浅谈管理运筹学学习心得体会
运筹学学习心得 (2)
![运筹学学习心得 (2)](https://img.taocdn.com/s3/m/0e019ca84bfe04a1b0717fd5360cba1aa8118cc3.png)
运筹学学习心得一、引言运筹学是一门研究如何做出最佳决策的学科,它涉及到数学、统计学、经济学等多个领域的知识。
在学习运筹学的过程中,我深刻体味到了它的重要性和应用价值。
本文将从以下几个方面总结我在学习运筹学过程中的心得体味。
二、理论知识的学习1. 线性规划线性规划是运筹学中的一个重要概念,它可以用来解决一类最优化问题。
在学习线性规划的过程中,我了解到了线性规划的基本原理和应用方法。
通过构建数学模型,我能够将实际问题转化为线性规划问题,并利用线性规划的算法求解最优解。
同时,我也学会了如何对线性规划问题进行灵敏度分析,以及如何利用线性规划进行决策支持。
2. 整数规划整数规划是线性规划的一种扩展形式,它在实际问题中的应用更加广泛。
在学习整数规划的过程中,我了解到了整数规划的基本概念和解法。
通过引入整数变量,整数规划可以更好地描述实际问题,并提供更准确的决策结果。
我学会了如何利用整数规划模型解决生产调度、物流配送等问题,并通过算法求解最优解。
3. 动态规划动态规划是一种解决多阶段决策问题的方法,它通过将问题分解为多个子问题,并利用递推关系求解最优解。
在学习动态规划的过程中,我了解到了动态规划的基本原理和应用方法。
通过构建状态转移方程,我能够解决一些具有重叠子问题的最优化问题。
我学会了如何利用动态规划解决背包问题、最短路径问题等,并通过算法求解最优解。
三、实践应用的探索1. 生产调度问题在学习运筹学的过程中,我发现生产调度问题是一个非常典型的运筹学应用。
通过合理的生产调度,可以提高生产效率、降低成本,并满足客户需求。
在实践中,我通过构建生产调度模型,考虑了生产资源、工艺流程等因素,并利用线性规划或者整数规划算法求解最优调度方案。
通过实践应用,我深刻体味到了运筹学在生产调度中的价值和作用。
2. 物流配送问题物流配送问题是另一个重要的运筹学应用领域。
通过合理的物流配送方案,可以降低物流成本、提高配送效率,并满足客户需求。
管理运筹学学科心得体会
![管理运筹学学科心得体会](https://img.taocdn.com/s3/m/ffb02295250c844769eae009581b6bd97e19bc4a.png)
管理运筹学学科心得体会管理运筹学(Management Science and Engineering, MSE)是一门将数学、统计学和信息技术等现代科学应用于管理问题中的跨学科学科。
在学习这门学科期间,我领悟到了很多有关于如何解决管理问题的思维方法以及学习方法。
接下来将从如下几个方面进行探讨:一、理论知识必须扎实学习MSE的最大难点在于其学科的交叉性,涉及太多的知识领域,必须学习大量的数学、统计、计算机和经济学等学科的基础知识。
这需要我们有足够的耐心和毅力,要从基础学科开始逐步理解各种理论和知识,形成有机的整体知识结构。
例如,数据采集和处理的基本知识是学习难点之一,必须掌握各种数据的采集、清洗、分类和存储等知识,才能进行深入的分析和决策。
同时也需要掌握数学和计算机科学的基本知识,如微积分、线性代数、数据统计学、算法设计等等,以便在学习过程中更好的理解和运用知识。
二、实践操作很重要理论知识的背后需要有对实践的深层次理解。
MSE学科强调“做中学、学中做”,该学科要求对复杂的问题进行建模、优化和决策,这就要求我们要不断地沉浸在实践中,参与到实际问题的解决过程中,发现问题、提出问题、研究问题和解决问题的过程,不断地锤炼自己的实践能力,这样才能更加深入的理解和运用所学知识。
三、提高团队协作能力MSE学科强调的是团队协作,实践过程中必须与队友紧密合作。
在实际的企业运营中,会出现复杂的决策和问题,这就要求团队成员掌握扎实的理论和操作能力,能够协同工作、交流学习,让每个人的专业技能得以充分发挥,共同完成困难且复杂的决策。
四、系统思维非常重要MSE学科需要我们具备系统思维的能力,也就是从宏观出发,对系统进行整体优化和决策。
MSE要求我们能够把纷繁复杂的问题框架化,进而建立合适的数学模型,从而找到最优解决方案,用系统思维来看待问题,从而更好地解决问题。
总之,学习MSE学科最重要的是坚持不懈,掌握扎实的理论和操作能力,并透彻理解和运用这些知识,不断去提高实践能力,锻炼团队协作的能力,提高系统思维的能力,这样才能成为一名优秀的管理科学家。
运筹学学习心得
![运筹学学习心得](https://img.taocdn.com/s3/m/196ddbb24793daef5ef7ba0d4a7302768f996f59.png)
运筹学学习心得一、引言运筹学是一门研究如何进行决策和优化的学科,它在现代管理和工程领域具有重要的应用价值。
在学习运筹学的过程中,我深刻体会到了它的理论基础和实践应用,下面将就我的学习心得进行总结。
二、运筹学的基本概念运筹学是一门综合性学科,它涵盖了数学、统计学、计算机科学等多个学科的知识。
在学习运筹学的过程中,我了解到了运筹学的基本概念,包括决策分析、线性规划、整数规划、动态规划等。
这些概念对于解决实际问题具有重要的指导意义。
三、运筹学的理论基础在学习运筹学的过程中,我深入学习了运筹学的理论基础,包括数学规划理论、随机过程理论、图论等。
这些理论为解决实际问题提供了强大的工具和方法。
例如,线性规划可以用于求解最优化问题,动态规划可以用于求解最短路径问题,图论可以用于求解网络流问题等。
四、运筹学的实践应用运筹学在现代管理和工程领域具有广泛的应用。
在学习运筹学的过程中,我了解到了一些实践应用案例。
例如,运筹学可以应用于生产调度问题,通过优化生产计划和资源分配,提高生产效率和利润;运筹学可以应用于物流配送问题,通过优化配送路线和货物分配,降低物流成本和配送时间;运筹学可以应用于金融投资问题,通过优化投资组合和风险控制,提高投资收益和降低风险等。
五、运筹学的挑战与思考在学习运筹学的过程中,我也面临了一些挑战。
首先,运筹学的理论知识较为抽象和复杂,需要具备扎实的数学基础和逻辑思维能力。
其次,实际问题往往具有多个约束条件和目标函数,需要综合考虑各种因素进行决策。
最后,运筹学的应用需要结合实际情况进行具体分析和实施,需要具备良好的沟通和协调能力。
在面对这些挑战时,我思考了如何提高自己的能力。
首先,我加强了数学和统计学的学习,提高了自己的数学建模和分析能力。
其次,我积极参与实践项目,通过实际操作和解决问题,提升了自己的实践能力。
最后,我与同学们进行交流和讨论,共同解决问题,提高了自己的团队合作和沟通能力。
六、结语通过学习运筹学,我深刻理解了它的理论基础和实践应用,认识到了它在现代管理和工程领域的重要性。
运筹学学习的心得体会5则范文
![运筹学学习的心得体会5则范文](https://img.taocdn.com/s3/m/7dc99c4dae1ffc4ffe4733687e21af45b207fe49.png)
运筹学学习的心得体会5则范文第一篇:运筹学学习的心得体会浅谈我对运筹学的认识《史记·高祖本纪》有云:“夫运筹帷幄之中,决胜于千里之外”。
先从运筹学的名字谈起。
运筹学的英文原名叫做Operations Research,从名字就可以看出,运筹学主要就是“研究(Research)”,就是研究在经营管理活动中如何行动,如何以尽可能小的代价,获取尽可能好的结果,即所谓“最优化”问题。
中国学者把这门学科意译为“运筹学”,就是取自古语“运筹于帷幄之中,决胜于千里之外”,其意为运算筹划,出谋献策,以最佳策略取胜。
这就极为恰当地概括了这门学科的精髓。
当我首次听说这门课程时,心里充满了畏惧与神圣感,畏惧是因为我对这门课还未收悉,看名字就觉得很难很高深;神圣感则是因为自己可以学习这门高深的课程。
粗略的翻过课本与听了老师的简介之后,我觉得自己大致明白了这门课的方向,主要还是将数学运用到生活中,运用到管理活动中。
所以我就将这门课定义为了数学与管理的一个综合。
慢慢的经过一学期的学习,我认识到运筹学不仅是数学与管理活动的结合,还是数学和经济活动、生态、技术,甚至于政治的结合。
下面引用一段资料我国运筹学的应用是在1957年始于建筑业和纺织业。
1958年开始在交通运输、工业、农业、水利建设、邮电等方面都有应用,尤其是运输方面,提出了“图上作业法”并从理论上证明了其科学性。
在解决邮递员合理投递路线问题时,管梅谷教授提出了国外称之为“中国邮路问题”解法。
从60年代起,运筹学在我国的钢铁和石油部门得到了全面和深入的应用。
1965年起统筹法的应用在建筑业、大型设备维修计划等方面取得了可喜进展。
从70年代起,在全国大部分省市推广优选法。
70年代中期最优化方法在工程设计界得到广泛的重视。
在光学设计、船舶设计、飞机设计、变压器设计、电子线路设计、建筑结构设计和化工过程设计等方面都有成果。
70年代中期的排队论开始应用于研究港口、矿山、电讯和计算机设计等方面。
运筹学学习心得
![运筹学学习心得](https://img.taocdn.com/s3/m/df777126b94ae45c3b3567ec102de2bd9605defb.png)
运筹学学习心得引言概述:运筹学是一门研究如何进行最佳决策的学科,它通过数学模型和优化方法来解决现实生活中的问题。
在学习运筹学的过程中,我深刻体味到了它的重要性和应用价值。
本文将从五个方面详细阐述我在运筹学学习中的心得体味。
一、理论基础的学习1.1 学习运筹学的第一步是掌握其理论基础。
我通过阅读相关教材和参加课堂讲解,深入了解了线性规划、整数规划、动态规划等基本概念和方法。
1.2 在学习理论基础时,我发现了运筹学与其他学科的密切联系。
例如,线性规划可以应用于经济学、管理学等领域,动态规划可以解决最短路径问题、背包问题等。
这些联系使我更加坚定了学习运筹学的决心。
1.3 理论基础的学习需要进行大量的练习和实践。
我通过完成习题和参预实践项目,提高了对运筹学理论的理解和应用能力。
二、数学建模的实践2.1 运筹学的核心是数学建模。
在学习过程中,我通过实践项目,学会了如何将实际问题转化为数学模型,并运用相应的优化方法进行求解。
2.2 在进行数学建模时,我学会了分析问题的关键因素和约束条件,合理地选择决策变量,并建立适当的目标函数。
这些步骤对于解决实际问题至关重要。
2.3 数学建模的实践过程中,我也意识到了模型的局限性。
模型只是对实际问题的简化和抽象,因此在应用时需要考虑到模型的假设和前提条件,以及可能的误差和风险。
三、优化方法的应用3.1 运筹学的核心任务是寻觅最佳解决方案。
在学习过程中,我学会了使用不同的优化方法,如单纯形法、分支定界法等,来求解各种类型的优化问题。
3.2 在应用优化方法时,我发现了不同方法的适合范围和特点。
有些方法适合于线性规划问题,而有些方法则适合于非线性规划问题。
了解这些方法的特点有助于选择合适的方法来解决实际问题。
3.3 在应用优化方法时,我也注意到了算法的效率和精确度。
有些问题可能存在多个最优解,而有些问题可能需要耗费较长的计算时间。
因此,在实际应用中,需要综合考虑算法的效率和解的质量。
运筹学学习心得
![运筹学学习心得](https://img.taocdn.com/s3/m/1997d093a48da0116c175f0e7cd184254a351b50.png)
运筹学学习心得引言概述:运筹学是一门研究如何通过数学模型和优化方法来解决实际问题的学科。
在学习运筹学的过程中,我深刻体会到了其重要性和应用价值。
下面我将结合自己的学习经验,从理论学习、实践应用、团队合作和思维拓展四个方面,分享一下我的运筹学学习心得。
一、理论学习1.1 掌握基本概念和方法:学习运筹学首先需要掌握其基本概念和方法,如线性规划、整数规划、动态规划等。
通过深入学习这些基本理论,我们能够了解到运筹学的基本原理和解题思路。
1.2 学习数学模型的建立:在运筹学中,数学模型的建立是解决问题的关键。
学习如何建立合理的数学模型,包括目标函数的设定、约束条件的确定等,能够帮助我们更好地解决实际问题。
1.3 熟悉常用的优化方法:掌握常用的优化方法,如单纯形法、分支定界法等,能够帮助我们在实际问题中找到最优解。
通过理论学习,我们能够了解这些方法的原理和应用范围,为实践应用打下基础。
二、实践应用2.1 运用运筹学方法解决实际问题:通过实践应用,我们能够将运筹学理论知识与实际问题相结合,找到解决问题的最佳方案。
例如,在生产调度中,可以运用整数规划模型来优化生产计划,提高生产效率。
2.2 分析问题的复杂性和可行性:实践应用过程中,我们会遇到各种复杂的实际问题,需要通过分析问题的复杂性和可行性,选择合适的运筹学方法。
这需要我们具备较强的问题分析和解决能力。
2.3 进行模型验证和优化:在实践应用中,我们需要对建立的数学模型进行验证和优化。
通过与实际数据的对比和模型的调整,我们能够不断提高模型的准确性和可靠性,为决策提供科学依据。
三、团队合作3.1 分工合作,共同解决问题:在运筹学的学习中,我们常常需要与他人合作,共同解决问题。
团队合作能够充分发挥每个人的优势,提高问题解决的效率和质量。
3.2 沟通协作,促进思想交流:团队合作中,良好的沟通协作能够促进思想交流,帮助我们更好地理解问题和解决问题。
通过与他人的交流,我们能够拓宽思路,发现问题的更多解决方法。
运筹学学习心得
![运筹学学习心得](https://img.taocdn.com/s3/m/b69b0262dc36a32d7375a417866fb84ae45cc339.png)
运筹学学习心得运筹学是一门研究如何在有限资源下做出最优决策的学科,它涉及到数学、统计学、经济学等多个领域的知识。
通过学习运筹学,我深刻认识到了它在实际生活和工作中的广泛应用,以及它对决策的重要性。
以下是我对运筹学学习的心得体会。
首先,运筹学的核心思想是优化。
它通过建立数学模型,利用数学方法来求解最优解。
在学习过程中,我了解到了各种常用的优化方法,如线性规划、整数规划、动态规划等。
这些方法可以帮助我们在决策过程中找到最优解,提高效率,降低成本。
例如,在生产调度中,我们可以利用线性规划来确定最佳的生产计划,以最大程度地利用资源,提高生产效率。
其次,运筹学还包括决策分析和风险管理。
在学习中,我了解到了多种决策分析方法,如决策树、灰色关联分析等。
这些方法可以帮助我们在面对多种选择时做出明智的决策。
同时,风险管理也是运筹学的重要内容之一。
通过学习风险管理,我了解到了如何通过评估和控制风险来降低决策的不确定性。
在实际工作中,我们可以利用风险管理的方法来制定风险应对策略,保证项目的顺利进行。
此外,运筹学还涉及到排队论、库存管理、供应链管理等内容。
通过学习这些内容,我了解到了如何通过合理的排队策略来提高服务效率,如何通过库存管理来平衡成本和服务水平,以及如何通过供应链管理来优化整个供应链的运作。
这些知识对于企业的运营和管理具有重要意义。
在学习运筹学的过程中,我也进行了一些实践应用。
例如,我利用线性规划方法解决了一个生产调度问题,通过优化生产计划,实现了资源的最大利用和生产效率的提高。
我还利用决策树方法对一个投资项目进行了评估,通过分析各种可能的结果和概率,帮助决策者做出了正确的决策。
这些实践应用让我更加深入地理解了运筹学的应用和意义。
在学习运筹学的过程中,我也遇到了一些困难和挑战。
例如,运筹学涉及到较多的数学和统计知识,需要一定的数学基础。
在遇到复杂的问题时,需要耐心和细心地分析和求解。
此外,运筹学的应用也需要一定的实践经验和业务理解。
运筹学学习心得
![运筹学学习心得](https://img.taocdn.com/s3/m/ff04aa2924c52cc58bd63186bceb19e8b8f6ece8.png)
运筹学学习心得运筹学是一门研究如何有效地做出决策的学科,它涉及到数学、统计学和计算机科学等多个领域。
在我的运筹学学习过程中,我深刻体会到了它的重要性和应用价值。
以下是我对运筹学学习的心得体会。
首先,运筹学的核心思想是优化。
无论是在工业生产中,还是在物流管理中,优化都是一个关键的目标。
通过学习运筹学,我了解到了各种优化方法和技术,如线性规划、整数规划、动态规划等。
这些方法可以帮助我们在面对复杂的问题时,找到最优解决方案,提高效率和效益。
其次,运筹学还包括决策分析和风险管理。
在现实生活中,我们经常需要做出各种决策,而这些决策往往伴随着风险和不确定性。
通过学习运筹学,我学会了如何进行决策分析,如何评估和管理风险。
这对于提高决策的准确性和可靠性非常重要。
另外,运筹学还与信息技术密切相关。
在现代社会中,信息的获取和处理变得越来越重要。
通过学习运筹学,我了解到了如何利用信息技术来支持决策和优化。
例如,运筹学中的决策支持系统可以帮助我们收集和分析大量的数据,从而提供决策的依据。
此外,运筹学还与团队合作密切相关。
在解决复杂问题时,往往需要多个人的合作和协调。
通过学习运筹学,我了解到了如何有效地组织和管理团队,如何分配任务和资源,以实现团队的协同工作。
这对于提高团队的工作效率和绩效非常重要。
在运筹学学习的过程中,我还参与了一些实践项目,通过实际操作来加深对运筹学理论的理解。
例如,我们在一个工厂中进行了生产线优化的项目。
通过对工厂的生产流程进行分析和优化,我们成功地提高了生产效率和产品质量。
这个项目不仅让我更好地理解了运筹学的应用,还培养了我团队合作和问题解决的能力。
总结起来,运筹学是一门非常实用和有价值的学科。
通过学习运筹学,我不仅学到了很多优化方法和技术,还培养了分析问题、决策和团队合作的能力。
我相信这些知识和技能在未来的工作和生活中都会对我产生积极的影响。
运筹学的学习让我更加深入地理解了如何做出有效的决策,如何优化资源和提高效率。
学习运筹学体会与心得
![学习运筹学体会与心得](https://img.taocdn.com/s3/m/0c89a3dd5ff7ba0d4a7302768e9951e79b89691d.png)
学习运筹学体会与心得运筹学是一种理论和实践相结合的学科,它涵盖了统计学、数学优化、系统分析和决策理论等多个领域,其主要目标是帮助人们在复杂的决策问题中寻找最优解决方案。
在学习运筹学的过程中,我领悟了以下几点体会与心得。
首先,运筹学教会了我如何系统地分析和解决问题。
在现实生活中,我们经常面临各种各样的问题,而且这些问题往往非常复杂,难以一下子找到最佳的解决方案。
运筹学的学习让我明白了,一个好的问题解决过程必须是系统化的,需要有一定的方法和步骤。
例如,我们可以先对问题进行建模,明确问题的关键因素和数据,然后运用优化方法进行计算,最终得到最佳的解决方案。
这样的思维方式不仅能够帮助我们更好地解决问题,也能够提升我们的分析和决策能力。
其次,运筹学教会了我如何从不同的角度看待问题。
在学习运筹学时,我对于同一个问题可能会有多种不同的解决方法,这些方法可能是基于不同的数学模型或者算法,也可能是基于不同的假设和前提条件。
这让我认识到,一个问题并不是非黑即白,可能有多种答案和解决方法。
因此,当我们面对问题时,应当从多个角度去理解和分析,以便找到最佳的解决方案。
最后,运筹学教会我如何有效地与他人合作。
在运筹学的学习过程中,我参与了一些小组作业和课程项目,需要和其他同学紧密合作,共同完成任务。
这些合作经历让我意识到,合作需要大家有清晰的目标和分工,需要有高效的沟通和协作,以及需要有信任和尊重。
此外,在合作过程中,我们还需要学会听取其他人的意见和建议,尊重不同的观点和思维方式,从而实现更好的团队协作与创新。
总之,学习运筹学不仅让我掌握了一些重要的数学和计算方法,更让我形成了一种系统化和全局化的思维方式,能够更加有效地分析和解决各种问题。
同时,运筹学还培养了我与他人合作的能力,提高了我的团队意识和领导力水平。
在今后的学习和工作中,我将继续秉持这些思维和能力,为实现更好的结果和效益而努力。
浅谈管理运筹学学习心得体会(通用4篇)
![浅谈管理运筹学学习心得体会(通用4篇)](https://img.taocdn.com/s3/m/bc32589fd0f34693daef5ef7ba0d4a7303766c43.png)
浅谈管理运筹学学习心得体会(通用4篇)浅谈管理运筹学学习篇1相信大家都知道,田忌赛马的故事,从中我们不难发现在已有的条件下,经过筹划、安排,选择一个最好的方案,就会取得最好的效果。
可见,筹划安排是十分重要的。
古人作战讲“夫运筹帷幄之中,决胜千里之外”也就是这个道理。
运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。
从最直观、明了的角度将运筹学定义为:“通过构建、求解数学模型,规划、优化有限资源的合理利用,为科学决策提供量化一句的系统知识体系。
”运筹学的具体内容包括:规划论(包括线性规划、非线性规划、整数规划和动态规划)、库存论、图论、决策论、对策论、排队论、博弈论、可靠性理论等。
而《应用运筹学》作为运筹学的一部分,则重点介绍了管理运筹的思想与建模方法,具体包括了线性规划及扩展问题模型、图与网络分析模型、项目管理技术、决策分析技术、库存模型和排队模型等运筹学的重要分支。
其主要特点是注重运筹学原理及方法在解决实际管理问题时应用,突出了管理问题的分析和运筹模型的构建过程,淡化了模型的理论推导和数学计算,借助于十分普及的Excel软件来求解模型,使得运筹学模型的应用更加简明直观。
线性规划是运筹学的一个重要分支。
线性规划解决的是:在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。
其数学模型有目标函数和约束条件组成。
解决线性规划问题的关键是找出他的目标函数和约束方程,并将它们转化为标准形式。
简单的设计2个变量的线性规划问题可以直接运用图解法得到。
但是往往在现实生活中,线性规划问题涉及到的变量很多,很难用作图法实现,但是运用单纯形法记比较方便。
单纯形法的发展很成熟应用也很广泛,在运用单纯形法时,需要先将问题化为标准形式,求出基可行解,列出单纯形表,进行单纯形迭代,当所有的变量检验数不大于零,且基变量中不含人工变量,计算结束。
将所得的量的值代入目标函数,得出最优值。
图论是一个古老的但又十分活跃的分支,它是网络技术的基础。
我对管理运筹学的认识
![我对管理运筹学的认识](https://img.taocdn.com/s3/m/11977154312b3169a451a448.png)
我对管理运筹学的认识陆咪 11财管单 20111504442 《管理运筹学》,当我看到这本书的书名时,我有点小小的喜悦感,因为管理两字是与我所学的专业有关的,我想学习起来应该不会太吃力。
但当我在粗略的翻阅完这本书之后,我那小小的喜悦感就被恐惧感所占领了。
书本上有很多的知识都是与数学相关联的,我从小就对数学不感兴趣,看到就头疼,因此我在学习数学的时候就有点难度。
大一、大二的微积分、统计学等都曾经让我头疼不已,我想这管理运筹学应该也不会例外吧!带着不安的心上了第一课,课上老师对这门课做了一个大概的介绍,上完课我对管理运筹学有了一个全新的认识。
管理运筹学主要研究人类在经济管理活动中对各种经济资源的运用及筹划活动,其目的在于了解和发现这种运用及筹划活动的基本规律,以便发挥有限资源的最大经济效益,达到总体最优化的目标。
近年来,管理运筹学的研究与实践得到了长足的发展,在工程、管理、科研以及国民经济发展的诸多方面都发挥了巨大的作用。
随着计算机等信息技术的发展,作为一门优化与决策的学科,管理运筹学的方法和手段更是如虎添翼,该课程已经成为经济管理类专业一门重要的专业基础课。
管理运筹学是架构在运筹学基础上的学科,它借助运筹学的理论方法,针对现实中的系统,特别是经济系统进行量化分析,并以量化数据为支撑,去求得经济系统运行的最优化方案,以此来帮助系统运行的决策者做出科学的决策。
由此可见,管理运筹学是一门以决策支持为目标的应用性学科。
管理运筹学是管理科学、近代应用数学和计算机技术的一个交叉学科,主要是将生产、管理等过程中出现的一些带有普遍性的资源运筹问题加以提炼,然后综合利用数学、统计学和电子计算机技术进行分析、运算,得出各种各样的结果,最后提出综合性的合理安排,探求最有效的工作方法或最优决策,以在最短的时间内,以最少的资源投入取得最大的产出效果。
管理运筹学作为一门用来解决实际管理问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法和计算机分析处理。
管理运筹期末总结
![管理运筹期末总结](https://img.taocdn.com/s3/m/bb3181df50e79b89680203d8ce2f0066f53364dc.png)
管理运筹期末总结一、引言在本学期的管理运筹课程中,我们学习了许多与管理决策和运筹优化相关的知识。
通过课堂学习、课外阅读和实践案例分析,我对管理运筹的基本理论和方法有了更深入的了解。
在这学期即将结束之际,我想对所学知识进行总结,并回顾一下自己在课堂学习、作业完成和团队合作等方面的经验与收获。
二、课程学习1. 管理决策理论在课堂上,我们学习了管理决策理论的基本原理和经典的决策模型。
我对决策过程中的信息搜集、分析、评估和选择等环节有了更深入的认识。
通过分析真实的案例,我可以更好地理解决策者在复杂环境中做出决策的困难和风险。
2. 运筹优化方法运筹优化方法是管理决策的重要工具。
我们学习了线性规划、整数规划、动态规划和网络优化等方法。
通过使用相应的软件进行实际计算,我能够更好地理解这些方法的应用场景和求解步骤。
同时,我也认识到优化模型的建立和求解并非一蹴而就,需要多方面的思考和尝试。
3. 数据分析技术在信息时代,大量的数据成为管理决策的重要依据。
我们学习了数据分析的一些基本技术,如数据可视化、数据挖掘和预测分析。
通过学习这些技术,我能够更好地利用现有数据进行定量分析,并提供决策支持。
同时,我也认识到数据的质量和真实性对决策结果的影响非常重要。
三、作业完成在这学期的学习和作业中,我按时完成了所有的作业任务,包括课堂讨论、个人作业和团队项目。
通过这些任务的完成,我不仅巩固了所学知识,也培养了自己的解决问题的能力。
我学会了更加系统地思考和分析问题,并采用合适的方法进行求解。
四、团队合作在团队合作的过程中,我意识到团队合作具有一定的挑战性和复杂性。
不同的成员有不同的思维方式和工作风格,因此在团队中要兼顾个人的需求和整体的目标。
通过与团队成员的积极沟通和有效合作,我们能够更好地完成任务,并取得满意的结果。
同时,团队合作也给我提供了一个宝贵的机会,可以学习和借鉴其他成员的优点和经验。
五、个人收获在这学期的管理运筹课程中,我不仅学到了大量的知识,也提升了自己的解决问题的能力。
管理运筹学学科心得体会
![管理运筹学学科心得体会](https://img.taocdn.com/s3/m/e71f32cef80f76c66137ee06eff9aef8951e4856.png)
管理运筹学学科心得体会管理运筹学学科是一门涉及到管理决策、优化方法和模型的学科,通过运筹学的理论和方法,可以帮助管理者在复杂的环境中做出更加准确和有效的决策。
在学习和研究管理运筹学的过程中,我深有体会,以下是我对该学科的一些心得和体会。
首先,管理运筹学的方法和模型非常丰富多样。
在学习管理运筹学的过程中,我们学习了许多优化方法和数学模型,如线性规划、整数规划、动态规划、模拟等。
这些方法和模型可以帮助我们在处理复杂的管理问题时,找到最优解或者近似最优解。
通过学习这些方法和模型,我发现它们在实际应用中有着广泛的应用,不仅可以解决制造业中的生产调度问题,还可以应用于物流管理、供应链管理、风险管理等领域。
这使我深信管理运筹学是一门实用性非常强的学科。
其次,管理运筹学让我意识到决策过程中的不确定性和风险。
在现实生活中,我们的决策往往受到很多因素的影响,如市场需求变化、供应链延误、自然灾害等。
管理运筹学提供了一些处理不确定性和风险的方法,如风险分析、决策树、蒙特卡洛模拟等。
通过学习这些方法,我明白了在决策过程中,我们不能仅仅根据现有的信息和数据来做决策,还需要考虑到未来的潜在风险和不确定性。
只有综合考虑到这些因素,才能做出更加合理和有效的决策。
另外,管理运筹学也强调了团队合作和协调的重要性。
在解决实际问题时,往往需要多个部门或者多个人员的协作和协调。
管理运筹学可以帮助我们建立数学模型来描述问题,并运用优化方法来获得最优解。
然而,在实际操作过程中,往往需要多个人员协作来收集数据、分析问题、实施决策等。
因此,管理运筹学的学习也需要注重培养学生的团队合作能力和沟通能力。
通过小组讨论、项目实践等方式,可以帮助学生培养团队合作和协调的能力,实践运用所学的管理运筹学知识。
最后,通过学习管理运筹学,我认识到在问题解决过程中,不能只注重理论和方法的研究,还需要关注实际应用和实际操作。
管理运筹学的研究目标是解决实际问题,因此在学习过程中,我们需要关注实际应用和实践操作。
韩伯棠的管理运筹学读后感
![韩伯棠的管理运筹学读后感](https://img.taocdn.com/s3/m/d5250f5c590216fc700abb68a98271fe900eaf5a.png)
韩伯棠的管理运筹学读后感刚开始翻开这本书的时候,心里还有点打鼓呢,想着这运筹学听起来就很复杂,会不会像天书一样。
结果,还真有点像天书,那些密密麻麻的公式、图表和术语,就像一群调皮的小怪兽,张牙舞爪地朝我扑来。
不过呢,随着一点点深入阅读,就像是在和这些小怪兽交朋友,慢慢地摸清了它们的脾气。
这书里讲的运筹学可真是个神奇的东西。
它就像一个超级智慧的军师,在管理的战场上出谋划策。
比如说线性规划那部分,就像是在玩一个超级复杂的拼图游戏,你得把各种资源(那些变量啥的)按照一定的规则(约束条件)摆放,最后找到一个最优的布局(目标函数的最优解),这可不仅仅是数学游戏,在企业管理里那可就是真金白银的效益啊。
企业得考虑怎么分配资源才能让成本最低、利润最高,这不就跟安排拼图碎片一样嘛,一块放错了地方,可能整体就不完美了。
还有运输问题那一块,我感觉就像是在做一个大型的物流调度。
想象一下,你是个超级物流大亨,要把货物从各个产地运到不同的销地,怎么规划运输路线,选择运输量,才能让总的运费最少呢?这就需要运筹学这个得力助手了。
书里那些解决运输问题的方法,就像是给了我们一套物流秘籍,按照这个秘籍来,感觉就能把运输的各个环节安排得井井有条。
而且啊,这本书让我明白了一个道理,管理可不是瞎指挥。
在复杂的管理工作中,每一个决策都像是在运筹学这个大棋盘上下的一步棋,得考虑到各种因素的相互影响。
就像在玩一个多线程的游戏,你不能只盯着一个方面,要综合考虑生产、销售、运输、人力等等所有的元素。
这运筹学就像是给了管理者一双透视眼,透过现象看到背后的数学逻辑和最优方案。
不过呢,这本书也不是那么好啃的。
有时候一个概念理解起来就得费好大的劲儿,那些证明和推导过程,就像一道道关卡,需要我集中精力,反复琢磨才能突破。
但是,当你真正理解了一个难点的时候,那种成就感就像是在游戏里打败了一个超级大BOSS一样,爽得很。
运筹学课程学习体会5篇
![运筹学课程学习体会5篇](https://img.taocdn.com/s3/m/cb30944926284b73f242336c1eb91a37f111321f.png)
运筹学课程学习体会5篇第一篇:运筹学课程学习体会《运筹学》课程的学习体会从6月25日开始至今,学习《运筹学》已经有一个学期了。
在这一个学期里,我们在张老师的帮助下,学习了有关运筹学的基础理论、应用方法的技巧等知识,使得我更进一步的了解到运筹学的实践意义的重要性。
运筹学是经济管理类专业的核心基础课之一,他体现了“优化”的思想,学习运筹学,可以提高一个人的组织,协调和控制能力,而这些对于我现在的本职工作来说就更具有现实的指导意义。
运筹学应用分析,试验,量化的方法,对经济管理系统中人财物等有限资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。
运筹学涉及到建立数学模型与求解的方法问题,这能够为实际问题的概括与提炼提供很好的解决方案。
通过这段时间对运筹学的学习,使我获得了不少的收获,我虽是理科专业出生,但是数学相关的东西学的比较吃力,而运筹学偏理科,虽然学起来有点吃力,但是我还是坚持下来了,在这要感谢运筹学张伟老师的耐心指导。
张老师在课堂上,把运筹学例题讲解得清晰而精彩,使我更深刻的体会到运筹学对我生活的重要性和指导应用的重要意义。
相信在今后的生活和工作中,运筹学对我的帮助会有更多的指导和实践意义,运筹学的逻辑思想就是“从提出问题开始,然后到分析建模,最后求解方案”,这个解决问题的方式方法是科学而严密的,也是值得推广的,我想,在今后我要把运筹学的思想贯彻到我的工作和生活当中,做一个会做事,也会学以致用的人。
以上是我学习运筹学的心得体会。
第二篇:运筹学课程学习体会《运筹学》课程的学习体会从6月25日开始至今,学习《运筹学》已经有一个多月了。
在这一个多月里,我们在熊老师的帮助下,学习了有关运筹学的基础理论、应用方法的技巧等知识,使得我更进一步的了解到运筹学的实践意义的重要性,特别是在熊老师的案例讲解中,更是体会到运筹学对我们生活的方方面面所具有的指导作用。
运筹学是经济管理类专业的核心基础课之一,他体现了“优化”的思想,学习运筹学,可以提高一个人的组织,协调和控制能力,而这些对于我现在的本职工作来说就更具有现实的指导意义。
2024年运筹学心得体会
![2024年运筹学心得体会](https://img.taocdn.com/s3/m/12024e6b492fb4daa58da0116c175f0e7cd119f0.png)
2024年运筹学心得体会____年运筹学心得体会(____字)在这个信息爆炸的时代,随着科技的进步和社会的快速发展,运筹学作为一门重要的管理科学方法,对于解决复杂问题和优化决策起着越来越大的作用。
作为一名运筹学的学习者和应用者,我在____年获得了很多关于运筹学的心得体会。
下面将我对运筹学的认识和体会进行总结和分享。
首先,运筹学是一门实践性很强的科学,需要理论和实际应用相结合。
在过去的几年中,我参与了多个运筹学实践项目,这些项目来自不同的行业和领域,让我深刻领悟到运筹学在实际工作中的重要性和价值。
运筹学的理论知识可以帮助我们建立数学模型,分析问题,并提供最佳的决策方案。
而运筹学的实践应用则需要我们运用数学工具和方法,对现实问题进行求解和优化。
通过实际操作,我逐渐明白了只有将运筹学理论与实际情况相结合,才能真正发挥出它的作用。
其次,运筹学的核心在于优化。
无论是企业管理、生产制造、物流配送还是供应链管理,优化都是我们追求的目标。
通过对问题进行建模和求解,可以得到最优的决策方案,提高效率和经济效益。
然而,要实现优化并不是一件容易的事情,因为现实问题往往是复杂多样的,涉及到的因素很多。
因此,我们需要运用各种运筹学方法和技术,如线性规划、整数规划、动态规划、模拟等,来解决复杂的优化问题。
同时,运筹学在优化的过程中也需要考虑到风险和不确定性的因素,以及与综合评价和决策支持等方面的紧密结合。
第三,数据在运筹学中起着至关重要的作用。
在数字化时代,大数据已成为一种强大的资源,它包含了海量的信息和知识。
运筹学的分析和建模需要依赖于大量的数据,而随着数据的规模和复杂程度的不断增加,我们需要运用数据挖掘和分析技术,从大数据中提取有价值的信息,为运筹学的建模和求解提供支持。
同时,在数据分析的同时,我们也需要关注数据的质量和准确性,以保证运筹学模型的可靠性和效果。
第四,运筹学需要和其他领域的知识相结合,形成一种综合的解决方案。
运筹学学习心得体会(总4页)
![运筹学学习心得体会(总4页)](https://img.taocdn.com/s3/m/2ea4606aac02de80d4d8d15abe23482fb5da0279.png)
运筹学学习心得体会(总4页)运筹学是一门研究求解复杂决策问题的学科,通过运筹学的学习,我深刻体会到了它的重要性和应用价值。
以下是我在学习运筹学过程中的一些心得体会。
运筹学能够帮助我们系统地分析和解决问题。
通过学习运筹学的方法和技巧,我们可以将一个复杂的问题拆分成一系列更简单的子问题,并分别考虑每个子问题的最优解。
通过综合这些最优解,我们可以找到整个问题的最优解。
这种系统分析和求解问题的方法,可以帮助我们更好地理解问题的本质,并得出更好的解决方案。
然后,运筹学注重数学建模和优化求解。
在学习运筹学的过程中,我们经常需要将实际问题转化为数学模型,并使用数学方法进行求解。
这对我们的数学能力提出了较高的要求,但同时也提高了我们的数学建模和优化求解能力。
通过学习运筹学,我不仅学会了使用线性规划、整数规划、动态规划等方法进行求解,还学会了如何将实际问题抽象为数学模型,并优化求解这些模型。
这对于解决实际问题非常有帮助。
运筹学强调综合考虑各种因素和权衡利弊。
在实际问题中,往往需要同时考虑多个目标和约束条件,并在各种因素之间进行权衡。
通过学习运筹学,我们可以学会如何对多个目标进行量化,并使用多目标规划等方法进行求解。
同时,我们还学会了如何在各种因素之间进行权衡,找到一个平衡的解决方案。
这对于实际问题的解决非常有帮助。
最后,运筹学还涉及到一些决策支持系统的设计和应用。
通过学习运筹学,我了解到了决策支持系统的基本原理和方法,并学会了如何使用决策支持系统进行决策分析和决策优化。
运筹学与信息技术的结合,可以帮助我们更好地进行决策,并提高决策的效果和效率。
运筹学是一门重要而有价值的学科,通过学习运筹学,我们可以提高问题分析和解决的能力,提高数学建模和优化求解能力,学会综合考虑各种因素和权衡利弊,以及应用决策支持系统进行决策分析和决策优化。
这些都对我们的学习和工作具有重要意义,我相信在今后的发展中,运筹学的应用将会越来越广泛。
运筹学心得体会
![运筹学心得体会](https://img.taocdn.com/s3/m/06c1a50e32687e21af45b307e87101f69e31fb89.png)
运筹学心得体会体会是指将学习的东西运用到实践中去,通过实践反思学习内容并记录下来的文字,近似于经验总结。
心得体会可以帮助我们更好地认识自己,通过总结和反思,我们可以更清楚地了解自己的优点和不足,找到自己的定位和方向。
下面我给大家整理了一些心得体会范文,希望能够帮助到大家。
运筹学心得体会篇一大四下学期的实习,对于应届毕业生的我们来说是将理论知识与实践相结合的重要途径,以及进入社会参加工作前的必经阶段,实习经验也是对于我们四年专业学习的系统回顾和升华,对于我们将要走入社会的学生来说是一次熟悉社会,了解社会的好机会,所以这次实习具有很重要的意义。
一直以来,我们作为学生,只是一味地获取知识,真正实践的机会是很少的,我们工科学生的'实习主要是对生产环境的熟悉,对先进技术的了解,以及我们所学知识涉及生产实践领域。
通过实习,我深切感触到了我们所学知识过于浅薄,还不能解决工程中遇到的技术难题,在工程应用中实践经验太少。
由此看来,认真对待这次实习,并在这个实习的过程中多学习、多积累,是我们必须要做到的。
这次实习是比以往任何一次实习都更具有针对性和实践意义,不仅是由于自己的重视,还因为在系统学习了大学四年的专业知识之后,作为应届毕业生的我在实习过程中受到了许多长辈和老师的重视和严肃专业地指导,使我更充分地理解了专业知识学习在实践中的利用,进而在今后的工作和学习中更好地掌握和运用专业技能。
我实习的主要目的有以下几点:4. 通过了解水利工程规划、设计、施工和运行管理的基本步骤,加深对工程施工技术、施工组织和施工管理知识的理解。
在实习中,我主要的任务和内容是:3.通过在设计院实习过程中多接触工程实例,阅读已完成的工程项目资料,熟悉施工技术,施工技术、管理以及工程监理业务,积累关于工程实施过程前期、中期和后期的大概工作流程。
4.了解工程建设的一般过程和工程设计报告编写的主要过程。
在我的实习过程中,主要接触的是观音寺大坝工程的概况。
《学习运筹学的心得[5篇范文]》
![《学习运筹学的心得[5篇范文]》](https://img.taocdn.com/s3/m/ee7431df6c85ec3a86c2c51d.png)
《学习运筹学的心得[5篇范文]》第一篇:学习运筹学的心得学习运筹学的心得一直以来就对经济类很感兴趣,但是被分配到机械专业,不过我也一直都在关注有关经济,所以这次选修课,我毫不犹豫的选了运筹学,对于运筹学,我还是有一些了解的,知道他同我这机械专业的联系,运筹学在生活中的应用非常广泛,工程,物流,人事安排等很多方面都牵扯到运筹。
基本上需要资源优化配置的都有运筹学的影响。
你在家里面做个简单的事情安排都由运筹学的影响。
比如家务安排,怎么安排最节省人力时间,就运用到了运筹学。
运筹学是从生活实践中总结发展出来的学科,影响很广泛,很多人没有接触过运筹学,不知道什么是运筹学,但是在处理问题的时候都用到了运筹学。
刚开始学运筹学对我来说也许有点难度,但我还是会拿起那本厚厚的书静静的看下去,不知不觉就喜欢上它了,觉得它是我学习的课程最有用的一门学科。
也许不光是课程本身的实用性吧。
每次看完一点我都要慢慢去体会,原来如此复杂的问题这样就解决了,有点不可思议。
晚上休息的时候也会不知不觉就想起,以至与舍友说我是运筹学学疯了,也许吧。
最近发觉自己有个毛病,总会把运筹学和人生联系到一起,不知不觉就会想到它学习理论的目的就是为了解决实际问题,下面就谈谈我对运筹学的理解及我学习运筹学的心得。
其实,运筹思想和方法,早在我国上古就曾闪烁过光辉。
《孙子兵法》十分强调决策信息作用,“知己知彼,百战不殆”。
我国历史上运筹思想及其应用,在军事上和工程上都有过不少光辉范例。
“赤壁鏖兵”、“火烧连营”、“淝水之战”,都因运筹有方,结果以寡胜众。
“都江堰水利工程”和北宋修复皇宫“一举三济”的故事,至今仍广为传颂。
运筹学是研究各种广义资源的运用、筹划以及相关决策等问题的,其目的是根据问题的需求,通过数学的分析和运算,做出综合性的、合理的优化安排,以便更有效地发展有限资源的效益。
在学习运筹学前我们必须理解这么学科到底是做什么的,并且学习时我们要知道如何运用它达到所需的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈管理运筹学学习心得体会简单的来说,运筹学就是通过数学模型来安排物资,它是一门研究如何有效的组织和管理人机系统的科学,它对于我们逻辑思维能力要求是很高的。
从提出问题,分析建摸到求解到方案对逻辑思维的严密性也是一种考验,但它与我们经济管理类专业的学生以后走上工作岗位是息息相关的。
运筹学应用分析,试验,量化的方法,对经济管理系统中人财物等有限资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。
对经济问题的研究,在运筹学中,就是建立这个问题的数学和模拟的模型。
建立模型是运筹学方法的精髓。
通常的建模可以分为两大步:分析与表述问题,建立并求解模型。
通过本学期数次的实验操作,我们也可以看到正是对这两大步骤的诠释和演绎。
运筹学模型的建立与求解,是对实际问题的概括与提炼,是对实际问题的数学解答。
而通过本次的实验,我也深刻的体会到了这一点。
将错综复杂的实例问题抽象概括成数学数字,再将其按要求进行求解得出结果,当然还有对结果的检验与分析也是不可少的。
在这一系列的操作过程中,不仅可以体会到数学问题求解的严谨和规范,同时也有对运筹学解决问题的喜悦。
通过一个学期的实验学习,我对有关运筹学建模问题有了更深刻的认识和把握;对运筹学的有关知识点也有了进一步的学习和掌握,下面是我的一些实验心得和体会。
对于这种比较难偏理的学科来说确实是的,而且往往老师也很难把这么复杂的又与实际生活联系的我们又没亲身经历过的问题分析的比较透彻,所以很多同学从一开始听不懂就放弃了。
但对于上课认真听讲,课后认真复习并且做相应习题的同学来说,学好它也不是一件难事,应该比较有把握的,毕竟题目是百变不离其中的,这也是这门课的好处。
对我而言学习运筹学,并没有把它当作是一件难事,以平常心对待。
它更多的是联系实际,对一步步的推论推理过程,我个人认为是比较有挑战性的,所以我也用心学好它。
其实学习这门课时,大家压力还是比较大的,老担心期末会挂,至少我身边有很多同学是这样的,因为一打开书就可以看到很多复杂的图形,一个个步骤也更是吓人,有的题目甚至要解好几页。
就因为这样,我课上就比较注重听讲,尽量把每道题目的关键都听懂,有的不是很清楚的及时向人问完并记下要点,这样也方便自己课后仔细想这道题的解法。
因为这门不象其他课上课不听还可以蒙混过关,对于一连串的解题思路只有经过分析才会明白,因为一点不明白有可能导致整个题目前功尽弃。
在平时做作业时我会认真分析老师提供给我们的答案的解题思路,在不懂的地方记一下,抽时间问老师问同学,以便在能掌握好所学内容。
因为考试的时候还是要求我们把自己的思路、步骤写清楚。
毕竟这门课程学习并不是只为了考试,它与以后生活也是息息相关的。
总之,对于这门课千万不能被书厚、人家说很难等外部因素所影响,以至放弃学习,要知道不同的科目对于不同的人来说是不一样的,也许你刚好会擅长这门课。
当然这是次要的,我只是想说明不要怕这门课,其实学好它很简单,只要上课思路跟着老师走,下课多复习,把不懂的弄懂,作好相应的习题,要取得好成绩并非不可能。
同样对于数学基础不是很好的同学来说,千万不要害怕,多听,多想,多问是最好的解决方法。
在一学期为数不多的实验过程中,不仅对运筹学的有关知识有了进一步的掌握,同时对在自己的计算机操作水准也有了很大的提高。
课程的学习很快过去,但它对我们掌握运筹学建模问题的要求却并没有随课程的结束而结束。
因此在以后的学习当中我们更应该时刻温习,不时巩固,以达到知新的效果。
以上就是我的一些感悟,希望可以对自己有所帮助。
运筹学是一门具有多科学交叉特点的边缘科学,至今没有一个统一的定义。
综合种种定义,本书从直观、明了的角度将运筹学定义为:“通过构建、求解数学模型,规划、优化有限资源的合理利用,为科学决策提供量化一句的系统知识体系。
”线性规划解决的是:在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。
其数学模型有目标函数和约束条件组成。
解决线性规划问题的关键是找出他的目标函数和约束方程,并将它们转化为标准形式。
简单的设计2个变量的线性规划问题可以直接运用图解法得到。
但是往往在现实生活中,线性规划问题涉及到的变量很多,很难用作图法实现,但是运用单纯形法记比较方便。
单纯形法的发展很成熟应用也很广泛,在运用单纯形法时,需要先将问题化为标准形式,求出基可行解,列出单纯形表,进行单纯形迭代,当所有的变量检验数不大于零,且基变量中不含人工变量,计算结束。
将所得的量的值代入目标函数,得出最优值。
每一个线性规划问题都有和它伴随的另一个问题,若一个问题称为原问题,则另一个称为其对偶问题,原问题和对偶问题有着非常密切的关系,以至于可以根据一个问题的最优解,得出另一个问题的最优解的全部信息。
对偶问题有:对称形式下的对偶问题和非对称形式下的对偶问题。
非对称形式下的对偶问题需要将原问题变形为标准形式,然后找出标准形式的对偶问题。
因为对偶问题存在特殊的基本性质,所以我们在解决实际问题比较困难时可以将其转化成其对偶问题进行求解。
运输问题是解决多个产地和多个销地之间的同品种物品的规划问题。
根据运输问题的独特性,一般采用一种简单而有效的方法:表上作业法。
表上作业法先找出运输问题的基可行解,方法有:最小元素法、西北角法、沃格尔法。
其中沃格尔法得出的解最接近最优解。
然后利用闭回路法或对偶变量法对得到解进行最优性判别。
当检验的结果为非最优解时,进行解的改进,然后再进行最优性判别,直到所有的非基变量检验数全非负,得到最优解。
在解决运输问题时会遇到产销不平衡的情况,在该情况下,要将该问题转化为产销平衡问题,只需增加一个假象的产地或销地,并将表示该地的变量在目标函数中的系数设为零即可。
整数规划是解决决策变量只能取整数的规划问题,整数规划的解法有割平面法和分支定界法。
整数规划中的0-1规划整数问题是一个非常有用的方法。
在实际问题中,该方法能够解决很多问题。
0-1整数规划的解决方法有枚举法和隐枚举法。
指派问题是0-1整数规划中的特例,学习理论的目的就是为了解决实际问题。
图论为计算机领域也奠定了基础,运筹学的计算方法可以借用计算机来完成。
线性规划的理论对我们的实际生活指导意义很大。
当我们遇到一个问题,需要认真考察该问题。
如果它适合线性规划的条件,那么我们就利用线性规划的理论解决该问题。
但是很多时候我们遇到的问题用线性规划解决耗时、准确度低或者根本无法用线性规划解决。
那么我们就要寻找别的理论方法来解决问题。
通过对运筹学的学习我掌握运筹学的基本概念、基本原理、基本方法和解题技巧,对于一些简单的问题可以根据实际问题建立运筹学模型及求解模型。
运筹学对我们以后的生活也讲有不小的影响,将运筹学运用到实际问题上去,学以致用。
以上就是我对本学期学习运筹学的总结和体会。
古人作战讲“夫运筹帷幄之中,决胜千里之外”。
在现代商业社会中,更加讲求运筹学的应用。
作为一名物流管理的学生,更应该能够熟练地掌握、运用运筹学的精髓,用运筹学的思维思考问题。
即:应用分析、试验、量化的办法,对现实生活中人、财、物等有限资源开展统筹部署。
本着这样的心态,在本学期运筹学即将结课之时,我得出以下关于运筹学的知识。
是虽上机考试没有通过,感到不安,但是我明白要将理论联系现实,才能更好的发挥。
线性筹划解决的是:在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。
其数学模型有目标函数和约束条件组成。
一个问题要满足一下条件时才能归结为线性筹划的模型:⑴规定解的问题的目标能用效益指标度量大小,并能用线性函数描述目标的规定;⑵为达到这个目标存在不少种方案;⑶要到达的目标是在一定约束条件下实现的,这些条件可以用线性等式或者不等式描述。
解决线性筹划问题的关键是找出他的目标函数和约束方程,并将它们转化为标准形式。
简单的设计2个变量的线性筹划问题可以直接运用图解法得到。
但是往往在现实生活中,线性筹划问题涉及到的变量不少,很难用作图法实现,但是运用单纯形法记比较方便。
单纯形法的成长很成熟应用也很广泛,在运用单纯形法时,需要先将问题化为标准形式,求出基可行解,列出单纯形表,开展单纯形迭代,当所有的变量检验数不大于零,且基变量中不含人工变量,计算完毕。
将所得的量的值代入目标函数,得出最优值。
遇到评价同类型的组织的工作绩效相对有效性的问题时,可以用数据包络开展分析,运用数据包络分析的的决策单元要有相同的投入和相投的产出。
对偶理论:其基本思想是每一个线性筹划问题都涉及一个与其对偶的问题,在求一个解的时候,也同时给出另一问题的解。
对偶问题有:对称形式下的对偶问题和非对称形式下的对偶问题。
非对称形式下的对偶问题需要将原问题变形为标准形式,然后找出标标准形式的对偶问题。
因为对偶问题存在特殊的基本性质,所以我们在解决现实问题比较困难时可以将其转化成其对偶问题开展求解。
灵敏度分析:分析在线性筹划问题中,一个或几个参数的变化对最优解的影响问题。
可以分析目标函数中变量系数、约束条件的右端项、增加一个约束变量、增加一个约束条件、约束条件的系数矩阵中的参数值等的变化。
如果将问题转化为研究参数值在保持最优解或最优基不变时的允许范围或改变到某一值时对问题最优解的影响时,就属于参数线性筹划的内容。
运输问题是解决多个产地和多个销地之间的同品种物品的筹划问题。
根据运输问题的独特性,一般采用一种简单而有效的办法:表上作业法。
表上作业法先找出运输问题的基可行解,办法有:最小元素法、西北角法、沃格尔法。
其中沃格尔法得出的解最接近最优解。
然后利用闭回路法或对偶变量法对得到解开展最优性判别。
当检验的结果为非最优解时,开展解的改进,然后再开展最优性判别,直到所有的非基变量检验数全非负,得到最优解。
在解决运输问题时会遇到产销不平衡的情况,在该情况下,要将该问题转化为产销平衡问题,只需增加一个假象的产地或销地,并将表示该地的变量在目标函数中的系数设为零即可。
整数筹划是解决决策变量只能取整数的筹划问题,整数筹划的解法有割平面法和分支定解法。
整数筹划中的0-1筹划整数问题是一个非常有用的办法。
在现实问题中,该办法能够解决不少问题。
0-1整数筹划的解决办法有枚举法和隐枚举法。
指派问题是0-1整数筹划中的特例,现在采用的解法一般为匈牙利法,由于指派问题的特殊性,使用匈牙利法可以有效的减少计算量。
学习理论的目的就是为了解决现实问题。
线性筹划的理论对我们的现实生活指导意思很大。
当我们遇到一个问题,需要认真考察该问题。
如果它适合线性筹划的条件,那么我们就利用线性筹划的理论解决该问题。
但是不少时候我们遇到的问题用线性筹划解决耗时、准确度低或者根本无法用线性筹划解决。
那么我们就要寻找别的理论办法来解决问题,即:非线性筹划。
关于非线性筹划的理论还没有深入学习,暂将我的学习所得开展到此。