大气污染控制工程实验指导书
大气污染控制工程实验指导书要点
大气污染控制控制工程实验指导书(环境工程专业用)编者:刘晖明彩兵刘洁萍仲恺农业技术学院教材科印2013年9月目录实验一粉尘真密度的测量--------------------------------------------2 实验二旋风除尘器除尘效率的测量--------------------------------5 实验三袋式除尘器除尘效率的测量-------------------------------10 实验四填料塔液相传质系数的测定-------------------------------37 实验五用化学法测量室内甲醛浓度的测量----------------------44 实验六用仪器法测量室内甲醛浓度的测量----------------------48 实验七TVOC的测量-------------------------------------------------54 实验八光催化剂的制备实验---------------------------------------58 实验九利用光催化法去除有机污染物-----------------------------59时间: 地点: 学校英东楼415环保室测量人: 班级: 学号: 指导老师: 评分:实验一 粉尘真密度的测量一、实验目的(1)通过本实验进一步了解粉尘真密度的物理意义。
(2)熟悉真空装置的连接及使用。
二、实验原理及装置:密度是粉尘的重要物理性质之一。
所谓真密度是指在密实状态下,单位体积粉尘的质量。
它区别于粉尘的堆积密度。
由于细粉尘的颗粒与颗粒内部存在许多孔隙。
因此同样质量的粉尘,它们实际古有的体积比密实状态下占有的体积大。
粉尘的真密度直接影响粉尘在空气中韵沉降与悬浮,它是设计和选用性能优良的除尘器的一个重要依据。
本实验就是要通过排除孔隙中空气的影响求得密实状态下粉尘的真密度,准确掌握测定粉尘真密度的方法。
大气污染控制工程实验指导书
实验一 旋风除尘器性能测定一、实验目的旋风除尘器是利用旋转的含尘气体所产生的离心力,将尘粒从气流中分离出来的一种气固分离装置。
教学上通过本装置实验,进一步提高学生对旋风除尘器结构形式和除尘机理的认识;掌握旋风除尘器主要性能指标测定内容和方法,并且对影响旋风除尘器性能的主要因素有较全面的了解;通过实验方案设计和实验结果分析,加强学生综合应用和创新能力的培养。
(1)管道中各点流速和气体流量的测定; (2)旋风除尘器的压力损失的测定; (3)旋风除尘器的除尘效率的测定。
二、实验原理和方法当含尘气体从入口导入除尘器的外壳和排气管之间,形成旋转向下的外旋流。
悬浮于外旋流的粉尘在离心力的作用下移向器壁,并随外旋流转到除尘器下部,由排尘孔排出。
1、气体温度和含湿量的测定由于除尘系统吸入的是室内空气,所以近似用室内空气的温度和湿度代表管道内气流的温度t s 和湿度y w 。
由挂在室内的干湿球温度计测量的干球温度和湿度温度,可查得空气的相对湿度Ф,由干球温度可查得相应的饱和水蒸气压力p v ,则空气所含水蒸气的体积分数:y w=Фpapv (式1)式中:P v ——饱和水蒸气压力,kPa ;P a ——当地大气压力,kPa 。
2、管道中各点气流速度的测定当干烟气组分同空气近似,露点温度在35-55℃之间,烟气绝对压力在0.99×105-1.03×105Pa 时,可用下列公式计算烟气管道流速:P T K P 77.20=υ (式2)式中:0υ——烟气管道流速,m/s ;K P ——毕托管的校正系数,K P =0.84; T ——烟气温度,℃;P ——各动压方根平均值,Pa 。
nP P P P n+++=...21 (式3)式中:n P ——任一点的动压值,Pa ;n ——动压的测点数。
3、管道中气体流量的测定气体流量计算公式:0υ⋅=A Q s (式4) 式中A ——管道横断面积,m 2。
4、旋风除尘器压力损失的测定本实验采用静压法测定旋风除尘器的压力损失。
大气实验
大气污染控制工程实验指导书环境教研室辽宁工业大学2014年6月目录实验一旋风除尘器性能测定 (1)实验二袋式除尘器性能测定 (8)实验三碱液吸收气体中的二氧化碳 (13)实验四酸气(SO2)吸收净化实验 ................. 错误!未定义书签。
实验一旋风除尘器性能测定一、实验目的1.掌握旋风除尘器性能测定的主要内容和方法。
2.了解影响旋风除尘器性能的主要因素。
二、实验原理旋风除尘器是利用旋转的含尘气流所产生的离心力,将颗粒污染物从气体中分离出来的过程。
标志旋风除尘器性能的基本参数是处理气体流量、阻力损失和除尘效率。
1. 旋风除尘器处理气体流量和入口风速的测定和计算测量处理气体流量所使用仪器是毕托管与U形压差计或倾斜压力计。
毕托管是一种感受和传导气流压力的仪器。
常用毕托管的结构如图1所示,它由两根管子套装在一起组成,端部弯成90°。
测压时通过头部A中间的细管感受气流的全压,由尾部细管C引出,在毕托管头部B处的外管壁上,沿圆周均匀地开有4~8个小孔用以感受静压,由尾部细管D引出。
使用时,将尾部的两根细管通过软管接在U形压力计或倾斜压力计的接口上,即可测得动压值;压力计仅与C管道相接则可测得全压力。
需要注意,测量时毕托管头部管段的方向必须与气流方向平行。
图1 毕托管的构造示意图由于测量气体流速时需将毕托管插入气流,这样将对气流的正常流动产生干扰从而影响测量精度,所得结果与实际值有一定误差,因而需要加以校正。
一般校正系数值均由制造毕托管的工厂给出。
由于其值与1很接近,故通常近似地采用1。
气体流速可由下式计算:gdPP K u ρ2= (1)式中:u —气体流速,m/s ;K p —毕托管的校正系数,无因次; P d —动压值,Pa ;ρg —气体密度,kg/m 3。
气体的密度可由下式计算:TPT R MgP g ⋅=⋅=287ρ (2) 式中:M g —气体摩尔质量,kmol/kgP —大气压力,Pa ; T —气体温度,K 。
大气污染控制工程实验
实验1 粉尘真密度的测定 【实验目的】1.了解测定粉尘真密度的原理并掌握真空法测定粉尘真密度的方法。
2.了解引起真密度测量误差的因素及消除方法。
【实验原理】粉尘的真密度是指将粉尘颗粒表面及其内部的空气排出后测得的粉尘自身的密度。
真密度是粉尘的一个基本物理性质,是进行除尘理论汁算和除尘器选型的重要参数。
在自然状态下,粉尘颗粒之间存在着空隙,有的粉尘尘粒具有微孔,由于吸附作用,使得尘粒表面被一层空气所包围。
在此状态下测量出的粉尘体积,空气体积占了相当的比例,因而并不是粉尘本身的真实体积,根据这个体积数值计算出来的密度也不是粉尘的真密度,而是堆积密度。
为了排除空气,测量出粉尘的真实体积,可以采用比重瓶液相置换法。
比重瓶液相置换法是将一定质量的粉尘装入比重瓶中,并向瓶中加入液体浸润来粉尘,然后抽真空以排除尘粒表面及间隙中空气,使这些部分被液体所占据,从而求出粉尘的真实体积。
根据质量和体积即可算出粉尘的真密度。
粉尘真密度测定原理如图2-1所示。
图1 测定粉尘真密度原理示意图若比重瓶质量为m 0,容积为Vs ,瓶内充满已知密度为s ρ的液体,则总质量m 1为:s s V m m ρ+=01当瓶内加入质量为m c 、体积为V c 的粉尘试样后,瓶中减少了V c 体积的液体,故比重瓶的总质量m 2为:c c s s m V V m m +-+=)(02ρ根据上述两式可得到粉尘试样真实体积V c 为:scc m m m V ρ+-=21所以粉尘试样的真密度c ρ为:sc s c s c c c c m m m m m m V m ρρρ=-+==21 式中:m c -粉尘质量,gV c -粉尘真实体积,cm 3 m 1-比重瓶+液体的质量,g m 2-比重瓶+液体+粉尘的质量,g m s -排出液体的质量,g s ρ-液体的密度,g/cm 3【主要仪器及试剂】1.比重瓶:25ml ,3只 2.分析天平:0.1mg ,1台 3.真空干燥器:300mm ,1个 4.真空泵:真空度 > 0.9×105Pa ,1台 5.烘箱:0~150℃,1台 6.滴管:1支 7.烧杯:250ml ,1只8.滑石粉试样,蒸馏水,滤纸若干。
大气污染控制工程实验指导书
《大气污染控制工程》课程实验指导书实验一 移液管法测定粉体粒径分布一、实验目的掌握液体重力沉降法(移液管法)测定粉体粒径分布的方法。
二、实验原理液体重力沉降法是根据不同大小的粒子在重力作用下,在液体中的沉降速度各不相同这一原理而得到的。
粒子在液体(或气体)介质中作等速自然沉降时所具有的速度,称为沉降速度,其大小可以用斯托克斯公式表示。
2()18ρρμ-=P L pt gd v 且p d =式中 v t — 粒子的沉降速度,cm/s ; μ — 液体的动力粘度,Pa ·s; ρp — 粒子的真密度,g/cm 3;ρL — 液体的真密度,取水的密度:1 g/cm 3; g — 重力加速度,cm/s 2;d p — 粒子的直径,cm 。
这样,粒径便可以根据其沉降速度求得。
但是,直接测得各种粒径的沉降速度是困难的,而沉降速度是沉降高度与沉降时间的比值,以此替换沉降速度,使上式变为:p d =且218()p L pHt gd μρρ=- (1-3)式中 H — 粒子的沉降高度,cm t — 粒子的沉降时间,s粒子在液体中沉降情况可用下图表示。
图1-1 粒子在液体中的沉降示意图粉样放入玻璃瓶内某种液体介质中,经搅拌后,使粉样均匀地扩散在整个液体中,如图中状态甲。
经过t 1后,因重力作用,悬浮体由状态甲变为状态乙。
在状态乙中。
直径为d 1的粒子全部沉阵列虚线以下,由状态甲变到状态乙,所需时间为t 1。
12118()μρρ=-p L Ht gd同理, 直径为d 2的粒子全部沉降到虚线以下(即到达状态丙)所需时间为:22218()μρρ=-p L Ht gd 直径为d 3的粒子全部沉降到虚线以下(即到达状态丁)所需时间为:32318()μρρ=-p L Ht gd根据上述关系,将粉体试样放在一定液体介质中,自然沉降,经过一定时间后,不同直径的粒子将分布在相同高度的液体介质中。
根据这种情况,在不同沉降时间,不同沉降高度上取出一定量的液体,称量出所含有的粉体质量,便可以测定出粉体的粒径分布。
大气污染控制工程实验指导书
大气污染控制工程实验指导书实验一雷诺实验一、实验目的1、观察液体在不同流动状态时的流体质点的运动规律。
2、观察液体由层流变紊流及由紊流变层流的过渡过程。
3、测定液体在园管中流动时的上临界雷诺数Rec1和下临界雷诺数Rec2。
二、实验要求1、实验前认真阅读实验教材,掌握与实验相关的基本理论知识。
2、熟练掌握实验内容、方法和步骤,按规定进行实验操作。
3、仔细观察实验现象,记录实验数据。
4、分析计算实验数据,提交实验报告。
三、实验仪器1、雷诺实验装置(套),2、蓝、红墨水各一瓶,3、秒表、温度计各一只,4、卷尺。
四、实验原理流体在管道中流动,有两种不同的流动状态,其阻力性质也不同。
在实验过程中,保持水箱中的水位恒定,即水头H 不变。
如果管路中出口阀门开启较小,在管路中就有稳定的平均流速u ,这时候如果微启带色水阀门,带色水就会和无色水在管路中沿轴线同步向前流动,带色水成一条带色直线,其流动质点没有垂直于主流方向的横向运动,带色水线没有与周围的液体混杂,层次分明的在管道中流动。
此时,在速度较小而粘性较大和惯性力较小的情况下运动,为层流运动。
如果将出口阀门逐渐开大,管路中的带色直线出现脉动,流体质点还没有出现相互交换的现象,流体的运动成临界状态。
如果将出口阀门继续开大,出现流体质点的横向脉动,使色线完全扩散与无色水混合,此时流体的流动状态为紊流运动。
雷诺数:γdu ⋅=Re 连续性方程:A •u=Q u=Q/A流量Q 用体积法测出,即在时间t 内流入计量水箱中流体的体积ΔV 。
t VQ ∆= 42d A ⋅=π式中:A-管路的横截面积 u-流速 d-管路直径 γ-水的粘度五、实验步骤1、连接水管,将下水箱注满水。
2、连接电源,启动潜水泵向上水箱注水至水位恒定。
3、将蓝墨水注入带色水箱,微启水阀,观察带色水的流动从直线状态至脉动临界状态。
4、通过计量水箱,记录30秒内流体的体积,测试记录水温。
5、调整水阀至带色水直线消失,再微调水阀至带色水直线重新出现,重复步骤4。
大气污染控制工程课程设计指导书1.doc
大气污染控制工程课程设计指导书1大气污染控制工程课程设计指导书一、课程设计目的本课程设计是《大气污染控制工程》课程实践性教学环节之一。
通过本设计使学生巩固所学的大气污染控制方面的知识,了解废气处理工程设计的基本内容,加强工程设计能力的训练,提高综合运用本课程知识以及其它课程中所学的知识,解决废气处理与计算的处理工程实际问题的能力。
二、设计内容和要求课题一1. 根据煤耗量计算锅炉排烟量、烟尘及SO2浓度。
2. 净化系统设计方案的分析确定。
3. 设计计算和选择相应的除尘设备和脱硫塔:确定除尘器和塔类型、规格,并确定其主要运行参数。
4. 管网布置及计算:确定各装置的位置及管道布置,并计算各管段的管径、长度、烟囱高度和出口以及系统总阻力。
5. 风机及电机的选择设计:风机类型、型号及电动机的种类、型号和功率。
课题二1. 集气罩类型选择和设计2. 填料塔的设计计算3. 管网布置及计算:确定各装置的位置及管道布置,并计算各管段的管径、长度、烟囱高度和出口以及系统总阻力。
4. 风机及电机的选择设计:风机类型、型号及电动机的种类、型号和功率。
三、设计步骤(一).烟气量计算1.理论空气量的计算标准状态下碳的完全燃烧反应方程式为:C +O 2 →CO 2 ⇒12kgC +22.4m 3O 2 →22.4 m 3CO 2由此可得1kg 碳完全燃烧时需要1.867 m 3氧气,并产生1.867 m 3 CO 2。
1kg 燃料中包含有C Y 碳,因而1kg 燃料中碳完全燃烧必需的氧气量为1.867C Y m 3。
同理可得1kg 燃料中氢完全燃烧时必需的氧气量为5.56H Y m 3,硫完全燃烧时必需的氧气量为0.7S Y m 3。
燃料燃烧时,1kg 燃料本身释放出的氧气量在标准状态下的容积为0.7O Y m 3。
综上可得1kg 燃料完全燃烧时所需外界供应的氧气量为:203o 1.867C 5.560.70.7m /kg Y Y Y Y V H S O =++-式中20o V ——标准状态下理论需氧量,m 3/kg ;C Y 、H Y 、S Y 、O Y ——为烟气中所含各元素的质量分数。
《大气污染控制工程》实验指导
实验1 光学法测定粉尘粒径一、实验目的粉尘粒径的大小与除尘效果有着极其密切的关系,因此粉尘粒径大小的测定在通风除尘技术中是不可缺少的重要组成部分。
通过本实验应达到以下目的:1.掌握光学法测定粉尘粒径的基本原理及实验方法。
2.了解光学显微镜的操作方法。
3.学会数据处理及分析的方法。
二、实验内容(一) 粉尘样品光片的制备1.滴入半滴至一滴松节油于裁玻片,然后用钳子取少量粉尘样品,将粉尘均匀洒在载玻片的松节油中。
2.待粉尘在松节油中分散均匀后,在载玻片上面加上盖玻片。
在加盖玻片时,应先将盖玻片的一边置于载玻片上,然后轻轻地向下按以免产生气泡影响粉尘粒径的观察和测定。
(二)光学显微镜的操作1.装卸镜头2.调节照明3.调节焦距(三)显微镜下粉尘投影径的测定1.目镜刮皮尺每格所代表尺寸的测定将物台微尺置于物台上,准焦。
然后转动物台,使微尺与目镜刻度尺平行再移动微尺使两零点对齐。
仔细观察两小尺上的分格在什么地方再重合,数出两尺子在这段长度内各自的格子数。
例如目镜度尺为50格,物台微尺为48格,则目镜刻度尺的每小格相当于物台微尺的48/50格,再乘以物台微尺每小格所代表的长度,即48/50×0.01mm =0.0096mm,就是该放大倍数下目镜刻度尺的实际长度。
显微镜的放大倍数不同,目镜中刻度尺每格所代表的尺寸也不同。
2.粉尘粒径的测定在一定放大倍数下目镜刻度尺每格所代表的尺寸测定以后,将物台微尺取下,将粉尘样品光片置于物台上,依一定的顺序测定光片中粉尘投影粒径的大小。
将所测得的数据记录下来。
三、实验数据的记录及处理(一)原始数据的记录1.放大倍数为的显微镜中目镜刻度尺每格所代表的长度为um。
2.将粉生粒子投影径大小的测定结果列于表格中。
(二)实验数据的处理1.按教材中所述的粉尘粒径分布的计算方法将数据整理成表。
2.根据上述表整理的数据画出粒径分布的直方图。
3.按教材中的计算方法得出粉尘的特征数,整理成表。
大气污染控制工程实验
大气污染控制工程实验指导书环境工程实验室第一部分粉尘性质的测定实验一、粉尘真密度测定一、 目的粉尘真密度是指密实粉尘单位体积的重量,即设法将吸附在尘粒表面及间隙中的空气排除后测的的粉尘自身密度P D .测定粉尘真密度一般采用比重瓶法,粉尘试样的质量可用天平称量,而粉尘物体的体积测量则由于粉尘吸附的气体及粒子间的空隙占据大量体积,故用简单的浸润排液的方法不能直接量得粉尘体积,而应对粉尘进行排气处理,使浸液充分充填各空隙及粉尘的空洞。
才能测得粉尘物质的真实体积。
二、 测试仪器和实验粉尘比重瓶、三通开关、分液漏斗、缓冲瓶、真空表、干燥瓶、温度计、抽气泵、被测粉尘、蒸馏水三、 测试步骤1.称量干净烘干的比重瓶mO 。
然后装入约1/3之一体积的粉尘,称得连瓶带尘重量mS 。
2.接好各仪器,组成真空抽气系统,将比重瓶接入抽气系统中,打开三通开关使比重瓶与抽气泵联通,启动抽气泵抽气约30分钟。
3.轻轻转动三通开关使分液漏斗与比重瓶联通。
(注意:不能将分液漏斗与抽气系统联通以免水进入抽气泵中)此时由于比重瓶中真空度很高,分液漏斗中的水会迅速地流入比重瓶中,注意只能让水注入瓶内2/3处,不能注满。
4.转动三通开关,再使比重瓶与抽气泵联通,启动抽气泵,轻轻振动比重瓶,这时可以看见粉尘中有残留气泡冒出,待气泡冒完后,停止抽气。
5.取下比重瓶,加满蒸馏水至刻度线,将瓶外檫干净后称其重量mSe 。
6.洗净比重瓶中粉尘,装满蒸馏水称其重量me 。
Pe mm m m mm P seeOSOSD •-+--=)(` g/cm3式中:mO 比重瓶自重g ; mS (比重瓶+粉尘)重g;mSe (比重瓶+粉尘+水)重g ; me (比重瓶+水)重g; Pe 测定温度下水的密度; Pp 粉尘的真密度 g/cm3四、 测定记录粉尘名称 电厂锅炉飞灰 粉尘来源 电厂 液体名称 自来水液体密度 1 g/cm3 测定温度 16o C 测定日期 2010/5/21平均真密度 g/cm3五、思考题:1.此法与先加水后抽气测真密度相比有什么不同,为什么?答:先加水后抽气测定真密度的结果会略小于该法。
大气污染控制技术实训指导
《大气污染控制技术》实训指导实训项目:项目一:燃烧烟气污染物排放量及地面污染物浓度的估算项目二:旋风除尘器的设计项目三:吸收法净化硫酸厂尾气工艺流程的设计项目四:大气污染控制综合系统设计项目一燃烧烟气污染物排放量及地面污染物浓度的估算一、实习目的通过本项技能训练,使学生熟悉常规燃料燃烧烟气量、污染物排放量的估算方法及大气扩散的基本原理,会利用完全多种方法估算燃烧烟气量和污染物的量;会利用大气扩散模式的各种数学表达式估算不稳定和稳定气象条件下点源、线源等的污染物浓度。
二、实习地点:环保实验室 教室三、实习用具纸笔 计算器 课题资料四、实习内容1.利用完全多种方法估算燃烧烟气量和污染物的量;2.会利用大气扩散模式的各种数学表达式估算不稳定和稳定气象条件下点源、线源等的污染物浓度。
五、实习步骤:1)提供课题资料如下:(1)在东经104°,北纬31°的某平原郊区,建有一个工厂.工厂产生的SO2废气是通过一座高110米,出口内径为2米的烟囱排放的,废气量为4×105m3/h(烟囱出口状态),烟气出口温度150℃,SO2排放量为400kg/h.在1998年7月13日北京时间为13时,当地的气象状况是气温35℃,云量2/2,地面风速3m/s,试计算此时距离烟囱3000米的轴向浓度和由该厂造成的SO2最大地面浓度及产生距离.(2)某石油精练厂自平均有效源高度150m处排放80g/s的二氧化硫,在B类稳定度下,烟囱出口风速4m/s,由于上层大气存在一峰面逆温,使混合层高度1000m,试画出此情况下的地面轴线浓度曲线.各下风距离浓度计算值下风距离x(km)浓度C(mg/m3)0.3 1.8×1030.50.9761.5 1.2×10-1……3.2(X=X D) 3.6×10-26.4(X=2X D)10.030.0100.09.4×10-4 2)学生分组完成任务讨论选用的计算方法。
大气污染控制工程课程设计指导书20XX
大气污染控制工程课程设计指导书20XX大气污染控制工程课程设计指导书褚淑祎浙江农林大学二〇一三年十一月一、课程设计的目的大气污染控制工程课程设计是大气污染控制工程课程的重要实践性环节,是环境工程专业学生在校期间第一次较全面的大气污染控制设计能力训练,在实现学生总体培养目标中占有重要地位。
通过课程设计进一步消化和巩固本课程所学内容,并使所学的知识系统化,培养运用所学理论知识进行净化系统设计的初步能力。
通过设计,了解工程设计的内容、方法及步骤,培养学生确定大气污染控制系统的设计方案、进行设计计算、绘制工程图、使用技术资料、编写设计说明书的能力。
二、设计任务书1. 课程设计的题目某热电厂锅炉烟气除尘系统设计 2. 设计原始资料锅炉型号:SZL4-13型,共3台设计耗煤量:kg/h 排烟温度:172℃烟气密度: kg/m3 空气过剩系数:α=排烟中飞灰占煤中不可燃的比例:15% 烟气在锅炉出口前阻力:600Pa 当地大气压力:烟气其他性质按空气计算烟气中烟尘颗粒粒径分布:平均粒径/um 粒径分布/% 3 3 20 15 15 20 25 16 35 10 45 6 55 3 ﹥60 7 煤的工业分析值:CY=68% HY=4% SY=1% OY=5% NY=1% WY=6% AY=15% VY=13% 按锅炉大气污染物排放标准中二类区执行烟尘浓度排放标准:200mg/m3净化系统布置场地如图1所示的锅炉房北侧20m以内。
12180120XX404048666007006003660300066606660404033303 330333033303330333033303450图1锅炉房平面布置图三、设计内容与要求1.燃煤锅炉排放量及烟尘的计算。
2.净化系统设计方案的分析确定。
3.除尘器的比较和选择:确定除尘器类型、型号及规格,并确定其主要运行参数。
4.管网布置及计算:确定各装置的位置及管道布置。
并计算各管段的直径、长度、烟尘高度和出口内径以及系统总阻力。
《大气污染控制工程(上)》课程实验指导书
七、思考题 (1)湍球塔的优缺点有哪些? (2)湍球塔设计时应注意哪些问题 ? 备注: 湍球塔的主要设计参数 (1)填料球:球径、球的比重、球的材料 ①球径 国外资料中推荐球的直径是 25~76mm, 多采用乒乓球大小的球, 其球径为 38mm。 其依据一般以下式为准: D ≥10 d 式中:D——塔径,mm; d——球径,mm。 ②球的比重 小球比重一般选用 0.15~0.65 之间。操作压力大,应选取比重较大的球,必要时可 以在床层中采用大小不同的球来增加压降,或采用不同比重的球。 ③球的材料 小球的材料取决于介质的性质和操作条件。要求耐磨、耐蚀、耐温、耐压,目前多 采用聚乙烯和聚丙烯,也可以借鉴国外经验,使用不锈钢、铝或玻璃钢及其它新型材料 做成的薄壳球。 (2)静止床层高度 (最低静高 )、空隙率及球数 1)静止床层的高度 经验表明静止床层高度 H 静 与板间距 H 板 保持如下关系:
Ps 9.8 p (1 ) H s , Pf 40n 10G 2.5
式中: p —填料球的密度,kg/m3;
—填料球空隙率,%;
6
Hs—单段静止床层高度,m;
G —最小流化速度,m/s;
n—湍球塔的段数。 湍球塔的阻力 P 由下式计算: P 9.8 p (1 ) H s PL 40n 10G 2.5 。 湍球塔的辅助结构 (1)支撑板及挡网 1)花板的开孔率及孔径 花板起着支撑小球的作用;由于气速较大,花板还具有拦液作用,其开孔率一般为 45%~60%,其孔径不应大于球径的 2/3。板孔可采用三角形排列。 2)挡网 为了防止小球被气体带走,可以采用挡网,其开孔率应比筛板开孔率大。 (2)除雾器 (3)气体分布室 气体分布室的高度主要取决于气体进口与花板之间为保证气体均匀分布所需的必 要距离,一般情况下气体进口与花板之间的距离不低于 0.2m。
大气污染控制实验及课程设计指导书(1)报告
实验一、粉尘安息角测量(注:自备直尺)一、实验目的:粉尘安息角是设计料仓的锥角和含尘管道倾角的主要依据,通过本实验加深对粉尘安息角概念的理解。
二、实验原理:粉尘通过小孔连续下落到平面上时,堆积成的锥体母线与水平面的夹角,称为安息角。
三、实验步骤:1、用研钵将粉笔研成细粉备用2、将漏斗安装在铁架台上(如图1),放好白纸3、从安置好的漏斗上部,将备好的粉笔粉徐徐放下,同时进行观察。
就会发现白纸上的料堆角度不断发生变化,即沙堆的半径和其高度的变化是不成比例的。
(在从漏斗上部不断补充粉灰的时候,应随时将安置漏斗的试管架栋梁逐渐上移,以保持漏斗下部与沙堆顶部距离始终不小于1.0cm左右)。
4、一边逐渐上移试管架横梁,一边继续向漏斗内加入粉粒,直至料堆的半径与其高度比例不再发生变化,即料堆的坡度不再发生改变为止。
测量高度H,圆锥直径D,此时得到的料堆角既为采用一定粒径粉灰风干时的安息角。
5、重复做5次。
图1 实验装置图四、实验数据的记录与处理附:GBT 16913-2008粉尘物理试验方法粉尘安息角测定仪(注入限定底面法)FT-103B粉尘安息角测定仪技术参数:1、漏斗锥度60°±0.5°;2、流出口径5mm,漏斗中心与下部料盘中心应在一条垂线上;3、流出口底沿与盘面距离80mm 2 mm,量角器7.5cm~10 cm;4、料盘直径80 mm,容积100 ml的量筒;5、平直的尘样刮片,棒针;实验二粉尘粒径及分布测定一.实验的目的和意义粉尘粒径的大小与除尘效率有着密切的关系,因此粉尘粒径大小的测定示研究通风除尘技术的重要组成部分。
通过本实验应达到以下目的:1.掌握光学法测定粉尘粒径的基本原理及实验方法。
2.了解偏光显微镜的构造原理以及操作方法。
3.学会与粉尘粒径分布有关的数据处理及分析方法。
二.实验原理在光学显微镜下观察并测定的粉尘的粒径为投影粒径,包括面积等分径(Martin径)、定向径(Feret径)、长径、短径。
大气污染控制工程实验指导书
大气污染控制工程实验指导书(环工09适用)常州大学2012年4月实验一空气中总悬浮颗粒物的测定(重量法)一、原理抽取一定体积的空气,使之通过已恒重的滤膜,则悬浮微粒被阻留在滤膜上,根据采样前后滤膜重量之差及采气体积,即可计算总悬浮颗粒物的质量浓度。
本实验采用中流量采样法测定。
二、仪器1、 TH-150C型智能中流量总悬浮微粒采样器(90L/min-120 L/min)2、流量校准装置3、滤膜(超细玻璃纤维滤膜)4、分析天平三、测定步骤1、每张滤膜使用前均需用光照检查,不得使用有针孔或有任何缺陷的滤膜采样。
2、迅速称重在平衡室内已平衡24h的滤膜,读数准确至0.1mg,记下滤膜的编号和重量,将其平展地放在光滑洁净的贮存袋内,然后贮存于盒内备用。
3、将已恒重的滤膜用小镊子取出,“毛”面向上,平放在采样夹的网托上,拧紧采样夹,按照规定的流量采样。
4、采样5min后和采样结束前5min,各记录一次压力计压差值,读数准至1mm。
若有流量记录器,则直接记录流量。
5、采样后,用镊子小心取下滤膜,使采样“毛”面朝内,以采样有效面积的长边为中线对叠好,放回表面光滑的贮存袋并贮于盒内。
将有关参数及现场温度、大气压力等记录填写在表1中。
表1 总悬浮颗粒物采样记录6、将采样后的滤膜在平衡室内平衡24h,迅速称重,结果及有关参数记录于表2中。
表2 总悬浮颗粒物浓度测定记录四、计算总悬浮颗粒物(TSP,mg/ m3)=W/(Q?t)式中:W-采集在滤膜上的总悬浮颗粒物质量(mg)。
t-采样时间(min)。
Q-标准状态下的采样流量(m3/min)。
实验二旋风除尘器性能实验一、实验目的和意义通过本实验掌握旋风除尘器性能测定的主要内容和方法,并且对影响旋风除尘器性能的主要因素有较全面的了解。
二、实验原理1、气体温度和含湿量的测定由于除尘系统吸入的是室内空气,所以近似用室内空气的温度和湿度代表管道内气流的温度ts和湿度yw。
由挂在室内的干湿球温度计测量的干球温度和湿度温度,可查得空气的相对湿度Φ,由于球温度可查得相应的饱和水蒸气压力pv,则空气所含水蒸气的体积分数:yw=Φpv/pa式中:pv-饱和水蒸气压力,KPa;pa-当地大气压力,KPa。
大气污染实验指导书
《大气污染控制工程》课程实验指导书湖北工业大学化学与环境工程学院编制:黄磊《大气污染控制工程》课程实验指导书实验一 移液管法测定粉体粒径分布一、实验目的掌握液体重力沉降法(移液管法)测定粉体粒径分布的方法。
二、实验原理液体重力沉降法是根据不同大小的粒子在重力作用下,在液体中的沉降速度各不相同这一原理而得到的。
粒子在液体(或气体)介质中作等速自然沉降时所具有的速度,称为沉降速度,其大小可以用斯托克斯公式表示。
2()18ρρμ-=P L pt gd v 且p d =式中 v t — 粒子的沉降速度,cm/s ; μ — 液体的动力粘度,Pa ·s; ρp — 粒子的真密度,g/cm 3;ρL — 液体的真密度,取水的密度:1 g/cm 3; g — 重力加速度,cm/s 2;d p — 粒子的直径,cm 。
这样,粒径便可以根据其沉降速度求得。
但是,直接测得各种粒径的沉降速度是困难的,而沉降速度是沉降高度与沉降时间的比值,以此替换沉降速度,使上式变为:p d =且218()p L pHt gd μρρ=- (1-3)式中 H — 粒子的沉降高度,cm t — 粒子的沉降时间,s粒子在液体中沉降情况可用下图表示。
图1-1 粒子在液体中的沉降示意图粉样放入玻璃瓶内某种液体介质中,经搅拌后,使粉样均匀地扩散在整个液体中,如图中状态甲。
经过t 1后,因重力作用,悬浮体由状态甲变为状态乙。
在状态乙中。
直径为d 1的粒子全部沉阵列虚线以下,由状态甲变到状态乙,所需时间为t 1。
12118()μρρ=-p L Ht gd同理, 直径为d 2的粒子全部沉降到虚线以下(即到达状态丙)所需时间为:22218()μρρ=-p L Ht gd 直径为d 3的粒子全部沉降到虚线以下(即到达状态丁)所需时间为:32318()μρρ=-p L Ht gd根据上述关系,将粉体试样放在一定液体介质中,自然沉降,经过一定时间后,不同直径的粒子将分布在相同高度的液体介质中。
大气污染控制工程实验资料
3.误差分析。
答:本实验在测定时,比较重要的一步是要将测定瓶中的空气抽干净。若真空时间未达到要求,瓶中还存在其气泡,定容用蒸馏水含有气泡都会对实验造成误差。
另外,在把水以及水中的粉尘一起抽出,对实验造成较大误差。
YFJ离心式粉尘分级仪主要由试料容器、旋转圆盘和电动机等部件组成,见图。
工作时,尘粒样品从由振导器的实验容器加入缓慢而均匀地被送到旋转圆盘的中心处,电动机以3000~3500mpm的高速带动圆盘旋转,尘粒样品在离心力的作用下进入分级室。同时电动机带动辐射叶片旋转,使气流从仪器下部吸入,经节流片、均流片、分级室从上部边缘排出。因此,粉尘在受到惯性离心力作用的同时,还受到空气阻力的作用。
20.174
42.036
38.315
2.254
平均真密度2.241g/cm3
五、思考题:
1.此法与先加水后抽气测真密度相比有什么不同,为什么?
答:先加水后抽气测定真密度的结果会略小于该法。本实验中先将粉尘抽真空,使得粉尘内部的空气大部分被排除,打开阀门后,液体(水)很快浸入到粉尘的空隙中。而如果先加水后抽气,则液体不易浸入粉尘内部的空隙中,不利于空气的排除,会使实验结果偏小。
大气污染控制工程实验指导书
环境工程实验室
第一部分 粉尘性质的测定
实验一、粉尘真密度测定
一、目的
粉尘真密度是指密实粉尘单位体积的重量,即设法将吸附在尘粒表面及间隙中的空气排除后测的的粉尘自身密度PD.
测定粉尘真密度一般采用比重瓶法,粉尘试样的质量可用天平称量,而粉尘物体的体积测量则由于粉尘吸附的气体及粒子间的空隙占据大量体积,故用简单的浸润排液的方法不能直接量得粉尘体积,而应对粉尘进行排气处理,使浸液充分充填各空隙及粉尘的空洞。才能测得粉尘物质的真实体积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大气污染控制工程实验指导书苏州科技学院环境科学与工程学院中心实验室二零壹叁年叁月学生实验守则本实验目的在于将书本上所学的理论知识,通过实验验证增强动手能力、掌握操作技能、测量方法和培养分析实验数据、整理实验成果及编写实验报告的能力。
进行实验必须遵守:一、遵守上课时间,不得迟到及无故缺课。
因故不能上课者必须及时请假并进行补课;二、实验课前必须预习实验讲义中有关内容,了解本次实验的目的、要求、仪器设备、实验原理、实验步骤、记录表格等;三、进入实验室内必须严肃认真、不得喧哗。
不得乱动其它与本实验无关的仪器设备;四、开始实验之前,要先对照实物了解仪器设备的使用方法,弄清实验步骤,做好实验前的准备工作,然后再进行实验。
实验小组成员应互相配合,精心操作、细心观察、认真进行数据测量;五、实验过程中应按照教师要求及时对所测量的数据进行认真整理,以便检验实验的正确性;六、爱护仪器设备和其它公共财物,如有损坏,应查清责任,立即向指导教师报告,视损失情况酌情赔偿;七、实验完毕应报告指导教师,经许可后将仪器设备恢复原状后,方可离开实验室;八、实验报告应力求书写工整,图表清晰,成果正确。
并写上同实验小组成员的名称,以便教师检验。
如有不符合要求者,应重做;目录实验一粉尘真密度测定实验实验二布袋式除尘实验实验三活性碳气体吸附实验实验四筛板塔气体吸收实验实验一粉尘真密度测定实验一、实验目的通过本实验掌握测定真密度方法之一———比重瓶法二、实验原理真密度是指将吸附在尘粒表面的内部的空气排除以后测得的粉尘自身的密度。
本实验采用抽真空方式,使在比重瓶液面下粉尘所含气体得以赶出,从而达到测定目的。
三、仪器50mL比重瓶二只电子天平一台干燥器一只抽真空装置一套滤纸若干恒温水浴一套四、测定步骤1、将比重瓶洗净、烘干,用天平称至恒重G1;2、将粉样放在100℃±10℃的烘箱中,烘干1小时,然后置于干燥器中冷却到室温,取10g左右烘干的粉样加到比重瓶中,用滤纸擦去瓶外粉尘,用天平称重得粉尘与比重瓶重G2,而实际加入的粉尘样品重量为G3,G3=G2-G1;3、向装有粉尘样品的比重瓶内慢慢注入蒸馏水,至比重瓶一半高度,然后按图所示接入抽气系统;4、抽气系统开始工作,先把三通阀门旋到放空一侧,启动真空泵,然后把三通阀门慢慢地旋到接通比重瓶的一侧,开始抽气,轻轻地摇动比重瓶,赶走粉尘间夹带的气体,但不要摇得过急,以防尘粒从比重瓶内飞出;5、抽到比重瓶内的气泡渐渐减少,直至基本消失后,停止摇动,慢慢地旋动三通阀门,使比重瓶与大气接通,让空气慢慢的送入比重瓶内,关闭真空泵电门,然后取下比重瓶;6、再向比重瓶内加入蒸馏水,直到加满,盖上比重瓶塞,放入恒温水浴内约30分钟,恒温条件随室温而变,一般调节恒温水浴温度高出室温5℃左右;7、取出比重瓶,用滤纸擦干瓶外水滴,放在天平中称重得G 4;8、将比重瓶中粉尘倒出,然后洗净比重瓶,将蒸馏水加入比重瓶,直到加满,盖上瓶塞,放入恒温水浴内约20分钟,然后称重得G 5,恒温条件如6条。
五、计算1000)(34530⨯⨯+-=V G G G G V式中:0V ——尘粒真密度(kg/m 3)V ——恒温水浴温度下的蒸馏水密度(g/cm 3),可查表 G 1——比重瓶重(g )G 2——比重瓶加粉尘样品的重量(g ) G 3——比重瓶内粉尘样品的实际重量(g ) G 4——比重瓶加粉尘样品加水的重量(g ) G 5——比重瓶加水的重量(g ) 不同温度下蒸馏水的密度六、注意事项1、在做本实验前,应复习下电子天平的操作方法。
2、由于抽气管道是玻璃材料制成,因此,在操作过程中应用微力摇动比重瓶,既要赶走粉尘间的气体,又要分配保护装置。
七、记录格式实验二布袋式除尘实验一、实验目的通过实验掌握布袋式除尘器的结构形式及运行操作,进一步提高对除尘器除尘机理的认识。
二、原理、用途及特点:此装置为布袋除尘器,它是过滤式除尘器的一种,是使含尘气流通过过滤材料将粉尘分离捕集的装置。
这种装置主要采用纤维织物作滤料,常用在工业尾气的除尘方面。
它的除尘效率一般可达99%以上。
虽然它是最古老的除尘方法之一,但由于它效率高、性能稳定可靠、操作简单、因而获得越来越广泛的应用。
其主要原理是:含尘气流从进气管进入,从下部进入圆筒形滤袋,在通过滤料的孔隙时,粉尘被捕集与滤料上,透过滤料的清洁气体由排气管排出。
沉积在滤料上的粉尘,可在振动的作用下从滤料表面脱落,落入灰斗中。
因为滤料本身网孔较大,因而新鲜滤料的除尘效率较低,粉尘因截流、惯性碰撞、静电和扩散等作用,逐渐在滤袋表面形成粉尘层,常称为粉层初层。
初层形成后,它成为袋式除尘器的主要过滤层,提高了除尘效率。
滤布只不过起着形成粉层初层和支撑它的骨架作用,但随着粉尘在滤袋上积聚,滤袋两侧的压力差增大,会把有些已附在滤料上的细小粉尘挤压过去,使除尘效率显著下降。
另外,若除尘器阻力过高,还会使除尘系统的处理气量显著下降,影响生产系统的排风效果。
因此,除尘器阻力达到一定数值后,要及时清灰。
三、主要技术参数及指标:气体流动方式为逆流内滤式,动力装置布置为负压式。
处理气量100m3/h,过滤速度为1m/min环境温度:5℃~40℃设备净化效率大于99%设备压损:800~1200Pa四、实验设备系统组成和作用机械振打布袋除尘器实验系统如图所示,从右向左说明如下:1.透明有机玻璃进气管段1付,配有动压测定环,与微压计配合使用可测定进口管道流速和流量;2.自动粉尘(实验所用粉尘为医用级滑石粉)加料装置(采用调速电机),用于配置不同浓度的含灰气体;3.入口管段采样口,用于入口气体粉尘采样;也可利用比托管和微压计在此处测定管道流速;4.布袋除尘器入口、出口测压环,与U型压差计一道用来测定布袋除尘器的压力损失;5.有机玻璃制布袋除尘器(含涤纶针刺毡覆膜滤袋、振动清灰电机及卸灰斗);6.出口管段采样口,用于出口气体粉尘采样;也可利用比托管和微压计在此处测定管道流速;7.风量调节阀,用于调节系统风量;8.高压离心通风机,为系统运行提供动力;9.仪表电控箱,用于系统的运行控制。
五、操作步骤:1、首先检查设备系统外况和全部电气连接线有无异常(如管道设备无破损,U型压力计内部水量适当、卸灰装置是否安装紧固等),一切正常后开始操作;2、打开电控箱总开关,合上触电保护开关;3、在风量调节阀关闭的状态下,启动电控箱面板上的主风机开关;4、调节风量调节开关至所需的实验风量;(即调节连接入口端动压测定环的微压计显示的动压值,动压值可按试验时的温度和湿度和所需的试验入口风速计算而得,也可通过比托管测定入口管段的动压和流速、流量)5、用托盘天平称出发尘量G 1,将G 1加入到自动发尘装置灰斗,然后启动自动发尘装置电机,并可调节转速控制加灰速率;6、当U 型压差计显示的除尘器压力损阻上升到1000Pa 时,先可在主风机正常运行的情况下启动振打电机2min 进行清灰即可,振打电机的启动频率取决于入口气流中的粉尘负荷;(如在处理风量较大的运行工况以上方式清灰后设备压降仍继续上升到1500Pa 以上时,则须关闭风机、停止进气,振打滤袋5min ,使布袋黏附粉尘脱落、下落到灰斗。
然后重新开启风机进气,使袋式除尘器重新开始工作)7、实验完毕后依次关闭发尘装置、主风机,然后启动振打电机进行清灰5min ,待设备内粉尘沉降后,清理卸灰装置。
8、称出布袋除尘器的收尘量G S ;9、按下式计算出除尘器的去除效率η;%100⨯=jsjG G η 式中: j η——除尘效率,%10、关闭控制箱主电源;11、实验结束,检查设备状况,整理好实验用的仪表、设备,计算、整理实验数据,没有问题后离开。
六、注意事项:1、必须熟悉仪器的使用方法;2、注意及时清灰;3、长期不使用时,应将装置内的灰尘清干净,放在干燥、通风的地方。
如果再次使用,要先将装置内的灰尘清干净再使用;4、滤袋使用到一定时间,要进行更换。
七、设备与附件的组成:1、自动发尘加料装置 1套2、有机玻璃喇叭型进灰均流管段 1套、3、振打装置(调速电机及调速器1套)、1套4、有机玻璃制布袋除尘器(800 mm×600 mm):1套5、滤袋材质为:涤纶针刺毡覆膜滤袋、滤袋过滤面积、Φ160×700 mm、滤袋6个、6、粉尘卸灰装置、接灰斗1套、7、监测口 2组、8、连接管段、1套9、进出口风管 1套、10、高压离心风机1套、1.5KW电机 1台、11、风量调节阀 1套、12、排灰管道 1付、12、仪表电控箱 1只、13、漏电保护开关 1套、14、按钮开关 2只、15、电压表 1只16、电源线1批17、不锈钢支架等组成。
1套、八、实验记录和处理分别记录除尘器进口和出口的灰尘量,并结合进灰时间和风量,计算出该除尘器的进灰浓度以及除尘效率。
实验三活性碳气体吸附实验一、实验意义和目的在石油、化工、印刷、喷漆及军工等某些生产过程中,常排放(或逸散)出含有不同浓度的有机废气,都是对人体健康危害极为严重的有机污染物。
活性碳吸附法治理低浓度有机废气是工业上较为常用的方法,应用此法治理高浓度废气时,要考虑活性碳吸附剂的容量及其再生循环使用的经济效果。
二、实验原理吸附是利用多孔性固体吸附剂处理气体混合物,使混合气体中所含的一种或数种组分富集于固体表面上,以达到和气体中其它组分分离的目的。
产生吸附作用的力可以是分子间的引力,也可以是表面分子与气体间的化学键力,前者称为物理吸附,后者称为化学吸附。
在用吸附法净化有机废气时,在多数情况下发生的是物理吸附。
吸附了有机组份的吸附剂,在温度、压力等条件改变时,被吸附组份可以脱离吸附剂表面,利用这一点,使吸附剂得到净化而能重复使用。
本实验以颗粒活性碳为吸附剂,吸附低浓度有机废气。
三、实验流程、仪器和试剂(一)实验流程实验流程如下图所示。
该流程可分为如下几部分:如图所示,从左向右系统情况如下:1、SO气体钢瓶1套(或有机气体发生装置),与小转子流量计一道用于配制入口气2体;2、风机一台,为实验系统提供动力;3、主气流流量计,用于实验主气流的计量;4、气体混合缓冲装置,用于使试验气体混合均匀稳定;5、配气污染物检测采样口,用于实验准备阶段配气的采样分析;6、气体管路三通及阀门,用于气体流量的调节和试验配气准备阶段与吸附试验阶段的气流切换;7、活性炭吸附塔,包括可拆卸有机玻璃塔体,不锈钢支架,气体采样口、压降测口等,根据实验的需要可自行确定装炭层数和高度;8、U型压差计,用于活性炭床压降的测定;9、排气管。
(二)主要技术指标及参数1、实验气量5~12m3/h,2、对有机物的净化效率大于95%。
3、吸附塔尺寸Φ100×1000 mm4、实验台架外型总尺寸 1200×400×1800 mm四、操作步骤1、首先检查设备系统外况和全部电气连接线有无异常(如管道设备无破损,U型压力计内部水量适当,活接均已紧固到位等),一切正常后开始操作;2、实验用吸附塔的活性炭的装填,根据实验要求装填一定高度的活性炭(考虑到每次实验时间的限制,通常装填炭的总高度不超过150mm)3、在完成活性炭吸附塔的装填连接好后,小流量计入口阀关闭的情况下启动风机,在吸附塔入口阀(水平安装)关闭情况下调节旁路阀(垂直安装)至使主气流流量计指示到所需的试验流量。