(完整版)专题牛顿运动定律的综合应用
2025高考物理 牛顿运动定律的综合应用
2025高考物理 牛顿运动定律的综合应用一、多选题1.用水平拉力使质量分别为m 甲、m 乙的甲、乙两物体在水平桌面上由静止开始沿直线运动,两物体与桌面间的动摩擦因数分别为μ甲和μ乙。
甲、乙两物体运动后,所受拉力F 与其加速度a 的关系图线如图所示。
由图可知( )A .甲乙<m mB .m m >甲乙C .μμ<甲乙D .μμ>甲乙 2.用一水平力F 拉静止在水平面上的物体,在外力F 从零开始逐渐增大的过程中,物体的加速度a 随外力F 变化的关系如图所示,2=10m /s g 。
则下列说法正确的是( )A .物体与水平面间的最大静摩擦力为14NB .物体做变加速运动,F 为14N 时,物体的加速度大小为27m /sC .物体与水平面间的动摩擦因数为0.3D .物体的质量为2kg3.如图所示,一物块以初速度0v 沿粗糙斜面上滑,取沿斜面向上为正向。
则物块速度随时间变化的图像可能正确的是( )A.B.C.D.4.如图(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平.t=0时,木板开始受到水平外力F的作用,在t=4s时撤去外力.细绳对物块的拉力f随时间t变化的关系如图(b)所示,木板的速度v与时间t的关系如图(c)所示.木板与实验台之间的摩擦可以忽略.重力加速度取g=10m/s2.由题给数据可以得出A.木板的质量为1kgB.2s~4s内,力F的大小为0.4NC.0~2s内,力F的大小保持不变D.物块与木板之间的动摩擦因数为0.2二、单选题5.某运送物资的班列由40节质量相等的车厢组成,在车头牵引下,列车沿平直轨道匀加速行驶时,第2节对第3节车厢的牵引力为F。
若每节车厢所受摩擦力、空气阻力均相等,则倒数第3节对倒数第2节车厢的牵引力为()A.F B.1920FC.19FD.20F6.如图,两物块P、Q用跨过光滑轻质定滑轮的轻绳相连,开始时P静止在水平桌面上。
牛顿运动定律的综合应用
机器人的移动和操作也遵循牛顿第一定律,通过编程控制机器人的运动轨迹和 姿态,实现各种复杂动作。
02
CATALOGUE
牛顿第二定律的应用
牛顿第二定律的基本理解
01
02
03
牛顿第二定律
物体加速度的大小跟它所 受的合力成正比,跟它的 质量成反比,加速度的方 向跟合力的方向相同。
公式
F=ma,其中F代表物体所 受的合力,m代表物体的 质量,a代表物体的加速 度。
轨道力学
火箭发射和卫星入轨需要精确的力学计算,包括牛顿第二定律的应用 ,以确定火箭所需的推力和轨迹。
THANKS
感谢观看
牛顿运动定律的综 合应用
contents
目录
• 牛顿第一定律的应用 • 牛顿第二定律的应用 • 牛顿第三定律的应用 • 牛顿运动定律的综合应用案例
01
CATALOGUE
牛顿第一定律的应用
惯性系与非惯性系
惯性系
一个不受外力作用的参考系,物 体在该参考系中保持静止或匀速 直线运动状态。
非惯性系
一个受到外力作用的参考系,物 体在该参考系中不会保持静止或 匀速直线运动状态。
划船
划桨时水对桨产生反作用力,使船前进。
3
走路
脚蹬地面时,地面给人一个反作用力,使人前进 。
牛顿第三定律在科技中的应用
喷气式飞机
通过燃烧燃料喷气产生反作用力,推 动飞机前进。
火箭推进器
电磁炮
通过电磁力加速弹丸,使其获得高速 ,射出后产生反作用力推动炮身运动 。
火箭向下喷射燃气产生反作用力,推 动火箭升空。
03
转向稳定性
汽车在转弯时,向心力(根据牛顿第二定律)的作用使车辆维持在转弯
牛顿运动定律的综合应用(解析版)
牛顿运动定律的综合应用题型一动力学的连接体问题和临界问题【解题指导】整体法、隔离法交替运用的原则:若连接体内各物体具有相同的加速度,且要求物体之间的作用力,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”.1(2023上·安徽亳州·高三蒙城第一中学校联考期中)中沙“蓝剑一2023”海军特战联训于10月9日在海军某部营区开训。
如图所示,六位特战队员在进行特战直升机悬吊撤离课目训练。
若质量为M的直升机竖直向上匀加速运动时,其下方悬绳拉力为F,每位特战队员的质量均为m,所受空气阻力是重力的k倍,不计绳的质量,重力加速度为g,则()A.队员的加速度大小为F6m-gB.上面第二位队员和第三位队员间绳的拉力大小13FC.队员的加速度大小为F6m-kgD.上面第二位队员和第三位队员间绳的拉力大小23F【答案】D【详解】以六位特战队员为研究对象F-6k+1mg=6ma设第二位队员和第三位队员间绳的拉力为T,以下面的4名特战队员为研究对象T-4k+1mg=4ma解上式得T=23F,a=F6m-k+1g故选D。
2(2024·辽宁·模拟预测)如图所示,质量均为m的A、B两物体叠放在竖直弹簧上并保持静止,用大小等于mg的恒力F向上拉B,运动距离h时,B与A分离,下列说法正确的是()A.B 和A 刚分离时,弹簧长度等于原长B.B 和A 刚分离时,它们的加速度为gC.弹簧的劲度系数等于mghD.在B 和A 分离前,它们做加速度增大的加速直线运动【答案】C【详解】AB .在施加外力F 前,对A 、B 整体受力分析,可得2mg =kx 1A 、B 两物体分离时,A 、B 间弹力为零,此时B 物体所受合力F 合=F -mg =0即受力平衡,则两物体的加速度恰好为零,可知此时弹簧弹力大小等于A 受到重力大小,弹簧处于压缩状态,故AB 错误;C .B 与A 分离时,对物体A 有mg =kx 2由于x 1-x 2=h所以弹簧的劲度系数为k =mgh故C 正确;D .在B 与A 分离之前,由牛顿第二定律知a =F +kx -2mg 2m =F +kx 2m-g在B 与A 分离之前,由于弹簧弹力一直大于mg 且在减小,故加速度向上逐渐减小,所以它们向上做加速度减小的加速直线运动,故D 错误。
牛顿运动定律的综合应用课件
牛顿运动定律的综合应用
典题演示 3 如图所示,质量都为 m 的 A、B 两物体叠放在 竖直弹簧上并保持静止,用大小等于 mg 的恒力 F 向上拉 B,运 动距离为 h 时 B 与 A 分离.下列说法中正确的是( C )
牛顿运动定律的综合应用
状态比较
超重
失重
运动 可能性
① 竖直向上加速或向 下减速 ② 有竖直向上加速或 向下减速的分运动
① 竖直向下加速或向上减速 ② 有竖直向下加速或向上减 速的分运动
说明
① 失重情况下,物体具有竖直向下的加速度,a=g 时为“完全失重” ② 在超重和失重状态下,物体的重力依然存在,而 且不变 ③ 在完全失重状态下,由重力产生的一切物理现象
状态,后经历超重状态,读数F先小于体重、后大于
体重;每次起立,该同学都将经历先向上做加速(加 速度方向向上)、后减速(加速度方向向下)的运动,即
先经历超重状态,后经历失重状态,读数F先大于体
重、后小于体重.由图线可知C项正确,B、D项错 误.
牛顿运动定律的综合应用
典题演示 2 (多选)(2016·南京、盐城一模) 如图所示,蹦床运动员从空中落到床面上,运 动员从接触床面下降到最低点为第一过程,从 最低点上升到离开床面为第二过程,运动员 ( CD )
A. 体重约为 650 N B. 做了两次下蹲-起立的动作 C. 做了一次下蹲-起立的动作,且下蹲后约 2 s 起立 D. 下蹲过程中先处于超重状态后处于失重状态
牛顿运动定律的综合应用
• 【解析】 当该同学站在力板传感器上静止不动时, 其合力为零,即压力读数恒等于该同学的体重值,由 图线可知:该同学的体重为650 N,A项正确;每次 下蹲,该同学都将经历先向下做加速(加速度方向向 下)、后减速(加速度方向向上)的运动,即先经历失重
牛顿运动定律的综合应用共97页
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
ቤተ መጻሕፍቲ ባይዱ
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
97
牛顿运动定律的综合应用
26、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。
3-4专题:牛顿运动定律的综合应用
人 教 实 验 版
高考物理总复习
归纳领悟 1.运用整体法解题的基本步骤 (1)明确研究的系统或运动的全过程. (2)画出系统的受力图和运动全过程的示意图. (3)寻找未知量与已知量之间的关系,选择适当的物理 规律列方程求解.
人 教 实 验 版
必考内容
第3章 第4讲
高考物理总复习
人 教 实 验 版
必考内容
第3章 第4讲
高考物理总复习
人 教 实 验 版
必考内容
第3章 第4讲
高考物理总复习
连接体问题
命题规律 利用整体法和隔离法分析求解多物体间
人 教 实 验 版
的相互作用力,或能根据受力情况求其运动情况.
(2011· 盐城模拟)
必考内容
第3章 第4讲
高考物理总复习
如图所示,固定在水平面上的斜面倾角 θ=37° ,木 块 A 的 MN 面上钉着一颗小钉子,质量 m=1.5kg 的小 球 B 通过一细线与小钉子相连接,细线与斜面垂直,木 块与斜面间的动摩擦因数 μ=0.50.现将木块由静止释放, 木块将沿斜面下滑.求在木块下滑的过程中小球对木块 MN 面的压力. g=10m/s2, (取 sin37° =0.6, cos37° =0.8)
必考内容
第3章 第4讲
高考物理总复习
[解析] 由极限思想当滑轮质量 m=0 时,则 A、D 答 m1m2g 案中 T1= 由于单选故 A、D 错.B 答案中 T1= m1+m2 m1m2g 2m1m2g ,C 答案中 T1= .由牛顿第二定律对 m1、 2m1+m2 m1+m2 m2 取整体: 则有 m1g-m2g=(m1+m2)a① 以 m1 为研究对象时:m1g-T1=m1a② 2m1m2g 联立①②解得 T1= ,故选项 C 正确. m1+m2
牛顿运动定律的综合应用
3.解题方法 整体法、隔离法. 4.解题思路 (1)分析滑块和滑板的受力情况,根据牛顿第二定律分别求出 滑块和滑板的加速度. (2)对滑块和滑板进行运动情况分析,找出滑块和滑板之间的 位移关系或速度关系,建立方程.特别注意滑块和滑板的位移都 是相对地的位移.
[典例 1] 长为 L=1.5 m 的长木板 B 静止放在水平冰面上,
3.图象的应用 (1)已知物体在一过程中所受的某个力随时间变化的图线,要 求分析物体的运动情况. (2)已知物体在一运动过程中速度、加速度随时间变化的图线, 要求分析物体的受力情况. (3)通过图象对物体的受力与运动情况进行分析.
4.解答图象问题的策略 (1)弄清图象坐标轴、斜率、截距、交点、拐点、面积的物理 意义. (2)应用物理规律列出与图象对应的函数方程式,进而明确 “图象与公式”、“图象与物体”间的关系,以便对有关物理问 题作出准确判断.
可行的办法是( BD )
A.增大 A 物的质量 B.增大 B 物的质量 C.增大倾角θ D.增大拉力 F
2. 如图所示,质量为 M、中空为半球形的光滑凹槽放置于光 滑水平地面上,光滑槽内有一质量为 m 的小铁球,现用一水平向 右的推力 F 推动凹槽,小铁球与光滑凹槽相对静止时,凹槽圆心
和小铁球的连线与竖直方向成 α 角,则下列说法正确的是( C )
A.小铁球受到的合外力方向水平向左 B.凹槽对小铁球的支持力为smingα C.系统的加速度为 a=gtan α D.推力 F=Mgtan α
二、动力学中的图象问题 1.常见的图象有
v-t 图象,a-t 图象,F-t 图象,F-a 图象等.
2.图象间的联系
加速度是联系 v-t 图象与 F-t 图象的桥梁.
练习: 1.(多选)如图(a),一物块在 t=0 时刻滑上一固定斜面,其运
牛顿运动定律专题1(整体法、隔离法与连接体问题)
牛顿运动定律的综合应用(一)(一)、整体法、隔离法与连接体问题1、连接体整体运动状态相同:【例1】A 、B 两物体靠在一起,放在光滑水平面上,它们的质量分别为m A 、m B ,今用水平力F A 推A , 求A 、B 间的作用力有多大?扩展(一)若地面动摩擦因数为求A 、B 间的作用力有多大?扩展(二)若在倾角为的光滑斜面上,求A 、B 间的作用力有多大?【练1】如图所示,质量为M 的斜面斜面间无摩擦。
在水平向左的推力F 起做匀加速直线运动,为,物体B 的质量为m 的大小为( )A.B.C.D.μθθ)(,sin θ+==m M F g a θ)(,cos m M F g a +==)(,tan θ+==m M F g a g m M F g a )(,cot +==μθ【练2】如图所示,质量为的物体2放在正沿平直轨道向右行驶的车厢底板上,并用竖直细绳通过光滑定滑轮连接质量为的物体,与物体1相连接的绳与竖直方向成角,则( )A. 车厢的加速度为B. 绳对物体1的拉力为m 1g/cos θC. 底板对物体2的支持力为D. 物体22【例2】如图所示,箱和杆的总质量为M 动,当加速度大小为a 时(a <g )A. Mg + mg C. Mg + ma 【练3】如图所示,一只质量为根质量为M A. B. C. 【练4面,现将一个重4 N 物体的存在,而增加的读数是( A.4 NB.23 NC.0 ND.3 N【练5】如图所示,A 、B 的质量分别为m A =0.2kg ,m B =0.4kg ,盘C 的质量m C =0.6kg ,现悬挂于天花板O 处,处于静止状态。
当用火柴烧断O 处的细线瞬间,木块A 的加速度a A 多大?木块B 对盘C 的压力F BC 多大?(g 取10m/s 2)2m 1m θθsin g g g M m A B O(二)、极限法与临界问题在应用牛顿运动定律解决动力学问题中,当物体运动的加速度不同时,物体有可能处于不同的状态,特别是题目中出现“最大”、“最小”、“刚好”等词语时,往往会有__________现象,此时要采用假设法或__________法,看物体在不同的加速度时,会有哪些现象发生,尽快找出__________ ,求出临界条件.方法1.“假设法‖分析动力学问题,(1)首先假定某力不存在,看物体发生怎样的运动,然与题目给定的运动状态是否相同;(2)假定某力沿某一方向,用运动规律进行验算;方法2.―极限法‖分析动力学问题,这类问题的关健在于抓住满足临界值的条件,准确地分析物理过程,进行求解;例3.如图所示,把质量m l=4 kg的木块叠放在质量m2=5 kg的木块上,m2放在光滑的水平面上,恰好使m1相对m2开始滑动时作用于木块m1上的水平拉力F1=12 N.那么,应用多大的水平拉力F2拉木块m2,才能恰好使m1相对m2开始滑动?【练6】如图所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A =6 kg,m B=2 kg,A、B之间的动摩擦因数μ=0.2,开始时F=10 N,此后逐渐增加,在增大到45 N的过程中,则()A.当拉力F<12 N时,物体均保持静止状态B.两物体开始没有相对运动,当拉力超过12 N时,开始相对运动C.两物体从受力开始就有相对运动D.两物体始终没有相对运动例4.质量为0.2kg的小球用细线吊在倾角为θ=60°的斜面体的顶端,斜面体静止时,小球紧靠在斜面上,线与斜面平行,如图所示,不计摩擦,求在下列三种情况下,细线对小球的拉力(取g=10 m/s2)(1) 斜面体以23m/s2的加速度向右加速运动;(2) 斜面体以43m/s2,的加速度向右加速运动;【练7】如图所示,质量为m=1 kg的物块放在倾角为θ=37°的斜面体上,斜面体质量为M=2 kg,斜面体与物块间的动摩擦因数为μ=0.2,地面光滑,现对斜面体施一水平推力F,要使物块m相对斜面静止,试确定推力F的取值范围.(sin 37°=0.6,cos 37°=0.8,g=10 m/s2)。
牛顿运动定律综合应用
牛顿运动定律综合应用在物理学中,牛顿运动定律是描述物体运动的基本规律。
这些定律由英国物理学家艾萨克·牛顿在17世纪第二期间提出,经过多次实验证实,并被广泛应用于力学领域。
本文将结合实际问题,通过牛顿运动定律的综合应用来深入探讨相关概念。
一、牛顿第一定律牛顿第一定律也被称为惯性定律,它表明一个物体如果受到平衡外力的作用,将维持静止状态或保持匀速直线运动。
换句话说,物体的运动状态只有在受到外力作用时才会改变。
例如,当一个小车停在水平路面上且没有施加力时,它会始终保持静止。
然而,一旦有外力作用于小车,比如有人推或拉它,它的运动状态就会发生改变。
二、牛顿第二定律牛顿第二定律描述了物体所受力与加速度之间的关系。
它可以用公式F=ma表示,其中F代表力,m代表物体的质量,a代表物体的加速度。
根据这个定律,如果一个物体受到外力作用,它的加速度将与所受力成正比,与物体的质量成反比。
考虑一个拳击手击打一个静止物体的情况。
如果拳击手的力增加,那么物体的加速度也会增加。
相反,如果物体的质量增加,它的加速度就会减小。
三、牛顿第三定律牛顿第三定律表明,对于相互作用的两个物体,彼此施加的力大小相等、方向相反。
简而言之,如果物体A对物体B施加了一个力,那么物体B对物体A也会施加大小相等、方向相反的力。
一个典型的例子是举起一个物体。
当我们试图举起一个重物时,我们感觉到了重力的力道。
然而,我们对物体的施力实际上也同样作用于我们的身体,这就是牛顿第三定律的体现。
结论牛顿运动定律是物体运动的基本规律,广泛应用于各个领域,包括工程学、天文学和生物学等。
通过综合应用牛顿运动定律,我们可以深入分析和解决许多实际问题。
本文简要介绍了牛顿运动定律的三个主要原则,并通过实例进行了说明。
牛顿第一定律告诉我们物体的运动状态只有在受到外力作用时才会改变,牛顿第二定律描述了力、质量和加速度之间的关系,牛顿第三定律则说明了相互作用物体之间的力的作用规律。
专题:牛顿运动定律的综合应用
专题:牛顿运动定律的综合应用题型一传送带问题【例1】如图所示,传送带与地面的夹角θ=37°,从A到B的长度为16 m,传送带以10 m/s的速率逆时针转动,在传送带上端A处由静止放一个质量为0.6 kg的物体,它与传送带之间的动摩擦因数μ=0.5,求物体从A运动到B所需要的时间是多少.(sin 37°=0.6,cos 37°=0.8,g取10 m/s2)【练习】传送带与水平面夹角为37°,皮带以12 m/s的速率运动,皮带轮沿顺时针方向转动,如图所示.今在传送带上端A处无初速度地放上一个质量为m的小物块,它与传送带间的动摩擦因数为0.75,若传送带A到B的长度为24 m,g取10 m/s,则小物块从A运动到B的时间为多少?【练习】如图所示,绷紧的传送带与水平面的夹角θ=30°,皮带在电动机的带动下,始终保持以v0=2 m/s的速率运行.现把一质量为m=10 kg的工件(可视为质点)轻轻放在皮带的底端,经时间1.9 s,工件被传送到h=1.5 m的高处,g取10 m/s2.求工件与皮带间的动摩擦因数.【练习】如图所示,传送带的水平部分ab =2 m ,斜面部分bc =4 m ,bc 与水平面的夹角α=37°.一个小物体A 与传送带的动摩擦因数μ=0.25,传送带沿图示的方向运动,速率v =2 m/s.若把物体A 轻放到a 处,它将被传送带送到c 点,且物体A 不会脱离传送带.求物体A 从a 点被传送到c 点所用的时间.(已知:sin 37°=0.6,cos 37°=0.8,g =10 m/s 2)题型二 临界问题【例2】如图所示,质量m =10 kg 的小球挂在倾角θ=37°的光滑斜面的固定铁杆上,求:(1)斜面和小球以a 1=g 2的加速度向右匀加速运动时,小球对绳的拉力和对斜面的压力分别为多大?(2)当斜面和小球都以a 2=3g 的加速度向右匀加速运动时,小球对绳的拉力和对斜面的压力分别为多大?【练习】如图所示,质量为m =1 kg 的物块放在倾角为θ=37°的斜面体上,斜面质量为M =2 kg ,斜面与物块间的动摩擦因数为μ=0.2,地面光滑,现对斜面体施一水平推力F ,要使物块m 相对斜面静止,试确定推力F 的取值范围.(g =10 m/s 2)题型三“假设法”在牛顿运动定律中的应用【例3】如图所示,火车车厢中有一倾角为30°的斜面,当火车以10 m/s2的加速度沿水平方向向左运动时,斜面上的物体m与车厢相对静止,分析物体m所受的摩擦力的方向.【练习】如图所示,物体B放在真空容器A内,且B略小于A,将它们以初速度v0竖直向上抛出,下列说法正确的是()A.若不计空气阻力,在它们上升过程中,B对A压力向下B.若不计空气阻力,在它们上升过程中,B对A压力为零C.若考虑空气阻力,在它们上升过程中,B对A的压力向下D.若考虑空气阻力,在它们下落过程中,B对A的压力向上题型四图象问题【例4】总质量为80 kg的跳伞运动员从离地500 m的直升机上跳下,经过2 s拉开绳索开启降落伞,如图所示是跳伞过程中的v-t图象,试根据图象,求:(g取10 m/s2)(1)t=1 s时运动员的加速度和所受阻力的大小.(2)估算14 s内运动员下落的高度及克服阻力做的功.(3)估算运动员从飞机上跳下到着地的总时间.【练习】一质量为m=40 kg的小孩站在电梯内的体重计上.电梯从t=0时刻由静止开始上升,在0到6 s内体重计示数F的变化如图所示.试问:在这段时间内电梯上升的高度是多少?取重力加速度g=10 m/s2.课后练习1.如图所示,在倾角为α的固定光滑斜面上,有一用绳子拴着的长木板,木板上站着一只猫,已知木板的质量是猫的质量的2倍.当绳子突然断开时,猫立即沿着板向上跑,以保持其相对斜面的位置不变,则此时木板沿斜面下滑的加速度为 ( )A .g 2sin α B .g sin α C .32g sin α D .2g sin α 2.如图所示为杂技“顶竿”表演,一人站在地上,肩上扛一质量为M 的竖直竹竿,当竿上一质量为m 的人以加速度a 加速下滑时,竿对“底人”的压力大小为 ( )A .(M +m )gB .(M +m )g -maC .(M +m )g +maD .(M -m )g3.如图所示,两个重叠在一起的滑块,置于固定的、倾角为θ的斜面上,滑块A 、B 的质量分别为m 1、m 2,A 与斜面间的动摩擦因数为μ1,B 与A 之间的动摩擦因数为μ2,已知两滑块一起从静止开始以相同的加速度从斜面滑下,滑块B 受到的摩擦力为 ( )A .大小等于零B .大小等于μ1m 2g cos θC .大小等于μ2m 2g cos θD .方向沿斜面向上4.如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A 、B ,它们的质量分别为m A 、m B ,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态.现开始用一恒力F 沿斜面方向拉物块A 使之向上运动,求物块B 刚要离开C 时物块A 的加速度a ,及从开始到此时物块A 的位移d (重力加速度为g ).。
课件1:专题三 牛顿运动定律的综合应用
第三节 牛顿运动定律的综合应用
物体的加速 产生
度方向 条件 __向__上__ 列原 F-mg=ma 理式 F=m(g+a)
运动 加速上升、 状态 _减__速__下__降__
物体的加速度
物体的加速 度方向_向__下__
方向_向__下__, 大小a=g
mg-F=ma mg-F=mg
F=m(g-a) F=0
高考总复习·物理
第三节 牛顿运动定律的综合应用
(1)滑块与地面间的动摩擦因数; (2)弹簧的劲度系数. [思路引导] ①速度图线的斜率表示物体的加速度. ②v-t图象的bc段为直线,表示物体做匀减 速直线运动.
高考总复习·物理
第三节 牛顿运动定律的综合应用
[解析] (1)从题中图象知,滑块脱离弹簧后的 加速度大小
将物体A放在容器B中,以某一速度把容器B竖直 上抛,不计空气阻力,运动过程中容器B的底面 始终保持水平,下列说法正确的是
高考总复习·物理
第三节 牛顿运动定律的综合应用
A.在上升和下降过程中A对B的压力都一定 为零
B.上升过程中A对B的压力大于物体A受到的 重力
C.下降过程中A对B的压力大于物体A受到的 重力
[解析] 该同学下蹲过程中,其加速度方向 先向下后向上,故先失重后超重,故选项D正 确. [答案] D
高考总复习·物理
第三节 牛顿运动定律的综合应用
◎规律总结 超重和失重现象的判断“三”技巧
1.从受力的角度判断,当物体所受向上的拉 力(或支持力)大于重力时,物体处于超重状态,小 于重力时处于失重状态,等于零时处于完全失重 状态.
x=21×(2+8)×6 m+12×8×4 m=46 m. 答案 (1)0.2 (2)6 N (3)46 m
牛顿运动定律的综合应用及整体法及隔离法专题讲解
F合 (m1 m2 mn ) a
四、整体法与隔离法的综合应用 实际上,不少问题既可用“整体法”也可用“隔离法”解,也有不少问题则需 要交替应用“整体法”与“隔离法”。因此,方法的选用也应视具体 隔离法
内力
1.求内力:先整体求加速度,后隔离求内力。
(1)运动员竖直向下拉绳的力; (2)运动员对吊椅的压力。
例题分析
【例4】如图所示,竖直放置在水平面上的轻质弹簧上叠放着两物块A、B,A、B 的质量均为2kg,它们处于静止状态,若突然将一个大小为10N、方向竖直向下的 力施加在物块A上,则此瞬间,A对B的压力的大小为(取g=10m/s2) A.5N C.25N B.15N D.35N
2.求外力:先隔离求加速度,后整体求外力。
• 3.当系统内各物体由细绳通过滑轮连接,物体加速度大小相 同时,也可以将绳等效在一条直线上用整体法处理.如图1所 示,可以由整体法列方程为:•(m1-m2)g=(m1+m2)a.
图1
例题分析 【例1】相同材料的物块m和M用轻绳连接,在M上施加恒力 F,使两物块作匀加
加速度和所受外力
求解物体之间的内 力
1.系统:相互作用的物体称为系统.系统由两个或两个以上的物体组成. 2.系统内部物体间的相互作用力叫内力,系统外部物体对系统内物体的作用力 叫外力.
三、系统牛顿第二定律 牛顿第二定律不仅对单个质点适用,对系统也适用,并且有时对系统运用牛顿
第二定律要比逐个对单个物体运用牛顿第二定律解题要简便许多,可以省去一些
人与吊板的加速度a和人对吊板的压力F分别为( )
A.a=1.0m/s2,F=260N B.a=1.0m/s2,F=330N C.a=3.0m/s2,F=110N D.a=3.0m/s2,F=50N
牛顿运动定律的综合应用
产 生 物体有向上的加 条 速度 件
物体有向下的加 速度
a=g,方向向下
视
重
F=m(g+a)
F=m(g-a)
F=0
牛顿运动定律的综合应用
二、整体法与隔离法 1.整体法:当系统中各物体的 加速度 相同时,我们可以把
系统内的所有物体看成一个整体,这个整体的质量等于各 物体的 质量之和 .当整体受到的外力F已知时,可用牛顿 第二定律求出整体的加速度,这种处理问题的思维方法叫 做整体法.
牛顿运动定律的综合应用
2.涉及隔离法与整体法的具体问题 (1)涉及滑轮的问题.若要求绳的拉力,一般都必须采用隔
离法.这类问题中一般都忽略绳、滑轮的重力和摩擦力, 且滑轮大小不计.若绳跨过定滑轮,连接的两物体虽然加 速度方向不同,但大小相同,也可以先整体求a的大小, 再隔离求FT. (2)固定在斜面上的连接体问题.这类问题一般多是连接体 (系统)各物体保持相对静止,即具有相同的加速度.解题 时,一般采用先整体、后隔离的方法.建立坐标系时也要 考虑矢量正交分解越少越好的原则,或者正交分解力,或 者正交分解加速度. 牛顿运动定律的综合应用
牛顿运动定律的综合应用
牛顿运动定律的综合应用
1.当物体处于超重和失重状态时,物体受到的重力并没有
变化.所谓“超”和“失”,是指视重,“超”和
“失”的大小取决于物体的质量和物体在竖直方向的
加速度.
2.物体是处于超重状态还是失重状态,不在于物体向上运
动还是向下运动,而是取决于加速度方向是向上还是
向下.
(3)斜面体(或称为劈形物体、楔形物体)与在斜面体上物体组 成的连接体(系统)的问题.这类问题一般为物体与斜面体 的加速度不同,其中最多的是物体具有加速度,而斜面体 静止的情况.解题时,可采用隔离法,但是相当麻烦,因 涉及的力过多.如果问题不涉及物体与斜面体的相互作 用,则采用整体法用牛顿第二定律求解.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题牛顿运动定律的综合应用超重与失重1有关超重和失重,以下说法中正确的是()A •物体处于超重状态时,所受重力增大,处于失重状态时,所受重力减小B •竖直上抛的木箱中的物体处于完全失重状态C.在沿竖直方向运动的升降机中出现失重现象时,升降机必定处于下降过程D .站在月球表面的人处于失重状态2•如图所示是某同学站在力传感器上做下蹲一起立的动作时记录的压力F随时间t变化的图线,由图线可知该同学()A .体重约为650 NB .做了两次下蹲一起立的动作C.做了一次下蹲一起立的动作,且下蹲后约 2 s起立D .下蹲过程中先处于超重状态后处于失重状态3.如图所示,质量为M的木楔ABC静置于粗糙水平面上,在斜面顶端将一质量为m的物体,以一定的初速度从A点沿平行斜面的方向推出,物体m沿斜面向下做减速运动,在减速运动过程中,下列有关说法中正确的是()4•在探究超重和失重规律时,某体重为G的同学站在一压力传感器上完成一次下蹲动作,传感器和计算机相连,经计算机处理后得到压力F随时间t变化的图象,则下列图象中可能正确的是电梯静止时,晓敏同学站在体重计上,体重计示数为50 kg ,电梯运动过程中,某一段时间内晓敏同学发现体重计示数如图3所示.在这段时间内下列说法中正确的是A .晓敏同学所受的重力变小了B .晓敏对体重计的压力小于体重计对晓敏的支持力C.电梯一定在竖直向下运动D .电梯的加速度大小为g/5,方向一定竖直向下动力学中的图象问题6.如图所示,水平地面上有一轻质弹簧,下端固定,上端与物体A相连接,整个系统处于平衡状态.现用一竖直A .地面对木楔的支持力大于(M + m)gB .地面对木楔的支持力小于(M + m)gC.地面对木楔的支持力等于(M + m)g D .地面对木楔的摩擦力为05•在升降电梯内的地板上放一体重计,加力F的大小和运动距离x之间关系图象正确的是( )是()A .物体在0〜2 s 内做匀加速直线运动B •物体在第2s 末速度最大C .物体在第8 s 末离出发点最远D .物体在第4s 末速度方向发生改变&刹车距离是衡量汽车安全性能的重要参数之一,图所示的图线刹车距离s 与刹车前的车速v 的关系曲线,已知紧急刹车过程中车与地面间是滑动摩擦,据此可知,下列说法正确 的是 ()A •甲车与地面间的动摩擦因数较大,甲车的刹车性能好B .乙车与地面间的动摩擦因数较大,乙车的刹车性能好C .以相同的车速开始刹车,甲车先停下来,甲车的刹车性能好D •甲车的刹车距离 s 随刹车前的车速 v 变化快,甲车的刹车性能好三.动力学中的临界极值问题分析9.如图所示,质量为 m = 1 kg 的物块放在倾角为 0= 37°勺斜面体上,斜面体质量为 M = 2 kg ,斜面体与物块间的动摩擦因数为 尸0.2,地面光滑,现对斜面体施一水平推力F ,要使物块m相对斜面静止,试确定推力F 的取值范围.(sin 37°= 0.6, cos 37 =0.8, g = 10 m/s 2)10.如图所示,物体 A 叠放在物体B 上,B 置于光滑水平面上, A 、B 质量分别为 m A = 6 kg , m B = 2 kg , A 、B 之间的 动摩擦因数 卩=0.2,开始时F = 10 N ,此后逐渐增加,在增大到 45 N的过程中,则 ()1、2分别为甲、乙两辆汽车在紧急刹车过程中的/■7NA .当拉力F<12 N时,物体均保持静止状态B •两物体开始没有相对运动,当拉力超过12 N时,开始相对运动C •两物体从受力开始就有相对运动D .两物体始终没有相对运动三•“传送带模型”问题的分析思路11 •如图所示,传送带保持v0= 1 m/s的速度运动,现将一质量m= 0.5 kg的物体从传送带左端放上,设物体与传送尸0.1,传送带两端水平距离x= 2.5 m,则物体从左端运动到右端所经历的时间为()B. ( .'6- 1) sC. 3 sD. 5 s A―F B带间动摩擦因数A. .'5 s从与传送带等高的光滑水平地面上的 A 处滑上传送带.若从小物块滑上传送带开始计时,小物块在传送带上运动的v — t 图象(以地面为参考系)如图乙所示.已知 V 2>V 1,则 B . t 2时刻,小物块相对传送带滑动的距离达到最大 C . 0〜t 2时间内,小物块受到的摩擦力方向先向右后向左D . 0〜t 3时间内,小物块始终受到大小不变的摩擦力作用 13.如图所示,倾角为 37°长为1 = 16 m 的传送带,转动速度为 处无初速度地释放一个质量为 m = 0.5 kg 的物体.已知(1)物块相对地面向左运动的最大距离;15•带式传送机是在一定的线路上连续输送物料的搬运机械,又称连续输送机•如图所示,一条足够长的浅色水平 传送带自左向右匀速运行.现将一个木炭包无初速度地放在传送带上,木炭包在传送带上将会留下一段黑色的径 迹.下列说法正确的是()A .黑色的径迹将出现在木炭包的左侧B .木炭包的质量越大,径迹的长度越短C .木炭包与传送带间动摩擦因数越大,径迹的长度越短D .传送带运动的速度越大,径迹的长度越短 16•如图所示,足够长的传送带与水平面夹角为0,以速度V 0逆时针匀速转动•在传送带的上端轻轻放置一个质量为 m 的小木块,小木块与传送带间的动摩擦因数 庐tan 0则下图中(1)传送带顺时针转动时,物体从顶端A 滑到底端B 的时间; (2)传送带逆时针转动时,物体从顶端A 滑到底端B 的时间.14.如图所示,水平传送带 AB 长 L = 10 m ,向右匀速运动的速度 v o = 4 m/s ,一质量为1 kg 的小物块(可视为质点)尸 0.4, g 取 10 m/s 2.求:以V 1 = 6 m/s 的初速度从传送带右端 B 点冲上传送带,物块与传送;带间的动摩擦因数A . t 2时刻,小物块离 A 处的距离达到最大 v = 10 m/s ,动摩擦因数 尸0.5,在传送带顶端 Asin 37 =0.6, cos 37 = 0.8, g = 10 m/s 2.求: ⑵物块从B 点冲上传送带到再次回到 B 点所用的时间.能反映小木块的速度随时间变化关系的是( )甲( )hl12 U kPt o AfQBt oct D17 •光滑水平面上静置质量为 M 的长木板,质量为m 的可视为质点的滑块以初速度 v o 从木板一端开始沿木板运动. 已知M>m ,则从滑块开始运动起,滑块、木板运动的v — t 图象可能是( )牛顿运动定律专题答案9. (1)设物块处于相对斜面向下滑动的临界状态时的推力为 轴正方向.对物块,F 1,此时物块受力分析如图所示,取加速度的方向为x1. B2. AC3. C4. D5. D6. D7. C8. B10. D 11.C 12. B15. C 16.D17. AC 18. BD18•如图甲为应用于机场和火车站的安全检查仪,用于对旅客的行李进行安全检查•其传送装置可简化为如图乙的模型,紧绷的传送带始终保持v = 1 m/s 的恒定速率运行.旅客把行李无初速度地放在A 处,设行李与传送带之间的动摩擦因数 尸0.1, A 、B 间的距离为2 m , g 取10 m/s 2.若乘客把行李放到传送带的同时也以 v = 1 m/s的恒定速率平行于传送带运动到 B 处取行李,则A .乘客与行李同时到达B 处B •乘客提前0.5 s 到达B 处C .行李提前0.5 s 到达B 处D •若传送带速度足够大, 行李最快也要2s 才能到达B 处 19 •如图所示为上、下两端相距L = 5 m ,倾角a= 30°始终以v = 3 m/s 的速率顺时针转动的传送带(传送带始终绷紧)•将一物体放在传送带的上端由静止释放滑下,经过t = 2 s 到达下端•重力加速度 g 取10 m/s 2,求:(1)传送带与物体间的动摩擦因数;(2)如果将传送带逆时针转动,速率至少多大时,物体从传送带上端由静止释放能最快地到达下端.30°竖直方向有 F N COS 0+ ^F sin 0— mg = 0 对 M 、m 整体有 F i = (M + m)a i 代入数值得:a i = 4.8 m/s 2, F I = 14.4 N(2)设物块处于相对斜面向上滑动的临界状态时的推力为F N ' sin 0+ F N ' COS 0= ma 2竖直方向有 F N ' COS 0— P F N ' sin 0— mg = 0 对整体有F 2= (M + m)a 2代入数值得 a 2= 11.2 m/s 2, F 2= 33.6 N综上所述可知推力 F 的取值范围为:14.4 N < F < 33.6 N 答案 14.4 N < F < 33.6 N13. (1)传送带顺时针转动时,物体相对传送带向下运动,则物体所受滑动摩擦力沿斜面向上,相对传送带向下匀 加速运动,根据牛顿第二定律有mg(sin 37 — gos 37 °= ma1则 a = gsin 37 —卩 COS 37 ° 2 m/s 2,根据 1= §at 2得 t = 4 S .(2)传送带逆时针转动,当物体下滑速度小于传送带转动速度时,物体相对传送带向上运 动,则物体所受滑动摩擦力沿传送带向下,设物体的加速度大小为a 1,由牛顿第二定律得v 10 1 2 t1= a ;=忆 S = 1 S ,x1 = 2a1t2= 5 m <l = 16 m 当物体运动速度等于传送带速度瞬间,有mgsin 37 >卩mgos 37,则下一时刻物体相对传送带向下运动,受到传送带向上的滑动摩擦力一一摩擦力发生突变•设当物体下滑速度大于传送带转动速度时物体的加速度为 a 2,则mgsin 37 —卩 mgos 37 ° a 2= = 2 m/s 2mX 2= l — X 1 = 11 m1又因为 X 2 = vt 2+ 2a 2t 2,则有 10t 2+ t 2= 11 解得:t 2= 1 s(t 2=— 11 S 舍去) 所以 t 总=t 1+ t 2= 2 S.114.解 (1)设物块与传送带间摩擦力大小为F fF f =卩mgF f x 物=?mv 1x 物=4.5 m ⑵设小物块经时间t 1速度减为0,然后反向加速,设加速度大小为a ,经时间t 2与传送F 2,对物块受力分析如图,在水平方向有mgs in 37 + 卩 mgos 37 = ma 1则有 a 1 =mgsin 37 + 卩 mgos 37=10 m/s 2 设当物体运动速度等于传送带转动速度时经历的时间为t 1,位移为X 1,则有带速度相等v i—at i = 0 a= t i = 1.5 s v o= at2 t2= 1 sm1设反向加速时,物块的位移为x i,则有x i = 2at22= 2 m物块与传送带共速后,将做匀速直线运动,设经时间t3再次回到B点x 物一x i = v o t3 t3= 0.625 s 所以t 总=t i +12+ t3= 3.125 s19. (1)物体在传送带上受力如图所示,物体沿传送带向下匀加速运动,设加速度为 a.1由题意得L = ^at2解得a= 2.5 m/s2;由牛顿第二定律得mgsi n a—F f = ma又F f= mgos a 解得尸"6 = 0.29(2)如果传送带逆时针转动,要使物体从传送带上端由静止释放能最快地到达下端,则需要物体有沿传送带向下的最大加速度,即所受摩擦力沿传送带向下,设此时传送带速度为v m,物体加速度为a'.由牛顿第二定律得mgsin a+ F f = ma'F f = imgcos a vr n = 2La ' 联立解得v m= 8.66 m/s.。