()020h h ×<,则()()110m m +-<,解得11m -<<;②()00h =,即1m =-时,方程可化为20x x --=,另一个根为1-,不符合题意,舍去;③()20h =,即1m =时,方程可化为2320x x -+=,另一个根为1,满足;④0D =,即()()22410m m m +-+=,解得m =(ⅰ)当m =时,方程的根为()2222m m x m m -++=-==(ⅱ)当m =()2222m m x m m -++=-==,不符合题意,舍去;综上,m 的取值范围是(]1,1-È.21. 对任意正整数n ,记集合(){1212,,,,,,n nnA a a a a a a=××××××均为非负整数,且}12n a a a n ++×××+=,集合(){1212,,,,,,n nnB b b b b b b =××××××均为非负整数,且}122n b b b n ++×××+=.设()12,,,n n a a a A a =×××Î,()12,,,n n b b b B b =×××Î,若对任意{}1,2,,i n Î×××都有i i a b £,则记a b p .(1)写出集合2A 和2B ;(2)证明:对任意n A a Î,存在n B b Î,使得a b p ;(3)设集合(){},,,n nnS A B a b a b a b =ÎÎp 求证:nS中的元素个数是完全平方数.【答案】(1)()()(){}20,2,1,1,2,0A =,()()()()(){}20,4,1,3,2,2,3,1,4,0B =(2)证明见解析 (3)证明见解析【解析】【分析】(1)根据集合n A 与n B 的公式,写出集合和即可;(2)任取()12,,,n n a a a A a =×××Î,设()11,2,3,,i i b a i n =+=×××,令()12,,,n b b b b =×××,只需证明n B b Î,即可证明结论成立;(3)任取()12,,,n n a a a A a =×××Î,()12,,,n n a a a A a =×עע΢¢,可证明n B a a +¢Î,且a a a +¢p ,a a a ¢+¢p ,再设集合n A 中的元素个数为t ,设{}12,,,n t A a a a =×××,设集合(){},1,2,,,1,2,,n i i j T i t j t a a a =+=×××=×××,通过证明n n T S Í,n n S T Í,推出n n S T =,即可完成证明.【小问1详解】()()(){}20,2,1,1,2,0A =,()()()()(){}20,4,1,3,2,2,3,1,4,0B =.【小问2详解】对任意()12,,,n n a a a A a =×××Î,设()11,2,3,,i i b a i n =+=×××,则12,,,n b b b ×××均为非负整数,且()1,2,3,,i i a b i n £=×××.令()12,,,n b b b b =×××,则12n b b b ++×××+()()()12111n a a a =++++×××++()12n a a a n=++×××++2n =,所以n B b Î,且a b p .【小问3详解】对任意()12,,,n n a a a A a =×××Î,()12,,,n n a a a A a =×עע΢¢,记()1122,,,n n a a a a a a a a +=++×××¢+¢¢¢,则11a a ¢+,22a a ¢+,…,n n a a ¢+均为非负整数,且()()()1122n n a a a a a a ++++×××++¢¢¢()()1212n n a a a a a a ¢=++×××++++××+¢×¢n n =+2n =,所以n B a a +¢Î,且a a a +¢p ,a a a ¢+¢p .设集合n A 中的元素个数为t ,设{}12,,,n t A a a a =×××.设集合(){},1,2,,,1,2,,n iijT i t j t a a a =+=×××=×××.对任意i n A a Î(1,2,,)i t =×××,都有1i a a +,2i a a +,…,i t n B a a +Î,且i i j a a a +p ,1,2,,j t =×××.所以n n T S Í.若(),n S a b Î,其中()12,,,n n a a a A a =×××Î,()12,,,n n b b b B b =×××Î,设i i i c b a =-()1,2,,i n =×××,因为i i a b £,所以0i i i c b a =-³,记()12,,,n c c c a =×××¢,则12n c c c +++L ()()()1122n n b a b a b a =-+-+-L ()()1212n n b b b a a a =++×××+-++×××+2n n n =-=,所以n A a ¢Î,并且有b a a =+¢,所以(),n T a b Î,所以n n S T Í.所以n n S T =.因为集合n T 中的元素个数为2t ,所以n S 中的元素个数为2t ,是完全平方数.【点睛】关键点点睛:集合元素的个数转换为证明两个集合相等.。
北京市中学2024-2025学年高一上学期期中考试数学试卷含答案
北京2024—2025学年高一年级第一学期数学期中测试题(答案在最后)本试卷共4页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,只收答题纸,不收试卷.一、单选题1.下列说法不正确的是()A.*0∈N B.0∈NC.0.1∉ZD.2∈Q2.已知集合{}0,1,2A =,则集合{},B x yx A y A =-∈∈∣中元素的个数是()A.1B.3C.5D.93.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为8x天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品()A.60件B.80件C.100件D.120件4.“运动改造大脑”,为了增强身体素质,某班学生积极参加学校组织的体育特色课堂,课堂分为球类项目A 、径赛项目B 、其他健身项目C .该班有25名同学选择球类项目A ,20名同学选择径赛项目B ,18名同学选择其他健身项目C ;其中有6名同学同时选择A 和,4B 名同学同时选择A 和C ,3名同学同时选择B 和C .若全班同学每人至少选择一类项目且没有同学同时选择三类项目,则这个班同学人数是()A.51B.50C.49D.485.用二分法求函数的零点,经过若干次运算后函数的零点在区间(),a b 内,当a b ε-<(ε为精确度)时,函数零点的近似值02a bx +=与真实零点的误差的取值范围为()A.0,4ε⎡⎫⎪⎢⎣⎭B.0,2ε⎡⎫⎪⎢⎣⎭C.[)0,ε D.[)0,2ε6.已知关于x 的不等式210mx mx +->的解集为∅,则实数m 的取值范围是()A.()(),40,∞∞--⋃+ B.[)4,0- C.][(),40,∞∞--⋃+ D.[]4,0-7.设()f x 是定义在R 上的函数,若存在两个不等实数12,x x ∈R ,使得()()121222f x f x x x f ++⎛⎫=⎪⎝⎭,则称函数()f x 具有性质P ,那么下列函数:①()1,00,0x f x x x ⎧≠⎪=⎨⎪=⎩;②()2f x x =;③()21f x x =-;具有性质P 的函数的个数为()A.0B.1C.2D.38.已知“非空集合M 的元素都是集合P 的元素”是假命题,给出下列四个命题:①M 中的元素不都是P 的元素;②M 的元素都不是P 的元素;③存在x P ∈且x M ∈;④存在x M ∈且x P ∉;这四个命题中,真命题的个数为()A.1个B.2个C.3个D.4个9.已知函数()f x =,则()()1212g x f x x =-+-的定义域为()A.3,2∞⎡⎫+⎪⎢⎣⎭B.()3,22,2∞⎡⎫⋃+⎪⎢⎣⎭C.()3,22,4∞⎡⎫⋃+⎪⎢⎣⎭D.()(),22,∞∞-⋃+10.已知函数()f x m =+,若存在区间[](),1a b b a >≥-,使得函数()f x 在[],a b 上的值域为[]2,2a b ,则实数m 的取值范围是()A.178m >-B.102m <≤C.2m ≤- D.1728m -<≤-二、填空题11.下列集合:①{}0;②{}21,0,M xx n x n ==+<∈R ∣;③{}∅;④∅;⑤(){}0,0;⑥方程210x+=的实数解组成的集合.其中,是空集的所有序号为__________.12.若集合{}2210M xax x =++=∣只含一个元素,则a =__________.13.若二次函数()y f x =图象关于2x =对称,且()()()01f a f f <<,则实数a 的取值范围是__________.14.若关于x 的不等式212kx x k ≤++≤的解集中只有一个元素,则实数k 的取值集合为__________.15.若关于m 的方程2260m am a -++=的两个实数根是,x y ,则22(1)(1)x y -+-的最小值是__________.三、解答题16.设集合A 中的三个元素分别为,0,1a -,集合B 中的三个元素分别为1,,1c b a b++.已知A B =,求,,a b c 的值.17.已知集合{}(){}{}22224430,10,220A xx ax a B x x a x a C x x ax a =+-+==+-+==+-=∣∣∣,其中至少有一个集合不是空集,求实数a 的取值范围.18.已知关于x 的不等式()221x x a a -->∈R .(1)若1a =,求不等式的解集;(2)若不等式的解集为R ,求实数a 的范围.19.已知函数()2a f x x x =-,且()922f =.(1)求实数a 的值;(2)判断函数()f x 在()1,∞+上的单调性,并证明;(3)求函数()f x 在[]2,3上的最值.20.定义在区间[]0,1上的函数()f x 满足()()010f f ==,且对任意的[]12,0,1x x ∈都有()()12122x x f f x f x +⎛⎫≤+ ⎪⎝⎭.(1)证明:对任意的[]0,1x ∈都有()0f x ≥;(2)求34f ⎛⎫⎪⎝⎭的值;(3)计算202411112422k f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.21.已知函数()()2f x x x a x a =-+∈R .(1)若函数()f x 在R 上单调递增,求实数a 的取值范围;(2)若存在实数[]0,4a ∈使得关于x 的方程()()0f x tf a -=恰有三个不相等的实数根,求实数t 的取值范围.答案一、单选题1.A2.C3.B4.B5.B6.D7.C8.B9.C10.D二、填空题11.②④⑥12.0或113.()(),04,∞∞-⋃+14.12,22⎧-+⎪⎨⎪⎪⎩⎭15.8三、解答题16.因为1,0A B a b=≠+,所以10,1,1c b a a b+==-=+,解得1,2,2a b c ==-=,所以,,a b c 的值分别为1,2,2-.17.当三个集合全是空集时,所对应的三个方程都没有实数解,即()2122223Δ164430,Δ(1)40,Δ480.a a a a a a ⎧=--+<⎪=--<⎨⎪=+<⎩解此不等式组,得312a -<<-.所以所求实数a 的取值范围为[)3,1,2∞∞⎛⎤--⋃-+ ⎥⎝⎦.18.(1)1a =时,原不等式为2211x x -->,整理,得2220x x -->,对于方程2220x x --=,因为Δ120=>,所以它有两个不等的实数根,解得1211x x ==+结合函数222y x x =--的图象得不等式的解集为{1x x <-∣或1x >+.(2)原不等式可化为2210x x a --->,由于不等式解集为R ,结合函数221y x x a =---图象可知,方程2210x x a ---=无实数根,所以()Δ441840a a =++=+<,所以a 的范围是{2}aa <-∣.19.(1)因为()2a f x x x =-,且()922f =,所以9422a -=,所以1a =-.(2)函数()f x 在()1,∞+上单调递增.证明如下:由(1)可得,()12f x x x=+,任取()12,1,x x ∞∈+,不妨设12x x <,则()()2121211122f x f x x x x x ⎛⎫-=+-+ ⎪⎝⎭()2121112x x x x ⎛⎫=-+- ⎪⎝⎭()1221122x x x x x x -=-+()211212x x x x ⎛⎫=-- ⎪⎝⎭()()21121221x x x x x x --=因为()12,1,x x ∞∈+且12x x <,所以2112120,210,0x x x x x x ->->>,所以()()210f x f x ->,即()()21f x f x >,所以()f x 在()1,∞+上单调递增.(3)由(2)知,函数()f x 在[]2,3上单调递增,则当2x =时,()f x 有最小值()922f =;当3x =时,()f x 有最大值()1933f =.20.(1)任取[]120,1x x x ==∈,则有()()22x f f x f x ⎛⎫≤+⎪⎝⎭,即()()2f x f x ≤,于是()0f x ≥,所以,对任意的[]0,1x ∈都有()0f x ≥.(2)由()()010f f ==,得()()01010002f f f +⎛⎫≤+=+=⎪⎝⎭,于是102f ⎛⎫≤ ⎪⎝⎭,但由(1)的结果知102f ⎛⎫≥⎪⎝⎭,所以102f ⎛⎫= ⎪⎝⎭,由()10,102f f ⎛⎫== ⎪⎝⎭,则()1112100022f f f ⎛⎫+ ⎪⎛⎫≤+=+= ⎪ ⎪⎝⎭ ⎪⎝⎭,于是304f ⎛⎫≤ ⎪⎝⎭,由(1)的结果知304f ⎛⎫≥ ⎪⎝⎭,所以304f ⎛⎫= ⎪⎝⎭.(3)由()100,02f f ⎛⎫== ⎪⎝⎭,得()1012000022f f f ⎛⎫+ ⎪⎛⎫≤+=+= ⎪ ⎪⎝⎭ ⎪⎝⎭,于是104f ⎛⎫≤ ⎪⎝⎭,但由(1)的结果知104f ⎛⎫≥ ⎪⎝⎭,所以211042f f ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,继续求下去,可得10,1,2,3,,20242k f k ⎛⎫== ⎪⎝⎭,因此,2024111102422k f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++++=⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭.21.(1)()()()222,22,x a x x a f x x x a x x a x x a ⎧+-≥⎪=-+=⎨-++<⎪⎩.由()f x 在R 上是增函数,则2,22,2a a a a -⎧≥-⎪⎪⎨+⎪≤⎪⎩即22a -≤≤,则a 范围为22a -≤≤.(2)当22a -≤≤时,()f x 在R 上是增函数,则关于x 的方程()()0f x tf a -=不可能有三个不等的实数根.当(]2,4a ∈时,由()()()222,2,x a x x a f x x a x x a ⎧+-≥⎪=⎨-++<⎪⎩,得x a ≥时,()()22f x x a x =+-对称轴22a x -=,则()f x 在[),x a ∞∈+为增函数,此时()f x 的值域为())[),2,f a a ∞∞⎡+=+⎣;x a <时,()()22f x x a x =-++对称轴22a x +=,则()f x 在2,2a x ∞+⎛⎤∈- ⎥⎝⎦为增函数,此时()f x 的值域为2(2),4a ∞⎛⎤+- ⎥⎝⎦,()f x 在2,2a x ∞+⎡⎫∈+⎪⎢⎣⎭为减函数,此时()f x 的值域为2(2)2,4a a ⎛⎤+ ⎥⎝⎦;由存在(]2,4a ∈,方程()()2f x tf a ta ==有三个不相等的实根,则2(2)22,4a ta a ⎛⎫+∈ ⎪⎝⎭,即存在(]2,4a ∈,使得2(2)1,8a t a ⎛⎫+∈ ⎪⎝⎭即可,令()2(2)8a g a a+=,只要使()max ()t g a <即可,而()g a 在(]2,4a ∈上是增函数,()max 9()48g a g ==,故实数t 的取值范围为91,8⎛⎫ ⎪⎝⎭.综上所述,实数t 的取值范围为91,8⎛⎫⎪⎝⎭.。
四川省成都市2024-2025学年高一上学期期中考试 数学含答案
高2024级高一上学期11月半期测试数学试题(答案在最后)一、单选题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.1.设全集{0,1,2,3,4,5}U =,集合{1,2,3}A =,{5,4,3}B =,则=U A B ⋂ð()A.{1,2,3,4,5}B.{1,2}C.{0,1,2}D.{0,1,2,3}2.已知集合{}2|1,M y y x x R ==+∈,{}|1,N y y x x R ==+∈,则M N ⋂=A.()()0,1,1,2B.()(){}0,1,1,2C.{|1y y =或2}y =D.{}|1y y ≥3.已知函数()*(2),nf x x n =-∈N ,则“1n =”是“()f x 是增函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.下列说法正确的是()A.若a b >,则22a b >B.“2x >”是“112x <”的充分不必要条件C.若幂函数()22231m m y m m x--=--在区间 ㈮㔷∞上是减函数,则2m =D.命题“2,0x x x ∀∈+≥R ”的否定为“2,0x x x ∃∈+≥R ”;5.已知命题()()2:R,110p x m x ∃∈++≤,命题2:R,10q x x mx ∀∈-+>恒成立.若p 和q 都为真命题,则实数m 的取值范围为()A.2m ≥B.21m -<≤-C.2m ≤-或2m ≥D.12m -<≤6.已知函数()f x =,则()A.()1ff f >>- B.()1ff f >>-C.()1ff f>-> D.()1f ff ->>7.用()C A 表示非空集合A 中元素的个数,定义()()()()()()()(),*,C A C B C A C B A B C B C A C A C B ⎧-≥⎪=⎨-<⎪⎩.已知{}1,2A =,()(){}22|20B x x ax x ax =+++=,且*1A B =,设实数a 的所有可能取值构成集合S ,则()C S =()A .4B.3C.2D.18.已知函数()()()21,12,1x x f x f x x ⎧-≥⎪=⎨--<⎪⎩,若对于任意的实数x ,不等式()24()1f x a f x -≤+恒成立,则实数a 的取值范围为()A.1,2⎡⎫-+∞⎪⎢⎣⎭B.1,12⎡⎤-⎢⎥⎣⎦C.3,4⎡⎫-+∞⎪⎢⎣⎭D.3,14⎡⎤-⎢⎥⎣⎦二、多选题:本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.知函数()f x 满足1211x f x x +⎛⎫= ⎪+⎝⎭,则关于函数()f x 正确的说法是()A.()f x 的定义域为{}1x x ≠- B.()f x 值域为{1y y ≠,且2}y ≠C.()f x 在 ㈮㔷∞ 单调递减D.不等式()2f x >的解集为(1,0)-10.已知a ,b 均为正数,且1a b -=,则()A.a >B.221->a b C.411-≤a bD.13a b+>11.已知函数()2211x xf x x x +=++,则下列结论正确的是()A.()f x 在()1,+∞上单调递增B.()f x 值域为][(),22,∞∞--⋃+C.当0x >时,恒有()f x x >成立D.若12120,0,x x x x >>≠,且()()12f x f x =,则122x x +>三、填空题:本题共3小题,每小题5分,共15分.12.不等式3223x x -≥+的解集为________.13.若两个正实数x ,y 满足40x y xy +-=,且不等式26xy m m ≥-恒成立,则实数m 的取值范围是__________.14.已知函数()(),f x g x 都是定义在R 上的函数,()12f x -+是奇函数,()2g x -是偶函数,且()()()23,21f x g x g --=-=,则()()()234f f f ++=________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.设集合{}{}23,31P x x Q x a x a =-<<=<≤+.(1)若,x Q x P ∀∈∈,求a 的取值范围;(2)若,x P x Q ∃∈∈,求a 的取值范围.16.已知集合A为使函数y =R 的a 的取值范围,集合{}22210B x x ax a =++-≤(a 为常数,R a ∈).若x A ∈是x B ∈的必要条件,试求实数a 的取值范围.17.在园林博览会上,某公司带来了一种智能设备供采购商洽谈采购,并决定大量投放市场,已知该种设备年固定研发成本为50万元,每生产一台需另投入80万元,设该公司一年内生产该设备x 万台且全部售完,每万台的销售收入()G x (万元)与年产量x (万台)满足如下关系式:1802,020()2000900070,20(1)x x G x x x x x -<≤⎧⎪=⎨+->⎪+⎩(1)写出年利润()W x (万元)关于年产量x (万台)的函数解析式:(利润=销售收入-成本)(2)当年产量为多少万台时,该公司获得的年利润最大?并求最大利润.18.已知函数()f x 的定义域为()0,∞+,对任意正实数a b 、都有()()()1f ab f a f b +=+,且当1x >时,()1f x >.(1)求()120242024f f ⎛⎫+⎪⎝⎭的值,(2)判断函数()f x 的单调性并加以证明:(3)当[]1,3x ∈时,关于x 的不等式()()32f kx f x -+>恒成立,求实数k 的取值范围.19.设函数()2,y ax x b a b =+-∈∈R R .(1)若54b a =-,且集合{|0}x y =中有且只有一个元素,求实数a 的取值集合;(2)0a <时,求不等式(22)2y a x b <--+的解集;(3)当0,1a b >>时,记不等式0y >的解集为P ,集合{|22}Q x t x t =--<<-+,若对于任意正数t ,P Q ⋂≠∅,求11a b-的最大值.高2024级高一上学期11月半期测试数学试题一、单选题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.【1题答案】【答案】B 【2题答案】【答案】D 【3题答案】【答案】A 【4题答案】【答案】BC 【5题答案】【答案】B 【6题答案】【答案】A 【7题答案】【答案】B 【8题答案】【答案】A二、多选题:本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】BCD 【10题答案】【答案】BC 【11题答案】【答案】ACD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】(,3)[8,)-∞-+∞【13题答案】【答案】[]28-,【14题答案】【答案】6-四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)2,3⎡⎫-+∞⎪⎢⎣⎭(2)13,2⎛⎫- ⎪⎝⎭【16题答案】【答案】11a -≤≤【17题答案】【答案】(1)2210050,020()9000101950,201x x x W x x x x ⎧-+-<≤⎪=⎨--+>⎪+⎩;(2)当年产量为29万台时,该公司获得的年利润最大为1360万元.【18题答案】【答案】(1)2(2)()f x 在()0,+∞上是增函数,证明见解析(3)()4,+∞【19题答案】【答案】(1)1{0,,1}4;(2)答案见解析;(3)12.。
安徽省2024-2025学年高一上学期11月期中教学质量检测数学试题(含答案)
安徽省2024-2025学年高一上学期11月期中教学质量检测数学试题考试时间:120分钟满分150分一、单选题:本题共8小题,每小题5分,共40分.1.下列集合中表示同一集合的是()A. B.C. D.2.若,则下列不等式不能成立的是()A. B.C. D.3.不等式的解集为A.或B.或C.或D.4.函数的图象可能是()A. B. C. D.5.已知,则()A.27B.18C.15D.256.函数的单调递减区间是()A. B. C. D.7.已知是偶函数,且其定义域为,则()A. B.-1 C.1 D.78.已知函数,若存在,且两两不相等,则的取值范围为A. B. C.[0,1] D.{(3,2)},{(2,3)}M N=={4,5},{5,4}M N=={(,)1},{1}M x y x y N y x y=+==+=∣∣{1,2},{(1,2)}M N==a b<<||||a b>2a ab>11a b>11a b a>-23540x x-+->{3x x≤-∣2}x≥{3x x≤-∣1}x≥{31x x-≤≤∣2}x≥∅1(0,1)xy a a aa=->≠13a a-+=33a a-+=()f x=(,3]-∞-[1,1]-(,1]-∞-[1,)-+∞2()35f x ax bx a b=+-+[61,]a a-a b+=1725,0()22,0x xf xx x x->⎧=⎨+-≤⎩()()()123f x f x f x==123x x x、、123x x x++()(1,1)-(1,1]-(0,1]二、多选题:本题共3小题,共18分.9.(多选)下列说法正确的有( )A.命题,则B.“”是“”成立的充分条件C.命题,则D.“”是“”的必要条件10.若正实数a ,b 满足,则下列说法正确的是( )A.ab 有最大值C.有最小值4 D.11.对于函数的定义域中任意的,当时,如下结论正确的是( )A. B.C.D.三、填空题:本题共3小题,每小题5分,共15分.12.命题“对任意,都有”的否定是_______________.13.已知,求函数的最小值是_______________.14.已知是上的增函数,则实数的取值范围是_______________.四、解答题:本题共5小题,共77分.15.(本小题13分)已知集合,集合.(1)求;(2)设集合,且,求实数的取值范围.16.(本小题15分)已知二次函数.(1)若的解集为,求a ,b 的值;(2)若f (x )在区间上单调递增,求的取值范围.:,(0,1),2p x y x y ∀∈+<0000:,(0,1),2p x y x y ⌝∃∈+≥1,1a b >>1ab >2:,0p x R x ∀∈>2:,0p x R x ⌝∃∈<5a <3a <1a b +=14+11a b+22a b +()f x ()1212,x x x x ≠()2xf x =()()()1212f x x f x f x +=⋅()()()1212f x x f x f x ⋅=+()()12120f x f x x x ->-()()121222f x f x x x f ++⎛⎫<⎪⎝⎭x R ∈20x ≥54x >14245y x x =-+-2,1()4,12x a x f x a x x ⎧->⎪=⎨⎛⎫-≤ ⎪⎪⎝⎭⎩R a {22}A xx =-∣……{1}B x x =>∣()R B A ⋂ð{6}M xa x a =<<+∣A M M ⋃=a 2()3()f x x ax a R =--∈()0f x <{3}xx b -<<∣[2,)-+∞a17.(本小题15分)如图,某人计划用篱笆围成一个一边靠墙(墙的长度没有限制)的矩形菜园.设菜园的长为x m ,宽为y m.(1)若菜园面积为18m 2,则当x ,y 为何值时,可使所用篱笆总长最小?并求出最小值.(2)若使用的篱笆总长度为16m ,则当x ,y 为何值时,可使菜园面积最大?并求出最大值.18.(本小题17分)已知函数在上是偶函数,当时,,(1)求函数在上的解析式;(2)求单调递增区间和单调递减区间;(3)求在的值域.19.(本小题17分)已知函数对任意实数x ,y 恒有,且当时,,又.(1)判断的奇偶性;(2)求证:是上的减函数并求函数在区间上的最大值;(3)若对任意,不等式恒成立,求的取值范围.()f x R 0x (2)()23f x x x =+-()f x R ()f x ()f x [4,4]-()f x ()()()f x y f x f y +=+0x >()0f x <(1)2f =-()f x ()f x R ()f x [3,3]-x R ∈()23()4f axf x <+a高一期中考试数学参考答案1.B2.D3.D4.D5.B6.B7.A8.D 7.A 8.D9.ABD 10.AC 11.ACD12.存在,使得13.514.[4,8)14.解:(1)由已知,又,所以;(2)因为,所以,又,所以,解得.所以的取值集合为.16.解:(1)的解集为,和是方程的两根,由根与系数关系得:;.(2)的对称轴为且在区间上单调递增,;.17.解:(1)由已知可得,而篱笆总长为;又因为,当且仅当时,即时等号成立所以菜园的长为6m ,宽为3m 时,可使所用篱笆总长最小,最小值为12;0x R ∈200x ≤{1}R B x x =≤∣ð{22}A x x =-∣……(){21}R B A xx ⋂=-∣......ðA M M ⋃=A M ⊆{22},{6}A x x M x a x a =-=<<+∣∣ (62)2a a +>⎧⎨<-⎩42a -<<-a {42}a a -<<-∣()0f x < {3}x x b -<<∣3∴-b 230x ax --=∴3,33b a b -+=-⨯=-2,1a b ∴=-=()f x 2ax =()f x [2,)-+∞22a∴≤-4a ∴≤-18xy =2L x y =+212x y +≥=2x y =6,3x y ==x y(2)由已知得,而菜园面积为,则,当且仅当即时取等号,菜园的长为8m ,宽为4m 时,可使菜园面积最大,最大值为32.18.解:(1)当时,,函数是偶函数,当时,,.(2)由(1)可画出函数在上的图像,如图所示,则的单调递增区间为和,单调递减区间为和.(3)由函数的定义域为,由(2)中所作函数图象可知,当或时,取得最小值,当或时,取得最大值,故函数的值域.19.(1)解:取,则,,取,则,216x y +=S xy =2112232222x y S xy x y +⎛⎫==⋅⋅≤⋅= ⎪⎝⎭2x y =8,4x y ==∴x y 0x (2)()23f x x x =+- ()y f x =0x >20,()()23x f x f x x x -<∴=-=--22230()230x x x f x x x x ⎧+-∴=⎨-->⎩…()y f x =R ()f x (1,0)-(1,)+∞(,1)-∞-(0,1)()y f x =[4,4]-1x =1x =-(1)(1)4f f =-=-4x =4x =-(4)(4)5f f =-=()f x [4,5]-0x y ==(00)2(0)f f +=(0)0f ∴=y x =-()()()f x x f x f x -=+-对任意恒成立,为奇函数.(2)证明:任取且,则,,又为奇函数,.故为上的减函数;为上的减函数,在区间上的最大值为,,故在上的最大值为6.(3)解:为奇函数,且,整理原式得,即可得,而在上是减函数,所以即恒成立,①当时不成立,②当时,有且,即,解得.故的取值范围为.()()f x f x ∴-=-x R ∈()f x ∴12,(,)x x ∈-∞+∞12x x <()()()2121210,0x x f x f x f x x ->+-=-<()()21f x f x ∴<--()f x ()()12f x f x ∴>()f x R ()f x R ()f x ∴[3,3]-(3)f -(3)3(1)236,(3)(3)6f f f f ==-⨯=-∴-=-=()f x [3,3]-()f x (2)(2)2(1)4f f f -=-=-=()22()()(2)f ax f x f x f +-<+-()2(2)()(2)f axf x f x f +-<+-()22(2)f ax x f x -<-()f x R 222ax x x ->-2320ax x -+>0a =0a ≠0a >0< 0980a a >⎧⎨-<⎩98a >a 9,8⎛⎫+∞ ⎪⎝⎭。
吉林省白城市第一中学2024-2025学年高一上学期10月期中考数学试题(含答案)
白城市第一中学2024-2025学年度高一上学期期中考试数学试卷一、单项选择题(本大题共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知函数()21010x x f x x ⎧+≤=⎨>⎩,,,若()()423f x f x >--,则实数x 的取值范围是()A.()1,-+∞ B.()1-∞-,C.()14-,D.()1-∞,2.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 应为()A.10mB.15mC.20mD.25m3.若()f x 是定义在R 上的单调递增函数,则下列四个命题中正确的有(1)若00()>f x x ,则[]00()>f f x x ;(2)若[]00()>ff x x ,则00()>f x x ;(3)若()f x 是奇函数,则[()]f f x 也是奇函数;(4)若()f x 是奇函数,则1212()()00+=⇔+=f x f x x x .A.4个B.3个C.2个D.1个4.已知实数,x y 满足24460x xy y +++=,则y 的取值范围是()A.{}|32y y -≤≤B.{}|23y y -≤≤C.{}{}|2|3y y y y ≤-≥ D.{}{}|3|2y y y y ≤-≥ 5.设,x y 是两个实数,命题“,x y 中至少有一个数大于1”的充分条件是()A.2x y += B.2x y +> C.222x y +> D.1xy >6.当02x ≤≤时,22a x x <-+恒成立,则实数a 的取值范围是()A.1a ≤ B.0a ≤ C.a<0 D.0a >7.已知函数()f x 是R 上的奇函数,对任意的()12,,0x x ∞∈-,()()()211212120,x f x x f x x x x x ->≠-,设()1523,,1325a f b f c f ⎛⎫⎛⎫==--= ⎪ ⎪⎝⎭⎝⎭,则a ,b ,c 的大小关系是()A .a b c>> B.c a b >> C.c b a >> D.b c a>>8.若定义在()(),00,-∞+∞ 上的函数()f x 同时满足:①()f x 为奇函数;②对任意的()12,0,x x ∈+∞,且12x x ≠,都有()()2112120x f x x f x x x -<-,则称函数()f x 具有性质P .已知函数()f x 具有性质P ,则不等式()()2422f x f x x --<+的解集为()A.(),1∞--B.()3,2-C.()(),31,2-∞-- D.()(),32,-∞-⋃+∞二、多项选择题(本大题共4小题.每题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.)9.设函数()y f x =的定义域为R ,对于任一给定的正数p ,定义函数()()()(),,p f x f x p f x p f x p ⎧≤⎪=⎨>⎪⎩,则称函数()p f x 为()f x 的“p 界函数”.若给定函数()221f x x x =--,2p =,则下列结论正确的是()A.()()()()00p p f f f f = B.()()()()11p p f f f f =C.()()()()22ppff f f = D.()()()()33ppff f f =10.以数学家约翰·卡尔·弗里德里希·高斯的名字命名的“高斯函数”为[]y x =,其中x ⎡⎤⎣⎦表示不超过x 的最大整数,例如[]3.23=,[]1.52-=-,则()A.R x ∀∈,[][]11x x --=B.不等式[][]22x x -≤的解集为{}13x x -≤<C.当1x ≥,3x x ⎡⎤+⎣⎦⎡⎤⎣⎦的最小值为D.方程[]243x x =+的解集为11.若存在常数k 和b 使得函数()F x 和()G x 分别对其定义域上的任意实数x 都满足:()F x kx b ≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”,已知函数()()223R f x x x x =-∈,()()10g x x x=<,若使直线4y x b =-+为函数()f x 和()g x 之间的隔离直线,则实数b 的取值可以为()A.0B.-1C.-3D.-5(2023·浙江省余姚中学期中)12.已知,0,260x y x y xy >++-=,则()A.xy的最大值为B.2x y +的最小值为4C.x y +的最小值为3-D.22(2)(1)x y +++的最小值为16三、填空题(本大题共4小题,每小题5分,共20分.)13.已知实数0a >,0b >,且111a b+=,则3211a b +--的最小值为___________.14.若关于x 的一元二次方程()22210a x ax a --++=没有实数解,则不等式30ax +>的解集__________.15.若,a b R ∈,0ab >,则4441a b ab++的最小值为___________.16.若定义在区间[]2021,2021-上的函数()f x 满足:对于任意的[]12,2021,2021x x ∈-,都有()()()12122023f x x f x f x +=+-,且0x >时,有()2023f x >,()f x 的最大值为M ,最小值为N ,则()0f =______,M N +的值为______.四、解答题:写出必要的文字描述、解题过程.共6题.17.经观测,某公路段在某时段内的车流量y (千辆/小时)与汽车的平均速度v (千米/小时)之间有函数关系:()2920031600=>++vy v v v .(1)在该时段内,当汽车的平均速度v 为多少时车流量y 最大?最大车流量为多少?(精确到0.01)(2)为保证在该时段内车流量至少为10千辆/小时,则汽车的平均速度应控制在什么范围内?18.(1)若()21,,204b x ax a x b =-∀∈+++≤R ,求a 的取值范围;(2)若22b a =--(a R ∈),求关于x 的不等式()220ax a x b +++≤的解集.19.已知关于x 的不等式20x ax b ++<的解集为()1,2,试求关于x 的不等式210bx ax ++>的解集.20.已知函数()()22323x x x f x -=<-≤+.(1)用分段函数的形式表示函数op ;(2)画出函数op 的图象;(3)写出函数op 的值域.21.已知函数()()01axf x a x =≠+.(1)当0a >时,判断()f x 的单调性;(2)若()f x 在区间[]1,2上的最大值为43.(i )求实数a 的值;(ii )若函数()()0b g x x b x =+>,是否存在正实数b ,使得对区间1,15⎡⎤⎢⎥⎣⎦上任意三个实数r ,s ,t ,都存在以()()g f r ,()()g f s ,()()g f t 为边长的三角形?若存在,求实数b 的取值范围;若不存在,请说明理由.(2023·四川省攀枝花市第三高级中学月考)22.已知______,且函数()14212x x xa g x b+-⋅+=+.①函数()()0f x ax b a =+>在[]1,2上的值域为[]2,4;②函数()()224f x x a x =+-+在定义域[]1,1b b -+上为偶函数.请你在①②两个条件中选择一个条件,将上面的题目补无完整.(1)求a ,b 的值;(2)求函数()g x 在[]1,2-上的值域;(3)设()()2log 22xh x x m =+-,若1R x ∃∈,[]22,2x ∃∈-使得()()12g x h x <成立,求m 的取值范围.白城市第一中学2024-2025学年度高一上学期期中考试数学试卷一、单项选择题(本大题共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知函数()21010x x f x x ⎧+≤=⎨>⎩,,,若()()423f x f x >--,则实数x 的取值范围是()A.()1,-+∞ B.()1-∞-,C.()14-,D.()1-∞,【答案】C 【解析】【分析】根据函数的解析式,分析函数的单调性,进而可将(4)(23)f x f x ->-转化为:40230x x -<⎧⎨-⎩或4230x x -<- ,解得答案.【详解】 函数21,0()1,0x x f x x ⎧+=⎨>⎩,∴函数在(-∞,0]上为减函数,在(0,+∞)上函数值保持不变,若(4)(23)f x f x ->-,则40230x x -<⎧⎨-⎩或4230x x -<-,解得:(1,4)x ∈-,故选:C .【点睛】本题主要考查的知识点是分段函数的解析式、单调性,函数单调性的应用,难度中档.2.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 应为()A.10mB.15mC.20mD.25m【答案】C 【解析】【分析】设出矩形花园的宽为y m ,根据相似得到方程,求出40y x =-,从而表达出矩形花园的面积,配方求出最大值,并得到相应的x .【详解】设矩形花园的宽为y m ,则404040x y -=,即40y x =-,矩形花园的面积()()22404020400S x x x x x =-=-+=--+,其中()0,40x ∈,故当20x =m 时,面积最大.故选:C3.若()f x 是定义在R 上的单调递增函数,则下列四个命题中正确的有(1)若00()>f x x ,则[]00()>f f x x ;(2)若[]00()>ff x x ,则00()>f x x ;(3)若()f x 是奇函数,则[()]f f x 也是奇函数;(4)若()f x 是奇函数,则1212()()00+=⇔+=f x f x x x .A.4个 B.3个C.2个D.1个【答案】A 【解析】【分析】利用单调性判断①;利用单调性与反证法判断②;利用奇偶性的定义判断③;利用奇偶性以及单调性判断④.【详解】对于①,()f x 是定义在R 上的单调递增函数,若()00f x x >,则()()000f f x f x x >>⎡⎤⎣⎦,故①正确;对于②,当()00f f x x >⎡⎤⎣⎦时,若()00f x x ≤,由()f x 是定义在R 上的单调递增函数得()()000f f x f x x ≤≤⎡⎤⎣⎦与已知矛盾,故②正确;对于③,若()f x 是奇函数,则()()()f f x f f x f f x -=-=-⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦,()f f x ∴⎡⎤⎣⎦也是奇函数,故③正确;对于④,当()f x 是奇函数,且是定义在R 上的单调递增函数时,若()()120f x f x +=,则()()()12212120f x f x f x x x x x =-=-⇒=-⇒+=,若()()()()()12121221200x x x x f x f x f x f x f x +=⇒=-⇒=-=-⇒+=,故④正确;故选A.【点睛】本题通过对多个命题真假的判断,综合考查函数的单调性、函数的奇偶性.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.4.已知实数,x y 满足24460x xy y +++=,则y 的取值范围是()A.{}|32y y -≤≤B.{}|23y y -≤≤C.{}{}|2|3y y y y ≤-≥ D.{}{}|3|2y y y y ≤-≥ 【答案】C 【解析】【分析】利用一元二次方程有解,可得判别式大于等于零可求解.【详解】由题意知,关于x 的一元二次方程有解,则21616(6)0y y ∆=-+≥,即260y y --≥,解得2y ≤-或3y ≥.所以y 的取值范围是{}{}|2|3y y y y ≤-≥ .故选:C.5.设,x y 是两个实数,命题“,x y 中至少有一个数大于1”的充分条件是()A.2x y += B.2x y +> C.222x y +> D.1xy >【答案】B 【解析】【分析】用赋值法,取不同的x 与y 代入,可排除A 、C 、D.【详解】对于A ,当1,1x y ==时,满足2x y +=,但命题不成立;对于C ,D ,当2,3x y =-=-时,满足222x y +>,1xy >,但命题不成立.故选:B.6.当02x ≤≤时,22a x x <-+恒成立,则实数a 的取值范围是()A .1a ≤ B.0a ≤ C.a<0D.0a >【答案】C 【解析】【分析】根据恒成立问题结合二次函数最值分析求解.【详解】记2()2,02f x x x x =-+≤≤,则min )[0,2],(a f x x <∈.而22()2(1)1f x x x x =-+=--+,当02x ≤≤时,min ()(0)(2)0f x f f ===,所以实数a 的取值范围是a<0.故选C .7.已知函数()f x 是R 上的奇函数,对任意的()12,,0x x ∞∈-,()()()211212120,x f x x f x x x x x ->≠-,设()1523,,1325a f b f c f ⎛⎫⎛⎫==--= ⎪ ⎪⎝⎭⎝⎭,则a ,b ,c 的大小关系是()A.a b c >>B.c a b>> C.c b a>> D.b c a>>【答案】A 【解析】【分析】确定数()()f x g x x=在(),0-∞上单调递增,()g x 是()(),00,-∞+∞ 上的偶数,变换得到13a g ⎛⎫=- ⎪⎝⎭,25b g ⎛⎫=- ⎪⎝⎭,()1c g =-,根据单调性得到答案.【详解】()()()211212120,x f x x f x x x x x ->≠-,即()()()121212120,f x f x x x x x x x ->≠-,故函数()()f x g x x=在(),0-∞上单调递增,()f x 是R 上的奇函数,故()g x 是()(),00,-∞+∞ 上的偶数,1113333a f g g ⎛⎫⎛⎫⎛⎫===- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,522255b f g ⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭,()()()111c f g g ===-.12135->->-,故a b c >>.故选:A8.若定义在()(),00,-∞+∞ 上的函数()f x 同时满足:①()f x 为奇函数;②对任意的()12,0,x x ∈+∞,且12x x ≠,都有()()2112120x f x x f x x x -<-,则称函数()f x 具有性质P .已知函数()f x 具有性质P ,则不等式()()2422f x f x x --<+的解集为()A.(),1∞--B.()3,2-C.()(),31,2-∞-- D.()(),32,-∞-⋃+∞【答案】C 【解析】【分析】构造函数()()f x g x x=,由题意可以推出函数()()f x g x x=的奇偶性、单调性,然后对x 进行分类讨论解不等式即可.【详解】因为对任意的()12,0,x x ∈+∞,且12x x ≠,都有()()2112120x f x x f x x x -<-,即对任意两个不相等的正实数12,x x 不妨设120x x <<,都有()()()()21121212121212x f x x f x f x f x x x x x x x x x --=<--,所以有()()1212f x f x x x >,所以函数()()f x g x x=是()0,∞+上的减函数,又因为()f x 为奇函数,即有()(),00,x ∀∈-∞⋃+∞,有()()f x f x -=-,所以有()()()()()f x f x f x g x g x xxx---====--,所以()g x 为偶函数,所以()g x 在(),0-∞上单调递增.当20x ->,即2x >时,有240x ->,由()()2422f x f x x --<+,得()()224224f x f x x x --<--,所以224x x ->-,解得<2x -,此时无解;当20x -<,即2x <时,由()()2422f x f x x --<+,得()()224224f x f x x x -->--,所以224x x -<-,解得3x <-或12x -<<.综上所述,不等式()()2422f x f x x --<+的解集为()(),31,2-∞-- .故选:C.【点睛】关键点点睛:解决本题的关键是由已知条件去构造函数()()f x g x x=,并结合已知导出其函数性质,从而分类讨论解不等式即可.二、多项选择题(本大题共4小题.每题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.)9.设函数()y f x =的定义域为R ,对于任一给定的正数p ,定义函数()()()(),,p f x f x p f x p f x p ⎧≤⎪=⎨>⎪⎩,则称函数()p f x 为()f x 的“p 界函数”.若给定函数()221f x x x =--,2p =,则下列结论正确的是()A.()()()()00p p f f f f = B.()()()()11p p f f f f =C.()()()()22ppff f f = D.()()()()33ppff f f =【答案】ACD 【解析】【分析】结合“p 界函数”的定义可确定函数解析式,再结合分段函数性质可得函数值,进而判断各选项.【详解】因为()221f x x x =--,2p =,令2212x x --≤,即2230x x --≤,解得13x -≤≤,则()2221,132,13x x x f x x x ⎧---≤≤⎪=⎨-⎪⎩或,A 选项:()()()2012p f f f =-=,()()()012pf f f =-=,即()()()()00ppf f f f =,A 选项正确;B 选项:()()()2122p f f f =-=,()()()127pf f f =-=,即()()()()11p pf f f f ≠,B 选项错误;C 选项:()()()212f f f =-=,()()()()()2222212ppf f f f f ==-=即()()()()22ppf f f f =,C选项正确;D 选项:()()()321ff f ==-,()()()()()2223321ppf f f f f ===-,即()()()()33ppf f f f =,D选项正确;故选:ACD.10.以数学家约翰·卡尔·弗里德里希·高斯的名字命名的“高斯函数”为[]y x =,其中x ⎡⎤⎣⎦表示不超过x 的最大整数,例如[]3.23=,[]1.52-=-,则()A.R x ∀∈,[][]11x x --=B.不等式[][]22x x -≤的解集为{}13x x -≤<C.当1x ≥,3xx ⎡⎤+⎣⎦⎡⎤⎣⎦的最小值为D.方程[]243x x =+的解集为【答案】AB 【解析】【分析】设x 的整数部分为a ,小数部分为b ,则[]x a =,则[]11x a -=-得到A 正确,解不等式得到[]12x -≤≤,计算B 正确,均值不等式等号条件不成立,C 错误,举反例得到D 错误,得到答案.【详解】对选项A :设x 的整数部分为a ,小数部分为b ,则[]x a =,1x -的整数部分为1a -,[]11x a -=-,故[][]11x x --=,正确;对选项B :[][]22x x -≤,则[]12x -≤≤,故13x -≤<,正确;对选项C :3x x ⎡⎤+≥=⎣⎦⎡⎤⎣⎦,当且仅当3x x ⎡⎤=⎣⎦⎡⎤⎣⎦,即x ⎡⎤=⎣⎦时成立,x ⎡⎤=⎣⎦不成立,故等号不成立,错误;对选项D :取x =,则[]4x =,代入验证成立,错误;故选:AB11.若存在常数k 和b 使得函数()F x 和()G x 分别对其定义域上的任意实数x 都满足:()F x kx b ≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”,已知函数()()223R f x x x x =-∈,()()10g x x x=<,若使直线4y x b =-+为函数()f x 和()g x 之间的隔离直线,则实数b 的取值可以为()A.0B.-1C.-3D.-5【答案】BC 【解析】【分析】根据题意得到2234x x x b -≥-+,计算180b ∆=+≤得到一个范围,再根据双勾函数的单调性得到函数()14K x x x=+的最大值,综合得到答案.【详解】2234x x x b -≥-+,即220x x b +-≥恒成立,故180b ∆=+≤,解得18b ≤-;14x b x ≤-+,即14x b x+≤,函数()14K x x x =+在1,2⎛⎫-∞- ⎪⎝⎭上单调递增,在1,02⎡⎫-⎪⎢⎣⎭上单调递减,故()max 142K x K ⎛⎫=-=- ⎪⎝⎭,故b 4≥-.综上所述:14,8b ⎡⎤∈--⎢⎣⎦.故选:BC.(2023·浙江省余姚中学期中)12.已知,0,260x y x y xy >++-=,则()A.xy的最大值为B.2x y +的最小值为4C.x y +的最小值为3-D.22(2)(1)x y +++的最小值为16【答案】BCD 【解析】【分析】A 选项,对不等式变形为26x y xy +=-,利用基本不等式得到6xy -≥,求出xy 的最大值;B 选项,将不等式变形为()62xy x y =-+,利用基本不等式得到()()22628x y x y +-+≤,求出2x y +的最小值;C 选项,对不等式变形为()()16y x x y +=-+,利用()()2114y x y x +++≤求解x y +的最小值;D 选项,不等式变形为()()218x y ++=,利用基本不等式求出和的最小值.【详解】由260x y xy ++-=得:26x y xy +=-,因为,0x y >,所以260x y xy +=->,所以06xy <<,由基本不等式可得:2x y +≥当且仅当2x y =时,等号成立,此时6xy -≥,解得:18xy ≥或2xy ≤,因为6xy <,所以18xy ≥舍去,故xy 的最大值为2,A 错误;由260x y xy ++-=得:()62xy x y =-+,因为,0x y >,所以()620x y -+>,所以026x y <+<,由基本不等式可得:()2224x y xy +≤,当且仅当2x y =时等号成立,即()()22628x y x y +-+≤,解得:24x y +≥或212x y +≤-,因为026x y <+<,所以212x y +≤-舍去,故2x y +的最小值为4,B 正确;由260x y xy ++-=变形为()16x y y x +++=,则()()16y x x y +=-+,由基本不等式得:()()2114y x y x +++≤,当且仅当1y x =+时等号成立,此时()()2164y x x y ++-+≤,令()0x y t t +=>,则由()2164t t +-≤,解得:3t -≥或3t -≤(舍去)所以x y +的最小值为3-,C 正确;由260x y xy ++-=可得:()()218x y ++=,从而22(2)(1)2(2)(1)2816x y x y +++≥++=⨯=当且仅当21x y +=+时,即2x =-,1y =-等号成立,故22(2)(1)x y +++最小值为16.故选:BCD ,三、填空题(本大题共4小题,每小题5分,共20分.)13.已知实数0a >,0b >,且111a b +=,则3211a b +--的最小值为___________.【答案】【解析】【分析】利用111a b +=可得3211a b +--325b a =+-,根据()113232325b a b a b a a b a b ⎛⎫+=++=++ ⎪⎝⎭和基本不等式求出32b a +的最小值,从而可得解.【详解】根据题意得到111a b+=,变形为()()111ab a b a b =+⇒--=,则3211a b +--()()32532511b a b a a b +-==+---,因为111a b +=,故得到()1132323255b a b a b a a b a b ⎛⎫+=++=++≥+ ⎪⎝⎭,当且仅当32b a ba=时等号成立.故3211a b +--≥故答案为:【点睛】本题考查了利用基本不等式求最值,属于基础题14.若关于x 的一元二次方程()22210a x ax a --++=没有实数解,则不等式30ax +>的解集__________.【答案】3|x x a ⎧⎫<-⎨⎬⎩⎭【解析】【详解】试题分析:因为关于x 的一元二次方程()22210a x ax a --++=没有实数解,所以()()2=44210a a a ∆--+<,可得320,3,a ax x a <--∴<- ,故答案为3x|x a ⎧⎫<-⎨⎬⎩⎭.考点:1、一元二次方程根与系数的关系;2、不等式的性质.15.若,a b R ∈,0ab >,则4441a b ab++的最小值为___________.【答案】4【解析】【详解】44224141144a b a b ab ab ab ab +++≥=+≥=,(前一个等号成立条件是222a b =,后一个等号成立的条件是12ab =,两个等号可以同时取得,则当且仅当22,24a b ==时取等号).【考点】均值不等式【名师点睛】利用均指不等式求最值要灵活运用两个公式,(1)22,,2a b a b ab ∈+≥R ,当且仅当a b =时取等号;(2),a b R +∈,a b +≥,当且仅当a b =时取等号;首先要注意公式的使用范围,其次还要注意等号成立的条件;另外有时也考查利用“等转不等”“作乘法”“1的妙用”求最值.16.若定义在区间[]2021,2021-上的函数()f x 满足:对于任意的[]12,2021,2021x x ∈-,都有()()()12122023f x x f x f x +=+-,且0x >时,有()2023f x >,()f x 的最大值为M ,最小值为N ,则()0f =______,M N +的值为______.【答案】①.2023②.4046【解析】【分析】根据题意,取特殊点,结合单调性的定义,可得答案.【详解】∵对于任意的[]12,2021,2021x x ∈-,都有()()()12122023f x x f x f x +=+-,∴令120x x ==,得()02023f =,再令120x x +=,将()02023f =代入可得()()4046f x f x +-=,设12x x <,[]12,2021,2021x x ∈-则210x x ->,()()()21212023f x x f x f x -=+--∴()()2120232023f x f x +-->,又()()114046f x f x -=-,∴可得()()21f x f x >,即函数()f x 是严格增函数,∴()()max 2021f x f =,()()min 2021f x f =-,又∵()()202120214046f f +-=,∴M N +的值为4046.故答案为:2023;4046四、解答题:写出必要的文字描述、解题过程.共6题.17.经观测,某公路段在某时段内的车流量y (千辆/小时)与汽车的平均速度v (千米/小时)之间有函数关系:()2920031600=>++vy v v v .(1)在该时段内,当汽车的平均速度v 为多少时车流量y 最大?最大车流量为多少?(精确到0.01)(2)为保证在该时段内车流量至少为10千辆/小时,则汽车的平均速度应控制在什么范围内?【答案】(1)当40v =(千米/小时)时,车流量最大,最大值约为11.08千辆/小时;(2)汽车的平均速度应控制在[]25,64这个范围内(单位:千米/小时).【解析】【分析】(1)利用基本不等式可求得y 的最大值,及其对应的v 值,即可得出结论;(2)解不等式29201031600vv v ≥++即可得解.【小问1详解】解:0v >,292092092011.08160031600833v y v v v v ==≤≈++++(千辆/小时),当且仅当1600v v=时,即当40v =(千米/小时)时,车流量最大,最大值约为11.08千辆/小时.【小问2详解】解:据题意有29201031600vv v ≥++,即28916000v v -+≤,即()()25640v v --≤,解得2564v ≤≤,所以汽车的平均速度应控制在[]25,64这个范围内(单位:千米/小时).18.(1)若()21,,204b x ax a x b =-∀∈+++≤R ,求a 的取值范围;(2)若22b a =--(a R ∈),求关于x 的不等式()220ax a x b +++≤的解集.【答案】(1)[]4,1--;(2)见解析【解析】【分析】(1)对a 分两种情况讨论,结合二次函数的图像和性质求出a 的取值范围;(2)原不等式等价于()()2210ax a x ++-≤.再对a 分类讨论解不等式得解.【详解】(1)当0a =时,不等式可化为1204x -≤,显然在R 上不恒成立,所以0a ≠.当0a ≠时,则有()20,20,a a a <⎧⎪⎨∆=++≤⎪⎩解得41a -≤≤-.故a 的取值范围为[]4,1--.(2)()22220ax a x a ++--≤等价于()()2210ax a x ++-≤.①当0a =时,()210x -≤,原不等式的解集为−∞,1.②当0a >时,220a a +-<,原不等式的解集为22,1a a +⎡⎤-⎢⎥⎣⎦.③当0a <时,22321a a aa ++--=-.若()222,1033a x =---≤,原不等式的解集为R;若23222,0,3a a a a a ++<--<-<1,原不等式的解集为[)22,1,a a +⎛⎤-∞-+∞ ⎥⎝⎦ ;若232220,0,13a a a a a ++-<<->->,原不等式的解集为(]22,1,a a +⎡⎫-∞-+∞⎪⎢⎣⎭ .【点睛】本题主要考查二次型不等式的恒成立问题,考查解二次型的不等式,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.已知关于x 的不等式20x ax b ++<的解集为()1,2,试求关于x 的不等式210bx ax ++>的解集.【答案】12x x ⎧<⎨⎩或>1.【解析】【分析】由题意可知,关于x 的方程20x ax b ++=的两个根为1、2,利用韦达定理可求得a 、b 的值,进而可求得不等式210bx ax ++>的解集.【详解】由题意可知,关于x 的方程20x ax b ++=的两个根为1、2,由韦达定理得1212a b -=+⎧⎨=⨯⎩,即32a b =-⎧⎨=⎩,所以,不等式210bx ax ++>为22310x x -+>,即()()2110x x -->,解得12x <或1x >.因此,不等式210bx ax ++>的解集为12x x ⎧<⎨⎩或>1.【点睛】本题考查一元二次不等式的求解,同时也考查了利用一元二次不等式的解集求参数,考查计算能力,属于基础题.20.已知函数()()22323x x x f x -=<-≤+.(1)用分段函数的形式表示函数op ;(2)画出函数op 的图象;(3)写出函数op 的值域.【答案】(1)()2,2012,033x x f x x x +-<≤⎧⎪=⎨-+<≤⎪⎩;(2)图象答案见解析;(3)(]0,2.【解析】【分析】(1)分20x -<≤和03x <≤两种情况去掉绝对值可求出函数的解析式;(2)根据(1)的解析式画出函数的图像;(3)根据函数图像可求出函数的值域【详解】(1)()2,2012,033x x f x x x +-<≤⎧⎪=⎨-+<≤⎪⎩.(2)函数op 的图象如下图所示.(3)由图得函数op 的值域为(]0,2.【点睛】此题考查分段函数,考查由函数解析式画函数图像,根据图像求出函数的值域,属于基础题21.已知函数()()01axf x a x =≠+.(1)当0a >时,判断()f x 的单调性;(2)若()f x 在区间[]1,2上的最大值为43.(i )求实数a 的值;(ii )若函数()()0b g x x b x =+>,是否存在正实数b ,使得对区间1,15⎡⎤⎢⎥⎣⎦上任意三个实数r ,s ,t ,都存在以()()g f r ,()()g f s ,()()g f t 为边长的三角形?若存在,求实数b 的取值范围;若不存在,请说明理由.【答案】(1)在(),1∞--和()1,-+∞上单调递增(2)(i )2a =;(ii )存在,15153b b ⎧⎫<<⎨⎬⎩⎭【解析】【分析】(1)根据单调性的定义判断单调性;(2)(i )根据题意,分别对a<0和0a >两种情况讨论单调性,即可得出结果;(ii )由题意()()0bg x x b x=+>,可证得()g x 在(为减函数,在)+∞为增函数,设()m f x =,1,13m ⎡⎤∈⎢⎥⎣⎦,则()()0b b g m m m =+>,从而把问题转化为1,13m ⎡⎤∈⎢⎥⎣⎦,()()min max 2g m g m >时,求实数b 的取值范围.结合()()0b b g m m m=+>的单调性,分109b <≤,1193b <≤,113b <<,1b ≥四种情况讨论即可求得答案.【小问1详解】由题意得(),111ax a f x a x x x ==-≠-++.设12,(,1)x x ∀∈-∞-且12x x <,则()()()()()11212212=1111a x x a a a a x x x x x f x f -⎛⎫--- ⎪=+⎭-+++⎝,因为121x x <<-,所以120x x -<,()()12110x x ++>,当0a >时,()()120f x f x -<,即()()12f x f x <.所以()1a f x a x =-+在(),1∞--上单调递增;同理可得,()1a f x a x =-+在()1,-+∞上单调递增.故()f x 在(),1∞--和()1,-+∞上单调递增.【小问2详解】(i )()f x 在区间[]1,2上的最大值为43.①当a<0时,同理(1)可知,函数()1a f x a x =-+在区间[]1,2上单调递减,∴()()max 41223a a f x f a ==-==,解得823a =>(舍去);②当0a >时,函数()1a f x a x =-+在区间[]1,2上单调递增,∴()()max 242333a a f x f a ==-==,解得[]1,22a =∈.综上所述,2a =.(ii )由(i )知,()221f x x =-+,且()f x 在区间1,15⎡⎤⎢⎥⎣⎦上单调递增.∴()()115f f x f ⎛⎫ ⎪⎝⎭≤≤,即()113f x ≤≤,∴()f x 在区间1,15⎡⎤⎢⎥⎣⎦上的值域为1,13⎡⎤⎢⎥⎣⎦.讨论函数()()0b g x x b x=+>:令120x x <<,则()()()12121212121b b b g x g x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+-+=-- ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,当(12,x x ∈时,()121210b x x x x ⎛⎫--> ⎪⎝⎭,所以()()12g x g x >,()g x 为减函数;当)12,x x ∈+∞时,()121210b x x x x ⎛⎫--< ⎪⎝⎭,所以()()12g x g x <,()g x 为增函数;∴()g x 在(为减函数,在)+∞为增函数,令()m f x =,则1,13m ⎡⎤∈⎢⎥⎣⎦,∴()()()()0b g f x g m m b m==+>.在区间1,15⎡⎤⎢⎥⎣⎦上任意三个实数r ,s ,t ,都存在以()()g f r ,()()g f s ,()()g f t 为边长的三角形,等价于1,13m ⎡⎤∈⎢⎥⎣⎦,()()min max 2g m g m >.①当103<≤,即109b <≤时,()b g m m m =+在1,13⎡⎤⎢⎥⎣⎦上单调递增,∴()()min max 13,13g m b g m b =+=+,由()()minmax 2g m g m >,即2613b b +>+,得115b >,∴11159b <≤;②当1193b <≤时,()b g m m m =+在13⎡⎫⎢⎣⎭上单调递减,在⎤⎦上单调递增,∴()()ma min x 1g m g m b ==+,由()()min max 2g m g m >,即1b >+,得21410b b -+<,解得77b -<<+1193b <≤;③当113b <<时,()b g m m m =+在13⎡⎢⎣上单调递减,在⎤⎦上单调递增,∴()()m x min a 133g m g m b ==+,由()()min max 2g m g m >,即133b >+,得2191409b b -+<,解得74374399b -+<<,∴113b <<;④当1b ≥时,()b g m m m =+在1,13⎡⎤⎢⎥⎣⎦上单调递减,∴()()min max 11,33g m b g m b =+=+,由()()min max 2g m g m >,即12233b b +>+,解得53b <,∴513b ≤<.综上所述,实数b 的取值范围为15153b b ⎧⎫<<⎨⎩⎭.【点睛】关键点睛:本题第二问的关键是结合对勾函数的图象与性质,通过对b 的分类讨论从而得到不等式,解出即可.(2023·四川省攀枝花市第三高级中学月考)22.已知______,且函数()14212x x x a g x b+-⋅+=+.①函数()()0f x ax b a =+>在[]1,2上的值域为[]2,4;②函数()()224f x x a x =+-+在定义域[]1,1b b -+上为偶函数.请你在①②两个条件中选择一个条件,将上面的题目补无完整.(1)求a ,b 的值;(2)求函数()g x 在[]1,2-上的值域;(3)设()()2log 22x h x x m =+-,若1R x ∃∈,[]22,2x ∃∈-使得()()12g x h x <成立,求m 的取值范围.【答案】(1)选①根据单调性及值域列方程组求解;选②利用奇偶性列方程组求解(2)12,4⎡⎤-⎢⎥⎣⎦(3)12m >【解析】【分析】(1)选①,根据根据单调性及值域列方程组求解;选②根据函数为偶函数列方程组求解;(2)直接根据函数单调性求值域;(3)将1R x ∃∈,[]22,2x ∃∈-使得()()12g x h x <成立转化为()()2min 1g x h x <,先利用函数单调性求出()in 1m 2g x =-,即得则[]22,2x ∃∈-使得()()22222log 22x h x x m =+->-成立,继续转化为22min 112242x x m ⎛⎫>+⋅ ⎪⎝⎭,利用基本不等式最小值即可.【小问1详解】选①,函数()()0f x ax b a =+>在[]1,2上单调递增,故()()12224f a b f a b ⎧=+=⎪⎨=+=⎪⎩,解得2,0a b ==;选②,函数()()224f x x a x =+-+在定义域[]1,1b b -+上为偶函数故202110a b b -⎧=⎪⎨⎪-++=⎩,解得2,0a b ==;【小问2详解】由(1)得()1422112422x x x x x g x +-⋅+==+-,令12,42x t ⎡⎤=∈⎢⎥⎣⎦,[]1,2x ∈-,则()14g x t t =+-,1,42t ⎡⎤=⎢⎥⎣⎦,由对勾函数的性质可得1y x x =+在()0,1上递减,()1,+∞上递增,故()min 11421g x =+-=-,又()()131124,44224412g g =+-==+-=--,所以函数()g x 在[]1,2-上的值域为12,4⎡⎤-⎢⎣⎦;【小问3详解】由(2)得,当x ∈R 时,20x >,()min 2g x =-,若1R x ∃∈,[]22,2x ∃∈-使得()()12g x h x <成立,则[]22,2x ∃∈-使得()()22222log 22x h x x m =+->-成立,整理得22112242x x m >+⋅在[]22,2x ∈-上能成立,所以22min112242x x m ⎛⎫>+⋅ ⎪⎝⎭,又22112142x x +⋅≥=,当且仅当2211242x x =⋅,即21x =-时等号成立,所以21m >,即12m >.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
第一学期期中考试
高一数学试卷考试
班别:学号:
姓名:
一、选择题(本大题共10小题,每小题
5分,共50分,每小题只有一个选项是正确的)
1.设集合{M
m
Z |3
2},m {N
n
N |1
3}n ,则M
N
(
)
A .{0,1}
B .{1,0,1}
C .{012}
,,D .{1012}
,,,2.设集合
2
{|14},{|230},A x x B x x
x 则R A C B
(
)
A .(1,4)
B .(3,4)
C .(1,3)
D .(1,2)
(3,4)
3.已知点
3,3M
在幂函数()f x 的图象上,则
()f x 的表达式为(
)
A .1
2
()f x x
B .
1
2
()f x x
C .2
()f x x
D .
2
()f x x
4.函数
12)
(x x f 的定义域为(
)
A .1[
,
)
2B .1
(
,]
2
C .(,)
D .(,1]
5.若函数
1(),10()
,24,01
x
x
x f x x 则)2(log 4f ()
A .1
B .2
C .3
D .4
6.下列函数中,在定义域内既是奇函数又是增函数的为(
)
A .1
y
x B .
3
y x
C .1y
x
D .||
y
x x 7.已知3
1
3
2
a
,3
2
3
2b
,32
c
则()A .a
b c
B .c
a b
C .c
b a D .b
c a
8.定义在R 上的偶函数()f x 满足:对任意的12
12,[0,
)(),x x x x 有
121
2
()()0,f x f x x x 则
()
A .(3)(2)(1)f f f
B .(1)(2)(3)
f f f C .(2)(1)(3)f f f D .(3)
(1)
(2)
f f f 9.函数
2()
1log f x x 与1
()
2
x g x 在同一直角坐标系下的图象大致是(
)
10.函数
2
()2
x
f x x 在定义域R 上的零点个数是(
)
A .0
B .1
C .2
D .3
二、填空题(本大题共有
4小题,每小题
5分,共20分,请把正确的答案写在答题卷上)
11.23(log 9)(log 4)
12.若函数
2
()(1)2
f x kx
k x 是偶函数,则
()f x 的递减区间是
13.某种商品在最近
30天内的价格
()f t (元/件)与时间t (天)的函数关系是
()10f t t (0
30,t t N ),销售量()g t (件)与时间t (天)的函数关系是()
35g t t (0
30,t t
N ),
那么,这种商品的日销售金额的最大值是元,此时t =
.
14.下列五个判断:
①若
2
()2f x x
ax 在[1,
)上是增函数,则1;
a ②函数2
ln(1)y x
的值域是R ;
③函数
||
2x y
的最小值是1;
④在同一坐标系中函数
2x
y
与2x
y
的图像关于y 轴对称;
其中正确命题的序号是
(写出所有正确的序号)
.。