深圳市市民中心工程结构设计简介
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大鹏展翅―深圳市市民中心工程结构设计简介
吴时适
(深圳市建筑设计研究总院第二设计院,深圳518031)
提要:介绍该工程大屋顶分缝、与下部主体建筑的变形协调、23000KN巨型钢牛腿等重大结构设计难题。
一、工程概况:
1─主桁架 2─结构分缝 3─树状支撑东西各17组
图一深圳市市民中心
该工程是21世纪深圳标志性建筑,建成后将是市政府、人大的办公、政务活动中心,又是市民和游客参观、休闲活动的重要场所。方案阶段中外六家有名气的设计单位参加投标,美国李名仪/廷丘勒建筑事务所象征深圳在新世纪腾飞的大鹏展翅方案获评审专家全票通过。后由深圳市建筑设计研究总院第二设计院完成初步设计和施工图设计。原设计建筑面积21万㎡、总投资25亿元人民币(后有修改)。
结构设计简况:中部方塔、圆塔两栋高层建筑与东西两翼的两组公共建筑将象征大鹏展翅的大屋顶高高托起。该工程钢筋砼、预应力砼、钢骨砼、钢管砼、钢结构、索结构都用上了。参加技术疑难问题讨论的专家数十人,大大小小的专家会开了几十次,沈世钊、董石麟、沈祖炎、刘锡良、兰天、严慧……等国内知名人士都参加了,日本空间结构元老川口卫先生也参加了。
二、大屋顶设计
如图一所示,大屋顶平面投影尺寸是486m长×(154m-─120m)宽,最大悬挑长度近50m,展开面积约6万㎡。方塔四个牛腿与圆塔八个牛腿支承南北走向的四榀主桁架,加上东西两组建筑物各自伸出的17组树状支撑,构成大屋顶的支承边界条件。大屋顶本身采用网架
结构,中部是三层网架,焊接球节点,两翼是双层网架,螺栓球节点。
大屋顶原设计是由我院王启文、黄文两位博士与奥雅纳公司合作完成的。建筑师仅仅给出大屋顶上、下曲线平面的等高线图,曲线没有任何规律,因此,大屋顶计算模型的建立是很关键的工作,王、黄二博士于1999年春节历时一个多月,反复计算、反复修改,建立了计算模型,最后完成施工图设计(我院设计施工图总用钢量为5505T)。业主招标时允许投标单位进行设计优化,所有投标单位的设计都是在我院计算模型的基础上完成的。
大屋顶设计,最重要的课题是风荷载如何取值。做了两次风洞试验:1998年由航天部某所按1/200比例做了一次,2000年由某大学按1/140做了一次。第一次测了大约300个测点,第二次测了大约1200个测点,还做了风振计算。两次试验结果究竟谁对谁错有过很多争论,但笔者认为从总体上看却没有原则上的差别。这么大的家伙,风振系数β如何考虑?各有各的说法,但依据都不足。某大学按照国外惯用的风谱进行风振系数β的计算,实质是将平均风速考虑动力影响将其增大,其结果也只能是设计的一种手段。国内外对风振的研究没有地震研究那么重视,可用成果不多,很多专家都主动回避这一敏感课题。中标单位施工图设计参考荷载规范大致相同的体型,取1.3的体型系数进行计算比较后出图。
三、大屋顶与支承建筑物的变形协调问题
东西总长差不多一里地的大屋顶由高低不同的四栋建筑物支承,在温度、风荷、地震等作用之下如何协调,是审查专家第一个提出的问题。在解答这个问题之前,先交代抗震与抗风的矛盾是如何考虑的。认为抗震重要的一派人要求分三条缝,将大屋顶分为四块,每栋建筑物支顶一块,再用建筑手段将其连成整体,这样就只有建筑物与各自支顶的那一部分大屋顶之间的协调而不需要考虑各栋建筑物的横向协调,依抗震有利。有一位主震派的日籍华人花了一个多月时间做了一个预应力钢桁架方案,各自以方塔、圆塔为中心,四周悬挑。主张抗风为主的一派反对这样做,理由是地震不常有,台风年年有,每栋建筑物支顶一部分,四周都悬挑,在风荷作用下,四周不规则的摆动摆幅都很大(计算最大悬挑挠度约300mm),用建筑手段根本无法处理。主风派最后获胜,只分两条缝而且将缝设在东西两翼低层建筑内部(见图一),这样,正面来风产生的巨大吸力,由东西两翼及中部方塔、圆塔四栋建筑物共同抵御,抗风能力显然比各自悬挑方案好得多。这样分缝后,中间一块很大而且横跨四栋建筑物,变形协调问题就是主要矛盾。要解决这个矛盾,只有从支座的设计上找出路。我们设想过橡胶支座、辊轴支座等多种方案,都不理想。后来打听到北方交大徐国彬教授的专利支座─万向球形钢支座(见图二),该支座承载力可大可小,大可大到几千吨,小可小到几十吨,既可承受轴力又可承受拔力;支座可按计算要求往任意方向移动,又可作少量转动;加上平面弹簧以后,位移又可以恢复。市民中心东西两翼树状支撑的支座只有几十吨轴力而方塔西南角的大支座轴力达2300吨,计算位移从15mm到116mm,设计要求支座的弹簧刚度系数3000kN/m。针对各类支座的不同要求,该专利支座都能完满解决。支座能动,各种应力状态下的协调问题自然迎刃而解。
图二万向球形钢支座剖面图图三方塔21.7m以下平面图四、大屋顶最大支承牛腿的设计
如前所述,方塔四角伸出四个牛腿支承大屋顶的两榀主桁架,西南角牛腿受荷最大,轴力达2300吨。2300吨牛腿是个什么概念?简单作一些比较就知道。重工业厂房,100吨吊车就不小,牛腿受荷不会超过40吨。三峡电站吊车起重量是1000吨,牛腿受力按一般推算也不会超过400吨,由此可见,承受2300吨重量的牛腿在工程界是罕见的。与该牛腿相连的柱子是1100×1100×40的方钢管砼柱,原设计考虑从柱子中间再伸出一块厚钢板,这样牛腿的竖向就有三块相互平行的厚钢板,牛腿的高度可小一些。后来大屋顶中标施工单位采用原地提升方案,大牛腿与钢管柱不能整体制作,必须将牛腿切开两部分,与柱子相连的那部分突出柱子以外的尺寸不能大于400mm,而且中间一块钢板无法施焊,只能沿柱宽做两块竖向钢板。经计算,牛腿主要受荷部位的尺寸是1100(宽,同柱)×1600(高)×1600(伸出长度),顶面板因为要支承大型活动支座,要做到1600×1700,主要部位板厚都是40mm。牛腿切开两部分,在高空再将它焊接起来,这么厚的钢板,焊接应力、焊接变形必然很大,质量到底能不能保证?开了很多会,有人主张用高强螺栓连接,但螺栓摆不下被否定;有人主张在主桁架上开个缺口,但主桁架悬挑长度太大算不下来被否定;有人主张焊接再加螺栓连接,搞双保险,但焊接连接刚度远远大于螺栓连接刚度,钻孔会削弱钢板反而得不偿失,又被否定,最终还是回到如何提高现场焊接的施工质量上来。
牛腿产生巨大的弯矩,光靠柱子是平衡不了的。为了将这一弯矩按最短的传力路线传到建筑物上,在牛腿面标高处专门做了一根拉梁与建筑物连接(该处是楼梯间,牛腿标高位置是空的)。
牛腿设计完成后,为了检验设计的可靠性,在汕头大学做了模型试验。模型制作也按施工要求切开两部分再焊起来。试验结果证明,设计是安全的。大屋顶安装完成后,在牛腿下方利用预留的600mm空隙,又做了一个小牛腿与大牛腿相连,作安全储备用。