排列组合的解题策略 陈莉

合集下载

[数算]排列组合问题的解题策略(个人总结)

[数算]排列组合问题的解题策略(个人总结)

[数算]排列组合问题的解题策略发现公务员考试有好多高中的知识,但是高考已在N年前,实在记不住了,在点资料大家一起复习哈.排列、组合问题,在高考中所占比重不大,但试题都具有一定的灵活性、机敏性和综合性,在“倡导创新体系,提高素质教育”的今天,该类试题是最好的体现,由于有些问题比较抽象,且题型繁多,解法独特,再加上限制条件,容易产生错误。

本文就排列、组合问题的常见题型的求解方法加以归纳,供大家参考。

1、特殊元素——优先法:对于含有限定条件的排列、组合问题,一般应先考虑特殊元素,再考虑其它元素。

例1,用0、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有多少个?[解析]因组成的三位数为偶数,末尾的数字必须是偶数,又0不能排在首位,故0是其中的特殊元素应优先安排。

①当0排在末尾时,有个;②当0不排在末尾时,有个,根据分类记数原理,其中偶数共有个。

例2,1名老师和4名获奖学生排成一排照相留念,若老师不排在两端,则共有不同的排法多少种。

[解析]优先考虑对特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上来排,有种。

剩下的位置由4名学生全排列,有种。

因此共有种不同的排法。

2、相邻问题——捆绑法:对于某几个元素要求相邻的排列问题,可先将相邻的元素“捆绑”在一起看作一个元素与其它元素进行排列,然后再对这几个元素进行全排列。

例3,5名学生和3名老师站成一排照相,3名老师必须站在一起的不同排法共有种。

[解析]将3名老师捆绑起来看成一个元素,与5名学生排列,有种排法;而3名老师之间又有种排法,故满足条件的排法共有种。

例4,计划展出10幅不同的画,其中一幅水彩画,4幅油画,5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列方式有多少种?[解析]把每种画捆绑在一起,看成一个整体,又水彩画较特殊,应优先安排。

水彩画放中间,油画和国画放两端有种排法。

再考虑油画和国画本身可全排列,故排列方法共有种。

排列组合问题的若干解题策略

排列组合问题的若干解题策略
排列组合问题的若干解题策略
目录
• 排列组合问题概述 • 解题策略பைடு நூலகம்:直接法 • 解题策略二:间接法 • 解题策略三:插空法 • 解题策略四:捆绑法 • 解题策略五:隔板法
01 排列组合问题概述
排列与组合的定义
排列
从n个不同元素中取出m个元素 (m≤n),按照一定的顺序排成一 列,称为从n个不同元素中取出m 个元素的排列。
解题思路
首先将5个元素排成一排,形成连续的元素序列,然后在4个空隙中放置2个隔板 ,将元素序列分成3组。由于两组各有2个元素,一组有1个元素,因此放置隔板 的方案数为C(4,2)=6种。所以,不同的分组方法有6种。
THANKS FOR WATCHING
感谢您的观看
3. 在这些空隙中放置m-1个 隔板,将元素序列分成m组, 每组至少有一个元素。
2. 在n个元素之间形成(n-m) 个空隙,这些空隙可以看作 是隔板。
4. 计算放置隔板的方案数, 即为所求的排列组合数。
示例解析
题目
将5个不同元素分成3组,其中两组各有2个元素,一组有1个元素,问有多少种不 同的分组方法?
隔板法
适用于有分组排列 的问题。
02 解题策略一:直接法
适用范围
适用于问题较简单,组合数计算较直 接的情况。
适用于元素数目较小,排列数计算较 简单的情况。
解题步骤
01 1. 确定问题的类型和目标,明确需要计算 的是排列数还是组合数。
02 2. 分析问题中给出的条件和限制,确定哪 些元素可以参与排列或组合。
05 解题策略四:捆绑法
适用范围
01
当存在多个元素需要按照一定顺序排列时,可以考 虑使用捆绑法。
02
当存在多个元素需要相邻排列时,可以考虑使用捆 绑法。

排列组合解题方法和策略总结

排列组合解题方法和策略总结

排列组合解题方法和策略总结排列组合是数学中一个重要的概念,它涉及到从n个不同元素中取出m个元素(n>m)进行排列或组合的问题。

排列组合问题在日常生活和科学研究中有着广泛的应用,因此掌握排列组合的解题方法和策略非常重要。

以下是排列组合解题方法和策略的总结:1.明确问题要求:在解决排列组合问题时,首先要明确问题的要求,确定是排列问题还是组合问题,以及具体的限制条件。

2.确定元素范围:根据问题要求,确定所选取元素的范围,明确哪些元素可以选取,哪些元素不能选取。

3.列出所有可能的排列或组合:根据排列组合的公式,列出所有可能的排列或组合,确保不遗漏任何一种可能性。

4.分类讨论:对于一些复杂的问题,需要进行分类讨论。

根据问题的特点,将问题分成若干个子问题,分别求解子问题的排列组合情况。

5.排除法:在某些情况下,可以通过排除法求解问题。

根据问题的限制条件,排除一些不可能的情况,从而减少计算量。

6.递推关系:对于一些具有递推关系的问题,可以利用递推关系求解。

通过递推关系,逐步推导出最终的排列组合情况。

7.容斥原理:容斥原理是解决排列组合问题的一种重要方法。

通过容斥原理,可以将多个排列或组合的情况合并为一个,从而简化计算过程。

8.实际应用:排列组合问题在日常生活和科学研究中有着广泛的应用。

通过实际应用,可以加深对排列组合概念的理解,并掌握解题方法和策略。

解决排列组合问题需要掌握一定的方法和策略。

通过明确问题要求、确定元素范围、分类讨论、排除法、递推关系、容斥原理等方法和策略,可以有效地解决各种排列组合问题。

同时,通过实际应用,可以加深对排列组合概念的理解,提高解题能力。

排列组合在日常生活和科学研究中有着广泛的应用,以下是其中一些典型的应用场景:1.生日庆祝:在生日庆祝中,排列组合可以用来确定不同的庆祝活动安排。

例如,如果有5个朋友参加生日派对,可以使用排列组合确定他们坐在一张圆桌上的不同方式。

2.彩票购买:在购买彩票时,可以使用排列组合来计算不同号码的组合。

排列组合问题的解题策略

排列组合问题的解题策略

排列组合问题的解题策略关键词:排列组合,解题策略一、相临问题——捆绑法例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。

评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑”法解决,共有种排法。

二、不相临问题——选空插入法例2.7名学生站成一排,甲乙互不相邻有多少不同排法?解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:种 .评注:若个人站成一排,其中个人不相邻,可用“插空”法解决,共有种排法。

三、复杂问题——总体排除法在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。

例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个.四、特殊元素——优先考虑法对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。

例4.(1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种.解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法.例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种.解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种.五、多元问题——分类讨论法对于元素多,选取情况多,可按要求进行分类讨论,最后总计。

排列组合解题技巧12法.

排列组合解题技巧12法.

排列组合解题技巧12法首先,谈谈排列组合综合问题的一般解题规律:1〕使用"分类计数原理"还是"分步计数原理"要根据我们完成某件事时采取的方式而定,可以分类来完成这件事时用"分类计数原理",需要分步来完成这件事时就用"分步计数原理";那么,怎样确定是分类,还是分步骤?"分类"表现为其中任何一类均可独立完成所给的事件,而"分步"必须把各步骤均完成才能完成所给事件,所以准确理解两个原理强调完成一件事情的几类办法互不干扰,相互独立,彼此间交集为空集,并集为全集,不论哪类办法都能将事情单独完成,分步计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成这件事,步与步之间互不影响,即前步用什么方法不影响后面的步骤采用的方法.2〕排列与组合定义相近,它们的区别在于是否与顺序有关.3〕复杂的排列问题常常通过试验、画 "树图 "、"框图"等手段使问题直观化,从而寻求解题途径,由于结果的正确性难于检验,因此常常需要用不同的方法求解来获得检验.4〕按元素的性质进行分类,按事件发生的连续性进行分步是处理排列组合问题的基本思想方法,要注意"至少、至多"等限制词的意义.5〕处理排列、组合综合问题,一般思想是先选元素〔组合〕,后排列,按元素的性质进行"分类"和按事件的过程"分步",始终是处理排列、组合问题的基本原理和方法,通过解题训练要注意积累和掌握分类和分步的基本技能,保证每步独立,达到分类标准明确,分步层次清楚,不重不漏.6〕在解决排列组合综合问题时,必须深刻理解排列组合的概念,能熟练地对问题进行分类,牢记排列数与组合数公式与组合数性质,容易产生的错误是重复和遗漏计数.总之,解决排列组合问题的基本规律,即:分类相加,分步相乘,排组分清,加乘明确;有序排列,无序组合;正难则反,间接排除等.其次,我们在抓住问题的本质特征和规律,灵活运用基本原理和公式进行分析解答的同时,还要注意讲究一些解题策略和方法技巧,使一些看似复杂的问题迎刃而解.下面介绍几种常用的解题方法和策略.一.特殊元素〔位置〕的"优先安排法":对于特殊元素〔位置〕的排列组合问题,一般先考虑特殊,再考虑其他.例1、用0,2,3,4,5,五个数字,组成没有重复数字的三位数,其中偶数共有〔〕.A. 24个 B.30个 C.40个 D.60个[分析]由于该三位数为偶数,故末尾数字必为偶数,又因为0不能排首位,故0就是其中的"特殊"元素,应该优先安排,按0排在末尾和0不排在末尾分两类:1〕0排末尾时,有A42个,2〕0不排在末尾时,则有C21 A31A31个,由分数计数原理,共有偶数A42 + C21 A31A31=30个,选B.二.总体淘汰法:对于含否定的问题,还可以从总体中把不合要求的除去.如例1中,也可用此法解答:五个数字组成三位数的全排列有A53个,排好后发现0不能排首位,而且数字3,5也不能排末位,这两种排法要排除,故有A53--3A42+ C21A3 1=30个偶数.三.合理分类与准确分步含有约束条件的排列组合问题,按元素的性质进行分类,按事情发生的连续过程分步,做到分类标准明确,分步层次清楚,不重不漏. 四.相邻问题用捆绑法:在解决对于某几个元素要求相邻的问题时,先整体考虑,将相邻的元素"捆绑"起来,看作一"大"元素与其余元素排列,然后再考虑大元素内部各元素间顺序的解题策略就是捆绑法.例2、有8本不同的书;其中数学书3本,外语书2本,其它学科书3本.若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有< >种.<结果用数值表示>解:把3本数学书"捆绑"在一起看成一本大书,2本外语书也"捆绑"在一起看成一本大书,与其它3本书一起看作5个元素,共有A55种排法;又3本数学书有A 33种排法,2本外语书有A22种排法;根据分步计数原理共有排法A55 A33 A22= 1440<种>.注:运用捆绑法解决排列组合问题时,一定要注意"捆绑"起来的大元素内部的顺序问题.五.不相邻问题用"插空法":不相邻问题是指要求某些元素不能相邻,由其它元素将它们隔开.解决此类问题可以先将其它元素排好,再将所指定的不相邻的元素插入到它们的间隙及两端位置,故称插空法.例3、用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1与2相邻, 2与4相邻,5与6相邻,而7与8不相邻.这样的八位数共有< >个.<用数字作答>解:由于要求1与2相邻,2与4相邻,可将1、2、4这三个数字捆绑在一起形成一个大元素,这个大元素的内部中间只能排2,两边排1和4,因此大元素内部共有A22种排法,再把5与6也捆绑成一个大元素,其内部也有A22种排法,与数字3共计三个元素,先将这三个元素排好,共有A33种排法,再从前面排好的三个元素形成的间隙及两端共四个位置中任选两个,把要求不相邻的数字7和8插入即可,共有A42种插法,所以符合条件的八位数共有A22 A22 A33 A42=288<种>.注:运用"插空法"解决不相邻问题时,要注意欲插入的位置是否包含两端位置.六.顺序固定用"除法":对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数.例4、6个人排队,甲、乙、丙三人按"甲---乙---丙"顺序排的排队方法有多少种?分析:不考虑附加条件,排队方法有A66种,而其中甲、乙、丙的A33种排法中只有一种符合条件.故符合条件的排法有A66 ÷A33 =120种.<或A63种>例5、4个男生和3个女生,高矮不相等,现在将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法.解:先在7个位置中任取4个给男生,有A74 种排法,余下的3个位置给女生,只有一种排法,故有A74 种排法.<也可以是A77 ÷A33种>七.分排问题用"直排法":把几个元素排成若干排的问题,可采用统一排成一排的排法来处理.例6、7个人坐两排座位,第一排3个人,第二排坐4个人,则不同的坐法有多少种?分析:7个人可以在前两排随意就坐,再无其它条件,故两排可看作一排来处理,不同的坐法共有A77种.八.逐个试验法:题中附加条件增多,直接解决困难时,用试验逐步寻找规律. 例7.将数字1,2,3,4填入标号为1,2,3,4的方格中,每方格填1个,方格标号与所填数字均不相同的填法种数有〔〕A.6 B.9 C.11 D.23解:第一方格内可填2或3或4,如第一填2,则第二方格可填1或3或4,若第二方格内填1,则后两方格只有一种方法;若第二方格填3或4,后两方格也只有一种填法.一共有9种填法,故选B九、构造模型 "隔板法":对于较复杂的排列问题,可通过设计另一情景,构造一个隔板模型来解决问题.例8、方程a+b+c+d=12有多少组正整数解?分析:建立隔板模型:将12个完全相同的球排成一列,在它们之间形成的11个间隙中任意插入3块隔板,把球分成4堆,每一种分法所得4堆球的各堆球的数目,对应为a、b、c、d的一组正整解,故原方程的正整数解的组数共有C113 .又如方程a+b+c+d=12非负整数解的个数,可用此法解.十.排除法:对于含"至多"或"至少"的排列组合问题,若直接解答多需进行复杂讨论,可以考虑"总体去杂",即将总体中不符合条件的排列或组合删除掉,从而计算出符合条件的排列组合数的方法.例9、从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有< >种.A.140种 B.80种 C.70种 D.35种解:在被取出的3台中,不含甲型或不合乙型的抽取方法均不合题意,因此符合题意的抽取方法有C93-C43-C53=70<种>,故选C.注:这种方法适用于反面的情况明确且易于计算的习题.十一.逐步探索法:对于情况复杂,不易发现其规律的问题需要认真分析,探索出其规律例10、从1到100的自然数中,每次取出不同的两个数,使它们的和大于100,则不同的取法种数有多少种.解:两个数相加中以较小的数为被加数,1+100>100,1为被加数时有1种,2为被加数有2种,…,49为被加数的有49种,50为被加数的有50种,但51为被加数有49种,52为被加数有48种,…,99为被捕加数的只有1种,故不同的取法有〔1+2 +3+…+50〕+〔49+48+…+1〕=2500种十二.一一对应法:例11.在100名选手之间进行单循环淘汰赛〔即一场失败要退出比赛〕最后产生一名冠军,要比赛几场?解:要产生一名冠军,要淘汰冠军以外的所有选手,即要淘汰99名选手,要淘汰一名就要进行一场,故比赛99场.。

解排列组合问题的常用策略

解排列组合问题的常用策略

解排列组合问题的常用策略解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事;2.怎样做才能完成所要做的事,即采取分类还是分步,或是分类与分步同时进行,确定分多少类及多少步;3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一、特殊元素和特殊位置优先策略1.由0,1,2,3,4,5可以组成多少个没有重复数字的5位奇数.2.将7种不同的花种在排成一列的7个花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二、相邻元素捆绑策略3.若 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法.三、不相邻问题插空策略4.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?5.某班新年联欢会原定的5.个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为____.6.某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为____.7.若 7人排队,其中甲乙丙 3人顺序一定,共有多少不同的排法?8.若 10人身高各不相同,排成前后两排,每排 5人,要求从左至右身高逐渐增加,共有多少种排法?9.把 6名实习生分配到 7个车间实习,共有多少种不同的分法?10.某 8层大楼一楼电梯上来 8名乘客,他们到各自的楼层下电梯,下电梯的方法共有多少种?六、多排问题直排策略11.若 8人排成前后两排,每排 4人,其中甲乙在前排,丁在后排,共有多少排法?七、排列组合混合问题先选后排策略12.有 5个不同的小球,装入 4个不同的盒内,每盒至少装一个球,共有多少不同的装法?13.一个班有 6名战士,其中正副班长各 1人,现从中选 4人完成四种不同的任务,每人完成一种任务,且正副班长恰好1人参加,则不同的选法有____种.八、小集团问题先整体后局部策略14.用 1,2,3,4,5组成没有重复数字的五位数,其中恰有两个偶数夹在 1,5之间,这样的五位数有多少个?15.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画,排成一行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为____.16.若 5名男生和 5名位女生站成一排照像,男生相邻,女生也相邻的排法有____种.九、元素相同问题隔板策略17.有10个运动员名额,要分给7个班,每班至少一个,有多少种分配方案?18.将 10个相同的球装 5个盒中,每盒至少一个,有多少装法?十、正难则反总体淘汰策略19.从 0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于 10的偶数,不同的取法有多少种?20.某班有 8位班干部,从中任抽 5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?21.从 4名男生和 3名女生中选出 4人参加某个座谈会,若这 4人中必须既有男生又有女生,则不同的选法共有____.十一、平均分组问题除法策略22.将 6本不同的书平均分成 3堆,每堆 2本共有多少种分法?23.将 13个球队分成 3组,一组 5个队,其它两组 4个队,有多少分法?24.某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排 2名,则不同的安排方案种数为____.十二、合理分类与分步策略25.在一次演唱会上共 10名演员,其中 8人能唱歌,5人会跳舞,现要演出一个 2人唱歌 2人伴舞的节目,有多少选派方法?26.若 3成人 2小孩乘船游玩,1号船最多乘 3人,2号船最多乘2人,3号船只能乘 1人,他们任选 2只船或3只船,但小孩不能单独乘一只船,这 3人共有多少种乘船方法?十三、构造模型策略27.马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的 2盏或 3盏,也不能关掉两端的路灯,求满足条件的关灯方法有多少种?28.某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种?十四、实际操作穷举策略29.设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法.30.同一寝室4人,每人写一张贺年卡集中起来,然后每人各拿一张别人的贺年卡,则四张贺年卡不同的分配方式有多少种?十五、分解与合成策略31.数字 30030能被多少个不同的偶数整除?32.正方体的 8个顶点可连成多少对异面直线?十六、化归策略33.若 25人排成5×5方队,现从中选 3人,要求 3人不在同一行也不在同一列,不同的选法有多少种?。

排列组合常见的解题策略

排列组合常见的解题策略

排列组合常见的解题策略第一篇:排列组合常见的解题策略“排列组合常见的解题策略”课例张玉华一、教材分析排列和组合是数学基础知识的重要组成部分之一,它在解决实际问题以及科学技术的研究中都有广泛的应用;在排列组合问题中充分体现了分类、化归的数学思想。

它应用性强,具有题型多变,条件隐晦,思维抽象,分类复杂,问题交错,易出现重复和遗漏以及不易发现错误等特征。

因而在这部分教学中,应充分调动学生的积极性,强调学生的主体作用,明确基本原理,注重思维过程的分析,让学生在问题解决的过程中不断反思探索规律,体验成功,从而提升学生的思维能力。

而且是概率的基础。

二、学情分析高三(1)班的同学基础差,但勤奋好学,有一定的潜力。

三、教学目的1、认知目标:使学生进一步理解并掌握处理排列组合问题的基本策略,进一步体会分类与化归的数学思想方法以及分析与解决问题的能力,培养学生的探索创新意识。

2、技能目标:充分发挥教师的主导和学生的主体作用,使学生的自主意识、自学能力、探索创新意识得到发展。

3、情感目标:培养学生的自信心和学习兴趣,树立实事求是的科学态度和不怕困难的进取精神,积极探索,进而培养学生的创新能力。

四、教法分析根据排列组合的知识特点“条件隐晦,思维抽象”,在教学中采用发现法,坚持“思路教学”,深钻教材,注意从实验入手,模拟发现,从特殊到一般,归纳出一般的规律,优化学生的思路,激活学生的思维。

五、教学过程分析1、复习思考(1)处理排列组合问题的常见解题策略(提问学生作答)问题一、街道旁有编号1、2、3、4、5、6、7、8、9、10共十只路灯,为节约用电又不影响照明,可以把其中的三只灯相灭,但不能同时熄灭相邻两只,在两端的两只路灯不熄灭的情况下,问不同的熄灯方法有多少种? ①通过复习提问总结解决排列组合问题的基本思路和方法。

②设置问题情景,激发学生的学习欲望。

通过引导,学生得出多种解法,从而优化思维,发现规律为构造数学模型一做好铺垫。

排列组合中的解题策略及教学方法

排列组合中的解题策略及教学方法

排列组合中的解题策略及教学方法【摘要】以计数问题为主要内容的排列与组合,是组合数学中最基本的知识,其应用广泛,思想方法新颖独特,是发展学生抽象思维能力和逻辑推理能力的好素材。

本文从排列组合的两个基本原理出发,对解决排列组合问题的常用策略及教学方法进行论述。

【关键词】排列组合解题策略教学方法排列组合是高中数学的重要内容,新教材中概率与统计的增加更突出了排列组合的重要性。

高考对排列组合的考察以两个基本原理——分类计数原理和分步计数原理为出发点,侧重检测解题思想和解题技巧,因而,对解题策略和思维模式的培养和提炼是平时训练的核心。

一、排列组合中的两个基本原理加法原理:如果完成一件事有k类方式:第一类方式有n1种方法,第二类方式有n2种方法……第k类方式有nk种方法。

那么完成这件事共有N=n1+n2+…+nk 种不同方法。

乘法原理:如果完成一件事要经过k个步骤:完成第一个步骤有n1种方法,完成第二个步骤有n2种方法……完成第k个步骤有nk种方法。

在依次完成这k 个步骤后,这件事才能完成,那么完成这件事共有N=n1×n2×…×nk种不同方法。

二、解排列组合题的常用策略排列、组合问题,通常都是以选择题或填空题的形式出现在试卷上,它联系实际,生动有趣,但题型多样,解法灵活。

实践证明,备考的有效方法是题型与解法归类,识别模式,熟练运用。

在下文中归纳总结了求解排列组合的十个常用策略,旨在识别模式、熟练运用,最终达到顺利求解排列组合问题的目的。

1.特殊要求,优先考虑对于存在特殊元素或特殊位置的排列组合问题,我们常常先从这些“特殊”入手,先满足特殊元素或特殊位置,再去安排其他元素或位置。

2.合理分类,准确分步对于比较复杂的排列组合问题,因其元素多,取出情况分类复杂,要求准确分类,用分类计数原理求解;或事件过程复杂,需对过程各步作准确分析,合理分步,运用分步计数原理求解,避免重复或遗漏现象发生。

排列组合常见问题的策略

排列组合常见问题的策略
2. 某8层大楼一楼电梯上来8名乘客人,他们 到各自旳一层下电梯,下电梯旳措施
( 78 )
六.环排问题线排策略 例6. 5人围桌而坐,共有多少种坐法?
解:围桌而坐与坐成一排旳不同点在于,坐成 圆形没有首尾之分,所以固定一人A并从 此位置把圆形展成直线其他4人共有_A_44__
种排法即(5-1)!
一般B地,n个不同元素作圆形排 列C ,共有(A n-1A)!种B 排C 法D.假E 如A
分步计数原理各步相互依存,每步中旳措施 完毕事件旳一种阶段,不能完毕整个事件.
处理排列组合综合性问题旳一般过程如下:
1.仔细审题搞清要做什么事 2.怎样做才干完毕所要做旳事,即采用分步还
是分类,或是分步与分类同步进行,拟定分多 少步及多少类。
3.拟定每一步或每一类是排列问题(有序)还是 组合(无序)问题,元素总数是多少及取出多 少个元素.
其他书3本,将它们排成一行放在书架上,其
中数学书放在一起,外语书放在一起,有多少
种放法?
A55 A33 A22 1440
三.插空法:不相邻问题策略 例3.一种晚会旳节目有4个舞蹈,2个相声,3个
独唱,舞蹈节目不能连续出场,则节目旳出 场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共 有 A55 种,第二步将4舞蹈插入第一步排
二.捆绑法:相邻元素策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相
邻, 共有多少种不同旳排法. 解:可先将甲乙两他元素进行排列, 要求同某步几对种相元邻素元必素须内排部在进一行起自旳排问。题,能够用
甲乙 丙丁
捆绑由法分来步处计理数问原题理.即可将得需共要有相A5邻5A22旳A22元=素48合0 并
种不同旳措施.N=m1+m2 + +mn

排列组合问题的解答策略

排列组合问题的解答策略

排列组合问题的解答策略一、排列组合综合应用的一般方法在解决实际问题中,要认真审题,分清是排列还是组合,有序排列,无序组合。

(1)直接法。

对于存在特殊元素或特殊位置的排列组合问题,从特殊入手,先满足特殊元素或特殊位置,再满足其他元素或位置。

(2)间接法(正难则反)。

对于某些排列组合问题,正面情况比较复杂,而反面情况比较简单,可先不考虑限制条件,计算出排列组合总数,再减去其反面情况的排列组合数。

例1.1名老师和4名学生排成一排照相留念,若老师不排在两端,共有多少种排法?解法1:(特殊元素法)老师在中间的三个位置上任选一个位置的选法有13A 种,然后4名学生在剩余的位置上排列,排法有44A 种,所以共有13A ·44A =72种。

解法2:(特殊位置法)先安排两端站2名学生,有24A 种方法,其余位置的排法有33A 种方法,所以排法种数是24A 33A =72种。

解法3:(间接法)先把5人全排有55A 种,再减老师排在两端时的12C 44A 种,所以排法种数为55A -12C 44A =72种。

例2.从10种不同作物种子中选出6种放入6个不同的瓶子中展出,如果要求甲、乙两种种子不能放入第1号瓶内,那么不同放法共有多少种?解:(特殊位置)从甲乙以外的8种种子中选1个放入第1号瓶,有18C 种方法,再从乘下9种种子中选5种放在其余5个瓶中有59A 种放法,所以有18C ·59A =120960种放法。

二、常见的排列问题1、含有特殊元素,特殊位置问题——特殊优先法对于带有特殊元素、特殊位置的排列问题,一般应先考虑特殊元素、特殊位置,再考虑其他元素与位置,即特殊优先法。

2、相邻问题——捆绑法对于某几个元素要求相邻的排列问题,可将相邻的元素捆绑在一起看作一个“元”,与其他元素排列,然后松绑对“元”内部元素排列。

例3.6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有( )种。

A 、720种 B 、360种 C 、240种 D 、120种解析:5252240A A = 选C3、“小团体”排列问题——捆绑法对于“小团体”排列问题,可先将“小团体”捆绑看作一个元素与其余元素排列,最后再进行“小团体”内部的排列。

排列组合问题的解题策略

排列组合问题的解题策略

排列组合问题的求解策略一.知识梳理1.分类加法计数原理完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,……,在第n类方案中有m n种不同的方法,则完成这件事共有N=m1+m2+…+m n种不同的方法.2.分步乘法计数原理完成一件事需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,……,完成第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.分类加法计数原理与分步乘法计数原理,都涉及完成一件事的不同方法的种数.它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.3.排列与组合的概念4.(1)排列数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用A m n表示.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用C m n 表示.5.排列数、组合数的公式及性质(1)A m n=n (n -1)(n -2)…(n -m +1)=n !n -m !(2)C m n =A m nA m m=n n -1n -2…n -m +1m !=n !m !n -m !排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握.解排列组合问题的基础是两个基本原理,分类用加法原理,分步用乘法原理,问题在于怎样合理地进行分类、分步,特别是在分类时如何做到既不重复,又不遗漏,正确分每一步,这是比较困难的。

要求我们周密思考,细心分析,理解并掌握解题的常用方法和技巧,掌握并能运用分类思想、转化思想、整体思想、正难则反等数学思想解决排列组合问题。

排列组合的解题策略 陈莉

排列组合的解题策略 陈莉

排列组合的解题策略陈莉排列组合作为高中代数课本的一个独立分支,因为极具抽象性而成为“教”与“学”难点。

有相当一部分题目教者很难用比较清晰简洁的语言讲给学生听,有的即使教者觉得讲清楚了,但是由于学生的认知水平,思维能力在一定程度上受到限制,还不太适应。

从而导致学生对题目一知半解,甚至觉得“云里雾里”。

针对这一现象,笔者在日常教学过程中经过尝试总结出一些个人的想法跟各位同行交流一下。

笔者认为之所以学生“怕”学排列组合,主要还是因为排列组合的抽象性,那么解决问题的关键就是将抽象问题具体化,我们不妨将原题进行一下转换,让学生走进题目当中,成为“演员”,成为解决问题的决策者。

这样做不仅激发了学生的学习兴趣,活跃了课堂气氛,还充分发挥学生的主体意识和主观能动性,能让学生从具体问题的分析过程中得到启发,逐步适应排列组合题的解题规律,从而做到以不变应万变。

当然,在具体的教学过程中一定要注意题目转换的等价性,可操作性。

怎样分析排列组合综合题?使用“分类计数原理”还是“分步计数原理”要根据我们完成某事件时采取的方式而定,分类来完成这件事时用“分类计数原理”,分步来完成这件事时就用“分步计数原理”,怎样确定分类,还是分步骤?“分类”表现为其中任何一类均可独立完成所给的事件,而“分步骤”必须把各步骤均完成才能完成所给事件,所以准确理解两个原理强调完成一件事情的几类办法互不干扰,彼此间交集为空集,并集为全集,不论哪类办法都能将事情单独完成,分步计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成这件事,步与步之间互不影响,即前步用什么方法不影响后面的步骤采用的方法。

排列与组合定义相近,它们的区别是在于是否与顺序有关。

复杂的排列问题常常通过试验、画简图、小数字化等手段使问题直观化,从而寻求解题途径,由于结果的正确性难于检验,亦常常需要用不同的方法求解来获得检验。

按元素的性质进行分类,按事件发生的连续性进行分步是处理组合问题的基本思想方法,要注意“至少、至多”等限制词的意义。

解排列组合题的十二个策略

解排列组合题的十二个策略

解排列组合题的十二个策略
杨爱玲
【期刊名称】《上海中学数学》
【年(卷),期】2014(000)001
【摘要】由于排列、组合应用题条件千变万化,应用形式广泛,具有条件隐晦、思维抽象且数值较大、不易验证等特点.因而在解题时要做到排、组分清,加乘辨明,避免重漏,多解验证. 一、特殊要求优先考虑例1用1、2、3、4、5这五个数字组成没有重复数字的三位数,其中偶数共有() A.24个 B.30人 C.40个 D.60个解析:因为是三位偶数,则个位必须是特殊元素2或4,要优先考虑,有两类情况;其他两位从剩下的四个数中选排,故有2·A24 =24个,即应选A. 例2从10人中选4人排成一排,其中甲不站排头,乙不站排尾,有多少种站法?
【总页数】3页(P39-41)
【作者】杨爱玲
【作者单位】211600 江苏省金湖中等专业学校
【正文语种】中文
【相关文献】
1.例谈解排列组合题的常用方法 [J], 高会平
2.构建递推关系简解排列组合题 [J], 李红春
3.用对应思想解排列组合题 [J], 王荣峰
4.浅谈培养学生解排列组合题的方法 [J], 朵海军
5.解排列组合题时常见的几类错误 [J], 王佩其
因版权原因,仅展示原文概要,查看原文内容请购买。

排列组合问题解答策略

排列组合问题解答策略

排列组合问题的解答策略一、排列组合综合应用的一样方式在解决实际问题中,要认真审题,分清是排列仍是组合,有序排列,无序组合。

(1)直接法。

关于存在特殊元素或特殊位置的排列组合问题,从特殊入手,先知足特殊元素或特殊位置,再知足其他元素或位置。

(2)间接法(正难那么反)。

关于某些排列组合问题,正面情形比较复杂,而反面情形比较简单,可先不考虑限制条件,计算出排列组合总数,再减去其反面情形的排列组合数。

例1.1名教师和4名学生排成一排照相留念,假设教师不排在两头,共有多少种排法?解法1:(特殊元素法)教师在中间的三个位置上任选一个位置的选法有13A 种,然后4名学生在剩余的位置上排列,排法有44A 种,因此共有13A ·44A =72种。

解法2:(特殊位置法)先安排两头站2名学生,有24A 种方式,其余位置的排法有33A 种方式,因此排法种数是24A 33A =72种。

解法3:(间接法)先把5人全排有55A 种,再减教师排在两头时的12C 44A 种,因此排法种数为55A -12C 44A =72种。

例2.从10种不同作物种子当选出6种放入6个不同的瓶子中展出,若是要求甲、乙两各类子不能放入第1号瓶内,那么不同放法共有多少种?解:(特殊位置)从甲乙之外的8各类子当选1个放入第1号瓶,有18C 种方式,再从乘下9各类子当选5种放在其余5个瓶中有59A 种放法,因此有18C ·59A =120960种放法。

二、常见的排列问题一、含有特殊元素,特殊位置问题——特殊优先法关于带有特殊元素、特殊位置的排列问题,一样应先考虑特殊元素、特殊位置,再考虑其他元素与位置,即特殊优先法。

二、相邻问题——捆绑法关于某几个元素要求相邻的排列问题,可将相邻的元素捆绑在一路看做一个“元”,与其他元素排列,然后松绑对“元”内部元素排列。

例3.6名同窗排成一排,其中甲、乙两人必需排在一路的不同排法有( )种。

A 、720种 B 、360种 C 、240种 D 、120种解析:5252240A A 选C3、“小集体”排列问题——捆绑法关于“小集体”排列问题,可先将“小集体”捆绑看做一个元素与其余元素排列,最后再进行“小集体”内部的排列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合的解题策略陈莉
发表时间:2014-04-01T17:09:56.750Z 来源:《新疆教育》2013年第5期供稿作者:陈莉
[导读] 排列组合作为高中代数课本的一个独立分支,因为极具抽象性而成为“教”与“学”难点。

重庆市江津区第八中学陈莉
排列组合作为高中代数课本的一个独立分支,因为极具抽象性而成为“教”与“学”难点。

有相当一部分题目教者很难用比较清晰简洁的语言讲给学生听,有的即使教者觉得讲清楚了,但是由于学生的认知水平,思维能力在一定程度上受到限制,还不太适应。

从而导致学生对题目一知半解,甚至觉得“云里雾里”。

针对这一现象,笔者在日常教学过程中经过尝试总结出一些个人的想法跟各位同行交流一下。

笔者认为之所以学生“怕”学排列组合,主要还是因为排列组合的抽象性,那么解决问题的关键就是将抽象问题具体化,我们不妨将原题进行一下转换,让学生走进题目当中,成为“演员”,成为解决问题的决策者。

这样做不仅激发了学生的学习兴趣,活跃了课堂气氛,还充分发挥学生的主体意识和主观能动性,能让学生从具体问题的分析过程中得到启发,逐步适应排列组合题的解题规律,从而做到以不变应万变。

当然,在具体的教学过程中一定要注意题目转换的等价性,可操作性。

怎样分析排列组合综合题?使用“分类计数原理”还是“分步计数原理”要根据我们完成某事件时采取的方式而定,分类来完成这件事时用“分类计数原理”,分步来完成这件事时就用“分步计数原理”,怎样确定分类,还是分步骤?“分类”表现为其中任何一类均可独立完成所给的事件,而“分步骤”必须把各步骤均完成才能完成所给事件,所以准确理解两个原理强调完成一件事情的几类办法互不干扰,彼此间交集为空集,并集为全集,不论哪类办法都能将事情单独完成,分步计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成这件事,步与步之间互不影响,即前步用什么方法不影响后面的步骤采用的方法。

排列与组合定义相近,它们的区别是在于是否与顺序有关。

复杂的排列问题常常通过试验、画简图、小数字化等手段使问题直观化,从而寻求解题途径,由于结果的正确性难于检验,亦常常需要用不同的方法求解来获得检验。

按元素的性质进行分类,按事件发生的连续性进行分步是处理组合问题的基本思想方法,要注意“至少、至多”等限制词的意义。

处理排列、组合综合性问题,一般思想是先选元素(组合),后排列,按元素的性质进行“分类”和按事件的过程“分步”,始终是处理排列、组合问题基本方法和原理,通过解题训要注意积累分类和分步的基本技能。

在解决排列、组合综合性问题时,必须深刻理解排列组合的概念,能熟练确定问题是排列问题还是组合问题,牢记排列数与组合数公式与组合数性质,容易产生的错误是重复和遗漏计数。

下面笔者将就教学过程中的两个难点通过两个特例作进一步的说明:第一,占位子问题例1:将编号为1、2、3、4、5 的5 个小球放进编号为1、2、3、4、5 的5 个盒子中,要求只有两个小球与其所在的盒子编号相同,问有多少种不同的方法?①仔细审题:在转换题目之前先让学生仔细审题,从特殊字眼小球和盒子都已“编号”着手,清楚这是一个“排列问题”,然后对题目进行等价转换。

②转换题目:在审题的基础上,为了激发学生兴趣进入角色,我将题目转换为:让学号为1、2、3、4、5 的学生坐到编号为1、2、3、4、5 的五张凳子上(已准备好放在讲台前),要求只有两个学生与其所坐的凳子编号相同,问有多少种不同的坐法?
③解决问题:这时我在选另一名学生来安排这5 位学生坐位子(学生争着上台,积极性已经得到了极大的提高),班上其他同学也都积极思考(充分发挥了学生的主体地位和主观能动性),努力地“出谋划策”,不到两分钟的时间,同学们有了统一的看法:先选定符合题目特殊条件“两个学生与其所坐的凳子编号相同”的两位同学,有C 种方法,让他们坐到与自己编号相同的凳子上,然后剩下的三位同学不坐编号相同的凳子有2 种排法,最后根据乘法原理得到结果为2×C =20(种)。

这样原题也就得到了解决。

④学生小结:接着我让学生之间互相讨论,根据自己的分析方法对这一类问题提出一个好的解决方案。

(课堂气氛又一次活跃起来)⑤老师总结:对于这一类占位子问题,关键是抓住题目中的特殊条件,先从特殊对象或者特殊位子入手,再考虑一般对象,从而最终解决问题。

第二,分组问题例2:从1、3、5、7、9 和2、4、6、8 两组数中分别选出3 个和2 个数组成五位数,问这样的五位数有几个?(本题我是先让学生计算,有很多同学得出的结论是P ×P )①仔细审题:先由学生审题,明确组成五位数是一个排列问题,但是由于这五个数来自两个不同的组,因此是一个“分组排列问题”,然后对题目进行等价转换。

②转换题目:在学生充分审题后,我让学生自己对题目进行等价转换,有一位同学A 将题目转换如下:从班级的第一组(12 人)和第二组(10 人)中分别选3 位和2 位同学分别去参加苏州市举办的语文、数学、英语、物理、化学竞赛,问有多少种不同的选法?③解决问题:接着我就让同学A 来提出选人的方案同学A 说:先从第一组的12 个人中选出3 人参加其中的3 科竞赛,有P×P 种选法;再从第二组的10 人中选出2 人参加其中2 科竞赛有P×P 种选法;最后由乘法原理得出结论为(P×P)×(P×P)(种)。

(这时同学B 表示反对)同学B 说:如果第一组的3个人先选了3 门科目,那么第二组的2 人就没有选择的余地。

所以第二步应该是 P×P(. 同学们都表示同意,但是同学 C 说太蘩)同学 C说:可以先分别从两组中把5 个人选出来,然后将这5 个人在5 门学科中排列,他列出的计算式是C×C×P(种)。

(再次通过互相讨论,都表示赞赏)这样原题的解答结果就“浮现”出来C×C×P(种)。

④老师总结:针对这样的“分组排列”题,我们多采用“先选后排”的方法:先将需要排列的对象选定,再对它们进行排列。

以上是我一节课两个例题的分析过程,旨在通过这种方法的尝试(教学效果比较明显),进一步活跃课堂气氛,更全面地调动学生的学习积极性,发挥教师的主导作用和学生的主体作用,让学生在互相讨论的过程中学会自己分析转换问题,解决问题。

相关文档
最新文档