生物化学与分子生物学—脂类代谢

合集下载

生物化学 第08章 脂代谢(共68张PPT)

生物化学 第08章 脂代谢(共68张PPT)

合成一分子软脂酸的总反应式
4、脂肪酸的延伸反应
NADPH
5、脂肪酸的去饱和反应
4. 饱和脂肪酸的从头合成与β-氧化的比较
区别要点
从头合成
β-氧化
细胞内进行部位
胞液
酰基载体
ACP-SH
二碳单位参与或断裂形式 丙二酸单酰ACP
电子供体或受体
NADPH+H+
-羟酰基中间物的立体构型不同
D型
对HCO3-和柠檬酸的需求 所需酶
甘油
R1COOH R2COOH R3COOH
脂肪酸
场所: 细胞质内(主要是脂肪组织) 关键酶:脂肪酶(限速酶) 调控: 激素 功能: 水解产物可进一步氧化分解
二、甘油的氧化分解与转化
CH 2OH ATP ADP CH 2OH NAD + NADH+H +
CHOH
CHOH
甘油激酶
CH 2OH (肝 、 肾 、 肠 ) CH 2O
α–lipoprotein (high density 脂酰-CoA的跨线粒体内膜的转运
第十章
FAD+2ATP+3H20
(2)脂酰CoA转运入线粒体
脂类的脂消类化代、谢吸收、 CH3(CH2)nCOOH
(hormone-sensitive lipase , HSL) 这对于某些生活在干燥缺水环境的生物十分重要,像骆驼已将β-氧化作为获取水的一种特殊手段。
5~10 50~70 10~15 10~15
20~25 10 40~50 5
45~50 20 20~22 30
生理功能
转运外源性 TG
转运内源性 TG 转运 Ch 转运PL、Ch
第二节 第十章

生物化学之脂类代谢

生物化学之脂类代谢
1、是生物机体内重要的贮能和供能物质:脂肪完全氧 化产能9.3千卡/g;蛋白质完全氧化产能4千卡/g;糖 完全氧化产能大约4千卡/g。 但不是主要贮能和供能物质:脂肪少而糖类多,则 对机体无大碍,但脂肪多而糖类少,则对机体有碍 。这是因为TCA中乙酰CoA和草酰乙酸是起始物质 ,而草酰乙酸则主要由糖生成,故脂肪的生物氧化 需要有糖类生物氧化配合。 2、是良好的脂溶剂 3、供给人和动物营养必需的不饱和脂肪酸:亚油酸、 亚麻酸、花生四烯酸是机体必须的,缺少时会产生 一些疾病。亚油酸:治心血管病。
第七章 脂类代谢
第一节 第二节 第三节 第四节 第五节 第六节 脂类的消化和吸收 甘油三酯的分解代谢 甘油三酯的合成代谢 磷脂的代谢 胆固醇代谢 血浆脂蛋白代谢
脂类
脂肪:甘油三酯 脂类
胆固醇 胆固醇酯 磷脂 糖脂
类脂
是动、植物细胞原生质的主要成分 分子中除C、H、O外,还有P和N
一、脂肪的生理功能
乙酰乙酸硫激酶(肾脏)
(3)乙酰乙酰CoA硫解,生成2分子乙酰CoA
CH3CHOHCH 2COOH
β -羟丁酸
β -羟丁酸脱氢酶
NAD+ NADH+H +
CH2 CH2
COOH COSCoA
HSCoA+ATP 乙酰乙酰硫激酶 AMP+PPi
(肾脏)
CH2COCH2COOH 乙酰乙酸 CH3COCH2COSCoA
步骤1:脱氢
步骤2:加水(水化)
步骤3:再脱氢
步骤4:硫解
由此产生2碳的乙酰CoA,剩下少掉2个碳的脂酰CoA,再 进入β-氧化循环。一个16碳的软脂酸经过完全分解总共可产生 129个ATP。
O
脂肪酸
RCH2CH2C 脂酰CoA 合成酶

《生物化学》——脂类代谢

《生物化学》——脂类代谢

奇数碳原子脂肪酸的分解 ① 羧化 ② 脱羧 脂肪酸的α-氧化 脂肪酸的-ω氧化 不饱和脂肪酸的分解
4. 乙酰CoA的去路


进入TCA循环最终氧化生成二氧化碳和水 以及大量的ATP。 生成酮体参与代谢(动物体内) 脂肪酸β氧化产生的乙酰CoA,在肌 肉细胞中可进入TCA循环进行彻底氧化分 解;但在肝脏及肾脏细胞中还有另外一条 去路,即形成乙酰乙酸、D-β-羟丁酸和 丙酮,这三者统称为酮体。
CO2
来自于空气
H2O
来自于土壤
光合作用 的产物
C6H12O6 O2
光合作用
光合作用 的能源
可见光中 380----720nm波长光
光合作用 的特点
是一个氧化还原反应
1.水被氧化为分子态氧
2.二氧化碳被还原到糖水平
3.同时发生日光能的吸收,转化和贮藏
光合作用
光合作用
光合作用
光合作用
光合作用
(1)酮体的生成 A. 2分子的乙酰CoA在肝脏线粒体乙酰乙酰CoA 硫解酶的作用下,缩合成乙酰乙酰CoA,并释放1 分子的CoASH。 B. 乙酰乙酰CoA与另一分子乙酰CoA缩合成羟甲 基戊二酸单酰CoA(HMG CoA),并释放1分子 CoASH。 C. HMG CoA在HMG CoA裂解酶催化下裂解生成乙 酰乙酸和乙酰CoA。乙酰乙酸在线粒体内膜β-羟 丁酸脱氢酶作用下,被还原成β-羟丁酸。部分乙 酰乙酸可在酶催化下脱羧而成为丙酮。
(3)延长阶段(在线粒体和微粒体中进行) 生物体内有两种不同的酶系可以催化碳链 的延长,一是线粒体中的延长酶系,另一 个是粗糙内质网中的延长酶系。 线粒体脂肪酸延长酶系 以乙酰CoA为C2供体,不需要酰基载体, 由软脂酰CoA与乙酰CoA直接缩合。 内质网脂肪酸延长酶系 用丙二酸单酰CoA作为C2的供体,NADPH作 为H的供体,中间过程和脂肪酸合成酶系的 催化过程相同。

生物化学脂类代谢

生物化学脂类代谢

O
R C H 2C H 2C ~ S C o A
= =
脂酰CoA 脱氢酶
β α
脂酰CoA
脱氢
FAD FADH2
O
R C H =C H C ~ S C o A
加水
⊿2--烯脂酰CoA 水化酶
β α
O
R C H O H C H 2C ~ S C o A
= = =
反⊿2-烯酰CoA
H 2O
= =
L(+)-β羟脂酰CoA
细菌和植物----7个多肽
酵母菌----2个多肽
脊椎动物----1个多肽
(1)启动
ACP转移酶
乙酰和酶复合物
(2)装载
丙二酸单酰CoA-ACP转移酶
(3)缩合
β-酮脂酰-ACP合 酶
乙酰乙酰ACP
(4)还原
β-酮脂酰-ACP 还原酶
D-β- 羟丁酰ACP
(5)脱水
α,β- 反式-丁烯酰ACP
1.部位:
组 织:肝(主要) 、脂肪等组织 亚细胞: 胞液:主要合成16碳的软脂酸(棕榈酸) 肝线粒体、内质网:碳链延长
2 饱和脂肪酸的合成



脂肪酸合成的主要途径,胞质中进行,原料为乙 酰CoA,产物是长链脂肪酸(多为软脂酸)。 反应还需:酰基载体蛋白ACP, ATP, NADPH和 Mn2+等。 合成中只有一个C2物以乙酰CoA参与整个合成过 程,其余延伸的C2物均以丙二酸单酰CoA形式参 与反应。
(三)、不饱和脂肪酸的分解
不饱和脂肪酸同样需要活化和转运才能进入线 粒体氧化,在遇到不饱和双键前进行常规的b氧化, 若遇顺式双键,必须异构为反式异构物、或底 物为D(-)b-构型需经差向异构生成L-型异构体, 才能继续b-氧化,需要异构酶和还原酶。

生物化学脂类代谢知识点总结

生物化学脂类代谢知识点总结

脂类代谢1、脂类的消化胰腺分泌的脂类消化酶:胰脂酶、辅脂酶、磷脂酶A2(催化磷脂2位酯键水解)、胆固醇酯酶(水解胆固醇酯,生成胆固醇和脂肪酸)2、脂类的吸收及吸收后的运输脂类及其消化产物主要在十二指肠下段及空肠上段吸收乳化、酶解、吸收、甘油三酯的再合成、CM的组装CM经小肠黏膜细胞分泌进入淋巴道→血循环→全身各组织器官甘油三脂的代谢一、脂肪的分解代谢:(1)脂肪动员:脂肪转变为脂肪酸和甘油;脂肪酶脂解激素——启动脂肪动员、促进脂肪水解:胰高血糖素、肾上腺素、去甲肾上腺素抗脂解激素——抑制脂肪动员:胰岛素、前列腺素E2(2)甘油的分解代谢1.甘油在甘油激酶的催化下转变成3'-磷酸甘油,甘油激酶(在肝中活性最高,甘油主要被肝摄取利用)2.3'-磷酸甘油脱氢生成磷酸二羟丙酮,磷酸甘油脱氢酶3.磷酸二羟丙酮进入糖代谢途径进行分解或异生(三)脂肪酸的β氧化1. 脂肪酸的活化:脂肪酸在脂酰CoA合成酶催化下生成脂酰CoA 部位:线粒体外1分子脂肪酸活化消耗2个高能磷酸键2. 脂酰CoA进入线粒体,肉碱脂酰转移酶Ⅰ3.脂肪酸经过多次β-氧化转变为乙酰CoA。

在线粒体内进行(1)脱氢:由EAD接受生成FADH2(2)加水(3)再脱氢,由NAD接受生成NADH+H(4)硫解经过上述反应,生成1分子乙酰CoA和少2碳原子的脂酰CoA。

(三)酮体的生成:部位:在肝细胞线粒体内生成原料:脂肪酸β氧化生成的乙酰CoA1.2分子CoA在乙酰乙酰CoA硫解酶作用下缩合生成乙酰乙酰CoA2.乙酰乙酰CoA在HMGCoA合成酶催化下和1分子乙酰CoA缩合生成羟甲基戊二酸单酰CoA(HMGCoA)3.HMGCoA在HMGCoA裂解酶(肝脏特有的酶)作用下裂解生成乙酰乙酸和乙酰CoA4.乙酰乙酸在β-羟基丁酸脱氢酶的作用下被还原成β-羟基丁酸,还原速度由NADH+H/NAD决定。

少量可以自然脱羧,生成丙酮。

(四)酮体的利用:酮体在肝外组织氧化分解1.乙酰乙酸的活化:(两条途径)(1)在心、肾、脑及骨骼肌线粒体,由琥珀酰CoA转硫酶催化乙酰乙酸活化,生成乙酰乙酰CoA(2)在肾、是、心和脑线粒体,由乙酰乙酸硫激酶催化,直接活化生成乙酰乙酰CoA2.乙酰乙酰CoA硫解生成乙酰CoA,进入三羧酸循环。

生物化学第11章、脂类代谢

生物化学第11章、脂类代谢

5
E SH S O C CH2 OH CH CH3
SH SH
2
E S
CoASH
COCH3
ACP
ACP
ACP
S
COCH2COOH
加氢 NADP+
缩合
E SH S O C CH2 O C CH3
3
β-酮脂酰-ACP合酶
4
NADPH+H+
ACP
CO2
(四)由脂肪酸合酶催化的各步反应

1、启动
CH3CO~SCoA CoASH

1、有利的一面 (1) 酮体具有水溶性,生成后进入血液,输送到 肝外组织利用; (2)作为燃料,经柠檬酸循环提供能量。 因此,酮体是输出脂肪能源的一种形式。 如:禁食、应急及糖尿病时,心、肾、骨骼肌摄 取酮体代替葡萄糖供能,节省葡萄糖以供脑和红 细胞所需,并可防止肌肉蛋白的过多消耗。 长期饥饿时,酮体供给脑组织50~70%的能量。
4、还原
NADPH+H NADP β -酮酰 —SH —SH OH E ACP还原酶 E ACP—S—COCH2CHCH3 ACP—S—COCH2COCH3
+ +


NADPH作为还原剂参与此反应。 脂酸生物合成中所需的NADPH大部分是戊糖磷 酸途径供给的,有些来自苹果酸酶反应。
5、脱水
—SH E
(二)丙二酸单酰CoA的形成



1、脂肪酸合成起始于乙酰-CoA转化成丙二酸单酰 - CoA,该反应是在 乙酰-CoA 羧化酶作用下实现 的。 2、乙酰-CoA羧化酶催化的反应是脂肪酸合成中 的限速步骤。 3、乙酰CoA羧化酶的组成 包括生物素羧基载体蛋白(BCCP)、生物素羧化 酶、羧基转移酶3个亚基,辅基为生物素。

生物化学与分子生物_ 脂质代谢_ 血浆脂蛋白代谢_

生物化学与分子生物_ 脂质代谢_ 血浆脂蛋白代谢_

血液
FFA
外周组织
新生CM
成熟CM
CM残粒
LPL
肝细胞摄取
(LDL受体相关蛋白 )
(二)VLDL 的代谢
1.来源:主要由肝细胞合成,分泌入血, 少量来自小肠。
2.功能:是血中内源性TG的运输形式。
3.代谢过程
LPL VLDL
VLDL 残粒
LPL、HL
LDL
外周组织
LPL——脂蛋白脂肪酶 HL—— 肝脂肪酶
mmol/L
0.11~1.69(1.13) 2.59~6.47(5.17) 1.81~5.17(3.75) 1.03~1.81(1.42) 48.44~80.73(64.58) 16.1~64.6(32.3) 16.1~42.0(22.6) 4.8~13.0(6.4)
空腹时主 要来源
肝 肝
肝 肝 肝 肝 脂肪组织
3. 代谢过程
新生HDL LCAT
HDL3
细胞膜 CM 、VLDL 卵磷脂、 胆固醇
CM 、VLDL apoC、 apoE
VLDL、 LDL CE
CETP HDL2
CM、VLDL 磷脂 apoAⅠ、 AⅡ
LCAT:卵磷脂胆固醇酯酰转移酶 CETP:胆固醇酯转运蛋白
LCAT的作用(由apo AⅠ激活):
第7章
脂类代谢
Metabolism of Lipid
第五节
血浆脂蛋白代谢
Metabolism of Lipoprotein
本 节 主 要 内 容:
• 血脂 • 血浆脂蛋白的分类、组成特点及结构 • 载脂蛋白的定义、种类、功能 • 血浆脂蛋白的代谢
• 血浆脂蛋白代谢异常
一、血浆中脂类统称血脂

生物化学 脂类代谢

生物化学 脂类代谢

脂类代谢Metabolism of lipids概论脂类(lipid)是脂肪(fat)及类脂(lipoid)的总称,是一类不溶于水而易溶于有机溶剂,并能为机体利用的有机化合物。

主要生理功能是储存能量及氧化供能。

基本特点不溶于水能溶解于一种或一种以上的有机溶剂分子中常含有脂肪酸或能与脂肪酸起酯化反应能被生物体所利用分类:脂肪(甘油三酯),类脂(固醇,固醇脂,磷脂,糖脂)脂肪酸(fatty acids):包括饱和脂酸(saturated fatty acid)和不饱和脂酸(unsaturated fatty acid),其中多不饱和脂酸多为营养必须脂酸(亚油酸,亚麻酸,花生四烯酸)。

基本构成:甘油磷脂(两个羟基接脂肪酸,一个接磷酸,磷酸一个羟基被X取代,如胆碱,水,乙醇胺,丝氨酸etc)胆固醇脂(胆固醇羟基接脂肪酸)鞘脂(鞘氨醇接一个脂肪酸)鞘磷脂(鞘脂下在一个羟基接取代磷酸基)鞘糖脂(鞘脂下一个羟基接糖)脂蛋白:脂质基本转运形式,分为细胞内脂蛋白和血浆脂蛋白第一节脂质的消化吸收Digestion and absorption of lipids人体内脂类来源自身合成饱和脂肪酸或单不饱和脂肪酸食物供给各种,特别是不饱和脂酸维持机体脂质平衡小肠:介于机体内外脂质间的选择性屏障,通过过多体内脂质堆积,通过过少会有营养障碍。

消化吸收能力有可塑性,脂质介导小肠脂质消化吸收能力增加脂消化酶及胆汁酸盐脂类在小肠上段,被乳化剂(胆汁酸盐,甘油一脂,甘油二脂)乳化成微团(micelles)再经酶催化消化。

甘油三酯被胰脂酶和辅酯酶消化成2-甘油一脂,磷脂被磷脂酶A2分解为溶血磷脂+1FFA,胆固醇脂被胆固醇酯酶分解成胆固醇脂肪与类脂的消化产物形成混合微团(mixed micelles),被肠粘膜细胞吸收。

胆汁酸盐:强乳化作用脂质消化酶:◆胰脂酶(pancreatic lipase):特异水解甘油三酯1位及3位酯键◆辅脂酶(colipase):胰脂酶发挥脂肪消化作用的蛋白质辅因子◆磷脂酶A2(phospholipase A2)水解磷脂◆胆固醇酯酶(cholesteryl esterase)水解胆固醇辅酯酶进入肠腔后酶原激活,它有与脂肪及酯酶结合的结构域,与胰脂酶结合是通过氢键进行的;它与脂肪通过疏水键进行结合。

生物化学第七章脂类代谢

生物化学第七章脂类代谢

软脂酸合成的总反应式:
乙酰CoA + 7丙二酸单酰CoA + 14NADPH+H+
脂肪酸合成酶系 软脂酸(16C)+14 NADP++8HSCoA+7CO2+6H2O
软 脂 酸 的 合 成 总 图
目录
(四) 脂酸合成的调节
(1)代谢物的调节作用
乙酰CoA羧化酶的别构调节 抑制剂:软脂酰CoA及其他长链脂酰CoA
激活剂:柠檬酸、异柠檬酸
糖代谢加强,NADPH及乙酰CoA供应增 多,有利于脂酸的合成。 大量进食糖类能增强脂肪合成酶的活性从 而使脂肪合成增加。
(2)激素调节
胰岛素
胰高血糖素 肾上腺素 生长素 + 脂酸合成
﹣ 脂酸合成 ﹣ TG合成
乙酰CoA羧化酶的共价调节 胰高血糖素:激活PKA,使之磷酸化而失活 胰岛素:通过磷蛋白磷酸酶,使之去磷酸化 而复活
作用:转移羧基
(2)软脂酸合成 各种生物合成软脂酸的过程基本相似。 软脂酸的合成是一个重复加成过程,每 次延长2个碳原子。由脂酸合成酶系催化。
真核生物7种酶蛋白结构域(脂肪酰基转移酶、
丙二酰酰CoA酰基转移酶、β酮脂肪酰合成酶、β酮
脂肪酰还原酶、β羟脂酰基脱水酶、脂烯酰还原酶、
硫酯酶)和脂酰基载体蛋白(ACP)聚合在一条多肽
第 七 章
脂类代谢
Metabolism of Lipid
第一节 脂 类 的 概 述
一、脂类的概念:
脂类(lipids)是脂肪(fat)和类脂(lipoid)的总称。
脂肪(甘油三酯 triglyceride)
脂类 类脂 胆固醇(酯) cholesterol 磷脂 phospholipid
糖脂
脂类物质的基本构成:

脂类代谢

脂类代谢

(二)VLDL 的代谢
1.来源:主要由肝细胞合成,分泌入血, 少量来自小肠。
2.功能:是血中内源性TG及胆固醇的运 输形式。
3.代谢过程
新生VLDL
E C A E P C B-100 TG C
VLDL
o ap
C
apo E 、 C
E
B-100 TG C C
外周组织
脂酸 胆固醇 肝
HDL
HL B-100 TG C B-100

常见的脂肪酸
饱和脂肪酸 脂肪酸 软脂酸(16C) 硬脂酸(18C) 非必需脂肪酸
油酸(18:1) 不饱和脂肪酸 亚油酸(18:2) 必需脂肪酸 亚麻酸(18:3) 花生四烯酸(20:4)

必需脂肪酸:机体必需但自身又不能合成或合成 量不足,必须从植物油中摄取的脂肪酸叫必需脂 肪酸。包括亚油酸、亚麻酸和花生四烯酸。
=
CoASH+ATP
琥珀酰CoA转硫酶 (心、肾、脑及骨 骼肌的线粒体)
O O CH3CCH2COH
乙酰乙酸
PPi+AMP
O O CH3CCH2CSCoA (乙酰乙酰CoA)
=
琥珀酰CoA
=
=
琥珀酸
乙酰乙酰CoA 硫激酶 (肾、心和脑 的线粒体)
CoASH
O 2 CH3CSCoA
乙酰乙酰CoA硫解 酶(心、肾、脑及 骨骼肌线粒体)


VLDL↑
VLDL↑、CM↑
↑↑
↑↑↑ ↑
第三节 甘油三酯代谢
一、结构与功能
O O
1
CH2 O C R1 O
R2 C O C H
3
2
CH2 O C R3

生物化学脂代谢

生物化学脂代谢

O CH2O-C-R1
CHOH
酯酰CoA 转移酶
CH2O- Pi R1COCoA 3 - 磷酸甘油
CoA CH2O- Pi R2COCoA 1-酯酰-3 - 磷酸甘油
CoA
=
O CH2O-C-R1
O CHO-C-R2
CH2O- Pi
磷脂酸
=
磷脂酸 磷酸酶
Pi
O
O
CH2O-C-R1 O
CHO-C-R2
胆固醇+FFA
磷脂
磷脂酶A2
溶血磷脂+FFA
17
二、脂类的消化吸收 1. 主要部位: 在十二指肠及空肠
中链及短链脂酸构成的TG 乳化
吸收 肠黏膜 细胞
甘油 + FFA
脂肪酶
门静脉
血循环
18
长链脂酸及2-甘油一酯
肠黏膜细胞 (酯化成TG)
胆固醇及游离脂酸
肠黏膜细胞 (酯化成CE)
溶血磷脂及游离脂酸
32
** 脂酸分解代谢 1. 除脑组织外,大多数组织均可进 行脂酸β氧
化,其中肝、肌肉最活跃
脂酸 β氧化 乙酰COA
CO2+H2O+能量
2. 脂酸在线粒体中经β-氧化后进一步合成酮体
β氧化
脂酸
乙酰COA 酮体
33
2. 脂酸的β-氧化 ** 过程
⑴ 脂肪酸的活化 ⑵ 脂肪酰CoA从胞浆进入线粒体 ⑶ 饱和脂肪酰CoA的β氧化 ⑷ β氧化产生的乙酰CoA进入三羧酸循环
酯酰CoA 转移酶
CH2OH R2COCoA CoA
O CH2O-C-R2
O CHO-C-R1
酯酰CoA 转移酶
CH2OH
R3COCoA CoA

生物化学第九章脂代谢

生物化学第九章脂代谢
(以16C的软脂酸为例)彻底氧化成CO2和H2O。 16C经过7次ß -氧化: 生成7个FADH2和7个NADH +H+ 7个FADH2经呼吸链生成 2 × 7 = 14 ATP 7个NADH +H+ 经呼吸链生成 3 × 7 = 21 ATP 生成8个乙酰COA: 8个 乙酰COA经TCA生成 12 × 8 = 96 ATP 总 计: 14+21+96-2=129ATP 另有一种算法: 1个FADH2经呼吸链生成1.5ATP 1个NADH+H+经呼吸链生成2.5ATP
SH
H2O
HOOCCH2CO-S CH3CO-S CH3COCH2CO-S
SH

CO2

NADP+ NADPH
2.线粒体中的合成

碳链的延长发生在线粒体和内质网中。与脂肪酸β-氧化的逆 向过程相似,使得一些脂肪酸碳链(C16)加长。 延长是独立于脂肪酸合成之外的过程,是乙酰单元的加长和 还原,恰恰是脂肪酸降解过程的逆反应。光面内质网中的延 长更为活跃。
酮体的生成
HMGCoA裂 解酶 CH3COCH2COOH
乙酰乙酸 脱氢酶
HMGCoA 合成酶
NADH+H+ NAD+
脱羧酶 CO2
OH | HOOCCH2-C-CH2COSCoA | CH3 羟甲基戊二酸单酰CoA (HMGCoA)
CH3CHOHCH2COOH
--羟丁酸
CH3COCOOH
丙酮
酮血症?
5.不饱和脂肪酸的氧化
与脂肪酸的β-氧化相同,但需增加异构酶 和 还原酶:
(三)脂肪酸氧化的其它途径
1.奇数碳原子脂肪酸的氧化 如17个碳直链脂肪酸: 先经β-氧化至3碳的丙酰-CoA ,产生7个乙酰CoA和一个丙酰-CoA 。 丙酰-CoA经3步反应转化为琥珀酰-CoA然后进入 三羧酸循环进一步进行代谢。

生物化学8-脂代谢

生物化学8-脂代谢

甘油
ATP
22个ATP分子
ATP NADH
丙酮酸 乙酰CoA
3 NADH + FADH2 + GTP 柠檬酸循环和线粒体呼吸链 CO2 + H2O
脂肪酸的分解代谢
含 碳 的 脂 肪 酸 ( 软 脂 酸 ) 16
主要方式: β- 氧化途径
脂肪酸在氧化分解时,碳链的断裂发 生在脂肪酸羧基端的β-位(每次切除2个 碳原子)。反应在线粒体基质中进行。
亚油酸和亚麻酸是人体必需脂肪酸
合成
(花生、芝麻、棉籽油中富含)
多不饱和脂肪酸 如:花生四烯酸 EPA(二十碳五烯酸,鱼油主要成分) DHA(二十二碳六烯酸,脑黄金)
不饱和脂肪酸的氧化
1. 氧化反应发生在线粒体基质中;
2. 活化和跨越线粒体内膜都与饱和脂肪酸相同;
3. 进行β-氧化,到达双键位置; 4. 分子内双键需要2个酶:异构酶和还原酶。 5. 进行β-氧化。
脂肪酸β-氧化过程与柠檬酸循环中的部分反应过程 类似, 试写出这两个途径中的类似的反应过程。
脂肪酸β-氧化 柠檬酸循环
脂酰CoA脱氢生成α-β 烯脂酰CoA
琥珀酸生成延胡索酸
α-β 烯脂酰CoA水化生成L-β 羟脂酰CoA
L-β 羟脂酰CoA再脱氢生成β-酮脂酰CoA
延胡索酸生成苹果酸
苹果酸生成草酰乙酸
酮体生成的意义
1. 酮体具水溶性,能透过血脑屏障及毛细血管壁, 是输出脂肪能源的一种形式。 2. 长期饥饿时,酮体供给脑组织50—70%的能量。 3. 禁食、应激及糖尿病时,心、肾、骨骼肌摄取酮 体代替葡萄糖供能,节省葡萄糖以供脑和红细胞 所需,并可防止肌肉蛋白的过多消耗。
脂肪酸氧化、糖异生、酮体代谢的关系

生物化学:脂代谢

生物化学:脂代谢

生物化学:脂代谢在生物化学的广袤领域中,脂代谢是一个至关重要的部分,它与我们的生命活动息息相关。

脂类,这个听起来有些陌生的名词,其实在我们的身体中无处不在。

从我们吃进的食物,到身体内的各种组织和细胞,脂类都扮演着不可或缺的角色。

首先,让我们来了解一下脂类的分类。

脂类大致可以分为脂肪和类脂两大类。

脂肪,也就是我们常说的甘油三酯,是由一分子甘油和三分子脂肪酸组成。

它是体内储存能量的主要形式,就像是一个“能量仓库”,当我们需要能量时,它就会被分解,为身体提供动力。

而类脂则包括磷脂、糖脂、胆固醇等,它们在构成生物膜、调节生理功能等方面发挥着重要作用。

那么,脂类是如何进入我们的身体的呢?这就涉及到脂类的消化和吸收过程。

当我们吃进含有脂类的食物后,在口腔中,唾液中的脂肪酶虽然作用有限,但也为脂类的消化开了一个头。

真正的消化主要在小肠中进行。

胆汁酸盐的作用就像是一把“钥匙”,它能将脂类乳化成微小的颗粒,增加与消化酶的接触面积。

胰腺分泌的胰脂肪酶等酶类则将甘油三酯逐步水解为甘油一酯、脂肪酸等。

这些被消化后的产物在小肠黏膜细胞内重新合成甘油三酯,并与磷脂、胆固醇等结合,形成乳糜微粒,然后通过淋巴系统进入血液循环。

进入血液的脂类并不会一直“游荡”,它们有着各自的“归宿”。

一部分会被运输到肝脏,进行进一步的代谢和处理。

肝脏在脂代谢中起着关键的作用,它就像是一个“加工厂”,可以合成和分泌胆汁酸盐,参与脂类的消化吸收,还能合成脂蛋白,将脂类运输到其他组织和器官。

说到脂蛋白,这可是脂类运输的“专车”。

脂蛋白根据密度的不同,可以分为乳糜微粒、极低密度脂蛋白、低密度脂蛋白和高密度脂蛋白。

乳糜微粒主要运输外源性甘油三酯,极低密度脂蛋白运输内源性甘油三酯,低密度脂蛋白主要运输胆固醇,而高密度脂蛋白则负责将胆固醇从外周组织运输回肝脏,有着“清道夫”的美誉。

接下来,我们看看脂类在体内是如何被分解代谢的。

当身体需要能量时,脂肪组织中的甘油三酯会在激素敏感性脂肪酶的作用下,逐步水解为甘油和脂肪酸。

生物化学第10章 脂类代谢

生物化学第10章 脂类代谢

课外练习题一、名词解释1、脂肪动员:贮存在脂肪细胞中的脂肪,被脂肪酶逐步水解为游离脂肪酸及甘油并释放入血液以供其它组织氧化利用的过程。

2、酮体:脂肪酸在肝内氧化的中间产物——乙酰乙酸、β-羟丁酸和丙酮统称为酮体。

3、脂肪酸的β-氧化:脂肪酸氧化分解时,在脂酰基的β-碳原子上进行脱氢、加水、再脱氢和硫解的连续反应过程。

4、血脂:血浆中各种脂类物质的总称。

5、高脂血症:血脂高于正常值上限。

6、溶血磷脂:甘油磷脂的一位或二位脂酰基水解后形成的磷脂。

二、符号辨识1、ACP:酰基载体蛋白;2、BCCP:生物素羧基载体蛋白三、填空1、甘油三酯的合成包括()途径和()途径共两条途径。

2、脂肪酸β-氧化的限速酶是()。

3、脂肪酸的活化在()中进行,由()酶催化。

4、脂肪酸的β-氧化包括()、()、()和()四步连续反应。

5、酮体在()中生成,在()组织中利用。

6、酮体包括()、()和()三种物质。

7、脂肪酸合成的主要原料是(),需通过()循环由线粒体转运至细胞质。

8、脂肪酸合成的关键酶是()羧化酶;脂肪酸合成酶系催化合成的终产物主要是()。

9、脂肪酸碳链的延长可在()和()中进行。

10、人体内不能合成的不饱和脂肪酸主要是()、()和()。

11、人体内胆固醇的来源有二,即()和()。

胆固醇合成的主要原料是()。

12、胆固醇在体内可转化生成()、()激素和维生素()。

13、参与胆固醇合成的NADPH主要来自()途径;乙酰CoA来自()代谢。

14、3-磷酸甘油的来源有两种方式,即()的消化产物和葡萄糖经过()途径产生。

15、每一分子脂肪酸被活化为脂酰CoA需消耗()个高能磷酸键。

16、脂酰CoA经一次β-氧化可生成()分子乙酰CoA和比原来少()个碳原子的脂酰CoA。

17、一分子14碳长链脂酰CoA可经()次β-氧化生成()个乙酰CoA。

18、若底物脱下的[H]全部转变成A TP,则1mol软脂酸(含16C)经β-氧化途径可共生成()个A TP,或净生成()个A TP。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生物化学与分子生物学—脂类代谢
————————————————————————————————作者: ————————————————————————————————日期:
第七章脂类代谢第一节概述
第二节脂质的消化吸收 (消化
第三节甘油三酯代谢一、甘油三酯的分解代谢
二、甘油三酯的合成代谢
(一)肝、脂肪组织及小肠是甘油三酯合成的主要场所
①肝:合成不储,以VLDL(极低密度脂蛋白)运出
②脂肪组织:合成又储,优质储库
③小肠粘膜细胞:改造为体脂,CM(乳糜微粒)入循环
(二)甘油和脂肪酸是合成甘油三酯的基本原料
(三)甘油三酯合成的两条途径
1.脂肪酸活化成脂酰CoA (消耗1分子ATP)
2.小肠黏膜细胞以甘油一酯途径合成甘油三酯(原料是2-甘油一酯;消耗ATP)
3.肝和脂肪组织细胞以甘油二酯途径合成甘油三酯(与前者的区别:原料不同)葡萄糖→磷脂酸→1,2-甘油二酯→甘油三酯
三、内源性脂肪酸的合成需先合成软脂酸再加工延长※(一)软脂酸由乙酰CoA在脂肪酸合酶催化下合成
四、多不饱和脂酸的重要衍生物
第四节磷脂的代谢一、甘油磷脂的代谢


二、鞘磷脂的代谢
神经鞘
第五节胆固醇的代谢
第六节血浆脂蛋白的代谢。

相关文档
最新文档