初三上册数学期中考试试卷及答案完整版

合集下载

九年级第一学期期中考试数学试卷(含参考答案)

九年级第一学期期中考试数学试卷(含参考答案)

九年级第一学期期中考试数学试卷(含参考答案)学校:___________班级:___________姓名:___________考号:___________一、选择题:本大题共10小题,每小题3分,共30分.1.在下列方程中是一元二次方程的是()A.x2-2x y+y2=0B. x2-2x=3C. x(x +3)= x2-1D. x + =02.将二次函数y= x2的图象向右平移2个单位,再向上平移1个单位,所得图象的表达式是()A.y=(x- 2)2+1B.y= (x +2)2+1C. (x- 2)2-1D.y= (x +2)2- 13.一元二次方程x2-2x +5=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断4.对于二次函数y= - (x- 2)2-3,下列说法正确的是()B A.当x >0时,y随x的增大而增大 B.当x =2时,y有最大值- 3C.图象的顶点坐标为(-2,-7)D.图象与x轴有两个交点5.用配方法解方程x2- 6x- 3=0时,原方程应变形为()A. (x +3)2=3B. (x +3)2=12C. (x- 3)2=3D. (x- 3)2=126.已知函数y=(x- 1)2+2,当函数值y随x的增大而减小时,x的取值范围是()A x <1 B. x >1 C. x >-2 D. - 2< x <47.若x1,x2是一元二次方程2x2- 9x +4=0的两根,则x1+ x2的值是()A. - 2B.2C.D. - 28.二次函数y=ax2+b x+c(a≠0)的图像如图所示,则函数值y>0时,x的取值范围是()A. x <-1B. x >3C. -1< x <3D. x <-1 或x >3第8题图第10题图9.某经济开发区,今年一月份工业产值达50亿元,第一季度总产值为175 亿元,二月、三月平均增长率是多少?若设平均每月的增长率为x,根据题意,可列方程为()A.50(1+x)2=175B.50+50(1+x)+50(1+x)2=175C.50 (1+x) +50(1+x)2= 175D.50+50(1+x)2=17510.已知二次函数y=ax2+b x+c(a≠0)的图像如图所示,对称轴为直线x=2.则下列结论中正确的是()A a bc>0 B.4a-b=0 C.9a+3b+c<0 D.5a+c>0二、填空题:本大题共5小题,每小题3分,共15分.11.方程x2= x的解是____________12.当k______时,y=( k +3)x2- k x+2是关于x的二次函数.13.抛物线y=2(x +1)2-3,的顶点坐标为________,对称轴为直线______14.已知x=1是方程x2+ax-b=0的一个根,则a-b+2023=_____15如图,一段抛物线:y=-x(x -2)(0≤x≤2),记为C1,它与x轴交于点O,A1;将C绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C6,若P(11,m)在第6段抛物线C6上,则m的值为=____三、解答题(一):本大题共3小题,第16 题10分,第17、18题7分,共24分.16.计算:用适当方法解方程:(1)(x +1)2=5x+5 (2)x2- 4x- 5=017.某次聚会上,同学们互相送照片,每人给每个同学一张照片,一共送出90张照片,问一共有多少位同学参加了聚会?18.已知抛物线y= x2- 2x- 3.(1)求抛物线与两坐标轴的交点坐标(2)求它的顶点坐标。

2024年最新人教版九年级数学(上册)期中考卷及答案(各版本)

2024年最新人教版九年级数学(上册)期中考卷及答案(各版本)

2024年最新人教版九年级数学(上册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4y = 7B. 2x 3y = 5C. 4x + 5y = 9D. 5x 6y = 84. 下列各式中,正确的是()A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + b^2 = c^2D. a^2 b^2 = c^25. 下列各式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a b)^2 = a^2 2ab +b^2 C. (a + b)^2 = a^2 2ab + b^2 D. (a b)^2 = a^2 + 2ab +b^26. 下列各式中,正确的是()A. (a + b)(c + d) = ac + ad + bc + bdB. (a b)(c d) =ac ad bc + bd C. (a + b)(c d) = ac + ad bc bd D. (ab)(c + d) = ac ad + bc bd7. 下列各式中,正确的是()A. a^3 + b^3 = (a + b)(a^2 ab + b^2)B. a^3 b^3 = (a b)(a^2 + ab + b^2)C. a^3 + b^3 = (a b)(a^2 ab + b^2)D.a^3 b^3 = (a + b)(a^2 + ab + b^2)8. 下列各式中,正确的是()A. a^4 b^4 = (a + b)(a^2 ab + b^2)B. a^4 b^4 = (a b)(a^2 + ab + b^2)C. a^4 b^4 = (a + b)(a^2 + ab + b^2)D. a^4 b^4 = (a b)(a^2 ab + b^2)9. 下列各式中,正确的是()A. (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3B. (a b)^3 =a^3 3a^2b + 3ab^2 b^3 C. (a + b)^3 = a^3 3a^2b + 3ab^2 + b^3 D. (a b)^3 = a^3 + 3a^2b 3ab^2 b^310. 下列各式中,正确的是()A. (a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4B. (a b)^4 = a^4 4a^3b + 6a^2b^2 4ab^3 + b^4C. (a + b)^4 = a^4 4a^3b + 6a^2b^2 + 4ab^3 + b^4D. (a b)^4 = a^4 + 4a^3b6a^2b^2 4ab^3 + b^4二、填空题(每题4分,共40分)11. 若一个数的平方根是±3,则这个数是_________。

人教版九年级上册《数学》期中考试卷及答案【可打印】

人教版九年级上册《数学》期中考试卷及答案【可打印】

人教版九年级上册《数学》期中考试卷及答案一、选择题:每题1分,共5分1. 若 a > b,则 a c 与 b c的大小关系是()A. a c > b cB. a c < b cC. a c = b cD. 无法确定2. 下列函数中,奇函数是()A. y = x^2B. y = x^3C. y = |x|D. y = sin(x)3. 已知三角形ABC中,sinA = 1/2,cosB = √3/2,则∠C的度数是()A. 30°B. 45°C. 60°D. 90°4. 一辆汽车以每小时60公里的速度行驶,行驶了2小时后,汽车行驶的路程是()A. 120公里B. 120千米C. 120米D. 无法确定5. 下列数列中,等差数列是()A. 1, 3, 5, 7, 9B. 1, 3, 6, 10, 15C. 1, 2, 4, 8, 16D. 1, 2, 4, 7, 11二、判断题:每题1分,共5分1. 任何两个奇数的和都是偶数。

()2. 两条平行线的斜率相等。

()3. 任何数乘以0都等于0。

()4. 三角形的内角和等于180°。

()5. 两个负数相乘的结果是正数。

()三、填空题:每题1分,共5分1. 一个正方形的边长是4,它的面积是______。

2. 若 a = 3,b = 2,则 a b = ______。

3. 2的平方根是______。

4. 已知sinθ = 1/2,则θ的度数是______。

5. 下列数列的通项公式是 an = ______。

四、简答题:每题2分,共10分1. 简述等差数列和等比数列的定义。

2. 解释正弦函数和余弦函数的定义。

3. 解释勾股定理,并给出一个应用勾股定理的例子。

4. 简述平行线的性质。

5. 解释二次函数的图像特征。

五、应用题:每题2分,共10分1. 一辆汽车以每小时60公里的速度行驶,行驶了3小时后,汽车行驶的路程是多少?2. 一个等差数列的首项是1,公差是2,求第10项的值。

九年级(上)期中数学试卷附答案解析

九年级(上)期中数学试卷附答案解析

九年级(上)期中数学试卷一、选择题:(共10小题,每小题4分,满分40分,每小题只有一个正确选项,请将答案填入答题卷的相应位置)1.下列方程中一定是一元二次方程的是()A.x2=0 B.x+﹣2x2=0 C.ax2+bx+c=0 D.x2+2y+3=02.下列命题中,真命题是()A.对角线互相垂直且相等的四边形是菱形B.对角线相等的平行四边形是矩形C.对角线互相平分且相等的四边形是正方形D.对角线相等的四边形是矩形3.一个人做“抛硬币”的游戏,抛10次,正面出现4次,反面出现6次,正确的说法是()A.出现正面的频率是4 B.出现反面的频率是6C.出现反面的频数是60% D.出现反面的频率是60%4.已知C是线段AB的黄金分割点(AC>BC),则AC:AB=()A.(+1):2 B.(3+):2 C.(﹣1):2 D.(3﹣):25.顺次连接对角线相等的四边形的各边中点,所形成的四边形是()A.平行四边形B.菱形 C.矩形 D.正方形6.某品牌服装原价800元,连续两次降价x%后售价为512元,下面所列方程中正确的是()A.512(1+x%)2=800 B.800(1﹣2x%)=512 C.800(1﹣x%)2=512 D.800﹣2x%=5127.如图,在△ABC中,DE∥BC,,AE=4cm,则AC的长为()A.8cm B.10cm C.11cm D.12cm8.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()A.N处 B.P处C.Q处 D.M处9.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E 为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(6,0)B.(6,3)C.(6,5)D.(4,2)10.如果关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是()A.k<B.k<且k≠0C.﹣≤k<D.﹣≤k<且k≠0二、填空题:(共6小题,每小题4分,满分24分.请将答案填入答题卷的相应位置)11.一个六边形的边长分别为3、4、5、6、7、8,另一个与它相似的六边形的最短边长是6,则其最大边长是.12.关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,则a的值是.13.已知a,b,c,d是成比例线段,其中a=3cm,b=2cm,c=6cm,求线段d的长为.14.已知Rt△ABC中,∠ABC=90°,BD是斜边AC上的中线,若BD=3cm,则AC=cm.15.如图,要使△ABC∽△ACD,需补充的条件是.(只要写出一种)16.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是(填序号)三、解答题:(共7小题,满分86分.请将解答过程写在答题卷的相应位置.作图或添辅助线用铅笔画完,需用水笔再描黑.)17.解下列方程:(1)x2﹣2x=0(2)2(x+1)2﹣8=0(3)x2﹣4x+3=0(4)(2x+1)2=3(2x+1)18.如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.19.三张卡片的正面分别写有数字2,5,5,卡片除数字外完全相同,将它们洗匀后,背面朝上放置在桌面上.(1)从中任意抽取一张卡片,该卡片上数字是5的概率为;(2)学校将组织部分学生参加夏令营活动,九年级(1)班只有一个名额,小刚和小芳都想去,于是利用上述三张卡片做游戏决定谁去,游戏规则是:从中任意抽取一张卡片,记下数字放回,洗匀后再任意抽取一张,将抽取的两张卡片上的数字相加,若和等于7,小钢去;若和等于10,小芳去;和是其他数,游戏重新开始.你认为游戏对双方公平吗?请用画树状图或列表的方法说明理由.20.如图,在Rt△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连结EC.(1)求证:AD=EC;(2)求证:四边形ADCE是菱形;(3)若AB=AO,求的值.21.某市百货大楼服装柜在销售中发现:“七彩”牌童装平均每天可售出20件,每件盈利40元.为了迎接元旦,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?22.如图1,在正方形ABCD中,点E为BC上一点,连接DE,把△DEC沿DE折叠得到△DEF,延长EF交AB于G,连接DG.(1)求∠EDG的度数.(2)如图2,E为BC的中点,连接BF.①求证:BF∥DE;②若正方形边长为6,求线段AG的长.23.在矩形ABCD中,点E是边CD上任意一点(点E与点C、D不重合),过点A作AF ⊥AE,交边CB的延长线于点F,连接EF,与边AB相交于点G.(1)如果AD:AB=1:1(如图1),判断△AEF的形状,并说明理由;(2)如果AD:AB=1:2(如图2),当点E在边CD上运动时,判断出线段AE、AF数量关系如何变化,并说明理由;(3)如果AB=3,AD:AB=k,当点E在边CD上运动时,是否存在k值使△AEG为等边三角形?若存在,请直接写出k的值以及DE的长度.参考答案与试题解析一、选择题:(共10小题,每小题4分,满分40分,每小题只有一个正确选项,请将答案填入答题卷的相应位置)1.下列方程中一定是一元二次方程的是()A.x2=0 B.x+﹣2x2=0 C.ax2+bx+c=0 D.x2+2y+3=0【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、符合一元二次方程的定义,正确;B、不是整式方程,故错误.C、方程二次项系数可能为0,故错误;D、方程含有两个未知数,故错误;故选A.2.下列命题中,真命题是()A.对角线互相垂直且相等的四边形是菱形B.对角线相等的平行四边形是矩形C.对角线互相平分且相等的四边形是正方形D.对角线相等的四边形是矩形【考点】命题与定理.【分析】利用菱形的判定、矩形的判定及正方形的判定方法分别判断后即可确定正确的选项.【解答】解:A、对角线互相垂直且平分的四边形是菱形,故错误,是假命题;B、对角线相等的平行四边形是矩形,正确,是真命题;C、对角线互相平分且相等、垂直的四边形是正方形,故错误,是假命题;D、对角线相等的平行四边形是矩形,故错误,是假命题,故选B.3.一个人做“抛硬币”的游戏,抛10次,正面出现4次,反面出现6次,正确的说法是()A.出现正面的频率是4 B.出现反面的频率是6C.出现反面的频数是60% D.出现反面的频率是60%【考点】频数与频率.【分析】根据频率=频数÷数据总数,分别求出出现正面,反面的频率.【解答】解:∵某人抛硬币抛10次,其中正面朝上4次,反面朝上6次,∴出现正面的频率为=40%;出现反面的频率为60%.故选:D.4.已知C是线段AB的黄金分割点(AC>BC),则AC:AB=()A.(+1):2 B.(3+):2 C.(﹣1):2 D.(3﹣):2【考点】黄金分割.【分析】根据黄金比是进行解答即可.【解答】解:∵点C是线段AB的黄金分割点,(AC>BC),∴AC=AB,∴AC:AB=(﹣1):2.故选:C.5.顺次连接对角线相等的四边形的各边中点,所形成的四边形是()A.平行四边形B.菱形 C.矩形 D.正方形【考点】中点四边形.【分析】菱形,理由为:利用三角形中位线定理得到EF与HG平行且相等,得到四边形EFGH 为平行四边形,再由EH=EF,利用邻边相等的平行四边形是菱形即可得证.【解答】解:菱形,理由为:如图所示,∵E,F分别为AB,BC的中点,∴EF为△ABC的中位线,∴EF∥AC,EF=AC,同理HG∥AC,HG=AC,∴EF∥HG,且EF=HG,∴四边形EFGH为平行四边形,∵EH=BD,AC=BD,∴EF=EH,则四边形EFGH为菱形,故选B6.某品牌服装原价800元,连续两次降价x%后售价为512元,下面所列方程中正确的是()A.512(1+x%)2=800 B.800(1﹣2x%)=512 C.800(1﹣x%)2=512 D.800﹣2x%=512【考点】由实际问题抽象出一元二次方程.【分析】根据降价后的价格=原价(1﹣降低的百分率),本题可先用800(1﹣x%)表示第一次降价后商品的售价,再根据题意表示第二次降价后的售价,即可列出方程.【解答】解:当商品第一次降价x%时,其售价为800﹣800x%=800(1﹣x%);当商品第二次降价x%后,其售价为800(1﹣x%)﹣800(1﹣x%)x%=800(1﹣x%)2.∴800(1﹣x%)2=512.故选C.7.如图,在△ABC中,DE∥BC,,AE=4cm,则AC的长为()A.8cm B.10cm C.11cm D.12cm【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理得到∴=,则EC=2AE=8,然后计算AE+EC即可.【解答】解:∵DE∥BC,∴=,∴EC=2AE=8,∴AC=AE+EC=4+8=12(cm).故选D.8.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()A.N处 B.P处C.Q处 D.M处【考点】动点问题的函数图象.【分析】注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.【解答】解:当点R运动到PQ上时,△MNR的面积y达到最大,且保持一段时间不变;到Q点以后,面积y开始减小;故当x=9时,点R应运动到Q处.故选C.9.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E 为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(6,0)B.(6,3)C.(6,5)D.(4,2)【考点】相似三角形的判定;坐标与图形性质.【分析】根据相似三角形的判定:两边对应成比例且夹角相等的两三角形相似即可判断.【解答】解:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2.A、当点E的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE ∽△ABC,故本选项不符合题意;B、当点E的坐标为(6,3)时,∠CDE=90°,CD=2,DE=2,则AB:BC≠CD:DE,△CDE与△ABC不相似,故本选项符合题意;C、当点E的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=DE:CD,△EDC ∽△ABC,故本选项不符合题意;D、当点E的坐标为(4,2)时,∠ECD=90°,CD=2,CE=1,则AB:BC=CD:CE,△DCE ∽△ABC,故本选项不符合题意;故选:B.10.如果关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是()A.k<B.k<且k≠0C.﹣≤k<D.﹣≤k<且k≠0【考点】根的判别式.【分析】根据方程有两个不相等的实数根,则△>0,由此建立关于k的不等式,然后就可以求出k的取值范围.【解答】解:由题意知:2k+1≥0,k≠0,△=2k+1﹣4k>0,∴≤k<,且k≠0.故选:D.二、填空题:(共6小题,每小题4分,满分24分.请将答案填入答题卷的相应位置)11.一个六边形的边长分别为3、4、5、6、7、8,另一个与它相似的六边形的最短边长是6,则其最大边长是16.【考点】相似多边形的性质.【分析】根据相似多边形的对应边的比相等可得.【解答】解:两个相似的六边形,一个最短边长是3,另一个最短边长为6,则相似比是3:6=1:2,根据相似六边形的对应边的比相等,设后一个六边形的最大边长为x,则8:x=1:2,解得:x=16.即后一个六边形的最大边长为16.故答案为16.12.关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,则a的值是﹣1.【考点】一元二次方程的解.【分析】根据一元二次方程的解的定义,将x=0代入已知方程就可以求得a的值.注意,二次项系数a﹣1≠0.【解答】解:∵关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,∴x=0满足该方程,且a﹣1≠0.∴a2﹣1=0,且a≠1.解得a=﹣1.故答案是:﹣1.13.已知a,b,c,d是成比例线段,其中a=3cm,b=2cm,c=6cm,求线段d的长为4cm.【考点】比例线段.【分析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad=cb,将a,b及c的值代入即可求得d.【解答】解:已知a,b,c,d是成比例线段,根据比例线段的定义得:ad=cb,代入a=3cm,b=2cm,c=6cm,解得:d=4,则d=4cm.故答案为:4cm.14.已知Rt△ABC中,∠ABC=90°,BD是斜边AC上的中线,若BD=3cm,则AC=6cm.【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半可得AC=2BD.【解答】解:∵BD是斜边AC上的中线,∴AC=2BD=2×3=6cm.故答案为:6.15.如图,要使△ABC∽△ACD,需补充的条件是∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB.(只要写出一种)【考点】相似三角形的判定.【分析】要使两三角形相似,已知有一组公共角,则可以再添加一组角相等或添加该角的两边对应成比例.【解答】解:∵∠DAC=∠CAB∴当∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB时,△ABC∽△ACD.16.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是①④(填序号)【考点】相似三角形的判定与性质;含30度角的直角三角形;翻折变换(折叠问题).【分析】由条件可得∠APE=30°,则∠PEF=∠BEF=60°,可得EF=2BE,PF=PE,EF=2BE=4EQ,从而可判断出正确的结论.【解答】解:由折叠可得PE=BE,PF=BF,∠PEF=∠BEF,∠EFB=∠EFP,∵AE=AB,∴BE=PE=2AE,∴∠APE=30°,∴∠PEF=∠BEF=60°,∴∠EFB=∠EFP=30°,∴EF=2BE,PF=PE,∴①正确,②不正确;又∵EF⊥BP,∴EF=2BE=4EQ,∴③不正确;又∵PF=BF,∠BFP=2∠EFP=60°,∴△PBF为等边三角形,∴④正确;所以正确的为①④,故答案为:①④.三、解答题:(共7小题,满分86分.请将解答过程写在答题卷的相应位置.作图或添辅助线用铅笔画完,需用水笔再描黑.)17.解下列方程:(1)x2﹣2x=0(2)2(x+1)2﹣8=0(3)x2﹣4x+3=0(4)(2x+1)2=3(2x+1)【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法.【分析】(1)先分解因式,即得出两个一元一次方程,求出方程的解即可;(2)先分解因式,即得出两个一元一次方程,求出方程的解即可;(3)先分解因式,即得出两个一元一次方程,求出方程的解即可;(4)移项后分解因式,即得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x2﹣2x=0,x(x﹣2)=0,x=0,x﹣2=0,x1=0,x2=2;(2)2(x+1)2﹣8=0,2(x+1+2)(x+1﹣2)=0,x+1+2=0,x+1﹣2=0,x1=﹣3,x2=1;(3)x2﹣4x+3=0,(x﹣3)(x﹣1)=0,x﹣3=0,x﹣1=0,x1=3,x2=1;(4)(2x+1)2=3(2x+1),(2x+1)2﹣3(2x+1)=0,(2x+1)(2x+1﹣3)=0,2x+1=0,2x+1﹣3=0,x1=﹣,x2=1.18.如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.【考点】相似三角形的判定与性质.【分析】(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.【解答】(1)证明:∵CD是边AB上的高,∴∠ADC=∠CDB=90°,∵=.∴△ACD∽△CBD;(2)解:∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.19.三张卡片的正面分别写有数字2,5,5,卡片除数字外完全相同,将它们洗匀后,背面朝上放置在桌面上.(1)从中任意抽取一张卡片,该卡片上数字是5的概率为;(2)学校将组织部分学生参加夏令营活动,九年级(1)班只有一个名额,小刚和小芳都想去,于是利用上述三张卡片做游戏决定谁去,游戏规则是:从中任意抽取一张卡片,记下数字放回,洗匀后再任意抽取一张,将抽取的两张卡片上的数字相加,若和等于7,小钢去;若和等于10,小芳去;和是其他数,游戏重新开始.你认为游戏对双方公平吗?请用画树状图或列表的方法说明理由.【考点】游戏公平性;概率公式;列表法与树状图法.【分析】(1)根据三张卡片的正面分别写有数字2,5,5,再根据概率公式即可求出答案;(2)根据题意列出图表,再根据概率公式求出和为7和和为10的概率,即可得出游戏的公平性.【解答】解:(1)∵三张卡片的正面分别写有数字2,5,5,卡片除数字外完全相同,∴从中任意抽取一张卡片,该卡片上数字是5的概率为:;故答案为:;(2)根据题意列表如下:2 5 52 (2,2)(4)(2,5)(7)(2,5)(7)5 (5,2)(7)(5,5)(10)(5,5)(10)5 (5,2)(7)(5,5)(10)(5,5)(10)∵共有9种可能的结果,其中数字和为7的共有4种,数字和为10的共有4种,∴P(数字和为7)=,P(数字和为10)=,∴P(数字和为7)=P(数字和为10),∴游戏对双方公平.20.如图,在Rt△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连结EC.(1)求证:AD=EC;(2)求证:四边形ADCE是菱形;(3)若AB=AO,求的值.【考点】四边形综合题;直角三角形斜边上的中线;三角形中位线定理;平行四边形的判定与性质;菱形的判定与性质.【分析】(1)先判定四边形ABDE为平行四边形,再判定四边形ADCE为平行四边形,即可得出AD=EC;(2)根据四边形ADCE为平行四边形,且AD=CD,即可得出平行四边形ADCE为菱形;(3)先判定OD为△ABC的中位线,得出,再根据AB=AO,得出即可.【解答】解:(1)证明:∵AE∥BC,DE∥AB,∴四边形ABDE为平行四边形,∴AE=BD,∵在Rt△ABC中,AD是斜边BC上的中线,∴AD=CD=BD,∴AE=CD,又∵AE∥CD,∴四边形ADCE为平行四边形,∴AD=EC;(2)由(1)可知,四边形ADCE为平行四边形,且AD=CD,∴平行四边形ADCE为菱形;(3)∵四边形ADCE为平行四边形,∴AC与ED互相平分,∴点O为AC的中点,∵AD是边BC上的中线,∴点D为BC边中点,∴OD为△ABC的中位线,∴,∵AB=AO,∴,即的值为.21.某市百货大楼服装柜在销售中发现:“七彩”牌童装平均每天可售出20件,每件盈利40元.为了迎接元旦,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?【考点】一元二次方程的应用.【分析】设每件童装应降价x元,原来平均每天可售出20件,每件盈利40元,后来每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,由此即可列出方程(40﹣x)(20+2x)=1200,解方程就可以求出应降价多少元.【解答】解:设每件童装应降价x元,则(40﹣x)(20+2x)=1200,解得x1=10,x2=20,因为扩大销售量,增加盈利,减少库存,所以x只取20.答:每件童装应降价20元.22.如图1,在正方形ABCD中,点E为BC上一点,连接DE,把△DEC沿DE折叠得到△DEF,延长EF交AB于G,连接DG.(1)求∠EDG的度数.(2)如图2,E为BC的中点,连接BF.①求证:BF∥DE;②若正方形边长为6,求线段AG的长.【考点】正方形的性质;翻折变换(折叠问题).【分析】(1)由正方形的性质可得DC=DA.∠A=∠B=∠C=∠ADC=90°,由折叠的性质得出∠DFE=∠C,DC=DF,∠1=∠2,再求出∠DFG=∠A,DA=DF,然后由“HL”证明Rt△DGA≌Rt△DGF,由全等三角形对应角相等得出∠3=∠4,得出∠2+∠3=45°即可;(2)①由折叠的性质和线段中点的定义可得CE=EF=BE,∠DEF=∠DEC,再由三角形的外角性质得出∠5=∠DEC,然后利用同位角相等,两直线平行证明即可;②设AG=x,表示出GF、BG,根据点E是BC的中点求出BE、EF,从而得到GE的长度,再利用勾股定理列出方程求解即可;【解答】(1)解:如图1所示:∵四边形ABCD是正方形,∴DC=DA.∠A=∠B=∠C=∠ADC=90°,∵△DEC沿DE折叠得到△DEF,∴∠DFE=∠C,DC=DF,∠1=∠2,∴∠DFG=∠A=90°,DA=DF,在Rt△DGA和Rt△DGF中,,∴Rt△DGA≌Rt△DGF(HL),∴∠3=∠4,∴∠EDG=∠3+∠2=∠ADF+∠FDC,=(∠ADF+∠FDC),=×90°,=45°;(2)①证明:如图2所示:∵△DEC沿DE折叠得到△DEF,E为BC的中点,∴CE=EF=BE,∠DEF=∠DEC,∴∠5=∠6,∵∠FEC=∠5+∠6,∴∠DEF+∠DEC=∠5+∠6,∴2∠5=2∠DEC,即∠5=∠DEC,∴BF∥DE;②解:设AG=x,则GF=x,BG=6﹣x,∵正方形边长为6,E为BC的中点,∴CE=EF=BE=×6=3,∴GE=EF+GF=3+x,在Rt△GBE中,根据勾股定理得:(6﹣x)2+32=(3+x)2,解得:x=2,即线段AG的长为2.23.在矩形ABCD中,点E是边CD上任意一点(点E与点C、D不重合),过点A作AF ⊥AE,交边CB的延长线于点F,连接EF,与边AB相交于点G.(1)如果AD:AB=1:1(如图1),判断△AEF的形状,并说明理由;(2)如果AD:AB=1:2(如图2),当点E在边CD上运动时,判断出线段AE、AF数量关系如何变化,并说明理由;(3)如果AB=3,AD:AB=k,当点E在边CD上运动时,是否存在k值使△AEG为等边三角形?若存在,请直接写出k的值以及DE的长度.【考点】四边形综合题.【分析】(1)由AD:AB=1:1可以得出四边形ABCD是正方形,由其性质就可以得出△ABF≌△ADE,从而得出AF=AE,得出△AEF的形状;(2)根据条件可以得出△ABF∽△ADE,由相似三角形的性质就可以得出结论;(3)如图3,当△AEG是等边三角形时,由勾股定理就可以表示出AG、AE、FG,BG的值建立方程求出k值,就可以求出DE的长度.【解答】解:(1)△AEF为等腰直角三角形理由:如图1,∵AD:AB=1:1,∴AD=AB.∵四边形ABCD是矩形,∴∠D=∠ABF=∠BAD=90°.∵AF⊥AE,∴∠FAE=90°,∴∠FAE=∠BAD,∴∠FAE﹣∠BAE=∠BAD﹣∠BAE,即∠BAF=∠DAE.在△ABF和△DAE中,,∴△ABF≌△ADE,∴AF=AE,∴△AEF为等腰直角三角形;(2)如图2,∵四边形ABCD是矩形,∴∠D=∠ABF=∠BAD=90°∵AF⊥AE,∴∠FAE=90°,∴∠FAE=∠BAD,∴△ABF∽△ADE,∴.∵,∴,即AF=2AE;(3)∵四边形ABCD是矩形,∴∠D=∠ABF=∠BAD=90°∵AF⊥AE,∴∠FAE=90°.∵△AEG是等边三角形,∴AE=AG,∠GAE=∠AEG=60°.∴∠FAG=∠DAE=∠AFE=30°,∴AG=FG.∵AB=3,AD:AB=k,∴AD=3k.在Rt△ADE中由勾股定理,得DE=k,AE=2k,∴AG=FG=2k,∴BG=k.∵AB=3,∴GB=3﹣2k,∴k=3﹣2k,解得:k=,∴DE=1.答:k=,DE=1.。

人教版九年级上册数学期中考试试卷附答案

人教版九年级上册数学期中考试试卷附答案

人教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下列图形是中心对称图形的是()A.B.C.D.2.⊙O的半径为8,圆心O到直线l的距离为4,则直线l与⊙O的位置关系是A.相切B.相交C.相离D.不能确定3.下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0B.x2=x C.x2+3=2x D.(x﹣1)2+1=0 4.S型电视机经过连续两次降价,每台售价由原来的1500元降到了980元.设平均每次降价的百分率为x,则下列方程中正确的是A.1500(1+x)2=980B.980(1+x)2=1500C.1500(1-x)2=980D.980(1-x)2="1500"5.如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是()A.40°B.50°C.70°D.80°6.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°7.如图,在△ABC中,AB=AC=2,以AB为直径的⊙O与BC交于点D,点E在 ⊙O上,且∠DEA=30°,则CD的长为()A 3B .3C .3D .28.二次函数=B 2+B 的图象如图,若一元二次方程B 2+B +=0有实数根,则m 的最大值为()A .-3B .3C .5D .99.如图,已知矩形ABCD 中,AB =4cm ,BC =8cm .动点P 在边BC 上从点B 向C 运动,速度为1cm /s ;同时动点Q 从点C 出发,沿折线C →D →A 运动,速度为2cm /s .当一个点到达终点时,另一个点随之停止运动。

设点P 运动的时间为t (s ),△BPQ 的面积为S (cm 2),则描述S (cm 2)与时间t (s )的函数关系的图象大致是()A .B .C .D .10.已知二次函数2y ax c =+,当1x =时,42y -≤≤-,当2x =时,12y -≤≤,则当3x=时,y的取值范围为()A.2123y≤≤B.2103y≤≤C.293y≤≤D.19y≤≤二、填空题11.如果点P(4,﹣5)和点Q关于原点对称,则点Q的坐标为_____.12.将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线的函数关系式为_____________.13.已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____.14.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加______m.15.如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C 旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为_____.三、解答题16.解方程:(1)3x2+6x﹣5=0(2)x2+2x﹣24=017.如图,图中每个小方格都是边长为1个单位长度的正方形,△ABC在方格纸中的位置如图所示.(1)请在图中建立平面直角坐标系,使得A,B两点的坐标分别为A(2,﹣1),B(1,﹣4),并写出C点坐标;(2)在图中作出△ABC绕坐标原点旋转180°后的△A1B1C1,并写出A1,B1,C1的坐标;(3)在图中作出△ABC绕坐标原点顺时针旋转90°后的△A2B2C2,并写出A2,B2,C2的坐标.18.已知二次函数y=﹣12x2+3x﹣52(1)用配方法求出函数图象的顶点坐标和对称轴方程;(2)用描点法在如图所示的平面直角坐标系中画出该函数的图象;(3)根据图象,直接写出y的值小于0时,x的取值范围.19.如图,在△ABC中,AB=AC,以AB为直径的 ⊙O分别交AC于点D,交BC于点E,连接ED.(1)求证:ED=EC;(2)填空:①设CD的中点为P,连接EP,则EP与⊙O的位置关系是;②连接OD,当∠B的度数为时,四边OBED是菱形.20.如图,E点是正方形ABCD的边BC上一点,AB=12,BE=5,△ABE逆时针旋转后能够与△ADF重合.(1)旋转中心是,旋转角为度;(2)△AEF是三角形;(3)求EF的长.21.河北内丘柿饼加工精细,色泽洁白,肉质柔韧,品位甘甜,在国际市场上颇具竞争力.上市时,外商王经理按市场价格10元/千克在内丘收购了2000千克柿饼存放入冷库中.据预测,柿饼的市场价格每天每千克将上涨0.5元,但冷库存放这批柿饼时每天需要支出各种费用合计320元,而且柿饼在冷库中最多保存80天,同时,平均每天有8千克的柿饼损坏不能出售.(1)若存放x天后,将这批柿饼一次性出售,设这批柿饼的销售总金额为y元,试写出y与x之间的函数关系式;(2)王经理想获得利润20000元,需将这批柿饼存放多少天后出售?(利润=销售总金额﹣收购成本﹣各种费用)(3)王经理将这批柿饼存放多少天后出售可获得最大利润?最大利润是多少?22.在平面直角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.(1)求抛物线C1的表达式;(2)直接用含t的代数式表达线段MN的长;(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值.23.已知:如图,在⊙O中,弦AB与半径OE、OF交于点C、D,AC=BD,求证:(1)OC=OD:(2)A EB F.24.问题情境:如图①,P是⊙O外的一点,直线PO分别交⊙O于点A、B,可以发现P A 是点P到⊙O上的点的最短距离.(1)直接运用:如图②,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是弧CD上的一个动点,连接AP,则AP的最小值是.(2)构造运用:如图③,在边长为8的菱形ABCD中,∠A=60°,M是AD边的中点,N 是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,请求出A′C 长度的最小值.(3)综合运用:如图④,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,分别以1、2为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值等于.参考答案1.B【分析】由中心对称图形的定义判断即可.【详解】A、C、D中图形都不是中心对称图形,是轴对称图形,B中图形是中心对称图形,故选:B.【点睛】本题考查了中心对称图形的概念,理解中心对称图形的概念,能找到对称中心是解答的关键.2.B【分析】根据圆O的半径和圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.【详解】∵⊙O的半径为8,圆心O到直线L的距离为4,∵8>4,即:d<r,∴直线L与⊙O的位置关系是相交.故选B.3.B【详解】分析:根据一元二次方程根的判别式判断即可.详解:A、x2+6x+9=0.△=62-4×9=36-36=0,方程有两个相等实数根;B、x2=x.x2-x=0.△=(-1)2-4×1×0=1>0.方程有两个不相等实数根;C、x2+3=2x.x2-2x+3=0.△=(-2)2-4×1×3=-8<0,方程无实根;D、(x-1)2+1=0.(x-1)2=-1,则方程无实根;故选B.点睛:本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.4.C【解析】解:依题意得:第一次降价的售价为:1500(1-x),则第二次降价后的售价为:1500(1-x)(1-x)=1500(1-x)2,∴1500(1-x)2=980.故选C.5.D【解析】【分析】根据圆周角定理得出∠AOC=40°,进而利用垂径定理得出∠AOB=80°即可.【详解】∵∠ABC=20°,∴∠AOC=40°,∵AB是⊙O的弦,OC⊥AB,∴∠AOC=∠BOC=40°,∴∠AOB=80°,故选:D.【点睛】此题考查圆周角定理,关键是根据圆周角定理得出∠AOC=40°.6.C【分析】根据旋转的性质和三角形内角和解答即可.【详解】∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选C.【点睛】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.7.A【分析】连接AD,根据圆周角定理和含30°的直角三角形的性质解答即可.【详解】连接AD,∵∠DEA=30°,∴∠B=30°,∵AB是直径,∴∠ADB=90°,∵AB=2,∴BD ,∵AC =BA ,∠ADB =90°,∴CD =DB 故选:A .【点睛】考核知识点:圆周角定理.作好辅助线,利用圆周角定理和直角三角形性质解决问题是关键.8.B【解析】∵抛物线的开口向上,顶点纵坐标为-3,∴a >0,−24=-3,即b 2=12a ,∵一元二次方程ax 2+bx+m=0有实数根,∴△=b 2-4am≥0,即12a-4am≥0,即12-4m≥0,解得m≤3,∴m 的最大值为3.故选B.9.A【分析】先求出点P 在BC 边运动的时间,再求出Q 点在CD 边和AD 边运动的时间,然后分Q 点在CD 边运动和在AD 边运动两种情况分别计算出△BPQ 的面积即可得出图象.【详解】点P 在BC 边运动的时间为818()s ÷=Q 点在CD 边运动的时间为422()s ÷=,在AD 边运动的时间824()s ÷=当Q 点在CD 边运动时,即02t <≤时,211222BPQ S BP CQ t t t === 当Q 点在AD 边运动时,即26t <≤时,114222BPQ S BP CD t t === 则根据S (cm 2)与时间t (s )的函数关系式可知图象为A故选A【点睛】本题主要考查矩形中的动点问题,能够找到面积与时间之间的函数关系式是解题的关键.10.A【分析】由当x =1时,-4≤y ≤-2,当x =2时,-1≤y ≤2,将y =ax 2+c 代入得到关于a 、c 的两个不等式组,再设x =3时y =9a +c =m (a +c )+n (4a +c ),求出m 、n 的值,代入计算即可.【详解】解:由x =1时,-4≤y ≤-2得,-4≤a +c ≤-2…①,由x =2时,-1≤y ≤2得,-1≤4a +c ≤2…②,当x =3时,y =9a +c =m (a +c )+n (4a +c ),得491m n m n +=⎧⎨+=⎩,解得5383m n ⎧=-⎪⎪⎨⎪=⎪⎩,故10520()333a c ≤-+≤,8816(4)333a c -≤+≤,∴2123y ≤≤,故选:A .【点睛】本题考查了二元一次方程组的应用,以及二次函数性质的运用,熟练解不等式组是解答本题的关键.11.(﹣4,5)【分析】根据关于原点对称的点的坐标的性质即可作答.即:坐标符号都变.【详解】∵点P (4,﹣5)和点Q 关于原点对称,∴点Q 的坐标为(﹣4,5).故答案为:(﹣4,5).【点睛】考核知识点:关于原点对称的点的坐标.理解关于原点对称的点的坐标的特点是关键.12.25(1)1y x =-+-【分析】先确定出原抛物线的顶点坐标为(0,0),然后根据向左平移横坐标加,向下平移纵坐标减,求出新抛物线的顶点坐标,然后写出即可.【详解】抛物线251y x =-+的顶点坐标为(0,0),∵向左平移1个单位长度后,向下平移2个单位长度,∴新抛物线的顶点坐标为(-1,-2),∴所得抛物线的解析式是()2511y x =-+-.故答案为()2511y x =-+-.【点睛】本题主要考查的是函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图形的变化是解题的关键.13.2【解析】分析:设方程的另一个根为m ,根据两根之和等于-b a ,即可得出关于m 的一元一次方程,解之即可得出结论.详解:设方程的另一个根为m ,根据题意得:1+m=3,解得:m=2.故答案为2.点睛:本题考查了根与系数的关系,牢记两根之和等于-b a是解题的关键.14.-4【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把2y =-代入抛物线解析式得出水面宽度,即可得出答案.【详解】建立平面直角坐标系,设横轴x 通过AB ,纵轴y 通过AB 中点O 且通过C 点,则通过画图可得知O 为原点,抛物线以y 轴为对称轴,且经过A ,B 两点,OA 和OB 可求出为AB 的一半2米,抛物线顶点C 坐标为()0,2.通过以上条件可设顶点式22y ax =+,其中a 可通过代入A 点坐标()2,0.-代入到抛物线解析式得出:0.5a =-,所以抛物线解析式为20.52y x =-+,当水面下降2米,通过抛物线在图上的观察可转化为:当2y =-时,对应的抛物线上两点之间的距离,也就是直线2y =-与抛物线相交的两点之间的距离,可以通过把2y =-代入抛物线解析式得出:220.52x -=-+,解得:22x =±,所以水面宽度增加到42米,比原先的宽度当然是增加了42 4.故答案是:42 4.-【点睛】考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.15.4【分析】连接OE ,延长EO 交CD 于点G ,作OH ⊥B ′C ,由旋转性质知∠B ′=∠B ′CD ′=90°、AB =CD =5、BC =B ′C =4,从而得出四边形OEB ′H 和四边形EB ′CG 都是矩形且OE =OD =OC =2.5,继而求得CG =B ′E =OH 22222.5 1.5OC CH -=-=2,根据垂径定理可得CF的长.【详解】连接OE ,延长EO 交CD 于点G ,作OH ⊥B ′C 于点H ,A ′B ′与⊙O 相切,则∠OEB ′=∠OHB ′=90°,∵矩形ABCD 绕点C 旋转所得矩形为A ′B ′C ′D ′,∴∠B ′=∠B ′CD ′=90°,AB =CD =5、BC =B ′C =4,∴四边形OEB ′H 和四边形EB ′CG 都是矩形,OE =OD =OC =2.5,∴B ′H =OE =2.5,∴CH =B ′C ﹣B ′H =1.5,∴CG =B ′E =OH ===2,∵四边形EB ′CG 是矩形,∴∠OGC =90°,即OG ⊥CD ′,∴CF =2CG =4,故答案为:4.【点睛】考核知识点:旋转、切线性质、垂径定理.作好辅助线,利用垂径定理和勾股定理解决问题是关键.16.(1)x 1=﹣1+3,x 2=﹣1﹣3;(2)x 1=﹣6,x 2=4【分析】(1)用一元二次方程的求根公式求出方程的根.(2)用十字相乘法因式分解求出方程的根.【详解】(1)3x 2+6x ﹣5=0∵a =3,b =6,c =﹣5.△=36+60=96∴x =6966-∴x 1=﹣1+3,x 2=﹣1﹣3.(2)(x +6)(x ﹣4)=0∴x +6=0或x ﹣4=0∴x 1=﹣6,x 2=4.【点睛】考核知识点:解一元二次方程.掌握公式法和提公因式法是关键.17.(1)图形见解析,C (3,﹣3);(2)图形见解析,A 1(﹣2,1),B 1(﹣1,4),C 1(﹣3,3);(3)图形见解析,A 2(﹣1,﹣2),B 2(﹣4,﹣1),C 2(﹣3,﹣3)【分析】(1)根据已知点的坐标,画出坐标系,由坐标系确定C 点坐标;(2)由关于原点中心对称性画△A 1B 1C 1,可确定写出A 1,B 1,C 1的坐标;(3)根据网格结构找出点A 、B 、C 绕点O 顺时针旋转90°的对应点A 2,B 2,C 2的位置,画△A 2B 2C 2,可确定写出A 2,B 2,C 2的坐标.【详解】解:(1)坐标系如图所示,C (3,﹣3);(2)△A 1B 1C 1如图所示,A 1(﹣2,1),B 1(﹣1,4),C 1(﹣3,3);(3)△A 2B 2C 2如图所示,A 2(﹣1,﹣2),B 2(﹣4,﹣1),C 2(﹣3,﹣3).【点睛】考核知识点:画中心对称图形.理解中心对称图形的定义,利用中心对称性质进行画图是关键.18.(1)函数图象的顶点坐标是(3,2),对称轴是直线x=3;(2)见解析;(3)x<1或x >5【分析】(1)根据配方法可以将题目中的函数解析式化为顶点式,从而可以写出顶点坐标和对称轴方程;(2)根据题目中函数解析式可以画出相应的函数图象;(3)根据(2)中的函数图象可以写出y的值小于0时,x的取值范围.【详解】(1)∵二次函数y=﹣12x2+3x﹣52=21(3)22x--+,∴该函数图象的顶点坐标是(3,2),对称轴是直线x=3;(2)当y=0时,得x1=1,x2=5,当x=0和x=6时,y=5 2 -,函数图象如图所示;(3)由图象可知,y的值小于0时,x的取值范围是x<1或x>5.【点睛】考核知识点:求二次函数的顶点坐标.理解二次函数的性质,画出二次函数图象是关键. 19.(1)见解析;(2)①相切;②60°【分析】(1)根据等腰三角形的性质和圆内接四边形的性质解答即可;(2)①如图,连接AE,OE,根据圆周角定理得到AE⊥BC,根据三角形的中位线定理得到OE∥AC,根据平行线的性质得到OE⊥PE,于是得到结论;②根据已知条件得到△OBE是等边三角形,求得OB=BE,同理OD=DE,根据菱形的判定定理即可得到结论.【详解】解:(1)∵AB=AC,∴∠B=∠C,∵∠CDE=∠B,∴∠CDE=∠C,∴CE=DE;(2)①相切;理由:如图,连接AE,OE,∵AB是⊙O的直径,∴AE⊥BC,∵AB=AC,∴BE=CE,∵BO=OA,∴OE∥AC,∵DE=CE,PD=CP,∴PE⊥AC,∴OE⊥PE,∴EP与⊙O的位置关系是相切;②当∠B的度数为60°时,四边OBED是菱形,∵OB=OE,∠B=60°,∴△OBE是等边三角形,∴OB=BE,同理OD=DE,∴OD=DE=BE=OB,∴四边OBED是菱形.故答案为:相切;60°.【点睛】考核知识点:切线的判定和性质.作好辅助线,充分利用圆的性质和菱形性质解决问题是关键.20.(1)点A ,90°;(2)等腰直角;(3)132【分析】(1)根据图形和已知即可得出答案.(2)根据旋转得出全等,根据全等三角形的性质得出∠BAE=∠DAF ,AE=AF ,求出∠EAF=∠BAD ,即可得出答案.(3)求出AE ,求出AF ,根据勾股定理求出EF 即可.【详解】解:(1)从图形和已知可知:旋转中心是点A ,旋转角的度数等于∠BAD 的度数,是90°,故答案为:点A ,90;(2)等腰直角三角形,理由是:∵四边形ABCD 是正方形,∴∠BAD=90°,∵△ABE 逆时针旋转后能够与△ADF 重合,∴△ABE ≌△ADF ,∴∠BAE=∠DAF ,AE=AF ,∴∠FAE=∠FAD+∠DAE=∠BAE+∠DAE=∠BAD=90°,∴△AEF 是等腰直角三角形,故答案为:等腰直角.(3)由旋转可知∠EAF=90°,△ABE ≌△ADF ,∴AE=AF ,△EAF 是等腰直角三角形在Rt △ABE 中,∵AB=12,BE=5∴222212513AE AB BE =+=+∴222213132EF AE AF =+=+【点睛】本题考查了旋转的性质,勾股定理,全等三角形的性质的应用,注意:旋转后得出的图形和原图形全等.21.(1)y==﹣4x2+920x+20000(1≤x≤80,且x为整数);(2)王经理想获得利润20000元,需将这批柿饼存放50天后出售;(3)存放75天后出售这批柿饼可获得最大利润22500元【分析】(1)根据等量关系“销售总金额=(市场价格+0.5×存放天数)×(原购入量﹣8×存放天数)”列出函数关系式;(2)根据等量关系“利润=销售总金额﹣收购成本﹣各种费用”列出方程求出即可;(3)根据等量关系“利润=销售总金额﹣收购成本﹣各种费用”列出函数关系式并求最大值.【详解】(1)由题意y与x之间的函数关系式为:y=(10+0.5x)(2000﹣8x)=﹣4x2+920x+20000(1≤x≤80,且x为整数);(2)根据题意可得:20000=﹣4x2+920x+20000﹣10×2000﹣320x,解得:x1=100(不合题意舍去),x2=50,答:王经理想获得利润20000元,需将这批柿饼存放50天后出售.(3)设利润为w,由题意得w=﹣4x2+920x+20000﹣10×2000﹣320x=﹣4(x﹣75)2+22500,∵a=﹣4<0,∴抛物线开口方向向下,∵柿饼在冷库中最多保存75天,=22500元.∴x=75时,w最大答:存放75天后出售这批柿饼可获得最大利润22500元.【点睛】考核知识点:二次函数的应用.理解利润关系,列出二次函数,求函数最值是关键. 22.(1)y=x2+x﹣1;(2)MN=t2+2;(3)t=0或1【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解;(2)点M、N的坐标分别为:(t,2t2+t+1)、(t,t2+t-1),即可求解;(3)分∠ANM=90°、∠AMN=90°两种情况,分别求解即可.【详解】解:(1)将点A、B的坐标代入抛物线表达式得:421111a ba b--=⎧⎨--=-⎩,解得:11ab=⎧⎨=⎩,故抛物线C1的表达式为:y=x2+x﹣1;(2)点M、N的坐标分别为:(t,2t2+t+1)、(t,t2+t﹣1),则MN=(2t2+t+1)﹣(t2+t﹣1)=t2+2;(3)①当∠ANM=90°时,AN=MN,AN=t﹣(﹣2)=t+2,MN=t2+2,t=t2+2,解得:t=0或1(舍去0),故t=1;②当∠AMN=90°时,AM=MN,AM=t+2=MN=t2+2,解得:t=0或1(舍去1),故t=1;综上,t=0或1.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形的性质等,其中(3),要注意分类求解,避免遗漏.23.(1)见解析;(2)见解析【分析】(1)证明:连接OA,OB,证明△OAC≌△OBD(SAS)即可得到结论;(2)根据△OAC≌△OBD,得到∠AOC=∠BOD,即可得到结论.【详解】(1)证明:连接OA,OB,∵OA=OB,∴∠OAC=∠OBD.在△OAC与△OBD中,∵OA OBOAC OBD AC BD=⎧⎪∠=∠⎨⎪=⎩,∴△OAC≌△OBD(SAS).∴OC=OD.(2)∵△OAC≌△OBD,∴∠AOC=∠BOD,∴A EB F..【点睛】此题考查同圆的半径相等的性质,全等三角形的判定及性质,等腰三角形等边对等角的性质,相等的圆心角所对的弧相等的性质,正确引出辅助线证明△OAC≌△OBD是解题的关键.24.(11;(2)﹣4;(3﹣3【分析】(1)先确定出AP最小时点P的位置,如图1中的P'的位置,即可得出结论;(2)先判断出A'M=AM=MD,再构造出直角三角形,利用锐角三角函数求出DH,MH,进而用用勾股定理求出CM,即可得出结论;(3)利用对称性确定出点B关于x轴的对称点B',即可求出结论.【详解】(1)如图1,取BC的中点E,连接AE,交半圆于P',在半圆上取一点P,连接AP,EP,在△AEP中,AP+EP>AE,即:AP'是AP的最小值,∵AE P'E=1,∴AP'1;1;(2)如图2,由折叠知,A'M=AM,∵M是AD的中点,∴A'M=AM=MD,∴以点A'在以AD为直径的圆上,∴当点A'在CM上时,A'C的长度取得最小值,过点M作MH⊥CD于H,在Rt△MDH中,DH=DM•cos∠HDM=2,MH=DM•sin∠HDM=在Rt△CHM中,CM,∴A'C=CM﹣A'M=﹣4;(3)如图3,作⊙B关于x轴的对称圆⊙B',连接AB'交x轴于P,∵B(3,4),∴B'(3,﹣4),∵A(﹣2,3),∴AB'=∴PM+PN的最小值=AB'﹣AM﹣B'N'=AB'﹣AM﹣BN﹣3.﹣3.【点睛】考核知识点:圆,三角函数.根据题意画出图形,构造直角三角形,运用三角函数定义解决问题是关键.。

人教版九年级上册数学期中考试试卷含答案

人教版九年级上册数学期中考试试卷含答案

人教版九年级上册数学期中考试试题一、单选题1.下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是()A .B .C .D .2.一元二次方程2250x x ++=的根的情况是()A .没有实数根B .有两个不相等的实数根C .有两个相等的实数根D .只有一个实数根3.抛物线2(3)y x =+的顶点是()A .(0,3)B .(0,3)-C .(3,0)D .(3,0)-4.一元二次方程2810x x -+=配方后可变形为()A .()2415x -=B .()2415x +=C .()2417x -=D .()2417x +=5.已知二次函数21(2)54y x =--+,y 随x 的增大而减小,则x 的取值范围是()A .2x >B .2x <C .2x >-D .2x <-6.如图,AOB ∆绕点O 逆时针旋转65︒得到COD ∆,若30AOB ∠=︒,则BOC ∠的度数是()A .30°B .35︒C .40︒D .65︒7.在一次足球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛21场,设共有x 个队参赛,根据题意,可列方程为()A .(1)21x x +=B .(1)21x x -=C .(1)212x x +=D .(1)212x x -=8.已知二次函数的图象的顶点是(1,2)-,且经过点(0,5)-,则二次函数的解析式是()A .23(1)2y x =-+-B .23(1)2y x =+-C .23(1)2y x =---D .23(1)2=--y x 9.已知2x =关于x 的方程23520x mx m -+-=的一个根,且这个方程的两个根恰好是等腰ABC ∆的两条边长,则ABC ∆的周长为()A .8B .10C .8或10D .6或1010.二次函数2y ax bx c =++的图象如图所示,对称轴是1x =,下列结论正确的是()A .0abc >B .20a b +<C .320b c -<D .30a c +<二、填空题11.方程2250x -=的解是_____.12.将抛物线24y x =向下平移1个单位长度,则平移后的抛物线的解析式是_______.13.如图,已知点A 的坐标是(-2),点B 的坐标是(1-,,菱形ABCD 的对角线交于坐标原点O ,则点D 的坐标是______.14.小王想用篱笆围成一个周长为60米的矩形场地,矩形面积S (单位:平方米)随矩形一边长x (单位:米)的变化而变化.则S 与x 之间的函数关系式是_____.(不用写自变量的取值范围)15.若抛物线2(2)21y m x x =-+-与x 轴有两个公共点,则m 的取值范围是______.16.如图,ABC 中,90ACB ∠=︒,AC BC a ==,点D 为AB 边上一点(不与点A ,B 重合),连接CD ,将线段CD 绕点C 逆时针旋转90︒得到CE ,连接AE .下列结论:①BDC ∆≌AEC ∆;②四边形AECD 的面积是2a ;③若105BDC ∠=︒,则AD =;④2222AD BD CD +=.其中正确的结论是_____.(填写所有正确结论的序号)三、解答题17.解方程:22150x x --=.18.如图,平面直角坐标系xOy 中,画出ABC 关于原点O 对称的111A B C ∆,并.写出1A 、1B 、1C 的坐标.19.已知二次函数243y x x =++.(1)求二次函数的最小值;(2)若点11(,)x y 、22(,)x y 在二次函数243y x x =++的图象上,且122x x -<<,试比较12,y y 的大小.20.随着国内新能源汽车的普及,为了适应社会的需求,全国各地都在加快公共充电桩的建设,广东省2019年公共充电桩的数量约为4万个,2021年公共充电桩的数量多达11.56万个,位居全国首位.(1)求广东省2019年至2021年公共充电桩数量的年平均增长率;(2)按照这样的增长速度,预计广东省2022年公共充电桩数量能否超过20万个?为什么?21.如图,平面直角坐标系xOy 中,直线2y x =+与坐标轴交于A ,B 两点,点A 在x 轴上,点B 在y 轴上,抛物线2y x bx c =-++经过点A ,B .(1)求抛物线的解析式;(2)根据图象,写出不等式22x bx c x -++>+的解集.22.已知关于x 的方程22(21)10x m x m +++-=有两个实数根.(1)求m 的取值范围;(2)若0x =是方程的一个根,求方程的另一个根.23.如图,边长为6的正方形ABCD 中,E 是CD 的中点,将ADE ∆绕点A 顺时针旋转90︒得到ABF ∆,G 是BC 上一点,且45EAG ∠=︒,连接EG .(1)求证:AEG ∆≌AFG ∆;(2)求点C 到EG 的距离.24.平面直角坐标系xOy 中,抛物线231y ax ax =-+与y 轴交于点A .(1)求点A 的坐标及抛物线的对称轴;(2)当12x -≤≤时,y 的最大值为3,求a 的值;(3)已知点(0,2)P ,(1,1)Q a +.若线段PQ 与抛物线只有一个公共点,结合函数图象,求a 的取值范围.25.在△ABC 中AB=AC ,点P 在平面内,连接AP 并将线段AP 绕点A 顺时针方向旋转与∠BAC 相等的角度,得到线段AQ ,连接BQ ;【发现问题】如图1,如果点P是BC边上任意一点,则线段BQ和线段PC的数量关系是;【探究猜想】如图2,如果点P为平面内任意一点,前面发现的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.请仅以图2所示的位置关系加以证明(或说明);【拓展应用】如图3,在△ABC中,AC=2,∠ACB=90°,∠ABC=30°,P是线段BC上的任意一点连接AP,将线段AP绕点A顺时针方向旋转60°,得到线段AQ,连接CQ,请直接写出线段CQ长度的最小值.参考答案1.C【分析】根据轴对称图形和中心对称图形的概念逐项判断即可.【详解】A.不是轴对称图形,也不是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项符合题意;D.不是轴对称图形,也不是中心对称图形,故此选项不符合题意,故选:C.【点睛】本题考查轴对称图形、中心对称图形,理解轴对称图形和中心对称图形是解答的关键.2.A 【解析】【分析】根据一元二次方程根的判别式24b ac ∆=-,∆<0时,方程没有实数根;0∆>时,方程有两个不相等的实数根;0∆=时,方程有两个相等的实数根,将相应的系数代入判别式便可判断.【详解】∵224245420160b ac =-=-⨯1⨯=-=-<Δ根据一元二次方程根的判别式24b ac ∆=-,当∆<0时,原方程没有实数根.故选A 【点睛】本题旨在考查一元二次方程根的判别式,熟练掌握该知识点是解此类题目的关键.3.D 【解析】【分析】根据二次函数2()y a x h k =-+的顶点坐标是(h ,k )即可解答.【详解】解:抛物线2(3)y x =+的顶点是(﹣3,0),故选:D .【点睛】本题考查二次函数2()y a x h k =-+的性质,熟知二次函数2()y a x h k =-+的顶点坐标是(h ,k )解答的关键.4.A 【解析】【分析】先把常数项移到方程右边,再把方程两边加上16,然后把方程左边写成完全平方形式即可.【详解】解:∵x 2-8x+1=0,∴x 2-8x=-1,∴x 2-8x+16=15,∴(x-4)2=15.故选A .【点睛】本题考查了解一元二次方程-配方法,当二次项系数为1时,配一次项系数一半的平方是关键.5.A 【解析】【分析】根据y =ax 2+bx+c (a ,b ,c 为常数,a≠0),当a <0时,在对称轴右侧y 随x 的增大而减小,可得答案.【详解】解:∵21(2)54y x =--+,∴a 14=-<0,∴当x >2时y 随x 的增大而减小.故选:A .【点睛】本题考查了二次函数的性质,二次函数y =ax 2+bx+c (a ,b ,c 为常数,a≠0),当a >0时,在对称轴左侧y 随x 的增大而减小,在对称轴右侧y 随x 的增大而增大;当a <0时,在对称轴左侧y 随x 的增大而增大,在对称轴右侧y 随x 的增大而减小.6.B 【解析】【分析】根据旋转的性质得出旋转角∠AOC=65°即可.【详解】解:∵AOB ∆绕点O 逆时针旋转65︒得到COD ∆,∴∠AOC=65°,∵∠AOB=30°,∴∠BOC=∠AOC ﹣∠AOB=65°﹣30°=35°,故选:B .【点睛】本题考查旋转的性质,熟练掌握旋转的性质,准确找到旋转角是解答的关键.7.D 【解析】【分析】类似的场次比赛相互问题可看做“握手问题”,由于赛制是单循环(每两队都赛一场),设有x 队参赛,因此比赛总的场次为()112x x -场,剧题意总场次为21场,依此等量关系列出方程.【详解】设共有x 队参赛,此次比赛总场次为()112x x -已知共比赛21场.根据题意列方程为()11212x x -=故答案选D.【点睛】本题考查一元二次方程的实际应用,找到等量关系为解题的关键.8.C 【解析】【分析】利用待定系数法确定函数解析式即可;【详解】解:设该抛物线解析式是:y =a (x-1)2﹣2(a≠0).把点(0,-5)代入,得a (0-1)2﹣2=-5,解得a=-3.故该抛物线解析式是23(1)2y x =---.故答案选:C 【点睛】本题主要考查了待定系数法求抛物线的解析式,难度不大,需要掌握抛物线的顶点式.9.B 【解析】【分析】先求得方程的两个根,再根据等腰三角形的条件判断即可.【详解】∵2x =关于x 的方程23520x mx m -+-=的一个根,∴46520m m -+-=,∴2m =,∴方程23520x mx m -+-=变形为2680x x -+=,解得122,4x x ==,∵方程的两个根恰好是等腰ABC ∆的两条边长,∴其三边可能是2,2,4或4,4,2,∵2+2=4,故三角形不存在,故三角形的周长为10,故选B .【点睛】本题考查了一元二次方程的根,一元二次方程的解法,等腰三角形的分类,熟练解一元二次方程是解题的关键.10.D 【解析】【分析】根据抛物线的性质,对称轴,图形的信息,逐一计算判断即可.【详解】∵102ba-=>,∴0ab <,∵抛物线与y 轴交于正半轴,∴0c >,∴0abc <,故A 不符合题意;∵12ba-=,∴20a b +=,故B 不符合题意;∵1x =-时,y=a-b+c 0<,∴2a-2b+2c 0<,∵12ba-=,∴2a b =-,∴-b-2b+2c 0<,∴3b-2c 0>,故C 不符合题意;∵1x =-时,y=a-b+c 0<,∵12ba-=,∴2a b =-,∴3a+c 0<,故D 符合题意;故选D .【点睛】本题考查了二次函数图像,抛物线的性质,灵活运用图像及其性质是解题的关键.11.x=±5【解析】【分析】移项得x 2=25,然后采用直接开平方法即可得到方程的解.【详解】解:∵x 2-25=0,移项,得x 2=25,∴x=±5.故答案为:x=±5.【点睛】本题考查了利用直接开平方法解一元二次方程.用直接开方法求一元二次方程的解的类型有:x 2=a (a≥0);ax 2=b (a ,b 同号且a≠0);(x+a )2=b (b≥0);a (x+b )2=c (a ,c 同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.12.241y x =-##214y x =-+【解析】【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:24y x =向下平移1个单位长度所得抛物线解析式为:241y x =-.故答案为:241y x =-.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.13.(1【解析】【分析】根据菱形具有的平行四边形基本性质,对角线互相平分,且交点为坐标原点,则B ,D 关于原点对称,因此在直角坐标系中两点的坐标关于原点对称,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数便可得.【详解】∵四边形ABCD 是菱形,对角线相交于坐标原点O∴根据平行四边形对角线互相平分的性质,A 和C ;B 和D 均关于原点O 对称根据直角坐标系上一点(),x y 关于原点对称的点为()--x,y 可得已知点B 的坐标是(-1,,则点D 的坐标是(.故答案为:(.【点睛】本题旨在考查菱形的基本性质及直角坐标系中关于原点对称点的坐标的知识点,熟练理解掌握该知识点为解题的关键.14.230S x x=-+【解析】【分析】根据矩形的周长及其一边长表示出另一边为(30-x )米,再根据矩形的面积公式求函数关系式即可.【详解】∵矩形周长为60米,一边长x 米,∴另一边长为(30-x )米,∴矩形的面积()23030S x x x x =-=-+.故答案为:230S x x =-+.【点睛】本题考查了根据实际问题列二次函数关系式,弄清题意,正确找出等量关系是解题的关键.15.1m >且2m ≠【解析】【分析】根据抛物线的定义,得2m ≠;结合题意,根据抛物线和一元二次方程判别式的性质分析,即可得到答案.【详解】∵抛物线2(2)21y m x x =-+-∴20m -≠∴2m ≠∵抛物线2(2)21y m x x =-+-与x 轴有两个公共点,即2(2)210m x x -+-=有两个不同的实数根∴()()22421440m m ---=->∴1m >故答案为:1m >且2m ≠.【点睛】本题考查了二次函数、一元二次方程的知识;解题的关键是熟练掌握二次函数、一元二次方程判别式的性质,从而完成求解.16.①③④【解析】【分析】根据旋转性质可得CD=CE ,∠ECD=90°由90ACB ∠=︒,可得∠ACE=∠DCB ,可证△ACE ≌△BCD (SAS ),可判断①正确;由四边形AECD 面积=三角形ABC 面积,可判断②不正确;由全等三角形性质可得∠AEC=∠BDC=105°,AE=BD ,由90ACB ∠=︒,AC BC =,可得∠CAB=∠EAC=∠B=45°,∠EAB=90°,∠ADE==30°,利用30度直角三角形性质可得ED=2AE=2BD ,再由勾股定理可判断③正确;利用勾股定理可得2222AD BD CD +=,可判断④正确.【详解】解:∵线段CD 绕点C 逆时针旋转90︒得到CE ,∴CD=CE ,∠ECD=90°,∵90ACB ∠=︒∴∠ACE+∠ACD=∠ACD+∠DCB=90°,∴∠ACE=∠DCB ,在△ACE 和△BCD 中,AC BC ACE BCD EC DC =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD (SAS ),故①正确;S 四边形AECD=S △ACE+S △ACD=S △BCD+S △ACD=S △ABC=2111222AC BC a a a ⋅=⋅=,故②不正确;连结ED ,∵△ACE ≌△BCD ,∴∠AEC=∠BDC=105°,AE=BD ,∵90ACB ∠=︒,AC BC =,∴∠CAB=∠B=45°,∴∠EAC=∠B=45°,∴∠EAB=∠EAC+∠CAB=45°+45°=90°,∵CE=CD ,∠ECD=90°,∴∠CED=∠CDE=180452ECD︒-∠=︒,∴∠AED=∠AEC-∠CED=105°-45°=60°,∴∠ADE=90°-∠AED=90°-60°=30°,∴ED=2AE=2BD ,在Rt △AED 中,==,故③正确;在Rt △CED 中,DE 2=2222CF CD CD +=,在Rt △AED 中,∴AE 2+AD 2=BD2+AD 2=ED 2=2CD 2,∴2222AD BD CD +=,故④正确,正确的结论是①③④.故答案为①③④.17.13x =-,25x =.【分析】利用因式分解法解方程.【详解】解:22150x x --= ,(3)(5)0x x ∴+-=,则30x +=或50x -=,解得13x =-,25x =.18.图见解析,1(3,4)A -,1(5,1)B -、1(1,2)C -【分析】根据关于原点对称的点的坐标都是互为相反数计算即可.【详解】解:∵A (-3,4),B (-5,1),C (-1,2)∴它们关于原点O 对称的点分别为1(3,4)A -,1(5,1)B -、1(1,2)C -,画图如下:111A B C ∆为所求作的图形.19.(1)﹣1;(2)12y y <【分析】(1)将二次函数的解析式化为顶点式,进而求得最值即可;(2)求出该二次函数的对称轴,进而根据开口方向和增减性求解即可.【详解】解:(1)二次函数243y x x =++=()221x +-,∵a=1>0,∴该二次函数有最小值,最小值是1-;(2)∵该二次函数图象的对称轴为直线x=﹣2,且开口向上,∴当122x x -<<时,y 随x 的增大而增大,∴12y y <.【点睛】本题考查二次函数的图象与性质、求二次函数的最值,熟练掌握二次函数的图象与性质是解答的关键.20.(1)70%;(2)预计广东省2022年公共充电桩数量不能超过20万个,理由见解析.【解析】【分析】(1)设2019年至2021年广东省公共充电桩数量的年平均增长率为x ,根据广东省2019年及2021年公共充电桩,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)根据广东省2022年公共充电桩数量=广东省2021年公共充电桩数量×(1+增长率),即可求出结论.【详解】解:(1)设广东省2019年至2021年公共充电桩数量的年平均增长率为x24(1)11.56x +=解得:10.7x =,2 2.7x =-(不合题意,舍去)答:年平均增长率为70%.(2)该省2022年公共充电桩数量11.56(10.7)19.65220=⨯+=<答:预计广东省2022年公共充电桩数量不能超过20万个.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.(1)22y x x =--+;(2)20x -<<【解析】【分析】(1)求出A ,B 点代入进而求出函数解析式;(2)直接利用A ,B 点坐标进而利用函数图象得出答案;【详解】解:(1)∵直线2y x =+与坐标轴交于A ,B 两点∴点A 的坐标是(2-,0),点B 的坐标是(0,2).把(2-,0),(0,2)代入2y x bx c =-++得:2420c b c =⎧⎨--+=⎩解得12b c =-⎧⎨=⎩∴抛物线的解析式是22y x x =--+.(2)∵点A 的坐标是(2-,0),点B 的坐标是(0,2).∴根据图像可得:不等式22x bx c x -++>+的解集是:20x -<<;【点睛】此题主要考查了利用待定系数法求函数解析式以及二次函数与不等式的关系,解题的关键是利用待定系数法得到关于b 、c 的方程,解方程即可解决问题.22.(1)54m ≥-;(2)3x =-或1x =【解析】【分析】(1)根据有两个实数根,得到不等式△≥0,计算即可;(2)确定m 的值,得到符合题意的一元二次方程,解得即可.【详解】解:(1)∵关于x 的方程22(21)10x m x m +++-=有两个实数根,∴△22(21)41(1)450m m m =+-⨯⨯-=+≥,解得:54m ≥-.(2) 0x =是方程的一个根,∴210m -=,∴1m =±,此时原方程为230x x +=或20x x -=.解得:10x =,23x =-或10x =,21x =.∴方程的另一个根为3x =-或1x =.23.(1)见解析;(2)125【解析】(1)根据正方形和旋转的性质得到AF AE =,EAG FAG ∠=∠,即可求解;(2)设CG x =,则6BG x =-,9EG FG BG BF x ==+=-,由勾股定理求得CG ,等面积法求解即可.【详解】(1)证明:正方形ABCD 中,90BAD ∠=︒由旋转的性质得,AE AF =,90D ABF ∠=∠=︒∴180ABC ABF ∠+∠=︒,∴点F ,点B ,点C 三点共线.∵90DAB ∠=︒,45EAG ∠=︒∴45DAE GAB ∠+∠=︒,∴45BAF GAB ∠+∠=︒,即45FAG ∠=︒∴EAG FAG∠=∠在AEG △和AFG 中AE AFEAG FAG AG AG=⎧⎪∠=∠⎨⎪=⎩∴()AF AEG G SAS △≌△(2)解:由(1)得:EG FG=∵正方形ABCD 的边长为6,E 是CD 的中点∴3DE CE BF ===设CG x =,则6BG x =-,9EG FG BG BF x==+=-在Rt ECG 中,2223(9)x x +=-解得4x =,即CG 4=由勾股定理得:5EG ==设点C 到EG 的距离为h 则1122ECG S CE CG GE h =⨯=⨯△,即125CE CG h GE ⨯==∴点C 到EG 的距离是125.24.(1)(0,1)A ,32x =;(2)12a =或89a =-;(3)10a -< 或2a .【分析】(1)把0x =代入抛物线的解析式求解抛物线与y 轴的交点坐标即可,再利用抛物线的对称轴方程2b x a=-求解抛物线的对称轴即可;(2)分两种情况讨论,①当0a >时,抛物线的开口向上,12x -≤≤且()353112,2222--=>-=此时1x =-,y 取最大值;②当0a <时,抛物线的开口向下,12x -≤≤且()353112,2222--=>-=此时32x =,y 取最大值,再分别列方程求解a 即可;(3)分两种情况分别画出符合题意的图形,①当0a >时,如图,当点Q 在点A 的左侧(包括点)A 或点Q 在点B 的右侧(包括点)B 时,线段PQ 与抛物线只有一个公共点;②当0a <时,如图,当Q 在点A 与点B 之间(包括点A ,不包括点)B 时,线段PQ 与抛物线只有一个公共点,再根据点的位置列不等式即可得到答案.【详解】解:(1)令0x =,则1y =.(0,1)A .抛物线的对称轴为3322a x a -=-=.(2)2234931(24a y ax ax a x -=-+=-+,抛物线的对称轴为32x =.①当0a >时,抛物线的开口向上,12x -≤≤且()353112,2222--=>-=此时1x =-,y 取最大值.∴()213(1)13a a --⨯-+=∴12a =.②当0a <时,抛物线的开口向下,12x -≤≤且()353112,2222--=>-=∴此时32x =,y 取最大值.∴233()31322a a -⨯+=∴89a =-.综上所述,12a =或89a =-.(3)∵抛物线231y ax ax =-+的对称轴为32x =.设点A 关于对称轴的对称点为点B ,(3,1)B ∴.(1,1)Q a + ,∴点,,Q A B 都在直线1y =上.①当0a >时,如图,当点Q 在点A 的左侧(包括点)A 或点Q 在点B 的右侧(包括点)B 时,线段PQ 与抛物线只有一个公共点.10a ∴+ 或13a +.1a ∴- (不合题意,舍去)或2a ∴2a.②当0a <时,如图,当Q 在点A 与点B 之间(包括点A ,不包括点)B 时,线段PQ 与抛物线只有一个公共点.013a ∴+< .12a ∴-< .又0a < ,10a ∴-<综上所述,a 的取值范围为10a -<或2a .【点睛】本题考查的是抛物线与坐标轴的交点问题,求解抛物线的对称轴方程,抛物线的最值问题,抛物线与线段的交点问题,掌握数形结合的方法,清晰的分类讨论是解题的关键.25.[发现问题]:BQ=PC ;[探究猜想]:BQ=PC 仍然成立,理由见解析;[拓展应用]:线段CQ 长度最小值是1【解析】【分析】[发现问题]:由旋转知,AQ=AP ,∠PAQ=∠BAC ,可得∠BAQ=∠CAP ,可知△BAQ ≌△CAP (SAS ),BQ=CP 即可;[探究猜想]:结论:BQ=PC 仍然成立,理由:由旋转知,AQ=AP ,由∠PAQ=∠BAC ,可得∠BAQ=∠CAP ,可知△BAQ ≌△CAP (SAS ),可得BQ=CP ;[拓展应用]:在AB 上取一点E ,使AE=AC=2,连接PE ,过点E 作EF ⊥BC 于F ,由旋转知,AQ=AP ,∠PAQ=60°,可求∠CAQ=∠EAP ,可证△CAQ ≌△EAP (SAS ),CQ=EP ,当EF ⊥BC (点P 和点F 重合)时,EP 最小,在Rt △ACB 中,∠ACB=30°,AC=2可求AB=4,由AE=AC=2,可求BE=AB-AE=2,在Rt △BFE 中,∠EBF=30°,BE=2,可得EF=12BE=1即可【详解】[发现问题]:由旋转知,AQ=AP ,∵∠PAQ=∠BAC ,∴∠PAQ-∠BAP=∠BAC-∠BAP ,∴∠BAQ=∠CAP ,在△BAQ 和△CAP 中,AQ AP BAQ CAP AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△BAQ ≌△CAP (SAS ),∴BQ=CP ,故答案为:BQ=PC ;[探究猜想]:结论:BQ=PC 仍然成立,理由:由旋转知,AQ=AP ,∵∠PAQ=∠BAC ,∴∠PAQ-∠BAP=∠BAC-∠BAP ,∴∠BAQ=∠CAP ,在△BAQ 和△CAP 中,AQ APBAQ CAP AB AC=⎧⎪∠=∠⎨⎪=⎩,∴△BAQ ≌△CAP (SAS ),∴BQ=CP ;[拓展应用]:如图,在AB 上取一点E ,使AE=AC=2,连接PE ,过点E 作EF ⊥BC 于F ,由旋转知,AQ=AP ,∠PAQ=60°,∵∠ABC=30°,∴∠EAC=60°,∴∠PAQ=∠EAC ,∴∠CAQ=∠EAP ,在△CAQ 和△EAP 中,AQ APCAQ EAP AC AE=⎧⎪∠=∠⎨⎪=⎩,∴△CAQ ≌△EAP (SAS ),∴CQ=EP ,要使CQ 最小,则有EP 最小,而点E 是定点,点P 是AB 上的动点,∴当EF ⊥BC (点P 和点F 重合)时,EP 最小,即:点P 与点F 重合,CQ 最小,最小值为EP ,在Rt △ACB 中,∠ACB=30°,AC=2,∴AB=4,∵AE=AC=2,∴BE=AB-AE=2,在Rt △BFE 中,∠EBF=30°,BE=2,∴EF=12BE=1.故线段CQ 长度最小值是1.。

人教版初三上册《数学》期中考试卷及答案【可打印】

人教版初三上册《数学》期中考试卷及答案【可打印】

一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标是()。

A.(2,3)B.(2,3)C.(2,3)D.(2,3)2. 已知一组数据:1,2,3,4,5,那么这组数据的众数、中位数、平均数分别是()。

A. 3,3,3B. 3,3,3.5C. 3,3,4D. 3,3,4.53. 下列函数中,属于一次函数的是()。

A. y=2x+1B. y=x^2C. y=2/xD. y=3sinx4. 已知正比例函数y=kx(k≠0),当x=2时,y=4,那么k的值为()。

A. 2B. 4C. 2D. 45. 在平面直角坐标系中,点A(3,2),点B(3,2),那么线段AB的中点坐标是()。

A.(0,0)B.(0,1)C.(0,1)D.(1,0)二、判断题(每题1分,共5分)1. 直角三角形的两个锐角互余。

()2. 在同一平面内,垂直于同一直线的两条直线互相平行。

()3. 一元二次方程的根一定是实数。

()4. 圆的周长与半径成正比。

()5. 一组数据的方差越大,说明这组数据的波动越小。

()三、填空题(每题1分,共5分)1. 在等腰三角形中,若底边长为10,腰长为13,则这个等腰三角形的周长是______。

2. 在平面直角坐标系中,点P(m,n)关于原点的对称点坐标是______。

3. 已知一元二次方程ax^2+bx+c=0(a≠0),若方程有两个相等的实数根,则判别式△=______。

4. 在等差数列{an}中,若a1=3,d=2,则第10项a10=______。

5. 在平面直角坐标系中,点A(m,n),点B(m,n),则线段AB的长度是______。

四、简答题(每题2分,共10分)1. 请简述一元二次方程的根的判别式。

2. 请简述圆的性质。

3. 请简述等差数列的性质。

4. 请简述三角形的内角和定理。

5. 请简述平行线的性质。

五、应用题(每题2分,共10分)1. 已知一个等腰三角形的底边长为8,腰长为5,求这个等腰三角形的周长。

人教版九年级上册数学期中考试试卷附答案

人教版九年级上册数学期中考试试卷附答案

人教版九年级上册数学期中考试试题2022年7月一、单选题1.下面的图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2.方程22x x =的解是()A .2x =B .122,0x x ==C .0x =D .122,1x x ==3.二次函数y =(x+1)2+2的图象的顶点坐标是()A .(﹣2,3)B .(﹣1,2)C .(1,2)D .(0,3)4.在平面直角坐标系中,点A 的坐标是(1,3),将点A 绕原点O 顺时针旋转180°得到点A′的坐标是()A .(﹣1,3)B .(1,﹣3)C .(3,1)D .(-1,﹣3)5.把二次函数2y x =-的图象向左平移1个单位,然后向上平移3个单位,则平移后的图象对应的二次函数的关系式为()A .2(1)3y x =-++B .2(1)3y x =-+-C .2(1)3y x =---D .2(1)3y x =--+6.如图,DE BC ,在下列比例式中,不能成立的是()A .AD AEDB EC=B .DE AEBC EC=C .AB ACAD AE=D .DB ABEC AC=7.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为()A .10mB .12mC .15mD .40m8.一种药品原价每盒25元,经过两次降价后每盒16元设两次降价的百分率都为x ,则x 满足()A .16(12)25x +=B .25(12)16x -=C .216(1)25x +=D .225(1)16x -=9.已知二次函数y =x 2﹣6x+1,关于该函数在﹣1≤x≤4的取值范围内,下列说法正确的是()A .有最大值8,最小值﹣8B .有最大值8,最小值﹣7C .有最大值﹣7,最小值﹣8D .有最大值1,最小值﹣710.如图,在Rt ABC 中,90ACB ∠=︒,30ABC ∠=︒,将ABC 绕点C 顺时针旋转α角0180()α︒<<︒至A B C ''△,使得点A '恰好落在AB 边上,则α等于()A .150︒B .90︒C .30°D .60︒二、填空题11.若两个相似三角形的相似比是1:2,则它们的面积比是______.12.已知方程x 2﹣3x ﹣k =0有一根是2,则k 的值是_____.13.如图,已知30EAD =∠°,ADE 绕着点A 逆时针旋转50°后能与ABC 重合,则BAE ∠=_____°.14.《九章算术》勾股章有一问题,其意思是:现有一竖立着的木柱,在木柱上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问绳索有多长?若设绳索长度为x 尺,根据题意,可列方程为_____.15.若二次函数21y ax =+,当x 取1x ,2x (12x x ≠)时,函数值相等,则当x 取12x x +时,函数值为_____.16.如图,在正方形ABCD 中,4AB =,P 是BC 边上一动点(不与B ,C 重合),DE AP ⊥于E .若PA x =,DE y =,则y 关于x 的函数解析式为_____.三、解答题17.解方程:2420x x ++=.18.已知抛物线23y ax bx =++经过点()3,0-,()2,5-.求此抛物线的解析式.19.如图,在ABC 中,90ACB ∠=︒,AC BC =,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90°得到线段CE ,连结BE .求证:AD BE =.20.如图,方格纸中每个小正方形的边长均为1个单位长度,小正方形的顶点成为格点.Rt ABC 的三个顶点()2,2A -、()0,5B 、()0,2C .(1)将ABC 以点C 为旋转中心旋转180°,得到11A B C ,画出11A B C ,并直接写出点1A 、1B 的坐标;(2)平移ABC ,使点A 的对应点为()22,6A --,请画出平移后对应的222A B C △;(3)若将11A B C 绕某一点旋转可得到222A B C △,请直接写出旋转中心的坐标.21.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米(如图所示),若苗圃园的面积为72平方米.求这个苗圃园垂直于墙的一边长为多少米?22.如图1,ABC 与ADE 中,90ACB AED ∠=∠=︒,连接BD 、CE ,EAC DAB ∠=∠.(1)求证:BAD CAE ∽;(2)已知4BC =,3AC =,32AE =.将AED 绕点A 旋转,当C 、E 、D 三点共线时,如图2,求BD 的长.23.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:售价x (元/千克)506070销售量y (千克)1008060(1)求y 与x 之间的函数表达式;(2)设商品每天的总利润为W (元),则当售价x 定为多少元时,厂商每天能获得最大利润?最大利润是多少?(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.24.如图,在Rt ABC 中,90ACB ∠=︒,8AC =,4BC =,动点D 从点B 出发,以每秒1个单位长度的速度沿BA 向点A 运动,到达点A 停止运动,过点D 作ED AB ⊥交射线BC 于点E ,以BD 、BE 为邻边作平行四边形BDFE .设点D 运动时间为t 秒,平行四边形BDFE 与Rt ABC 的重叠部分面积为S .(1)当点F 落在AC 边上时,求t 的值;(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.25.定义:若两条抛物线的对称轴相同,则称这两条抛物线为同轴抛物线.若抛物线211:12C y x mx m =--+与抛物线2C :2222y x nx n =-++-为同轴抛物线,将抛物线1C 上1≥x 的部分与抛物线2C 上1x <的部分合起来记作图象G .(1)①n =_____(用含m 的式子表示);②若点(),1m -在图象G 上,求m 的值;(2)若1m =,当12x -≤≤时,求图象G 所对应的函数值y 的取值范围;(3)正方形ABCD 的中心为原点O ,点A 的坐标为()1,1,当图象G 与正方形ABCD 有3个交点时,求m 的取值范围(直接写出结果).26.在△ABC 中,点D 在BC 边上,AD CD =,点E 、F 分别在线段AC 、AD 上,连结EF ,且EFD ABC ∠=∠.(1)当点E 与点C 重合时,如图1,找出图中与EF 相等的线段,并证明;(2)当点E 不与点C 重合时,如图2,若AC kEC =,求EFAB的值(用含k 的式表示);(3)若90BAC ∠=︒,35AB BC =,23EF AB =,如图3,求EC AC 的值.参考答案1.C 【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、是轴对称图形,不是中心对称图形,故此选项不合题意;B 、不是轴对称图形,是中心对称图形,故此选项不合题意;C 、既是轴对称图形又是中心对称图形,故此选项符合题意;D 、是轴对称图形,不是中心对称图形,故此选项不合题意;故选:C .2.B 【解析】利用因式分解法解一元二次方程,提取公因式x .【详解】解:22x x=()20x x -=,10x =,22x=.故选:B .3.B 【解析】根据顶点式的意义直接解答即可.【详解】解:二次函数y =(x+1)2+2的图象的顶点坐标是(﹣1,2).故选:B .4.D 【解析】根据中心对称的定义得到点A 与点A′关于原点对称,然后根据关于原点对称的点的坐标特征求解.【详解】∵线段OA 绕原点O 顺时针旋转180°,得到OA′,∴点A 与点A′关于原点对称,而点A 的坐标为(1,3),∴点A′的坐标为(﹣1,﹣3).故选D .5.A 【解析】根据二次函数图象的平移规律解答即可.【详解】解:由题意知,平移后抛物线的解析式是()213y x =-++,故A 正确.故选:A .【点睛】本题考查了二次函数图象的平移,解题的关键在于掌握二次函数图象平移的规律:左加右减,上加下减.6.B 【解析】平行线分线段成比例定理:两条直线被一组平行直线所截,所得的对应线段的长度成比例.【详解】DE BC ∥,AD AE DB ABDB EC EC AC∴==.ADE ABC ∴ ∽DE AE AEBC AC EC∴=≠B.错误故选B .【点睛】平行线分线段成比例定理:两条直线被一组平行直线所截,所得的对应线段的长度成比例.7.C 【解析】根据同时同地物高与影长成正比,列式计算即可得解.【详解】设旗杆高度为x 米,由题意得,1.8325x,解得:x=15,故选C.【点睛】本题考查了相似三角形的应用,熟知同时同地物高与影长成比例是解题的关键.8.D【解析】等量关系为:原价×(1-降价的百分率)2=现价,把相关数值代入即可.【详解】第一次降价后的价格为:25×(1-x);第二次降价后的价格为:25×(1-x)2;∵两次降价后的价格为16元,∴25(1-x)2=16.故选:D.9.A【解析】把函数解析式整理成顶点式解析式的形式,然后根据二次函数的最值问题解答.【详解】∵y=x2﹣6x+1=(x﹣3)2﹣8,∴在﹣1≤x≤4的取值范围内,当x=3时,有最小值﹣8,当x=﹣1时,有最大值为y=16﹣8=8.故选A.【点睛】本题考查了二次函数的最值问题,把函数解析式转化为顶点式形式是解题的关键.10.D【解析】【分析】由旋转的性质可得CA=CA',∠ACA'=α,由等腰三角形的性质可得∠A=∠CA'A=60°,由三角形内角和定理可求α的值.【详解】解:90ACB ∠=︒ ,30ABC ∠=︒,60A ∴∠=︒,将ABC ∆绕点C 顺时针旋转α角0180()α︒<<︒至△A B C '',CA CA '∴=,ACA α'∠=,60A CA A '∴∠=∠=︒,60ACA ∴'∠=︒,60α∴=︒,故选:D .【点睛】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是本题的关键.11.1:4【解析】【分析】根据相似三角形的面积比等于相似比即可求得.【详解】∵两相似三角形的相似比为1:2,∴它们的面积比是1:4,故答案为:1:4.【点睛】本题考查了相似三角形的面积的比等于相似比的平方的性质,熟记性质是解题的关键.12.-2【解析】【分析】直接把x =2代入方程x 2﹣3x ﹣k =0,得到关于k 的方程,然后解一次方程即可.【详解】解:把x =2代入方程x 2﹣3x ﹣k =0得4﹣6﹣k =0,解得k =﹣2.故答案为﹣2.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.13.20【解析】【分析】利用旋转的性质得出50DAB ∠=o ,进而得出BAE ∠的度数.【详解】∵30EAD =∠°,ADE 绕着点A 逆时针旋转50°后能与ABC 重合,∴50DAB ∠=o ,则BAE ∠=503020DAB DAE ∠-∠=-=o o o 故答案为:20°【点睛】此题主要考查了旋转的性质,得出旋转角DAB ∠的度数是解题关键.14.()22238x x -+=【解析】【分析】根据题意可直接进行列式求解.【详解】由题意易得:()22238x x -+=;故答案为()22238x x -+=.【点睛】本题主要考查勾股定理的应用,熟练掌握勾股定理的应用是解题的关键.15.1【解析】【分析】y=ax 2+1的对称轴是y 轴,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,所以x 1,x 2互为相反数,即x 1+x 2=0,由此可以确定此时函数值.【详解】解:∵在y=ax 2+c 的对称轴是y 轴,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,∴x 1,x 2互为相反数,∴x 1+x 2=0,∴y=0+1=1.故答案为:1.【点睛】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的对称性.16.(164y x x=<<【解析】【分析】根据正方形的性质以及DE ⊥AP 即可判定△ADE ∽△PAB ,根据相似三角形的性质即可列出y 与x 之间的关系式,需要注意的是x 的范围.【详解】解:∵四边形ABCD 为正方形,∴∠BAD =∠ABC =90°,∴∠EAD+∠BAP =90°,∠BAP+∠APB =90°,∴∠EAD =∠APB ,又∵DE ⊥AP ,∠AED =∠B =90°,∴△ADE ∽△PAB .∴=AD DEAP AB,即4=4y x∴(164y x x=<<.故答案为:(164y x x=<<【点睛】本题考查相似三角形,解题关键是熟练运用相似三角形的判定与性质,本题属于中等题型.17.12x =-+22x =--【解析】【分析】方程利用配方法求出解即可.∵2420x x ++=,∴242x x +=-,∴24424x x ++=-+,∴()222x +=,∴2x =-∴12x =-22x =--18.223y x x =--+.【解析】将点()3,0-,()2,5-代入抛物线23y ax bx =++解方程组求出b 、c 的值即可得答案.【详解】由题意得,93304235a b a b -+=⎧⎨++=-⎩解得,12a b =-⎧⎨=-⎩,则二次函数的解析式为223y x x =--+.19.见解析.【解析】由旋转的性质可得CD =CE ,∠DCE =90°,由“SAS”可证△ACD ≌△BCE ,从而得出结论.【详解】∵将线段CD 绕点C 按逆时针方向旋转90°得到线段CE ,∴CD CE =,90DCE ∠=︒,∴90DCE ACB ∠=∠=︒,∴ACD DCB DCB BCE ∠+∠=∠+∠,∴ACD BCE ∠=∠,且AC BC =,CD CE =,∴()ACD BCE SAS ≌,∴AD BE =.20.(1)图见解析,()12,2A ,()10,1B -;(2)图见解析;(3)(0,2)-.(1)先根据旋转的性质画出点11,A B ,再顺次连接点11,,A B C 即可得,然后根据点C 是11,A A B B 的中点即可求出点11,A B 的坐标;(2)先根据点2,A A 的坐标得出平移方式,再根据点坐标的平移变换规律可得点22,B C 的坐标,然后画出点222,,A B C ,最后顺次连接点222,,A B C 即可得;(3)先根据旋转中心的定义可得线段12B B 的中点P 即为旋转中心,再根据点12,B B 的坐标即可得.【详解】(1)先根据旋转的性质画出点11,A B ,再顺次连接点11,,A B C 即可得11A B C ,如图所示:设点1A 的坐标为1(,)A a b ,点C 是1A A 的中点,且()2,2A -,()0,2C ,202222ab -+⎧=⎪⎪∴⎨+⎪=⎪⎩,解得22a b =⎧⎨=⎩,1(2,2)A ∴,同理可得:1(0,1)B -;(2)()()2,62,2,2A A --- ,∴从点A 到点2A 的平移方式为向下平移8个单位长度,()()0,5,0,2B C ,()()220,58,0,28B C ∴--,即()()220,3,0,6B C --,先画出点222,,A B C ,再顺次连接点222,,A B C 即可得222A B C △,如图所示:(3)由旋转中心的定义得:线段12B B 的中点P 即为旋转中心,()12(0,1),0,3B B -- ,0013(,)22P +--∴,即(0,2)P -,故旋转中心的坐标为(0,2)-.21.这个苗圃园垂直于墙的一边长为12米.【解析】设这个苗圃园垂直于墙的一边长为x 米,利用长方形面积公式列方程求解,再根据靠墙边的长度范围确定取值即可.【详解】设这个苗圃园垂直于墙的一边长为x 米,根据题意得:()30272x x -=解得:13x =,212x =,∵30218x -≤,∴6x ≥,∴12x =.答:这个苗圃园垂直于墙的一边长为12米.22.(1)见解析;(2)BD =【解析】(1)由已知可得CAB EAD ∠=∠,则A ABC DE ∽△△,可得AC AEAB AD=,结合EAC BAD ∠=∠,则结论得证;(2)由A ABC DE ∽△△,求出AB 、AD 的长,再结合BAD CAE ∽可得90AEC ADB ∠=∠=︒,则BD 可求.【详解】(1)证明:∵EAC DAB ∠=∠,∴CAB EAD ∠=∠.∵90ACB AED ∠=∠=︒,∴A ABC DE ∽△△.∴AC AEAB AD=.∵EAC BAD ∠=∠,∴BAD CAE ∽.(2)∵90ACB ∠=︒,4BC =,3AC =,∴5AB ==.∵A ABC DE ∽△△,∴AC ABAE AD=.∴52AB AE AD AC ⋅==.将AED 绕点A 旋转,当C 、E 、D 三点共线时,90AEC ∠=︒,∵BAD CAE ∽,∴90AEC ADB ∠=∠=︒.∴BD =23.(1)y =﹣2x+200(40≤x≤80);(2)售价为70元时获得最大利润,最大利润是1800元;(3)55≤x≤80,理由见解析【解析】(1)待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式,将其配方成顶点式即可得最值情况.(3)求得W =1350时x 的值,再根据二次函数的性质求得W≥1350时x 的取值范围,继而根据“每千克售价不低于成本且不高于80元”得出答案.【详解】(1)设y =kx+b ,将(50,100)、(60,80)代入,得:501006080k b k b +=⎧⎨+=⎩,解得:k 2b 200=-⎧⎨=⎩,∴y =﹣2x+200(40≤x≤80);(2)W =(x ﹣40)(﹣2x+200)=﹣2x 2+280x ﹣8000=﹣2(x ﹣70)2+1800,∴当x =70时,W 取得最大值为1800,答:售价为70元时获得最大利润,最大利润是1800元.(3)当W =1350时,得:﹣2x 2+280x ﹣8000=1350,解得:x =55或x =85,∵该抛物线的开口向下,所以当55≤x≤85时,W≥1350,又∵每千克售价不低于成本,且不高于80元,即40≤x≤80,∴该商品每千克售价的取值范围是55≤x≤80.24.(1(2)22220326416553515t t S t t t t t ⎧⎛<≤⎪ ⎪ ⎪⎪⎝⎭⎪⎛⎪=-+-≤≤ ⎪⎨ ⎪⎝⎭⎪⎪⎪-+≤⎪⎝⎩.【解析】(1)根据勾股定理求得AB =,易证BED BAC ∽△△,根据相似三角形的性质求得BE =,根据平行四边形的性质可得DF BE ∥即DF =,继而易得 ∽ADF ABC ,继而根据相似三角形的性质求解;(2)分①当03t <≤时,②当03t <≤时,③当5t <≤【详解】(1)当点F 落在AC 边上时,如图1∵在Rt ABC 中,8AC =,4BC =,90ACB ∠=︒,∴AB =∵ED AB ⊥于D ,∴90EDB ACB ∠=∠=︒,B B ∠=∠,∴BED BAC ∽△△,∴BD BEBC AB=,∴4t =BE =,∵四边形BDFE 为平行四边形,∴DF ∥,∴DF , ∽ADF ABC ,∴DF AD BC AB =,即4=3t =∴当点F 落在AC 边上时,t(2)当0t <≤2,∵BDE BCA ∽,∴BD DE BC CA=,∴48t DE=,∴2DE t =.∴222BDFE S S BD DE t t t ==⋅=⋅= ;当点E 与点C 4=,5t =,t <≤3,∵DM BC ,∴ADM ABC △∽△,∴DM ADBC AB =,∴4DM =∴4DM =-.∵DF BE ==,∴44MF ⎛⎫=-=- ⎪ ⎪⎝⎭又∵MNF CAB △∽△,∴MN MF CA CB =,∴84MN MF=,∴2MN MF =.∴2221364162555MNFS MN MF MF t t t ⎛⎫=⋅==-=-+ ⎪ ⎪⎝⎭△∴22362165BDFE MNF S S S t t ⎛⎫=-=-+ ⎪ ⎪⎝⎭△∴2264851655S t t =-+-;当45455t <≤时,如图4.∵ADM ABC △∽△,∴AD DM AMAB BC AC==,∴454845t DM AM -==,∴545DM t =-,2585AM t =-.∴25258855MC t t ⎛⎫=--= ⎪ ⎪⎝⎭.∵BDMC S S =梯形.∴215251854425555S t t t t ⎛⎫=⋅-+⨯=-+ ⎪ ⎪⎝⎭.综上所述,222252032648525451655351854545555t t S t t t t t t ⎧⎛⎫<≤⎪ ⎪ ⎪⎪⎝⎭⎪⎛⎫⎪=-+-≤≤ ⎪⎨ ⎪⎝⎭⎪⎪⎛⎫⎪-+<≤ ⎪ ⎪⎪⎝⎭⎩.25.(1)①m ;②m 的取值为15-+或12-+12-;(2)当12x -≤≤时,图象G 所对应的函数值y 的取值范围为31y -≤<;(3)1122m -<<或514m <≤.【解析】(1)①根据同轴抛物线的定义可得n=m ;②分两种情况:①当m 1≥时,将(),1m -代入2112y x mx m =-=+中,当1m <时,把(),1m -代入2222y x mx m =-++-中,计算可解答;(2)先将m=1代入函数y 中,画出函数图象,分别代入x=-1,x=2,x=1计算对应的函数y 的值,根据图象可得结论;(3)画出相关函数的图象,根据图象即可求得.【详解】(1)①抛物线1C 的对称轴为:1x m =,抛物线2C 的对称轴为:2x n =,∵1C 与2C 为同轴抛物线,∴12x x =∴n m =故答案为:m②当m 1≥时,将(),1m -代入2112y x mx m =-=+中得221112m m m --+=-,2240m m +-=,解得11m =-21m =-,∵m 1≥,∴1m =-当1m <时,把(),1m -代入2222y x mx m =-++-中得:222221m m m -++-=-,2210m m +-=解得11m =-+21m =-∵1m <,∴1m =-1m =-.综上所述,m的取值为1-或1-+1--(2)当1m =时,图象G 的函数解析式为()()2211221x x x y x x x ⎧-≥⎪=⎨⎪-+<⎩,图象G 如图1所示,在抛物1C 上,当12x ≤≤时,y 随x 的增大而增大,102y -≤≤,在抛物线2C 上,当11x -≤<时,y 随x 的增大而增大,31y -≤<∴当12x -≤≤时,图象G 所对应的函数值y 的取值范围为31y -≤<;(3)当112m -<<或514m <≤时,图象G 与正方形ABCD 有3个交点,抛物线()2222:22222C y x mx m x m m m =-++-=--++-.抛物线211:12C y x mx m =--+,当1x =时,322y m =-当31212m -≤-≤时,1544m ≤≤.当抛物线2C 的顶点在BC 上时,如图2,2221m m +-=-,11m =-,21m =-当抛物线2C 过点()1,1B -时,如图3,12221m m -++-=-,12m =,∴112m -<<;当抛物线2C 过点()1,1A 时,如图4,12221m m -++-=,44m =,1m =.当抛物线1C 过点()1,1B -时,如图5,1112m m --+=-,54m =,∴514m <≤.综上所述,当112m -+<或514m <≤时,图象G 与正方形ABCD 有3个交点.26.(1)EF AB =.证明见解析;(2)1EF k AB k-=;(3)13EC AC =.【解析】(1)在BD 上取点M ,使AM AD =,根据等边对等角的性质、等量代换及全等三角形的判定和性质可得AB EF =;(2)在BD 上取点M ,使AM AD =,过E 作EN CD 交AD 于N ,根据等边对等角、平行线的性质、等量代换可证得:ENF AMB △∽△,继而可得EF EN AB AM =,继而易证ANE ADC △∽△,CN DC E AE A =,继而即可求解;(3)过E 作EG AD ⊥于G ,易证EGF CAB △∽△,可得EG EF AC BC =,可设3AB a =,5BC a =,则4AC a =,求得2EF a =,85EG a =,易证AGE CAB △∽△,进而可得AE GE CB AB=,继而可知83AE a =,84433EC a a a =-=,继而即可求解.【详解】(1)EF AB =.证明:在BD 上取点M ,使AM AD =,如图1,∵AM AD =,∴AMD ADM ∠=∠,∴AMB ADC ∠=∠,又∵AD CD =,∴AM CD =,又∵ABC EFD ∠=∠.∴()ABM CFD AAS △≌△,∴AB EF =;(2)解:在BD 上取点M ,使AM AD =,过E 作EN CD 交AD 于N.∵AM AD =,∴AMD ADM ∠=∠,∴AMB ADC ∠=∠.∵NE DC ∥,∴FNE ADC AMB ∠=∠=∠.又∵EFD ABC ∠=∠,∴ENF AMB △∽△,∴EFENAB AM =,∵EN DC ,∴ANE ADC △∽△,∴CN DC E AEA =∵AC kEC =,∴()1AE AC EC k EC =-=-.∴()11k EC EN kDC kEC k --==,∵AM AD DC ==,∴1EN EN k DC AM k -==,∴1EF k AB k -=;(3)解:过E 作EG AD ⊥于G ,如图3∵90BAC ∠=︒,∴EGF BAC ∠=∠.又∵EFD ABC ∠=∠,∴EGF CAB △∽△,∴EG EFAC BC=∵35ABBC =,∴设3AB a =,5BC a =,则4AC a =,又∵23EFAB =,∴2EF a =,∴245EG a a a =,∴85EG a =.又∵AD DC =,∴DAC C ∠=∠,∴AGE CAB △∽△,∴AEGECB AB =,∴8553a AE a a =,∴83AE a =∵4AC a =,∴84433EC a a a =-=,∴41343a EC AC a ==.【点睛】本题主要考查相似三角形的的判定及其性质,涉及到等边对等角的性质、等量代换及全等三角形的判定及其性质,解题的关键是熟练掌握所学知识.。

2024年最新人教版初三数学(上册)期中试卷及答案(各版本)

2024年最新人教版初三数学(上册)期中试卷及答案(各版本)

2024年最新人教版初三数学(上册)期中试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最大的数是()A. 3B. 0C. 1D. 22. 一个等边三角形的周长是15cm,那么它的边长是()A. 3cmB. 5cmC. 7.5cmD. 10cm3. 下列哪一个数是有理数()A. √3B. πC. 1/2D. √14. 下列哪一个图形是正方体()A. 长方体B. 球体C. 圆柱体D. 正方体5. 下列哪一个数是无理数()A. 1/3B. √4C. 0.333D. √2二、判断题5道(每题1分,共5分)1. 任何两个实数的和都是实数。

()2. 任何两个实数的积都是实数。

()3. 0是正数。

()4. 1是质数。

()5. 任何两个奇数的和都是偶数。

()三、填空题5道(每题1分,共5分)1. 一个等差数列的第1项是1,公差是2,第10项是______。

2. 一个等比数列的第1项是2,公比是3,第4项是______。

3. 下列数列的前5项是2, 4, 8, 16, 32,下一个数是______。

4. 下列数列的前5项是1, 3, 5, 7, 9,下一个数是______。

5. 下列数列的前5项是1, 4, 9, 16, 25,下一个数是______。

四、简答题5道(每题2分,共10分)1. 解释什么是等差数列?2. 解释什么是等比数列?3. 解释什么是无理数?4. 解释什么是函数?5. 解释什么是几何图形?五、应用题:5道(每题2分,共10分)1. 一个等差数列的第1项是3,公差是2,求第10项。

2. 一个等比数列的第1项是2,公比是3,求第6项。

3. 下列数列的前5项是2, 4, 8, 16, 32,求下一个数。

4. 下列数列的前5项是1, 3, 5, 7, 9,求下一个数。

5. 下列数列的前5项是1, 4, 9, 16, 25,求下一个数。

六、分析题:2道(每题5分,共10分)1. 给出一个等差数列的前5项,然后给出一个等比数列的前5项,比较它们的特点。

九年级上学期数学期中考试试卷及答案解析

九年级上学期数学期中考试试卷及答案解析

九年级上学期数学期中考试试卷及答案解析一、选择题(每题4分,共40分)1. 有下列四个数:-1, 0, 1, √2,其中无理数是()A. -1B. 0C. 1D. √2答案:D解析:无理数是指不能表示为两个整数比的数,√2无法表示为两个整数的比,故选D。

2. 下列各数中,与-3的平方相等的是()A. 3B. -3C. 9D. -9答案:C解析:-3的平方为9,故选C。

3. 已知a = 2,b = -3,则a² - 2ab + b²的值为()A. 25B. -25C. 1D. -1答案:A解析:将a和b的值代入a² - 2ab + b²,得(2)² -22(-3) + (-3)² = 4 + 12 + 9 = 25,故选A。

4. 下列等式中,正确的是()A. (a²)³ = a⁶B. (a³)² = a⁶C. (a²)³ = a⁹D. (a³)² = a⁹答案:B解析:幂的乘方规则,(a³)² = a³² = a⁶,故选B。

5. 已知|a| = 5,且a < 0,则a的值为()A. 5B. -5C. 10D. -10答案:B解析:绝对值表示一个数的非负值,|a| = 5表示a的绝对值为5,由于a < 0,所以a = -5,故选B。

6. 下列函数中,奇函数是()A. y = x²B. y = x³C. y = |x|D. y = x² + 1答案:B解析:奇函数的定义是f(-x) = -f(x),y = x³满足这个条件,故选B。

7. 下列关于x的不等式中,有解的是()A. x² < 0B. x² ≤ 0C. x² > 0D. x² ≥ 0答案:D解析:任何数的平方都是非负数,所以x² ≥ 0对所有的x都有解,故选D。

九年级数学上册期中考试试卷及答案

九年级数学上册期中考试试卷及答案

九年级数学上册期中考试试卷及答案(试卷满分:150分;考试时间:120分钟)一.选择题(共10小题,每小题4分,共40分)1.﹣2023的绝对值是()A.﹣2023B.12023C.﹣12023D.20232.如图所示图形绕直线旋转一周,可以得到圆柱的是()A.B.C.D.3.2023年10月1日,国庆假期第一天,天下第一泉(济南趵突泉)风景区接待游客超过291200人次.将数字291200用科学记数法表示应为()A.2912×102B.29.12×104C.2.912×105D.2.912×1064.在数8,﹣0.5,﹣|﹣2|,0,(﹣3)2,﹣12中,负数的个数是()A.2B.3C.4D.55.计算机层析成像(CT)技术的工作原理与几何体的切截相似,只不过这里的“截”不是真正的截,“几何体”是病人的患病器官,“刀”是射线.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.6.下列各式正确的是()A.﹣(x+6)=﹣x﹣6B.﹣y2﹣y2=0C.9a2b﹣9ab2=0D.a+a2=a37.下列说法中正确的是()A.﹣的系数是﹣5B.单项式x的系数为1,次数为0C.﹣22xyz2的次数是6D.xy+x﹣1是二次三项式8.若代数式2x2﹣x+3的值是4,则代数式﹣4x2+2x+5的值是()A.2 B.3 C.7 D.109.有理数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣3B.a>bC.ab>0D.﹣a>c①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2022次“F”运算的结果是()A.1B.4C.2020D.42020二.填空题(共6小题,每小题4分,24分共)11.比较大小:﹣7﹣5.12.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为.13.如图,是正方体的一种表面展开图,各面都标有数字,则数字为﹣4的面与它对面的数字之和是.14.若代数式﹣2x3y b与2x a y2的和为0,则b﹣a=.15.用符号(a,b)表示a、b两数中较小的一个数,用符号[a,b]表示a、b两数中较大的一个数,计算[﹣2,1]﹣(﹣1,﹣2.5)=.16.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=22,a7=2002,a95=﹣2023,且满足任意相邻三个数的和为同一个常数,则a1+a2+a3+…+a98+a99+a100的值为.三.解答题(共7小题)17.(12分)(1)(﹣12)﹣5+(﹣14)﹣(﹣39)(2)(﹣+﹣)×(﹣24)(3)(﹣)÷+(﹣)÷(﹣15)(4)﹣14﹣×[2﹣(﹣3)2]18.(6分)(1)把下列各数:,|﹣4|在数轴上表示出来;(2)将上列各数用“<”号从小到大连接.19.(6分)化简.(1)(6m﹣5n)﹣(7m﹣8n)(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y)20.(8分)先化简,再求值:﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b),其中a=﹣1,b=.21.(6分)如图,是一些棱长为2cm的小立方块组成的几何体.(1)请在上面方格纸中分别画出从左面、上面看到的这个几何体的形状图.(2)该几何体的体积是.22.(8分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣(2x2﹣2x+1)=﹣x2﹣4x﹣3,则所捂住的多项式是____.(1)求所捂的二次三项式;(2)当x=﹣2时,求所捂二次三项式的值.23.(12分)校运动会,小明负责在一条东西赛道上为同学们拍照,这天他从主席台出发,最后停留在A处.规定以主席台为原点,以向东的方向为正方向,步行记录如下(单位:米):+10,﹣8,+6,﹣13,+7,﹣12,+2,﹣2(1)小明离主席台最远是米;(2)以主席台为原点,用1个单位长度表示1m,请在数轴上表示点A;(3)在主席台东边5米处是仲裁处,小明经过仲裁处次;(4)若小明每步行1米消耗0.04卡路里,那么他在拍照过程中步行消耗的卡路里是多少?24.(10分)书籍是人类进步的阶梯!为爱护书本我们一般都会将书本用包书纸包好.现有一本如图所示的数学课本,长为26cm、宽为18.5cm、厚为1cm,小海打算用一张长方形包书纸包好这本数学书.第一步,他将包书纸沿虚线折出折痕,封面和封底各折进去x cm;第二步,将阴影部分沿虚线剪掉,请帮助小海解决以下问题:(1)小海第一步中所用的长方形包书纸周长是多少厘米?(用含x的代数式表示)(2)若封面和封底沿虚线各折进去2cm,剪掉阴影部分后,包书纸的面积是多少?25.(12分)探索规律.(1)观察上面的图,发现:图①空白部分小正方形的个数是22﹣12=2+1;图②空白部分小正方形的个数是42﹣32=4+3;图③空白部分小正方形的个数是52﹣42=+.(2)像这样继续排列下去,你会发现一些有趣的规律,﹣n2=+.(3)运用规律计算:(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012.26.(12分)已知|a+30|+(c﹣20)2=0,在数轴上点A表示的数是a,点C表示的数是c,A,C两点之间的距离AC=|a﹣c|.(1)直接写出a、c的值,a=,c=;(2)若数轴上有一点D满足CD=3AD,且点D在A,C之间,则D点表示的数为;(3)点M从原点O出发在O,A之间以v1的速度沿数轴负方向运动,点N从点C出发在O,C之间以v2的速度沿数轴负方向运动,运动时间为t,点Q为O,N之间一点,且QN=AN,若M,N运动过程中MQ的值固定不变,求的值.参考答案一.选择题(共10小题)1.﹣2023的绝对值是()A.﹣2023B.C.D.2023【分析】一个数在数轴上对应的点到原点的距离即为这个数的绝对值,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,据此即可求得答案.【解答】解:|﹣2023|=2023故选:D.【点评】本题考查绝对值的定义及绝对值的性质,此为基础且重要知识点,必须熟练掌握.2.如图所示图形绕直线旋转一周,可以得到圆柱的是()A.B.C.D.【分析】根据每一个几何体的特征判断即可.【解答】解:A、将所示图形绕直线旋转一周,可以得到圆柱,故A符合题意;B、将所示图形绕直线旋转一周,可以得到球体,故B不符合题意;C、将所示图形绕直线旋转一周,可以得到圆锥,故C不符合题意;D.将所示图形绕直线旋转一周,可以得到圆台,故D不符合题意;故选:A.【点评】本题考查了点、线、面、体,熟练掌握每一个几何体的特征是解题的关键.3.2023年10月1日,国庆假期第一天,天下第一泉(济南趵突泉)风景区接待游客超过291200人次.将数字291200A.2912×102B.29.12×104C.2.912×105D.2.912×106【分析】科学记数法的表现形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正整数,当原数绝对值小于1时,n是负整数;由此进行求解即可得到答案.【解答】解:291200=2.912×105.故选:C.【点评】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.4.在数8,﹣0.5,﹣|﹣2|,0,(﹣3)2,﹣12中,负数的个数是()A.2B.3C.4D.5【分析】根据绝对值、有理数的乘方、负数解决此题.【解答】解:∵8>0,﹣0.5<0,﹣|﹣2|=﹣2<0,0,(﹣3)2=9>0,﹣12=﹣1<0∴负数有﹣0.5,﹣|﹣2|,﹣12,共3个.故选:B.【点评】本题主要考查绝对值、有理数的乘方、负数,熟练掌握绝对值、有理数的乘方、负数是解决本题的关键.5.计算机层析成像(CT)技术的工作原理与几何体的切截相似,只不过这里的“截”不是真正的截,“几何体”是病人的患病器官,“刀”是射线.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.【分析】根据用一个平行于圆锥底面的平面截圆锥,截面的形状是圆即可得出答案.【解答】解:用一个平行于圆锥底面的平面截圆锥,截面的形状是圆故选:B.【点评】本题考查了截一个几何体,掌握用一个平行于圆锥底面的平面截圆锥,截面的形状是圆是解题的关键.6.下列各式正确的是()A.﹣(x+6)=﹣x﹣6B.﹣y2﹣y2=0C.9a2b﹣9ab2=0D.a+a2=a3【分析】A.根据去括号法则,去掉括号,进行判断即可;B.根据合并同类项法则,进行合并,然后判断;C,D选项均观察各个加数是不是同类项,能否合并,进行判断即可.【解答】解:A.∵﹣(x+6)=﹣x﹣6,∴此选项计算正确,故符合题意;B.∵﹣y2﹣y2=﹣2y2,∴此选项计算错误,故不符合题意;D.∵a和a2不是同类项,不能合并,∴此选项计算错误,故不符合题意;故选:A.【点评】本题主要考查了整式的加减运算,解题关键是熟练掌握去括号法则和合并同类项法则.7.下列说法中正确的是()A.﹣的系数是﹣5B.单项式x的系数为1,次数为0C.﹣22xyz2的次数是6D.xy+x﹣1是二次三项式【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【解答】解:A、﹣的系数是﹣,此选项错误;B、单项式x的系数为1,次数为1,此选项错误;C、﹣22xyz2的次数是4,此选项错误;D、xy+x﹣1是二次三项式,此选项正确;故选:D.【点评】此题主要考查了单项式,关键是掌握单项式的系数、次数的定义,以及多项式的次数的计算方法.8.若代数式2x2﹣x+3的值是4,则代数式﹣4x2+2x+5的值是()A.2B.3C.7D.10【分析】由代数式2x2﹣x+3的值是4,可得2x2﹣x=1,再将﹣4x2+2x+5转化为﹣2(2x2﹣x)+5,再整体代入计算即可.【解答】解:∵2x2﹣x+3的值是4,即2x2﹣x+3=4∴2x2﹣x=1∴﹣4x2+2x+5=﹣2(2x2﹣x)+5=﹣2×1+5=﹣2+5=3故选:B.【点评】本题考查代数式求值,将﹣4x2+2x+5转化为﹣2(2x2﹣x)+5是正确解答的关键.9.有理数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣3B.a>b C.ab>0D.﹣a>c【分析】根据数轴上点的位置,先确定a、b、c对应点的数,再逐个判断得结论.【解答】解:A、由数轴知:﹣4<a<﹣3,故选项A错误;B、由数轴知,a<b,故选项B错误;C、因为a<0,b>0,所以ab<0,故选项C错误;D、因为﹣4<a<﹣3,所以3<﹣a<4,因为2<c<3,所以﹣a>c,故选项D正确.故选:D.【点评】本题考查了数轴及有理数乘法的符号法则.认真分析数轴得到有用信息是解决本题的关键.10.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2022次“F”运算的结果是()A.1B.4C.2020D.42020【分析】通过计算可知从第4次开始,运算结果1,4循环出现,则第2022次“F”运算的结果与第1次运算结果相同,再求解即可.【解答】解:当n=13时第1次运算结果为13×3+1=40第2次运算结果为=5第3次运算结果为5×3+1=16第4次运算结果为=1第5次运算结果为1×3+1=4第6次运算结果为=1第7次运算结果为1×3+1=4……∴从第4次开始,运算结果1,4循环出现∵(2022﹣3)÷2=1009 (1)∴第2022次“F”运算的结果是1故选:A.二.填空题(共6小题)11.比较大小:﹣7 <﹣5.【分析】根据两个负数,绝对值大的其值反而小判断即可.【解答】解:∵|﹣7|=7,|﹣5|=5而7>5∴﹣7<﹣5.故答案为<.【点评】本题考查了有理数大小比较,关键是掌握有理数大小比较法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小.12.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.【分析】根据正数与负数的意义可直接求解.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故答案为零下3℃.【点评】本题主要考查正数与负数,理解正数与负数的意义是解题的关键.13.如图,是正方体的一种表面展开图,各面都标有数字,则数字为﹣4的面与它对面的数字之和是﹣7.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面,判断即可.【解答】解:由图可知:﹣4与﹣3相对∴﹣4+(﹣3)=﹣7故答案为:﹣7.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.14.若代数式﹣2x3y b与2x a y2的和为0,则b﹣a=﹣1.【分析】根据同类项的定义判断出a,b的值,可得结论.【解答】解:由题意a=3,b=2∴b﹣a=2﹣3=﹣1.故答案为:﹣1.【点评】本题考查整式的加减,解题的关键是理解题意,灵活运用所学知识解决问题.1,﹣2.5)= 3.5.【分析】根据定义,所求式子可化为1﹣(﹣2.5),再求值即可.【解答】解:[﹣2,1]﹣(﹣1,﹣2.5)=1﹣(﹣2.5)=1+2.5=3.5故答案为:3.5.【点评】本题考查有理数的加减法,熟练掌握有理数的加减法运算,会比较有理数的大小,弄清定义是解题的关键.16.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=22,a7=2002,a95=﹣2023,且满足任意相邻三个数的和为同一个常数,则a1+a2+a3+…+a98+a99+a100的值为2035.【分析】根据题中所给“任意相邻三个数的和为同一个常数”可求出这一列数,进而可解决问题.【解答】解:由题知因为这列数中任意相邻三个数的和为同一个常数所以a1+a2+a3=a2+a3+a4则a1=a4.同理可得a1=a4=a7=…=a100a2=a5=a8=…=a98a3=a6=a9=…=a99所以这列数按2002,﹣2023,22循环出现.又因为100÷3=33余1且2002+(﹣2023)+22=1所以a1+a2+a3+…+a98+a99+a100=1×33+2002=2035.故答案为:2035.【点评】本题考查数字变化的规律,能根据题意得出这列数按2002,﹣2023,22循环出现是解题的关键.三.解答题(共7小题)17.(1)(﹣12)﹣5+(﹣14)﹣(﹣39);(2)(﹣+﹣)×(﹣24);(3)(﹣)÷+(﹣)÷(﹣15);(4)﹣14﹣×[2﹣(﹣3)2].【分析】(1)先把减法转化为加法,再根据加法法则计算即可;(2)根据乘法分配律计算即可;(3)先算除法,再算加法即可;(4)先算乘方和括号内的式子,再算括号外的乘法,最后算减法即可.【解答】解:(1)(﹣12)﹣5+(﹣14)﹣(﹣39)=(﹣12)+(﹣5)+(﹣14)+39=8;(2)(﹣+﹣)×(﹣24)=﹣×(﹣24)+×(﹣24)﹣×(﹣24)=20+(﹣9)+6=17;(3)(﹣)÷+(﹣)÷(﹣15)=(﹣)×9+(﹣)×(﹣)=﹣24+=﹣23;(4)﹣14﹣×[2﹣(﹣3)2]=﹣1﹣×(2﹣9)=﹣1﹣×(﹣7)=﹣1+=.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键,注意乘法分配律的应用.18.(1)把下列各数:,|﹣4|在数轴上表示出来;(2)将上列各数用“<”号从小到大连接.【分析】(1)在数轴上准确找到各数对应的点,即可解答;(2)利用(1)的结论,即可解答.【解答】解:(1)如图:(2)由(1)可得:.【点评】本题考查了有理数的大小比较,数轴,绝对值,准确熟练地在数轴上找到各数对应的点是解题的关键.19.化简.(1)(6m﹣5n)﹣(7m﹣8n);(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y);【分析】(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可;【解答】解:(1)(6m﹣5n)﹣(7m﹣8n)=6m﹣5n﹣7m+8n=﹣m+3n;(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y)=15x2y﹣5xy2+4xy2﹣8x2y=7x2y﹣xy2;20.先化简,再求值:﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b),其中a=﹣1,b=.﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b)=﹣a2b﹣8ab2﹣a2b﹣10ab2+2a2b=﹣18ab2当a=﹣1,b=时原式=﹣18×(﹣1)×()2=2.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.如图,是一些棱长为2cm的小立方块组成的几何体.(1)请在上面方格纸中分别画出从左面、上面看到的这个几何体的形状图.(2)该几何体的体积是48cm3.【分析】(1)根据三视图的定义画图即可.(2)用1个小立方块的体积乘以小方块的个数即可.【解答】解:(1)如图所示.(2)该几何体的体积是23×6=48(cm3).故答案为:48cm3.【点评】本题考查作图﹣三视图,解题的关键是理解三视图的定义,难度不大.22.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣(2x2﹣2x+1)=﹣x2﹣4x﹣3,则所捂住的多项式是____.(1)求所捂的二次三项式;(2)当x=﹣2时,求所捂二次三项式的值.【分析】(1)根据题意可知:所捂的二次三项式是:(﹣x2﹣4x﹣3)+(2x2﹣2x+1),然后计算即可;(2)将x=﹣2代入(1)中的结果计算即可.【解答】解:(1)由题意可得所捂的二次三项式是:(﹣x2﹣4x﹣3)+(2x2﹣2x+1)=﹣x2﹣4x﹣3+2x2﹣2x+1=x2﹣6x﹣2;(2)当x=﹣2时,x2﹣6x﹣2=(﹣2)2﹣6×(﹣2)﹣2=4+12﹣2=14.【点评】本题考查整式的加减、代数式求值,解答本题的关键是明确去括号法则和合并同类项的方法.23.校运动会,小明负责在一条东西赛道上为同学们拍照,这天他从主席台出发,最后停留在A处.规定以主席台为原点,以向东的方向为正方向,步行记录如下(单位:米):+10,﹣8,+6,﹣13,+7,﹣12,+2,﹣2(1)小明离主席台最远是10米;(2)以主席台为原点,用1个单位长度表示1m,请在数轴上表示点A;(3)在主席台东边5米处是仲裁处,小明经过仲裁处4次;(4)若小明每步行1米消耗0.04卡路里,那么他在拍照过程中步行消耗的卡路里是多少?【分析】(1)分别求出小明每次运动后的位置,即可得到答案;(2)结合(1),在数轴上标出最后位置即可;(3)由运动过程可求出经过仲裁处的次数;(4)根据每步行1米消耗0.04卡路里列式计算即可.【解答】解:(1)∵+10﹣8=2;2+6=8;8﹣13=﹣5;﹣5+7=2,2﹣12=﹣10;﹣10+2=﹣8;﹣8﹣2=﹣10;∴小明离主席台最远是10米;故答案为:10;(2)如图所示,点A即为所求;(3)从主席台出发,+10经过仲裁处,由+10到﹣8经过仲裁处,﹣8到+6经过仲裁处,+6到﹣13经过仲裁处∴经过仲裁处4次;故答案为:4;(4)(10+8+6+13+7+12+2+2)×0.04=60×0.04=2.4(卡路里)答:小明在拍照过程中步行消耗2.4卡路里.【点评】本题考查有理数混合运算,解题的关键是读懂题意,理解小明的运动过程.24.书籍是人类进步的阶梯!为爱护书本我们一般都会将书本用包书纸包好.现有一本如图所示的数学课本,长为26cm、宽为18.5cm、厚为1cm,小海打算用一张长方形包书纸包好这本数学书.第一步,他将包书纸沿虚线折出折痕,封面和封底各折进去x cm;第二步,将阴影部分沿虚线剪掉,请帮助小海解决以下问题:(1)小海第一步中所用的长方形包书纸周长是多少厘米?(用含x的代数式表示)(2)若封面和封底沿虚线各折进去2cm,剪掉阴影部分后,包书纸的面积是多少?【分析】(1)由题意列式计算即可;(2)当x=2cm时,求出包书纸长和宽,即可解决问题.【解答】解:(1)小海所用包书纸的周长为:2(18.5×2+1+2x)+2(26+2x)=2(38+2x)+2(26+2x)=(8x+128)cm答:小海所用包书纸的周长为(8x+128)cm;(2)当x=2cm时,包书纸长为:18.5×2+1+2×2=42(cm)包书纸宽为:26+2×2=30(cm)∴包书纸的面积=42×30﹣2×2×4﹣2×1×2=1240(cm2)答:包书纸的面积为1240cm2.【点评】本题考查了矩形的性质以及列代数式,熟练掌握矩形的性质是解题的关键.25.探索规律.(1)观察上面的图,发现:图①空白部分小正方形的个数是22﹣12=2+1;图②空白部分小正方形的个数是42﹣32=4+3;图③空白部分小正方形的个数是52﹣42=5+4.(2)像这样继续排列下去,你会发现一些有趣的规律,(n+1)2﹣n2=n+1+n.(3)运用规律计算:(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012.【分析】(1)根据所给的等式的形式进行求解即可;(2)根据(1)进行总结,从而可求解;(3)利用(2)中的规律进行求解即可.【解答】解:(1)由题意得:图③空白部分小正方形的个数是52﹣42=5+4故答案为:5,4;(2)(n+1)2﹣n2=n+1+n故答案为:(n+1)2,n+1,n;(3)(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012=(2024+2023+2022+2021+2020+2019+2018+…+2+1)÷1012=[(2024+1)+(2023+2)+(2022+3)+…+(1013+1012)]÷1012=2025×1012÷1012=2025.【点评】本题主要考查数字的变化规律,解答的关键是由所给的等式总结出存在的规律.26.已知|a +30|+(c ﹣20)2=0,在数轴上点A 表示的数是a ,点C 表示的数是c ,A ,C 两点之间的距离AC =|a ﹣c |.(1)直接写出a 、c 的值,a = ﹣30 ,c = 20 ;(2)若数轴上有一点D 满足CD =3AD ,且点D 在A ,C 之间,则D点表示的数为 ﹣ ; (3)点M 从原点O 出发在O ,A 之间以v 1的速度沿数轴负方向运动,点N 从点C 出发在O ,C 之间以v 2的速度沿数轴负方向运动,运动时间为t ,点Q 为O ,N 之间一点,且QN =AN ,若M ,N 运动过程中MQ 的值固定不变,求的值.【分析】(1)根据绝对值和平方的非负性求解即可;(2)根据两点间距离公式求解即可;(3)写出MQ 距离的代数式,根据MQ 距离不变,得出v 1,v 2的比值即可.【解答】解:(1)∵|a +30|≥0,(c ﹣20)2≥0,|a +30|+(c ﹣20)2=0∴|a +30|=0,(c ﹣20)2=0∴a =﹣30,c =20故答案为:﹣30,20.(2)设D 点表示的数为x则有:20﹣x =3{x ﹣(﹣30)}解得:x =﹣故答案为:﹣.(3)OM 的长度为:v 1t ,CN 的长度为v 2t∴AM =﹣v 1t ﹣(﹣30)=﹣v 1t +30,AN =20+20﹣v 2t =50﹣v 2t∵QN =AN∴AQ =AN =(50﹣v 2t )∴MQ =AQ ﹣AM =(50﹣v 2t )﹣(﹣v 1t +30)=+(v 1﹣v 2)t∵MQ 的长度不随t 的变化而变化∴v 1﹣v 2=0 ∴=.【点评】本题主要考查了数轴,确定MQ 长度不变的条件是本题解题的关键.。

九年级上学期数学期中考试卷及答案精选全文

九年级上学期数学期中考试卷及答案精选全文

可编辑修改精选全文完整版第一学期期中考试九年级数学试题1. 计算()23-的结果是()A.3B.3- C.3±2. 若P(x;-3)与点Q(4;y)关于原点对称;则x+y=()A、7B、-7C、1D、-13. 下列二次根式是最简二次根式的是()4. 一元二次方程22350xx++=的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判断5. 用配方法解方程0142=++xx;则配方正确的是()A、3)2(2=+x B、5)2(2-=+xC、3)2(2-=+x D、3)4(2=+x6. 如图;AB、AC都是圆O的弦;OM⊥AB;ON⊥AC;垂足分别为M、N;如果MN=3;那么BC=(). A. 4 B.5 C. 6 D.7二、填空题(共8小题;每小题3分;满分24分)7. 2-x在实数范围内有意义;则x的取值范围是.8. 221x-=的二次项系数是 ;一次项系数是 ;常数项是 .9. 一只蚂蚁沿图中所示的折线由A点爬到了C点;则蚂蚁一共爬行了______cm.(图中小方格边长代表1cm)NMOCBA10. 关于x 的一元二次方程04)2(22=-+-+m mx x m 有一根为0;则m= . 11. 对于任意不相等的两个数a;b;定义一种运算*如下:ba b a b a -+=*;如523232*3=-+=;那么)5(*3-= .12. 有4个命题:①直径相等的两个圆是等圆;②长度相等的两条弧是等弧;③圆中最大的弦是通过圆心的弦;④在同圆或等圆中;相等的两条弦所对的弧是等弧;其中真命题是_________。

13. 有两个完全重合的矩形;将其中一个始终保持不动;另一个矩形绕其对称中心O 按逆时针方向进行旋转;每次均旋转22.5︒;第.2.次.旋转后得到图①;第.4.次.旋转后得到图②…;则第20次旋转后得到的图形与图①~图④中相同的是____. (填写序号)14. 等腰三角形两边的长分别为方程02092=+-x x 的两根;则三角形的周长是 .三、解答题(共4小题;每小题6分;共24分) 15. 解方程:x(x-2)+x-2=016. 计算:0)15(282218-+--图① 图② 图③ 图④ OOOO17. 下面两个网格图均是4×4正方形网格;请分别在两个网格图中选取两个白色的单位正方形并涂黑;使整个网格图满足下列要求. 18. 如图;大正方形的边长515+;小正为方形的边长为515-;求图中的阴影部分的面积.四、(本大题共2小题;每小题8分;共16分)19. 数学课上;小军把一个菱形通过旋转且每次旋转120°后得到甲的图案。

北京市2024-2025学年北京陈经纶中学初三(上)期中考试数学试卷及答案

北京市2024-2025学年北京陈经纶中学初三(上)期中考试数学试卷及答案

2024北京陈经纶初三(上)期中数 学时间:90分钟 满分:100分一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1. 抛物线()212y x =−+的顶点坐标是( ) A. ()1,2 B. ()1,2− C. ()1,2− D. ()1,2−− 2. 用配方法解方程242x x +=,变形后结果正确的是( )A. ()223x −=B. ()223x +=C. ()226x −=D. ()226x += 3. 图中的五角星图案,绕着它的中心O 旋转n ︒后,能与自身重合,则n 的值至少是( )A. 144B. 72C. 60D. 504. 若关于x 的一元二次方程240x x m −=有两个相等的实数根,则实数m 的值为( )A. 4B. 4−C. 4±D. 25. 将抛物线231y x =+的图象向左平移2个单位,再向下平移3个单位,得到的抛物线是( )A. ()2323y x =+−B. ()2322y x =+− C. ()2323y x =−− D. ()2322y x =−− 6. 如图,在平面直角坐标系中,△ABC 顶点的横、纵坐标都是整数.若将△ABC 以某点为旋转中心,顺时针旋转90°得到△DEF ,其中A 、B 、C 分别和D 、E 、F 对应,则旋转中心的坐标是( )A. (0,0)B. (1,0)C. (1,1)−D. ()0.5,0.5 7. 11(,)2A y −,2(1,)B y ,3(4,)C y 三点都在二次函数2(2)y x k =−−+的图像上,则123,,y y y 的大小关系为( ) A. 123y y y << B. 132y y y <<C. 312y y y <<D. 321y y y << 8. 四位同学在研究二次函数()260y ax bx a =+−≠时,甲同学发现函数图象的对称轴是直线1x =;乙同学发现当3x =时,y =−6;丙同学发现函数的最小值为8−;丁同学发现3x =是一元二次方程()2600ax bx a +−=≠的一个根,已知这四位同学中只有一位同学发现的结论是错误的,则该同学是( )A. 甲B. 乙C. 丙D. 丁二、填空题:本大题共8个小题,每小题3分,共24分.9. 方程260x x −=的解是_____.10. 请写出一个开口向上,并且与y 轴交于点()0,1−的抛物线的表达式______.11. 如图,将OAB △绕点O 逆时针旋转80︒,得到OCD ,若2100A D ∠=∠=︒,则α∠的度数__________.12. 如图,已知二次函数210y ax bx c a ++≠=()与一次函数20y kx b k +≠=()的图象相交于点(24),82A B ﹣,(,),则2ax bx c kx b +++=的解是 _____.13. 杭州亚运会的吉祥物“江南忆”出自唐朝诗人白居易的名句“江南忆,最忆是杭州”,它融合了杭州的历史人文、自然生态和创新基因.经统计,某商店吉祥物“江南忆”6月份的销售量为1200件,8月份的销售量为1452件,设吉祥物“江南忆”6月份到8月份销售量的月平均增长率为x ,则可列方程为______. 14. 若关于x 的一元二次方程()221310k x x k −++−=的一个根为0,则k 的值为___________. 15. 汽车刹车后行驶的距离y (单位:m )关于行驶的时间x (单位:s )的函数解析式是:2156s x x =−,汽车刹车后前进了______米才能停下来.16. 车间里有五台车床同时出现故障.已知第一台至第五台修复的时间如下表:(1)若只有一名修理工,且每次只能修理一台车床,则下列三个修复车床的顺序:①D B E A C →→→→;②D A C E B →→→→;③C A E B D →→→→中,经济损失最少的是______(填序号);(2)若由两名修理工同时修理车床,且每台车床只由一名修理工修理,则最少经济损失为______元.三.解答题:共52分,第17-24题,每题5分,第25-26题,每题6分.解答应写出文字说明、演算步骤或证明过程.17. 解方程22730x x −+=.18. 若a 是关于x 的一元二次方程2390x x −+=的根,求代数式()()()4431a a a +−−−的值. 19. 如图,ABC 是直角三角形,90C ∠=︒,将ABC 绕点C 顺时针旋转90︒.(1)试作出旋转后的DCE △,其中B 与D 是对应点;(2)在作出的图形中,已知5,3AB BC ==,求BE 的长.20. 已知抛物线()20y ax bx c a =++≠图象上部分点的横坐标x 与纵坐标y 的对应值如下表:(1)并画出图象;(2)求此抛物线的解析式;(3)结合图象,直接写出当03x <<时y 的取值范围.21. 已知关于x 的一元二次方程2(2)10x m x m −+++=.(1)求证:无论m 取何值,方程总有两个实数根;(2)若方程的一个实数根是另一个实数根的两倍,求m 的值.22. 景区内有一块58⨯米的矩形郁金香园地(数据如图所示,单位:米),现在其中修建一条花道(阴影所示),供游人赏花.若改造后观花道的面积为12平方米,求x 的值.23. 数学活动课上,老师提出一个探究问题:制作一个体积为310dm ,底面为正方形的长方体包装盒,当底面边长为多少时,需要的材料最省(底面边长不超过3dm ,且不考虑接缝).某小组经讨论得出:材料最省,就是尽可能使得长方体的表面积最小.下面是他们的探究过程,请补充完整:(1)设长方体包装盒的底面边长为x dm ,表面积为2dm y 、可以用含x 的代数式表示长方体的高为210dm x.根据长方体的表面积公式:长方体表面积=2×底面积+侧面积. 得到y 与x 的关系式:_________(03x <≤);(2)列出y 与x 的几组对应值:(说明:表格中相关数值精确到十分位)(3)在下面的平面直角坐标系xOy 中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象:(4)结合画出的函数图象,解决问题:长方体包装盒的底面边长约为_______dm 时,需要的材料最省.24. 在平面直角坐标系xOy 中,抛物线 (²0)y ax bx c a =++>的对称轴为 x t =,点(),A t m −,()2,B t n , ()00,C x y 在抛物线上.(1)当2t =时,直接写出m 与n 的大小关系;(2)若对于 056x << 都有 0m y n >> 求t 的取值范围.25. 在ABC 中,AB AC =,090BAC ︒<∠<︒,将线段AC 绕点A 逆时针旋转α得到线段AD ,连接BD ,CD .(1)如图1,当BAC α∠=时,则ABD ∠=______(用含有α的式子表示);(2)如图2,当90α=︒时,作BAD ∠的角平分线交BC 的延长线于点F ,交BD 于点E ,连接DF . ①依题意在图2中补全图形,并求DBC ∠的度数;②用等式表示线段AF ,CF ,DF 之间的数量关系,并证明.26. 对于平面直角坐标系xOy 内的点P 和图形M ,给出如下定义:如果点P 绕原点O 顺时针旋转90︒得到点P ',点P '落在图形M 上或图形M 围成的区域内,那么称点P 是图形M 关于原点O 的“伴随点”.已知点()()()1,1,3,1,3,2A B C .(1)在点()()()1232,0,1,1,1,2P P P −−−中,点______是线段AB 关于原点O 的“伴随点”;(2)如果点(),2D m 是ABC 关于原点O 的“伴随点”,直接写出m 的取值范围;(3)已知抛物线()21y x n =−−+上存在ABC 关于原点O 的“伴随点”,求n 的最大值和最小值.参考答案一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1. 【答案】A【分析】本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键.根据抛物线的顶点解析式写出顶点坐标即可. 【详解】解:顶点式()2y a x h k =−+顶点坐标是(),h k ,∴抛物线()212y x =−+的顶点坐标是()1,2, 故选:A .2. 【答案】D【分析】本题考查配方法,根据配方法的步骤:一除二移三配方,进行配方即可.【详解】解:242x x +=24424x x ++=+∴()226x +=;故选D .3. 【答案】B【分析】五角星图案,可以被平分成五部分,因而每部分被分成的圆心角是72︒,并且圆具有旋转不变性,因而旋转72度的整数倍,就可以与自身重合.【详解】该图形被平分成五部分,旋转72度的整数倍,就可以与自身重合,∴旋转的度数至少为72︒,故选:B .【点睛】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.4. 【答案】A【分析】本题考查了一元二次方程根的判别式,一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=−有如下关系:①0∆>,方程有两个不相等的实数根,②0∆=,方程有两个相等的实数根,③0∆<,方程没有实数根.由题意得出()2440m ∆=−−=,计算即可得出答案.【详解】解:∵关于x 的一元二次方程240x x m −+=有两个相等的实数根,∴()2440m ∆=−−=,解得:4m =.5. 【答案】B【分析】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线231y x =+向左平移2个单位所得直线解析式为:()2321y x =++;再向下平移3个单位为:()()223213322y x x =++−=+−.故选:B .6. 【答案】C【分析】根据对应点连接线段的垂直平分线的交点即为旋转中心,作出旋转中心,可得结论;【详解】如图,点Q 即为所求,(1,1)Q −;故选C .7. 【答案】B【分析】由二次函数解析式可得函数对称轴和增减性,再根据离对称轴的远近的点的纵坐标的大小比较,即可得出123,,y y y 的大小关系.【详解】解:二次函数2(2)y x k =−−+的图像开口向下,对称轴为2x =,∴3(4,)C y 关于对称轴的对称点为3(0,)C y ',∵在对称轴左侧,y 随x 的增大而增大, 又∵10122−<<<, ∴132y y y <<.故选:B .【点睛】本题主要考查了比较函数值的大小,解决此题的关键是理解当二次函数开口向下时,在函数图像上距离对称轴越远的点,函数值越小;当二次函数开口向上时,在函数图像上距离对称轴越远的点,函数值越大.【分析】分别根据四个人的信息得到相应的关系式,假设其中一个不对时,判断其它三个条件是否同时成立.【详解】解:当甲同学的结论正确,即当函数的对称轴是直线1x =时,12b a−=,即2b a =−. 当乙同学的结论正确,即当3x =时,y =−6时,9366a b +−=−,可得3b a =−.当丙同学的结论正确,即当函数的最小值为8−时,22424844ac b a b a a−−−==−,可得28b a =. 当丁同学的结论正确,即当3x =是一元二次方程()2600ax bx a +−=≠的一个根时,9360a b +−=,可得23b a =−.根据3b a =−和23b a =−不能同时成立,可知乙同学和丁同学中有一位的结论是错误的,假设丁同学的结论错误,联立2b a =−和3b a =−,得0a =,0b =,不满足0a ≠,故假设不成立; 假设乙同学的结论错误,联立2b a =−和23b a =−,得2a =,4b =−,此时满足28b a =,故假设成立;故选:B .【点睛】本题主要考查二次函数的图象及性质,熟练掌握二次函数抛物线的对称轴、顶点坐标与系数的关系是解题的关键.二、填空题:本大题共8个小题,每小题3分,共24分.9. 【答案】10x =,26x =【分析】利用因式分解法解答即可.【详解】解:260x x −=,∴()60x x −=,∴0x =或60x −=,解得:10x =,26x =.【点睛】本题主要考查了利用因式分解法解一元二次方程,熟练掌握因数分解法解一元二次方程是解题的关键.10. 【答案】221y x x =−−【分析】此题考查了二次函数的性质,熟练掌握二次函数性质是解本题的关键.写出一个二次函数,使其二次项系数为正数,常数项为1−即可.【详解】解:根据题意得:221y x x =−−(答案不唯一),故答案为:221y x x =−−(答案不唯一)11. 【答案】50︒【分析】根据旋转的性质可得D B ∠=∠,80BOD ∠=︒,求出B ∠,再利用三角形内角和定理求出AOB ∠,进而可求α∠的度数.【详解】解:由旋转得:D B ∠=∠,80BOD ∠=︒,∵2100A D ∠=∠=︒,∴50∠=∠=︒B D ,∴18030AOB A B ∠=︒−∠−∠=︒,∴803050BOD AOB α∠=∠−∠=︒−︒=︒,故答案为:50︒.【点睛】本题考查了旋转的性质,三角形内角和定理,熟练掌握旋转前后的对应角相等,旋转角的定义是解题的关键.12. 【答案】2x =−或=8x【分析】根据图象,2ax bx c kx b +++=的解就是二次函数210y ax bx c a ++≠=()与一次函数20y kx b k +≠=()的图象交点的横坐标,据此解答即可.【详解】解:由图形可得,2ax bx c kx b +++=的解就是二次函数210y ax bx c a ++≠=()与一次函数20y kx b k +≠=()的图象交点的横坐标,所以2ax bx c kx b +++=的解是2x =−或=8x ,故答案为:2x =−或=8x【点睛】本题考查了二次函数与一次函数交点问题,解决本题的关键是熟练掌握用数形结合解决二次函数与一次函数交点问题.13. 【答案】()2120011452x +=【分析】本题考查了一元二次方程的应用;设月平均增长率为x ,根据增长率问题的等量关系列方程即可.【详解】解:设月平均增长率为x ,根据题意得:()2120011452x +=,故答案为:()2120011452x +=.14. 【答案】1−【分析】本题考查了一元二次方程的解及定义,把x =0代入一元二次方程,再根据一元二次方程的定义可得10k −≠,由此即可求解.【详解】解:把x =0代入一元二次方程得,210k −=,且10k −≠,解得,1k =±,且1k ≠,∴1k =−,故答案为:1− .15. 【答案】758 【分析】本题考查了二次函数的应用,根据二次函数的解析式求得顶点,再利用二次函数的性质求出s 的最大值即可得出结论. 【详解】解:60<,∴函数有最大值.∴()201575468s −==⨯−最大值,即汽车刹车后前进了758米才能停下来. 故答案为:758. 16. 【答案】 ①. ① ②. 1010【分析】本题考查了有理数的混合运算,找出方案是解题的关键.(1)因为要经济损失最少,就要使总停产的时间尽量短,显然先修复时间短的即可;(2)一名修理工修按D ,E ,C 的顺序修,另一名修理工修按B ,A 的顺序修,修复时间最短,据此计算即可.【详解】解:(1)①总停产时间:574831021529156⨯+⨯+⨯+⨯+=分钟,②总停产时间:574153292108210⨯+⨯+⨯+⨯+=分钟,③总停产时间:529415310287258⨯+⨯+⨯+⨯+=分钟,故答案为:①;(2)一名修理工修按D ,E ,C 的顺序修,另一名修理工修按B ,A 的顺序修,7514936223101⨯+⨯+⨯+⨯+=分钟,101101010⨯=(元)故答案为:1010.三.解答题:共52分,第17-24题,每题5分,第25-26题,每题6分.解答应写出文字说明、演算步骤或证明过程.17. 【答案】13x =,212x = 【分析】直接代入求根公式求解即可.【详解】解:2a =,7b =−,3c =因为224(7)423250b ac −=−−⨯⨯=>所以754x ±== 所以13x =,212x = 【点晴】本题考查了一元二次方程的解法,熟练记住求根公式是解题的关键.18. 【答案】22−【分析】将x a =代入2390x x −+=得2390a a −+=,由()()()24431313a a a a a +−−−=−−即可求解;【详解】解:将x a =代入2390x x −+=得2390a a −+=,∴239a a −=−,()()()244311633a a a a a +−−−=−−+2313a a =−−913=−−22=−【点睛】本题主要考查一元二次方程的应用,根据所求代数式进行变换求解是解题的关键.19. 【答案】(1)见解析 (2)7【分析】(1)根据题意作出旋转图形即可;(2)由勾股定理得出4AC =,再由旋转的性质结合图形求解即可.【小问1详解】解:如图所示;【小问2详解】解:∵5,3,90AB BC C ==∠=︒,∴4AC ==,∵DCE △由ABC 旋转而成, ∴4CE AC ==,∵90DCE ACB ∠=∠=︒,∴B 、C 、E 共线,∴347BE BC CE =+=+=.【点睛】题目主要考查旋转图形的作法,勾股定理解三角形,熟练掌握运用这些基础知识点是解题关键. 20. 【答案】(1)见解析;(2)2=23y x x −−;(3)40y −≤<.【分析】本题考查了待定系数法求抛物线解析式,描点法画函数图象,根据图像求函数值范围,熟练掌握待定系数法和描点法画函数图象是解题关键.(1)再利用描点法画函数图象;(2)根据表格得出抛物线过点()1,4−、()1,0−、()3,0,将点坐标代入抛物线解析式求出a 、b 、c 即可,(3)分别求出,x =0,13x x ==,时的函数值,利用图象可直接得到答案.【小问1详解】解:抛物线图象如图,【小问2详解】解:∵设二次函数的解析式为2(0)y ax bx c a =++≠,由题意得:当0x =时,=3y −,∴3c =−,∵1x =时,4y =−,当1x =−时,0y =,∴3034a b a b −−=⎧⎨+−=−⎩, 解得12a b =⎧⎨=−⎩, ∴2=23y x x −−;【小问3详解】解:∵()22=23=14y x x x −−−−,∴当x =1时4y =−,当x =0时,2=0203=3y −−−⨯,当3x =时,2=3233=0y −−⨯,∴由图象可得,当03x <<时,40y −≤<. 21. 【答案】(1)见详解 (2)12−或1 【分析】(1)根据24b ac ∆=−即可证明;(2)根据公式法即可得()()122222m m xx ++==,再根据方程的一个实数根是另一个实数根的两倍即可求解;【小问1详解】解:根据题意,()()22Δ42410b ac m m m ⎡⎤=−=−+−+=≥⎣⎦,∴无论m 取何值,方程总有两个实数根.【小问2详解】由题意,根据公式法得,()222m b x a +−==,∴()()122222m m x x +++==,∴()()22222m m +++−=⋅, 解得:12112m m =−=,.【点睛】本题主要考查一元二次方程的应用,掌握相关知识是解题的关键.22. 【答案】1x =【分析】本题考查一元二次方程解决实际问题,根据面积公式可得园地修建花道后剩余的面积为()()85x x −−平方米,根据花道面积等于整个园地面积减去剩余的面积即可列出方程,求解即可. 【详解】解:根据题意,得()()185285122x x ⨯−⨯−−=, 整理,得213120x x −+=,解得:11x =,212x =,∵园地的宽为5米,而2125x =>,∴212x =不合题意,舍去.答:x 的值为1.23. 【答案】(1)2402y x x =+(2)28(3)见解析 (4)2.2【分析】(1)根据长方体表面积公式即可求解;(2)将2x =代入(1)中所得函数关系式即可;(3)描点连线即可完成作图;(4)观察图象,找到图象最低点的横坐标即可.【小问1详解】 解:2221040242y x x x x x=+⨯=+,故答案为:2402y x x=+; 【小问2详解】 解:当2x =时,82028y =+=,故答案为:28;【小问3详解】解:如图所示:【小问4详解】解:观察图象可知,当x 约为2.2dm 时,需要的材料最省,故答案为:2.2.【点睛】本题考查了二次函数在几何中的实际应用.掌握函数的研究方法是解题关键.24. 【答案】(1)m n >(2)6t ≤−或522t ≤≤ 【分析】本题考查了二次函数的图象与性质.熟练掌握二次函数的图象与性质并分情况求解是解题的关键. (1)由2(0)y ax bx c a =++>,可知图象开口向上,且抛物线上的点离对称轴越远,函数值越大,当2t =时,对称轴为2x =,()1,A m ,(4,)B n ,由4221−>−,可得m n <;(2)分当0t <,05t ≤<,56t ≤<, 6t ≥四种情况,作函数图象,根据抛物线上的点离对称轴越远,函数值越大,确定关于t 的不等式,然后求出满足要求的解即可.【小问1详解】解:∵2(0)y ax bx c a =++>,∴图象开口向上,则抛物线上的点离对称轴越远,函数值越大,当2t =时,对称轴为2x =,()2,A m −,(4,)B n ,∵()2242−−>−,∴m n >;【小问2详解】解:当0t <时,如图1,∴(),A t m −在抛物NQ 线段上,()2,B t n 在MN 段上,()00,C x y 在PQ 上,∵对于056x <<,都有0m y n >>,∴6t −≥且225t t t >≥−,且0t <,解得:6t ≤−;当05t ≤<时,如图2,∵对于056x <<,都有0m y n >>,∴26t t −≤−且025t <≤, 解得:522t ≤≤; 当56t ≤<时,如图3,∵对于056x <<,都有0m y n >>,又∵0y 在图象中已包含最小值,∴不存在0y n >的情况,即此种情况舍去;当6t ≥时,如图4,∵对于056x <<,都有0m y n >>,又∵225t t >−,∴0n y >,即此种情况与题意不符,舍去;综上所述,t 的取值范围为6t ≤−或522t ≤≤. 25. 【答案】(1)90α︒−(2)①图形见解析,45DBC ∠=︒.②DF CF +=,证明见解析.【分析】(1)本题由旋转的性质可知AC AD =,结合AB AC =推出AB AD =,再根据等腰三角形性质即可求解.(2)①本题考查等腰三角形性质,根据等腰三角形性质用BAC ∠表示出ABC ∠和ABD ∠,再利用DBC ABC ABD ∠=∠−∠即可解题.②延长CB ,取BM CF =,连接AM ,证明()ABM ACF SAS ≌,得到AF AM =,AFC AMB ∠=∠,利用AF 为BAD ∠的角平分线,再证明()AMC AFD SAS ≌,得到MC DF =,最后结合勾股定理即可解题.【小问1详解】解:由旋转的性质可知,DAC α∠=,AC AD =,AB AC =,BAC α∠=,AB AD ∴=,2BAD α∠=,ABD ∴为等腰三角形,1802902ABD αα︒−∴∠==︒−, 故答案为:90α︒−.【小问2详解】解:①补全图形如下:AB AC =,1802BAC ABC ACB ︒−∠∴∠=∠=, AC AD =, AB AD ∴=,90α=︒,()180902BAC ABD ADB ︒−∠+︒∴∠=∠=,()180901804522BAC BAC DBC ABC ABD ︒−∠+︒︒−∠∴∠=∠−∠=−=︒.②解:DF CF +=,证明如下:证明:延长CB ,取BM CF =,连接AM ,如图所示:AB AC =,,ABC ACB ∴∠=∠ABM ACF ∴∠=∠,()ABM ACF SAS ∴≌,AF AM ∴=,AFC AMB ∠=∠,AB AD =,AF 为BAD ∠的角平分线,AF BD ∴⊥,即90BEF ∠=︒,45DBC ∠=︒,45AMB AFC BEF DBC ∴∠=∠=∠−∠=︒,90MAF ∴∠=︒,AC AD =,90DAF CAF MAF CAF CAM ∠=︒−∠=∠−∠=∠,()AMC AFD SAS ∴≌,MC DF ∴=,222AF AM MF +=,()222AF MC CF ∴=+,即()222AF DF CF =+,整理得DF CF +=.【点睛】本题考查旋转的性质、等腰三角形性质和判定,角平分线性质、全等三角形性质和判定、勾股定理等,解题的关键在于旋转构造等腰三角形和全等三角形,再熟练运用其性质即可解题.26. 【答案】(1)2P 和3P(2)312m −≤≤− (3)最大值为12,最小值为5【分析】(1)根据“伴随点”的定义,画出每个点绕点O 旋转后的对应点,进行判断即可; (2)过点D 作DP x ⊥轴于点P ,过点D 作D Q x '⊥轴于点Q ,证明DPO OQD '≌,求出D 的坐标,再求出点D 在线段AC 上和在线段AB 上时,m 的值,即可得出结论;(3)将ABC 绕点O 逆时针旋转90︒得到A B C ''',根据抛物线上存在ABC 关于原点O 的“伴随点”,得到当抛物线过点A '时n C '时n 有最大值,即可得解.【小问1详解】解:∵()()1,1,3,1A B ,∴AB x ∥轴,如图所示,点()()()1232,0,1,1,1,2P P P −−−绕点O 顺时旋转90︒得到的对应点分别为:()()()1230,2,1,1,2,1P P P ''',其中点()()231,1,2,1P P '',在线段AB 上, ∴2P 和3P 是线段AB 关于原点O 的“伴随点”;【小问2详解】解:∵()()()1,1,3,1,3,2A B C , ∴ABC 在第一象限,∵点(),2D m 是ABC 关于原点O 的“伴随点”; ∴点D 在第二象限,过点D 作DP x ⊥轴于点P ,过点D 作D Q x '⊥轴于点Q ,则:90DPO D QO '∠=∠=︒,∵OD 绕点O 顺时针旋转90︒得到OD ', ∴OD OD '=,90DOD '∠=︒,∴90DOP OD Q D OQ ''∠=∠=︒−∠, ∴DPO OQD '≌,∴,OQ DP D Q OP '==,∵(),2D m , ∴,2OQ DP m D Q OP '====, ∵ABC 在第一象限,∴()2,D m '−,设直线AC 的解析式为:y kx b =+,则: 132k b k b +=⎧⎨+=⎩, 解得:1212k b ⎧=⎪⎪⎨⎪=⎪⎩,第21页/共21页 ∴1122y x =+, 当D 在AC 上时,112m −=+,解得:32m =−; 当D 在AB 上时,1m −=,解得:1m =−; ∴当312m −≤≤−时,点(),2D m 是ABC 关于原点O 的“伴随点”; 【小问3详解】 解:如图:ABC 绕点O 逆时针旋转90︒得到A B C ''',其中()()()1,1,1,3,2,3A B C '''−−−.∵抛物线上存在ABC 关于原点O 的“伴随点”, ∴当()21y x n =−−+过A ',即()2111n =−−−+,解得:5n =,∴n 的最小值为5;同理,当()21y x n =−−+过C ',得到n 的最大值为12.【点睛】本题考查坐标与图形,旋转的性质,一次函数和二次函数的综合应用,解题的关键是理解并掌握“伴随点”的定义,利用数形结合的思想进行求解.。

九年级(上)期中数学试卷(答案解析版)

九年级(上)期中数学试卷(答案解析版)

九年级(上)期中数学试卷一、选择题(本题10小题,每小题3分,共30分.)1.(3分)方程x2﹣4=0的解是()A.4 B.±2 C.2 D.﹣22.(3分)在平面直角坐标系内,点P(﹣2,3)关于原点的对称点Q的坐标为()A.(2,﹣3)B.(2,3) C.(3,﹣2)D.(﹣2,﹣3)3.(3分)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.4.(3分)用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2 B.(x+2)2=2 C.(x﹣2)2=﹣2 D.(x﹣2)2=65.(3分)由二次函数y=2(x﹣3)2+1,可知()A.其图象的开口向下B.其图象的对称轴为直线x=﹣3C.其最小值为1 D.当x<3时,y随x的增大而增大6.(3分)如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140° D.120°7.(3分)如图,圆O是△ABC的外接圆,∠A=68°,则∠OBC的大小是()A.22°B.26°C.32°D.68°8.(3分)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°9.(3分)抛物线y=x2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是()A.y=(x+1)2+3 B.y=(x+1)2﹣3 C.y=(x﹣1)2﹣3 D.y=(x﹣1)2+3 10.(3分)如图,已知正△ABC的边长为2,E、F、G分别是AB、BC、CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是()A.B.C.D.二、填空题(共6小题,每小题4分,满分24分)11.(4分)如图,A、B、C三点在⊙O上,且∠AOB=70°,则∠C=度.12.(4分)圣诞节时,一个小组有x人,他们每两人之间互送贺卡一张,已知全组共送贺卡132张,则可列方程为.13.(4分)将一个正六边形绕着其中心,至少旋转度可以和原来的图形重合.14.(4分)如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为.15.(4分)如图是抛物线y=ax2+bx+c的图象的一部分,请你根据图象写出方程ax2+bx+c=0的两根是.16.(4分)如图,一条公路的转弯处是一段圆弧(图中的),点O是这段弧的圆心,C是上一点,OC⊥AB,垂足为D,AB=300m,CD=50m,则这段弯路的半径是m.三、解答题(本大题3小题,每小题6分,共18分)17.(6分)解方程:x2﹣x﹣12=0.18.(6分)如图,在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径.19.(6分)如图,已知点A、B、C的坐标分别为(0,0),(4,0),(5,2)将△ABC绕点A按逆时针方向旋转90°得到△AB′C′.(1)画出△AB′C′;(2)求点C′的坐标.四、解答题(本大题3小题,每小题7分,共21分)20.(7分)现有一块长20cm,宽10cm的长方形铁皮,在它的四个角分别剪去一个大小完全相同的小正方形,用剩余的部分做成一个底面积为56cm2的无盖长方体盒子,请求出剪去的小正方形的边长.21.(7分)将两块大小相同的含30°角的直角三角板(∠BAC=∠B1A1C=30°)按图1的方式放置,固定三角板A1B1C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图2所示的位置,AB与A1C交于点E,AC与A1B1交于点F,AB与A1B1交于点O.(1)求证:△BCE≌△B1CF;(2)当旋转角等于30°时,AB与A1B1垂直吗?请说明理由.22.(7分)如图,圆柱形水管内原有积水的水平面宽CD=20cm,水深GF=2cm.若水面上升2cm(EG=2cm),则此时水面宽AB为多少?五、解答题(本大题3小题,每小题9分,共27分)23.(9分)已知,如图,抛物线y=ax2+2ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.24.(9分)如图,某农场要建一个长方形的养鸡场,鸡场的一边靠墙,墙长25m,另外三边用木栏围着,木栏长40m.(1)若养鸡场面积为200m2,求鸡场平行于墙的一边长.(2)养鸡场面积能达到250m2吗?如果能,请给出设计方案,如果不能,请说明理由.25.(9分)如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10,若将△PAC绕点A逆时针旋转后得到△P′AB.(1)求点P与点P′之间的距离;(2)求∠APB的大小.参考答案与试题解析一、选择题(本题10小题,每小题3分,共30分.)1.(3分)方程x2﹣4=0的解是()A.4 B.±2 C.2 D.﹣2【解答】解:x2﹣4=0,∴x2=4,开平方得:x=±2.故选:B.2.(3分)在平面直角坐标系内,点P(﹣2,3)关于原点的对称点Q的坐标为()A.(2,﹣3)B.(2,3) C.(3,﹣2)D.(﹣2,﹣3)【解答】解:根据中心对称的性质,得点P(﹣2,3)关于原点对称点P′的坐标是(2,﹣3).故选:A.3.(3分)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,是轴对称图形;B、是中心对称图形,不是轴对称图形;C、是中心对称图形,也是轴对称图形;D、是中心对称图形,也是轴对称图形.故选:B.4.(3分)用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2 B.(x+2)2=2 C.(x﹣2)2=﹣2 D.(x﹣2)2=6【解答】解:把方程x2﹣4x+2=0的常数项移到等号的右边,得到x2﹣4x=﹣2,方程两边同时加上一次项系数一半的平方,得到x2﹣4x+4=﹣2+4,配方得(x﹣2)2=2.故选:A.5.(3分)由二次函数y=2(x﹣3)2+1,可知()A.其图象的开口向下B.其图象的对称轴为直线x=﹣3C.其最小值为1 D.当x<3时,y随x的增大而增大【解答】解:由二次函数y=2(x﹣3)2+1,可知:A:∵a>0,其图象的开口向上,故此选项错误;B.∵其图象的对称轴为直线x=3,故此选项错误;C.其最小值为1,故此选项正确;D.当x<3时,y随x的增大而减小,故此选项错误.故选:C.6.(3分)如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140° D.120°【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.7.(3分)如图,圆O是△ABC的外接圆,∠A=68°,则∠OBC的大小是()A.22°B.26°C.32°D.68°【解答】解:∵∠A与∠BOC是同弧所对的圆周角与圆心角,∠A=68°,∴∠BOC=2∠A=136°.∵OB=OC,∴∠OBC==22°.故选:A.8.(3分)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°【解答】解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA﹣∠A′OB′=45°﹣15°=30°,故选:B.9.(3分)抛物线y=x2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是()A.y=(x+1)2+3 B.y=(x+1)2﹣3 C.y=(x﹣1)2﹣3 D.y=(x﹣1)2+3【解答】解:由“左加右减”的原则可知,抛物线y=x2向右平移1个单位所得抛物线的解析式为:y=(x﹣1)2;由“上加下减”的原则可知,抛物线y=(x﹣1)2向上平移3个单位所得抛物线的解析式为:y=(x﹣1)2+3.故选:D.10.(3分)如图,已知正△ABC的边长为2,E、F、G分别是AB、BC、CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是()A.B.C.D.【解答】解:根据题意,有AE=BF=CG,且正三角形ABC的边长为2,故BE=CF=AG=2﹣x;故△AEG、△BEF、△CFG三个三角形全等.在△AEG中,AE=x,AG=2﹣x.则S△AEG=AE×AG×sinA=x(2﹣x);故y=S△ABC ﹣3S△AEG=﹣3×x(2﹣x)=(3x2﹣6x+4).故可得其大致图象应类似于抛物线,且抛物线开口方向向上;故选:D.二、填空题(共6小题,每小题4分,满分24分)11.(4分)如图,A、B、C三点在⊙O上,且∠AOB=70°,则∠C=35度.【解答】解:∵∠AOB=70°,∴∠C=∠AOB=35°.故答案为:35.12.(4分)圣诞节时,一个小组有x人,他们每两人之间互送贺卡一张,已知全组共送贺卡132张,则可列方程为x(x﹣1)=132.【解答】解:设这个小组有x人,则每人应送出x﹣1张贺卡,由题意得:x(x﹣1)=132,故答案为:x(x﹣1)=132.13.(4分)将一个正六边形绕着其中心,至少旋转60度可以和原来的图形重合.【解答】解:∵正六边形的中心角==60°,∴一个正六边形绕着其中心,至少旋转60°可以和原来的图形重合.故答案60.14.(4分)如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为110°.【解答】解:∵∠A=50°,∴∠BOC=2∠A=100°,∵∠B=30°,∠BOC=∠B+∠BDC,∴∠BDC=∠BOC﹣∠B=100°﹣30°=70°,∴∠ADC=180°﹣∠BDC=110°,故答案为110°.15.(4分)如图是抛物线y=ax2+bx+c的图象的一部分,请你根据图象写出方程ax2+bx+c=0的两根是x1=﹣3,x2=1.【解答】解:∵由图可知,抛物线与x轴的一个交点坐标为(﹣3,0),对称轴为直线x=﹣1,∴设抛物线与x轴的另一交点为(x,0),则=﹣1,解得x=1,∴方程ax2+bx+c=0的两根是x1=﹣3,x2=1.故答案为:x1=﹣3,x2=1.16.(4分)如图,一条公路的转弯处是一段圆弧(图中的),点O是这段弧的圆心,C是上一点,OC⊥AB,垂足为D,AB=300m,CD=50m,则这段弯路的半径是250m.【解答】解:设半径为r,则OD=r﹣CD=r﹣50,∵OC⊥AB,∴AD=BD=AB,在直角三角形AOD中,AO2=AD2+OD2,即r2=(×300)2+(r﹣50)2=22500+r2+2500﹣100r,r=250m.答:这段弯路的半径是250m.三、解答题(本大题3小题,每小题6分,共18分)17.(6分)解方程:x2﹣x﹣12=0.【解答】解:分解因式得:(x+3)(x﹣4)=0,可得x+3=0或x﹣4=0,解得:x1=﹣3,x2=4.18.(6分)如图,在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径.【解答】解:过点O作OC⊥AB于点C,连接OB,则AC=BC=AB∵AB=8cm,OC=3cm∴BC=4cm在Rt△BOC中,OB==5cm即⊙O的半径是5cm.19.(6分)如图,已知点A、B、C的坐标分别为(0,0),(4,0),(5,2)将△ABC绕点A按逆时针方向旋转90°得到△AB′C′.(1)画出△AB′C′;(2)求点C′的坐标.【解答】解:(1)如图所示,△AB′C′即为所求;(2)由(1)可知,点C′的坐标为(﹣2,5).四、解答题(本大题3小题,每小题7分,共21分)20.(7分)现有一块长20cm,宽10cm的长方形铁皮,在它的四个角分别剪去一个大小完全相同的小正方形,用剩余的部分做成一个底面积为56cm2的无盖长方体盒子,请求出剪去的小正方形的边长.【解答】解:设剪去的小正方形的边长为xcm,根据题意得:(20﹣2x)(10﹣2x)=56,整理得:(x﹣3)(x﹣12)=0,解得:x=3或x=12,经检验x=12不合题意,舍去,∴x=3,则剪去小正方形的边长为3cm.21.(7分)将两块大小相同的含30°角的直角三角板(∠BAC=∠B1A1C=30°)按图1的方式放置,固定三角板A1B1C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图2所示的位置,AB与A1C交于点E,AC与A1B1交于点F,AB与A1B1交于点O.(1)求证:△BCE≌△B1CF;(2)当旋转角等于30°时,AB与A1B1垂直吗?请说明理由.【解答】(1)证明:由题意得,BC=B1C,∠B=∠B1=60°,又∵∠BCE+∠ECF=90°,∠B1CF+∠ECF=90°,∴∠BCE=∠B1CF,在△BCE和△B1CF中,,∴△BCE≌△B1CF(ASA);(2)当旋转角等于30°时,AB与A1B1垂直.理由如下:证明:∵∠ECF=30°,∴∠BCE=60°,∴△BCE是等边三角形,∴∠BEC=60°,得∠A1EO=60°,又∵∠A1=30°,∴∠A1EO=60°,即AB与A1B1垂直.22.(7分)如图,圆柱形水管内原有积水的水平面宽CD=20cm,水深GF=2cm.若水面上升2cm(EG=2cm),则此时水面宽AB为多少?【解答】解:连接OA、OC,∵由题意知:AB∥CD,OE⊥AB,OF⊥CD,CD=20cm,∴CG=CD=10cm,在Rt△OGC中,由勾股定理得:OC2=CG2+OG2,OC2=102+(OC﹣2)2,解得:OC=26(cm),则OE=26cm﹣2cm﹣2cm=22cm,∵在Rt△OEA中,由勾股定理得:OA2=OE2+AE2,∴262=222+AE2,∴AE=8,∵OE⊥AB,OE过O,∴AB=2AE=16cm.五、解答题(本大题3小题,每小题9分,共27分)23.(9分)已知,如图,抛物线y=ax 2+2ax +c (a >0)与y 轴交于点C ,与x 轴交于A ,B 两点,点A 在点B 左侧.点B 的坐标为(1,0),OC=3OB . (1)求抛物线的解析式;(2)若点D 是线段AC 下方抛物线上的动点,求四边形ABCD 面积的最大值; (3)若点E 在x 轴上,点P 在抛物线上.是否存在以A ,C ,E ,P 为顶点且以AC 为一边的平行四边形?若存在,直接写出点P 的坐标;若不存在,请说明理由.【解答】解:(1)∵OC=3OB ,B (1,0),∴C (0,﹣3).把点B ,C 的坐标代入y=ax 2+2ax +c ,得a=1,c=﹣3,∴抛物线的解析式y=x 2+2x ﹣3.(2)由A (﹣3,0),C (0,﹣3)得直线AC 的解析式为y=﹣x ﹣3,如图1,过点D 作DM ∥y 轴分别交线段AC 和x 轴于点M ,N .设M (m ,﹣m ﹣3)则D (m ,m 2+2m ﹣3), DM=﹣m ﹣3﹣(m 2+2m ﹣3)=﹣m 2﹣3m=﹣(m +)2+,∴﹣1<0,∴当x=时,DM 有最大值,∴S 四边形ABCD =S △ABC +S △ACD =×4×3+×3×DM ,此时四边形A BCD 面积有最大值为6+×=.(3)存在.讨论:①如图2,过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥AC交x 轴于点E1,此时四边形ACP1E1为平行四边形.∵C(0,﹣3),令﹣3=x2+2x﹣3∴x1=0,x2=﹣2.∴P1(﹣2,﹣3).②平移直线AC交x轴于点E,交x轴上方的抛物线于点P,当AC=PE时,四边形ACEP为平行四边形,∵C(0,﹣3),∴可令P(x,3),3=x2+2x﹣3,得x2+2x﹣6=0解得x1=﹣1+,x2=﹣1﹣,此时存在点P2(﹣1+,3),P3(﹣1﹣,3),综上所述,存在3个点符合题意,坐标分别是:P1(﹣2,﹣3),P2(﹣1+,3),P3(﹣1﹣,3).24.(9分)如图,某农场要建一个长方形的养鸡场,鸡场的一边靠墙,墙长25m,另外三边用木栏围着,木栏长40m.(1)若养鸡场面积为200m2,求鸡场平行于墙的一边长.(2)养鸡场面积能达到250m2吗?如果能,请给出设计方案,如果不能,请说明理由.【解答】解:(1)设鸡场垂直于墙的一边长为xm,则鸡场平行于墙的一边长为(40﹣2x)m,根据题意得:x(40﹣2x)=200,解得:x1=x2=10,∴40﹣2x=20.答:鸡场平行于墙的一边长为20m.(2)假设能,设鸡场垂直于墙的一边长为ym,则鸡场平行于墙的一边长为(40﹣2y)m,根据题意得:y(40﹣2y)=250,整理得:y2﹣20y+125=0.∵△=(﹣20)2﹣4×1×125=﹣100<0,∴该方程无解,∴假设不成立,即养鸡场面积不能达到250m2.25.(9分)如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10,若将△PAC绕点A逆时针旋转后得到△P′AB.(1)求点P与点P′之间的距离;(2)求∠APB的大小.【解答】解:(1)由旋转的性质知AP′=AP=6,∠P′AB=∠PAC,∴∠P′AP=∠BAC=60°,∴△P′AP是等边三角形,∴PP′=6;(2)∵P′B=PC=10,PB=8,∴P′B2=P′P2+PB2,∴△P′PB为直角三角形,且∠P′PB=90°,∴∠APB=∠P′PB+∠P′PA=90°+60°=150°.。

九年级(上)期中数学试卷(解析版)

九年级(上)期中数学试卷(解析版)

九年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)下列图形中是中心对称图形但不是轴对称图形的是()A.B. C.D.2.(3分)若关于x的一元二次方程ax2+bx+6=0(a≠0)的一个根是x=﹣1,则2017﹣a+b的值为()A.2011 B.2023 C.2013 D.20183.(3分)关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k<1 C.k>﹣1且k≠0 D.k<1且k≠04.(3分)如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A的度数为()A.35°B.45°C.55°D.65°5.(3分)下列函数解析式中,一定为二次函数的是()A.s=2t2﹣2t+1 B.y=ax2+bx+c C.y=3x﹣1 D.y=6.(3分)抛物线y=﹣2(x﹣3)2+4的顶点坐标是()A.(2,4) B.(3,﹣4)C.(3,4) D.(﹣2,4)7.(3分)已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=,且经过点(﹣3,y1)、(﹣1,y2),则y1和y2的大小为()A.y1>y2B.y1<y2C.y1=y2D.y1≥y28.(3分)如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=55°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是()A.100°B.90°C.80°D.55°9.(3分)已知正六边形的边心距为,则它的半径为()A.2 B.4 C.2 D.410.(3分)已知一次函数y=ax+b的图象经过第一、三、四象限,则在平面直角系中二次函数y=ax2+bx的图象大致是()A.B.C.D.二、填空题(每小题3分,共15分)11.(3分)将一元二次方程2(x+2)2+(x+3)(x﹣2)=﹣11化为一般形式为.12.(3分)已知点P(3,1﹣b)关于原点的对称点Q的坐标是(a,﹣1),则a b的值是.13.(3分)若二次函数y=mx2+(m+1)x+m的图象都在x轴的下方,则m的取值范围是.14.(3分)把抛物线y=(x+2)2﹣3向上平移2个单位长度,再向左平移4个单位长度,所得抛物线的解析式为.15.(3分)一个扇形的弧长是10πm,面积是60πcm2,则此扇形的圆心角的度数是.三、解答题(本题8个小题,满分75分)16.(8分)解下列方程:(1)x2+8x+15=0;(2)3x2+x﹣5=0.17.(9分)如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的.(1)求配色条纹的宽度;(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.18.(9分)如图,在平面直角坐标系中,△OAB的顶点A、B的坐标分别为A(6,﹣3)、B(0,﹣5).(1)画出△OAB绕原点O顺时针方向旋转90°后得到的△OA1B1;(2)画出△OAB关于原点O的中心对称图形△OA2B2;(3)猜想:∠OAB的度数为多少?不必说明理由.19.(9分)如图,△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC绕点A 按逆时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ABDF为菱形时,求CD的长.20.(9分)《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.《九章算术》中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图①)阅读完这段文字后,小智画出了一个圆柱截面示意图(如图②),其中BO⊥CD 于点A,求间径就是要求⊙O的直径.再次阅读后,发现AB=寸,CD=寸(一尺等于十寸),通过运用有关知识即可解决这个问题.请你补全题目条件,并帮助小智求出⊙O的直径.21.(10分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠B.(1)求证:直线AE是⊙O的切线;(2)若∠D=60°,AB=6时,求劣弧的长(结果保留π).22.(10分)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为每个40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(个)与销售单价x(元)满足一次函数关系:y=﹣10x+1200.(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额﹣成本);(2)该公司当地物价部门规定,商品售价不得高于成本的1.9倍,当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?23.(11分)如图,抛物线y=x2+bx+c与x轴交于A(﹣2,0)、B(6,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;=32,求此时P点的坐标.(3)点P为y轴右侧抛物线上一个动点,若S△PAB参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列图形中是中心对称图形但不是轴对称图形的是()A.B. C.D.【解答】解:A、是轴对称图形,不是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,是中心对称图形.故选:D.2.(3分)若关于x的一元二次方程ax2+bx+6=0(a≠0)的一个根是x=﹣1,则2017﹣a+b的值为()A.2011 B.2023 C.2013 D.2018【解答】解:把x=﹣1代入方程得:a﹣b+6=0,即a﹣b=﹣6,则原式=2017﹣(﹣6)=2023,故选:B.3.(3分)关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k<1 C.k>﹣1且k≠0 D.k<1且k≠0【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴k≠0且△>0,即(﹣2)2﹣4×k×(﹣1)>0,解得k>﹣1且k≠0.故选:C.4.(3分)如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A的度数为()A.35°B.45°C.55°D.65°【解答】解:∵△ABC绕点C按顺时针方向旋转35°得到△A′B′C,∴∠ACA′=35°,∠A=∠A′,∵∠A′DC=90°,∴∠A′=90°﹣35°=55°,∴∠A=55°.故选:C.5.(3分)下列函数解析式中,一定为二次函数的是()A.s=2t2﹣2t+1 B.y=ax2+bx+c C.y=3x﹣1 D.y=【解答】解:A、s=2t2﹣2t+1是二次函数,故A正确;B、y=ax2+bx+c (a≠0)是二次函数,故B错误;C、y=3x﹣1是一次函数,故C错误;D、y=x2+不是二次函数,故D错误;故选:A.6.(3分)抛物线y=﹣2(x﹣3)2+4的顶点坐标是()A.(2,4) B.(3,﹣4)C.(3,4) D.(﹣2,4)【解答】解:抛物线y=﹣2(x﹣3)2+4的顶点坐标是(3,4),故选:C.7.(3分)已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=,且经过点(﹣3,y1)、(﹣1,y2),则y1和y2的大小为()A.y1>y2B.y1<y2C.y1=y2D.y1≥y2【解答】解:∵抛物线y=ax2+bx+c(a>0)的对称轴为直线x=,∴抛物线开口向上,在对称轴的左侧,y随x的增大而减小,又∵﹣3<﹣1<,∴y1>y2.故选:A.8.(3分)如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=55°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是()A.100°B.90°C.80°D.55°【解答】解:∵AC是⊙O的直径,∴∠ABC=90°,∵BD是∠ABC的平分线,∴∠ABD=45°,∵∠D=∠C=55°,∴∠BAD=180°﹣∠ABD﹣∠D=80°.故选:C.9.(3分)已知正六边形的边心距为,则它的半径为()A.2 B.4 C.2 D.4【解答】解:如图,在Rt△AOG中,OG=,∠AOG=30°,∴OA=OG÷cos 30°=÷=2;故选:A.10.(3分)已知一次函数y=ax+b的图象经过第一、三、四象限,则在平面直角系中二次函数y=ax2+bx的图象大致是()A.B.C.D.【解答】解:∵一次函数y=ax+b的图象经过第一、三、四象限,∴a>0,b<0,∴二次函数y=ax2+bx的图象的开口向上,对称轴在y轴的右侧,且过原点.故选:C.二、填空题(每小题3分,共15分)11.(3分)将一元二次方程2(x+2)2+(x+3)(x﹣2)=﹣11化为一般形式为3x2+9x+13=0.【解答】解:一元二次方程2(x+2)2+(x+3)(x﹣2)=﹣11化为一般形式为3x2+9x+13=0;故答案为:3x2+9x+13=0.12.(3分)已知点P(3,1﹣b)关于原点的对称点Q的坐标是(a,﹣1),则a b的值是1.【解答】解:∵点P(3,1﹣b)关于原点的对称点Q的坐标是(a,﹣1),∴a=﹣3,1﹣b=1,解得b=0,所以,a b=(﹣3)0=1.故答案为:1.13.(3分)若二次函数y=mx2+(m+1)x+m的图象都在x轴的下方,则m的取值范围是m<﹣.【解答】解:由题意可得出:,解得:m<﹣.故答案为:m<﹣.14.(3分)把抛物线y=(x+2)2﹣3向上平移2个单位长度,再向左平移4个单位长度,所得抛物线的解析式为y=(x+6)2﹣1.【解答】解:抛物线y=(x+2)2﹣3的顶点坐标为(﹣2,﹣3),∵向上平移2个单位长度,再向左平移4个单位长度,∴﹣2﹣4=﹣6,﹣3+2=﹣1,∴平移后的抛物线的顶点坐标为(6,﹣1),∴所得抛物线的解析式为y=(x+6)2﹣1.故答案为:y=(x+6)2﹣1.15.(3分)一个扇形的弧长是10πm,面积是60πcm2,则此扇形的圆心角的度数是150°.【解答】解:∵一个扇形的弧长是10πcm,面积是60πcm2,∴S=Rl,即60π=×R×10π,解得:R=12,∴S=60π=,解得:n=150°,故答案为:150°.三、解答题(本题8个小题,满分75分)16.(8分)解下列方程:(1)x2+8x+15=0;(2)3x2+x﹣5=0.【解答】解:(1)∵(x+3)(x+5)=0,∴x+3=0或x+5=0,解得:x=﹣3或x=﹣5;(2)∵a=3、b=1、c=﹣5,∴△=1﹣4×3×(﹣5)=61>0,则x=,即x1=、x2=.17.(9分)如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的.(1)求配色条纹的宽度;(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.【解答】解:(1)设条纹的宽度为x米.依题意得2x×5+2x×4﹣4x2=×5×4,解得:x1=(不符合,舍去),x2=.答:配色条纹宽度为米.(2)条纹造价:×5×4×200=850(元)其余部分造价:(1﹣)×4×5×100=1575(元)∴总造价为:850+1575=2425(元)答:地毯的总造价是2425元.18.(9分)如图,在平面直角坐标系中,△OAB的顶点A、B的坐标分别为A(6,﹣3)、B(0,﹣5).(1)画出△OAB绕原点O顺时针方向旋转90°后得到的△OA1B1;(2)画出△OAB关于原点O的中心对称图形△OA2B2;(3)猜想:∠OAB的度数为多少?不必说明理由.【解答】解:(1)△OA1B1如图所示;(2)△OA2B2如图所示;(3)∠OAB=45°.理由如下:设直线AB的解析式为y=kx+b(k≠0),∵A(6,﹣3),B(0,﹣5),∴,解得,∴y=x﹣5,当x=﹣3时,y=×(﹣3)﹣5=﹣6,∴点A1在直线AB上,∵OA=OA1,∠AOA1=90°,∴△AOA1是等腰直角三角形,∴∠OAB=45°.19.(9分)如图,△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC绕点A 按逆时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ABDF为菱形时,求CD的长.【解答】(1)证明:如图,∵△AEF是由△ABC绕点A按逆时针方向旋转得到的,∴AE=AF=AB=AC=2,∠EAF=∠BAC=45°,∴∠BAC+∠3=∠EAF+∠3,即∠BAE=∠CAF,在△ABE和△ACF中,∴△ABE≌△ACF,∴BE=CF;(2)解:如图,∵四边形ABDF为菱形,∴DF=AF=2,DF∥AB,∴∠1=∠BAC=45°,∴△ACF为等腰直角三角形,∴CF=AF=2,∴CD=CF﹣DF=2﹣2.20.(9分)《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.《九章算术》中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图①)阅读完这段文字后,小智画出了一个圆柱截面示意图(如图②),其中BO⊥CD 于点A,求间径就是要求⊙O的直径.再次阅读后,发现AB=1寸,CD=10寸(一尺等于十寸),通过运用有关知识即可解决这个问题.请你补全题目条件,并帮助小智求出⊙O的直径.【解答】解:根据题意得:AB=1寸,CD=10寸;故答案为:1,10;(2)连接CO,如图所示:∵BO⊥CD,∴.设CO=OB=x寸,则AO=(x﹣1)寸,在Rt△CAO中,∠CAO=90°,∴AO2+CA2=CO2.∴(x﹣1)2+52=x2.解得:x=13,∴⊙O的直径为26寸.21.(10分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠B.(1)求证:直线AE是⊙O的切线;(2)若∠D=60°,AB=6时,求劣弧的长(结果保留π).【解答】解:(1)∵AB是⊙O的直径,∴∠ACB=90°,∴∠CBA+∠CAB=90°,∵∠EAC=∠B,∴∠CAE+∠BAC=90°,即BA⊥AE.∴AE是⊙O的切线.(2)连接CO,∵AB=6,∴AO=3,∵∠D=60°,∴∠AOC=120°,∴==2π.22.(10分)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为每个40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(个)与销售单价x(元)满足一次函数关系:y=﹣10x+1200.(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额﹣成本);(2)该公司当地物价部门规定,商品售价不得高于成本的1.9倍,当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?【解答】解:(1)由题意可得:S=(x﹣40)(﹣10x+1200)=﹣10x2+1600x﹣48000;(2)S=﹣10x2+1600x﹣48000=﹣10(x﹣80)2+16000依题意:x≤40×1.9,即x≤76,对于二次函数S=﹣10(x﹣80)2+16000,当x≤80时,s随x的增大而增大,故当x最大为76时,s最大为15840元.23.(11分)如图,抛物线y=x2+bx+c与x轴交于A(﹣2,0)、B(6,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;=32,求此时P点的坐标.(3)点P为y轴右侧抛物线上一个动点,若S△PAB【解答】解:(1)∵抛物线y=x2+bx+c与x轴交于A(﹣2,0),B(6,0)两点,∴方程x2+bx+c=0的两根为x=﹣2或x=6,∴﹣2+6=﹣b,﹣2×6=c,∴b=﹣4,c=﹣12,∴二次函数解析式是y=x2﹣4x﹣12.(2)∵y=x2﹣4x﹣12=(x﹣2)2﹣16,∴抛物线的对称轴x=2,顶点坐标(2,﹣16).(3)设P的纵坐标为|y P|,=32,∵S△PAB∴•AB•|y P|=32,∵AB=6+2=8,∴|y P|=8,∴y P=±8,把y P=8代入解析式得,8=x2﹣4x﹣12,解得,x=2±2,把y P=﹣8代入解析式得,﹣8=x2﹣4x﹣12,解得x=2±2,又知点P为y轴右侧抛物线上一个动点,即x=2±2(负值舍去)或x=2±2(负值舍去),综上点P的坐标为(2+2,8)或(2+2,﹣8).。

九年级(上)期中数学试卷(答案解析版)

九年级(上)期中数学试卷(答案解析版)

九年级(上)期中数学试卷一、选择题:(每题3分共30分)1.下列图形中即是轴对称图形,又是中心对称图形的是()A.B.C.D.2.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.﹣1 B.1 C.1或﹣1 D.0.53.抛物线y=﹣2x2+4x+3的顶点坐标是()A.(﹣1,﹣5)B.(1,5)C.(﹣1,﹣4)D.(﹣2,﹣7)4.已知直角三角形的两边长是方程x2﹣7x+12=0的两根,则第三边长为()A.7 B.5 C.D.5或5.4张扑克牌如图(1)所示放在桌子上,小敏把其中两张旋转180°后得到如图(2)所示,那么她所旋转的牌从左起是()A.第一张、第二张B.第二张、第三张C.第三张、第四张D.第四张、第一张6.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有正三角形、正五边形、等腰梯形、菱形等四种图案,你认为符合条件的是()A.正三角形 B.正五边形 C.等腰梯形 D.菱形7.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A.2cm B.cm C.D.8.某超市一月份的营业额为100万元,第一季度的营业额共800万元.如果平均每月增长率为x,则所列方程应为()A.100(1+x)2=800 B.100+100×2x=800C.100+100×3x=800 D.100[1+(1+x)+(1+x)2]=8009.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论:①ac>0;②a﹣b+c<0;③当x<0时,y<0;④方程ax2+bx+c=0(a≠0)有两个大于﹣1的实数根.其中错误的结论有()A.②③B.②④C.①③D.①④二、填空题(每题3分共24分)10.点(4,﹣3)关于原点对称的点的坐标是.11.将抛物线y=6x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的解析式是.12.如图,点A、B、C在⊙O上,AO∥BC,∠AOB=50°,则∠OAC的度数是度.13.在半径为2的⊙O中,弦AB的长为2,则弦AB所对的圆周角的度数为.14.有一个班的同学毕业的时候每人都送了其他人一张自己的照片,全班共送了1560张,这个班的人数是.15.如图,⊙O的半径OA=10cm,设AB=16cm,P为AB上一动点,则点P到圆心O的最短距离为cm.16.如图,量角器外沿上有A、B两点,它们的读数分别是70°、40°,则∠1的度数为度.17.若函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,则m的值为.三、解答题(共66分)18.解下列方程(1)y2﹣2y+3=0(2)4(x﹣1)2=5(3)3(x﹣1)2=x(x﹣1)(4)x2﹣x+=0.19.如图,AD,BC是⊙O的两条弦,且AD=BC,求证:AB=CD.20.已知一抛物线与x轴的交点是A(﹣2,0),B(1,0),且经过点C(2,8),求该抛物线的解析式.21.小明在一幅长为80cm,宽为50cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,求金色纸边的宽度.22.设a,b,c是△ABC的三条边,关于x的方程x2+x+c﹣a=0有两个相等的实数根,方程3cx+2b=2a 的根为x=0.(1)试判断△ABC的形状.(2)若a,b为方程x2+mx﹣3m=0的两个根,求m的值.23.如图,点A、B、C是⊙O上的三点,AB∥OC.(1)求证:AC平分∠OAB.(2)过点O作OE⊥AB于点E,交AC于点P.若AB=2,∠AOE=30°,求OE的长.24.如图,已知二次函数y=ax2﹣4x+c的图象经过点A和点B.(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;(3)点P(m,m)与点Q均在该函数图象上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q到x轴的距离.参考答案与试题解析一、选择题:(每题3分共30分)1.下列图形中即是轴对称图形,又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念,结合所给图形的特点进行判断即可.【解答】解:A不是轴对称图形,是中心对称图形,不符合题意;B是轴对称图形,也是中心对称图形,符合题意;C是轴对称图形,不是中心对称图形,不符合题意;D是中心对称图形,也是轴对称图形,符合题意;综上可得符合题意的有2个.故选:B、D.【点评】本题考查了轴对称及中心对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.﹣1 B.1 C.1或﹣1 D.0.5【考点】一元二次方程的解;一元二次方程的定义.【专题】计算题.【分析】先把x=0代入方法求出a的值,然后根据一元二次方程的定义确定满足条件的a的值.【解答】解:把x=0代入方程得a2﹣1=0,解得a=1或﹣1,由于a﹣1≠0,所以a的值为﹣1.故选A.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了一元二次方程的定义.3.抛物线y=﹣2x2+4x+3的顶点坐标是()A.(﹣1,﹣5)B.(1,5)C.(﹣1,﹣4)D.(﹣2,﹣7)【考点】二次函数的性质.【分析】利用顶点公式(﹣,)解题.也可以用配方法求顶点坐标.【解答】解:∵x=﹣=﹣=1,y===5.∴顶点坐标为(1,5).故选B.【点评】熟练运用顶点公式进行解题.4.已知直角三角形的两边长是方程x2﹣7x+12=0的两根,则第三边长为()A.7 B.5 C.D.5或【考点】勾股定理;解一元二次方程-因式分解法.【专题】分类讨论.【分析】求出方程的解,得出直角三角形的两边长,分为两种情况:①当3和4是两直角边时,②当4是斜边,3是直角边时,根据勾股定理求出第三边即可.【解答】解:x2﹣7x+12=0,(x﹣3)(x﹣4)=0,x﹣3=0,x﹣4=0,解得:x1=3,x2=4,即直角三角形的两边是3和4,当3和4是两直角边时,第三边是=5;当4是斜边,3是直角边时,第三边是=,即第三边是5或,故选D.【点评】本题考查了解一元二次方程和勾股定理,注意:解此题时要进行分类讨论.5.4张扑克牌如图(1)所示放在桌子上,小敏把其中两张旋转180°后得到如图(2)所示,那么她所旋转的牌从左起是()A.第一张、第二张B.第二张、第三张C.第三张、第四张D.第四张、第一张【考点】中心对称图形.【专题】压轴题.【分析】本题主要考查了中心对称图形的定义,根据定义即可求解.【解答】解:观察两个图中可以发现,所有图形都没有变化,所以旋转的扑克是成中心对称的第一张和第二张.故选A.【点评】当所有图形都没有变化的时候,旋转的是成中心对称图形的,有变化的时候,旋转的便是有变化的.6.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有正三角形、正五边形、等腰梯形、菱形等四种图案,你认为符合条件的是()A.正三角形 B.正五边形 C.等腰梯形 D.菱形【考点】中心对称图形;轴对称图形.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.【解答】解:正三角形不是中心对称图形,是轴对称图形;正五边形不是中心对称图形,是轴对称图形;等腰梯形不是中心对称图形,是轴对称图形;菱形是中心对称图形,是轴对称图形;故选:D.【点评】此题主要考查了中心对称图形和轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.7.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A.2cm B.cm C.D.【考点】垂径定理;勾股定理.【分析】在图中构建直角三角形,先根据勾股定理得AD的长,再根据垂径定理得AB的长.【解答】解:作OD⊥AB于D,连接OA.根据题意得:OD=OA=1cm,再根据勾股定理得:AD=cm,根据垂径定理得:AB=2cm.故选:C.【点评】注意由题目中的折叠即可发现OD=OA=1.考查了勾股定理以及垂径定理.8.某超市一月份的营业额为100万元,第一季度的营业额共800万元.如果平均每月增长率为x,则所列方程应为()A.100(1+x)2=800 B.100+100×2x=800C.100+100×3x=800 D.100[1+(1+x)+(1+x)2]=800【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】先得到二月份的营业额,三月份的营业额,等量关系为:一月份的营业额+二月份的营业额+三月份的营业额=800,把相关数值代入即可.【解答】解:∵一月份的营业额为100万元,平均每月增长率为x,∴二月份的营业额为100×(1+x),∴三月份的营业额为100×(1+x)×(1+x)=100×(1+x)2,∴可列方程为100+100×(1+x)+100×(1+x)2=800,故选D.【点评】考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.得到第一季度的营业额的等量关系是解决本题的关键.9.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论:①ac>0;②a﹣b+c<0;③当x<0时,y<0;④方程ax2+bx+c=0(a≠0)有两个大于﹣1的实数根.其中错误的结论有()A.②③B.②④C.①③D.①④【考点】二次函数图象与系数的关系.【专题】压轴题.【分析】①由二次函数y=ax2+bx+c(a≠0)的图象开口方向知道a<0,与y轴交点知道c>0,由此即可确定ac的符号;②由于当x=﹣1时,y=a﹣b+c,而根据图象知道当x=﹣1时y<0,由此即可判定a﹣b+c的符号;③根据图象知道当x<﹣1时抛物线在x轴的下方,由此即可判定此结论是否正确;④根据图象与x轴交点的情况即可判定是否正确.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)的图象开口向下,∴a<0,∵与y轴交点在x轴上方,∴c>0,∴ac<0;②∵当x=﹣1时,y=a﹣b+c,而根据图象知道当x=﹣1时y<0,∴a﹣b+c<0;③根据图象知道当x<﹣1时抛物线在x轴的下方,∴当x<﹣1,y<0;④从图象可知抛物线与x轴的交点的横坐标都大于﹣1,∴方程ax2+bx+c=0(a≠0)有两个大于﹣1的实数根.故错误的有①③.故选C.【点评】此题主要考查了利用图象求出a,b,c的范围,以及特殊值的代入能得到特殊的式子,如:当x=1时,y>0,a+b+c>0;x=﹣1时,y<0,a﹣b+c<0.二、填空题(每题3分共24分)10.点(4,﹣3)关于原点对称的点的坐标是(﹣4,3).【考点】关于原点对称的点的坐标.【分析】点关于原点的对称点,横、纵坐标都互为相反数,据此知道(x,y)关于原点的对称点是(﹣x,﹣y).【解答】解:点(4,﹣3)关于原点对称的点的坐标是(﹣4,3).故答案为:(﹣4,3).【点评】本题主要是通过作图总结规律,记住,然后应用.11.将抛物线y=6x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的解析式是y=6(x+2)2+3.【考点】二次函数图象与几何变换.【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【解答】解:抛物线y=6x2先向左平移2个单位得到解析式:y=6(x+2)2,再向上平移3个单位得到抛物线的解析式为:y=6(x+2)2+3.故答案为:y=6(x+2)2+3.【点评】此题考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.12.如图,点A、B、C在⊙O上,AO∥BC,∠AOB=50°,则∠OAC的度数是25度.【考点】圆周角定理.【分析】先求出∠ACB的度数,圆周角∠ACB等于圆心角∠AOB的一半,再根据平行,得到内错角∠OAC=∠ACB.【解答】解:∵AO∥BC,∴∠OAC=∠ACB.又∠AOB与∠ACB都是弧AB所对的角,∴∠ACB=∠AOB=25°,∴∠OAC的度数是25°.故答案为:25.【点评】本题利用了圆周角定理和两直线平行内错角相等求解.13.在半径为2的⊙O中,弦AB的长为2,则弦AB所对的圆周角的度数为30°或150°.【考点】圆周角定理;圆内接四边形的性质.【专题】计算题;分类讨论.【分析】根据弦长等于半径,得这条弦和两条半径组成了等边三角形,则弦所对的圆心角是60°,要计算它所对的圆周角,应考虑两种情况:当圆周角的顶点在优弧上时,则根据圆周角定理,得此圆周角是30°;当圆周角的顶点在劣弧上时,则根据圆内接四边形的对角互补,得此圆周角是150°.【解答】解:根据题意,弦AB与两半径组成等边三角形,∴先AB所对的圆心角=60°,①圆周角在优弧上时,圆周角=30°,②圆周角在劣弧上时,圆周角=180°﹣30°=150°.∴圆周角的度数为30°或150°.【点评】注意:弦所对的圆周角有两种情况,且两种情况的角是互补的.14.有一个班的同学毕业的时候每人都送了其他人一张自己的照片,全班共送了1560张,这个班的人数是40.【考点】一元二次方程的应用.【分析】设这个班的人数是x,则每人需送出(x﹣1)张照片,共送出x(x﹣1)张,结合题意即可列出方程,进而求出答案.【解答】解:设这个班的人数是x,根据题意得:x(x﹣1)=1560,解得x1=40,x2=﹣39(舍去)答:这个班的人数是40.故答案为:40.【点评】此题主要考查了由实际问题抽象出一元二次方程,本题要注意读清题意,弄清楚每人要赠送x﹣1张相片,有x个人是解决问题的关键.15.如图,⊙O的半径OA=10cm,设AB=16cm,P为AB上一动点,则点P到圆心O的最短距离为6cm.【考点】垂径定理;勾股定理.【专题】动点型.【分析】根据垂线段最短,可以得到当OP⊥AB时,点P到圆心O的距离最短.根据垂径定理和勾股定理即可求解.【解答】解:根据垂线段最短知,当点P运动到OP⊥AB时,点P到到点O的距离最短,由垂径定理知,此时点P为AB中点,AP=8cm,由勾股定理得,此时OP==6cm.【点评】本题利用了垂线段最短和垂径定理及勾股定理求解.16.如图,量角器外沿上有A、B两点,它们的读数分别是70°、40°,则∠1的度数为15度.【考点】圆周角定理.【专题】压轴题.【分析】根据量角器的读数,可求得圆心角∠AOB的度数,然后利用圆周角与圆心角的关系可求出∠1的度数.【解答】解:∵∠AOB=70°﹣40°=30°;∴∠1=∠AOB=15°(圆周角定理).故答案为:15°.【点评】本题主要考查的是圆周角定理:同弧所对的圆周角是圆心角的一半.17.若函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,则m的值为﹣2.【考点】二次函数的定义;二次函数的性质.【分析】先依据二次函数的定义知,系数1﹣m一定不为0,1﹣m>0,再得出m 2﹣2=2,求出m的值即可.【解答】解:由题意:∴1﹣m≠1,1﹣m>0,m<1,m 2﹣2=2,解得:m=±2,∴m=﹣2.故答案为:﹣2.【点评】此题主要考查了二次函数的定义以及二次函数的性质,根据性质得出m的值是解题关键.三、解答题(共66分)18.解下列方程(1)y2﹣2y+3=0(2)4(x﹣1)2=5(3)3(x﹣1)2=x(x﹣1)(4)x2﹣x+=0.【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法;解一元二次方程-配方法.【专题】计算题.【分析】(1)利用因式分解法解方程;(2)利用直接开平方法解方程;(3)先移项得到3(x﹣1)2﹣x(x﹣1)=0,然后利用因式分解法解方程;(4)利用配方法解方程.【解答】解:(1)(y﹣3)(y﹣1)=0,y﹣3=0或y﹣1=0,所以y1=3,y2=1;(2)(x﹣1)2=,x﹣1=±,所以x1=1+,x2=1﹣;(3)3(x﹣1)2﹣x(x﹣1)=0,(x﹣1)(3x﹣3﹣x)=0,x﹣1=0或3x﹣3﹣x=0,所以x1=1,x2=;(4)x2﹣x+()2=0,(x﹣)2=0,所以x1=x2=.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.19.如图,AD,BC是⊙O的两条弦,且AD=BC,求证:AB=CD.【考点】圆心角、弧、弦的关系.【专题】证明题.【分析】根据圆心角、弧、弦的关系定理,弦AD=BC,则弧AD=弧BC,则弧AB=弧CD,则AB=CD.【解答】证明:∵AD=BC,∴=,∴+=+,即=.∴AB=CD.【点评】本题考查了圆心角、弦、弧之间的关系定理,在同圆或等圆中,两个圆心角、两条弧、两个弦中有一组量相等,它们所对应的其余各组量也相等.20.已知一抛物线与x轴的交点是A(﹣2,0),B(1,0),且经过点C(2,8),求该抛物线的解析式.【考点】待定系数法求二次函数解析式.【分析】由抛物线与x轴的交点是A(﹣2,0),B(1,0),且经过点C(2,8),设解析式为一般式或交点式用待定系数法求得二次函数的解析式.【解答】解:设这个抛物线的解析式为y=ax2+bx+c.由已知,抛物线过A(﹣2,0),B(1,0),C(2,8)三点,得,①+③得,8a+2c=8,即4a+c=4④,①+②×2得6a+3c=0⑤,④×3﹣⑤得,6a=12,即a=2,把a=2代入④得,c=﹣4,把a=6,c=﹣4代入②得,b=2,故.∴所求抛物线的解析式为y=2x2+2x﹣4.【点评】在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.21.小明在一幅长为80cm,宽为50cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,求金色纸边的宽度.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设金色纸边的宽度为xcm,则挂图的长为(80+2x)cm,宽就为(50+2x)cm,根据题目条件列出方程,求出其解就可以.【解答】解:设金色纸边的宽度为xcm,则挂图的长为(80+2x)cm,宽就为(50+2x)cm,根据题意得:(80+2x)(50+2x)=5400,解得:x1=﹣70(不符合题意,舍去),x2=5.答:金色纸边的宽度为5cm.【点评】本题考查了根据矩形的面积公式的列一元二次方程解决实际问题的运用及一元二次方程解法的运用.解答时检验根是否符合题意是容易被忽略的地方.22.设a,b,c是△ABC的三条边,关于x的方程x2+x+c﹣a=0有两个相等的实数根,方程3cx+2b=2a 的根为x=0.(1)试判断△ABC的形状.(2)若a,b为方程x2+mx﹣3m=0的两个根,求m的值.【考点】一元二次方程的应用.【分析】(1)因为方程有两个相等的实数根即△=0,由△=0可以得到一个关于a,c的方程,再结合方程3cx+2b=2a的根为x=0,代入即可得到一关于a,b的方程,联立即可求出a,b,c的关系;(2)根据(1)求出的a,b的值,可以关于m的方程,解方程即可求出m.【解答】解:(1)∵关于x的方程x2+x+c﹣a=0有两个相等的实数根,∴△=1﹣4×(c﹣a)=0,整理得4a﹣4c+1=0 ①,∴a≠c,又∵3cx+2b=2a的根为x=0,∴a=b ②,∴△ABC为等腰三角形;(2)a,b是方程x2+mx﹣3m=0的两个根,∴方程x2+mx﹣3m=0有两个相等的实数根,∴△=m2﹣4×(﹣3m)=0,即m2+12m=0,∴m1=0,m2=﹣12.当m=0时,原方程的解为x=0(不符合题意,舍去),∴m=﹣12.【点评】本题考查了一元二次方程的应用,一元二次方程ax2+bx+c=0(a≠0)的根的根判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.23.如图,点A、B、C是⊙O上的三点,AB∥OC.(1)求证:AC平分∠OAB.(2)过点O作OE⊥AB于点E,交AC于点P.若AB=2,∠AOE=30°,求OE的长.【考点】圆心角、弧、弦的关系;垂径定理.【分析】(1)根据等腰三角形性质和平行线性质推出∠BAC=∠OAC即可;(2)根据平行得出相似,根据相似得出比例式,代入求出即可.【解答】(1)证明:∵AB∥OC,∴∠C=∠BAC.∵OA=OC,∴∠C=∠O AC.∴∠BAC=∠OAC.即AC平分∠OAB.(2)解:∵OE⊥AB,∴AE=BE=AB=1.又∵∠AOE=30°,∠PEA=90°,∴∠OAE=60°.∴OE=AB•cos60°=2×=.【点评】本题考查了垂径定理,相似三角形的性质和判定,平行线的性质,等腰三角形的性质,勾股定理的应用,主要考查学生综合运用性质进行推理和计算的能力.24.如图,已知二次函数y=ax2﹣4x+c的图象经过点A和点B.(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;(3)点P(m,m)与点Q均在该函数图象上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q到x轴的距离.【考点】二次函数综合题.【专题】综合题;压轴题.【分析】(1)根据图象可得出A、B两点的坐标,然后将其代入抛物线的解析式中即可求得二次函数的解析式.(2)根据(1)得出的抛物线的解析式,用配方法或公式法即可求出对称轴和顶点坐标.(3)将P点坐标代入抛物线的解析式中,即可求出m的值,P,Q关于抛物线的对称轴对称,那么两点的纵坐标相等,因此P点到x轴的距离同Q到x轴的距离相等,均为m的绝对值.【解答】解:(1)将x=﹣1,y=﹣1;x=3,y=﹣9,分别代入y=ax2﹣4x+c得,解得,∴二次函数的表达式为y=x2﹣4x﹣6.(2)对称轴为x=2;顶点坐标为(2,﹣10).(3)将(m,m)代入y=x2﹣4x﹣6,得m=m2﹣4m﹣6,解得m1=﹣1,m2=6.∵m>0,∴m1=﹣1不合题意,舍去.∴m=6,∵点P与点Q关于对称轴x=2对称,∴点Q到x轴的距离为6.【点评】本题考查二次函数的有关知识,通过数形结合来解决.。

九年级(上)期中数学试卷(含答案解析)

九年级(上)期中数学试卷(含答案解析)

九年级(上)期中数学试卷一、选择(每小题3分,共33分)1.已知=,那么下列式子中一定成立的是()A.4m=3n B.3m=4n C.m=4n D.mn=122.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0 B.m>0 C.m<﹣1 D.m>﹣13.抛物线y=x2向左平移1个单位,再向下平移2个单位,得到新的图象的二次函数表达式是()A.y=(x+1)2+2 B.y=(x﹣1)2﹣2 C.y=(x+1)2﹣2 D.y=(x﹣1)2+24.如图,△ABC中,点D、E分别是AB、AC的中点,则下列结论:①BC=2DE;②△ADE∽△ABC;③.其中正确的有()A.3个B.2个C.1个D.0个5.如图,▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.1:1 B.1:2 C.1:3 D.2:36.将y=x2+6x+7化为y=a(x﹣h)2+k的形式,h,k的值分别为()A.3,﹣2 B.﹣3,﹣2 C.3,﹣16 D.﹣3,﹣167.如果点A(﹣1,y1),B(2,y2),C(3,y3)都在反比例函数y=的图象上,那么()A.y1<y2<y3B.y1<y3<y2C.y2<y1<y3D.y3<y2<y18.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1 B.C.2 D.9.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是()A.B.C.D.10.二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是()A.当x<,y随x的增大而减小B.函数有最小值C.a+b+c<0 D.当﹣1<x<2时,y>011.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则直线y=ax+b与反比例函数y=在同一坐标系内的大致图象为()A.B.C.D.二、填空题(12-23题每空2分,24题前两空每空1分,最后一空2分共30分)12.请写出一个开口向下,并且与y轴交于点(0,﹣2)的抛物线的表达式.13.若反比例函数y=的图象位于第二、四象限内,则m的取值范围是.14.抛物线y=(x﹣2)2+1的顶点坐标是,对称轴是.15.抛物线y=﹣+3x﹣2与y=ax2的形状相同,而开口方向相反,则a=.16.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为m.17.如图,点P在反比例函数y=的图象上,且PD⊥x轴于点D.若△POD的面积为3,则k的值是.18.如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E.若AD=1,DB=2,则△ADE的面积与△ABC的面积的比等于.19.抛物线y=2x2+8x+m与x轴只有一个公共点,则m的值为.20.如图,∠DAB=∠CAE,要使△ABC∽△ADE,则补充的一个条件可以是(注:只需写出一个正确答案即可).21.如图,在△ABC中,AB=8,AC=6,点D在AC上,且AD=2,如果要在AB上找一点E,使△ADE与原三角形相似,那么AE=.22.如图所示的抛物线是二次函数y=ax2﹣3x+a2﹣1的图象,那么a的值是.23.初三数学课本上,用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:x …﹣2 ﹣1 0 1 2 …y …﹣4 ﹣2 …根据表格上的信息回答问题:该二次函数y=ax2+bx+c在x=3时,y=.24.在函数的图象上有点P1,P2,P3,…,P n,P n+1,它们的横坐标依次为1,2,3,…,n,n+1.过点P1,P2,P3,…,P n,P n+1分别作x轴、y轴的垂线段,构成如图所示的若干个矩形,将图中阴影部分的面积从左至右依次记为S1,S2,S3,…,S n,则点P1的坐标为;S2=;S n=.(用含n的代数式表示)三、解答题25.根据下列条件,分别求出对应的二次函数表达式.(1)已知图象过点(6,0),顶点坐标为(4,﹣8).(2)已知抛物线与x轴的交点是A(﹣2,0),B(3,0),且经过点C(0,6).26.如图矩形ABCD中,E为BC上一点,DF⊥AE于F.(1)求证:△ABE∽△DFA;(2)若AB=6,AD=12,BE=8,求DF的长.27.如图,▱ABCD中,E是CB延长线上一点,DE交AB于F.求证:AD•AB=AF•CE.28.如图,一次函数y1=kx+b的图象与反比例函数y2=的图象交于A(m,3),B(﹣3,n)两点.(1)求一次函数的表达式;(2)观察函数图象,直接写出关于x的不等式>kx+b的解集.(3)求△AOB的面积.29.已知二次函数y1=ax2+bx﹣3的图象经过点A(2,﹣3),B(﹣1,0),与y轴交于点C,与x 轴另一交点交于点D.(1)求二次函数的表达式;(2)求点C、点D的坐标;(3)画出二次函数的图象;(4)若一条直线y2,经过C、D两点,请直接写出y1>y2时,x的取值范围.30.如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从点A出发,沿着AB以每秒4cm的速度向点B运动;同时点Q从C点出发,沿着CA以每秒3cm的速度向点A运动.设运动时间为x.(1)当x为何值时,PQ∥BC?(2)△APQ能否与△CQB相似?若能,求出AP的长;若不能,请说明理由.31.某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx﹣75.其图象如图所示.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?32.已知:如图,一次函数y=x+2的图象与反比例函数(1,m)的图象交于A、B两点,且点A的坐标为(1,m).(1)求反比例函数C(n,1)的表达式;(2)点C(n,1)在反比例函数AB⊥CD的图象上,求△AOC面积;(3)在x轴上找出点P,使△ABP是以AB为斜边的直角三角形,请直接写出所有符合条件的点P 的坐标.33.在平面直角坐标系xOy中,抛物线y=mx2+2x+m2+2的开口向下,且抛物线与y轴的交于点A,与x轴交于B,C两点(B在C左侧).点A的纵坐标是3.(1)求抛物线的解析式;(2)求直线AB的解析式;(3)将抛物线在点C左侧的图形(含点C)记为G.若直线y=kx+n(n<0)与直线AB平行,且与图形G恰有一个公共点,结合函数图象写出n的取值范围.34.如图1,在平面直角坐标系中,O为坐标原点.直线y=kx+b与抛物线y=mx2﹣x+n同时经过A(0,3)、B(4,0).(1)求m,n的值.(2)点M是二次函数图象上一点,(点M在AB下方),过M作MN⊥x轴,与AB交于点N,与x轴交于点Q.求MN的最大值.(3)在(2)的条件下,是否存在点N,使△AOB和△NOQ相似?若存在,求出N点坐标,不存在,说明理由.参考答案与试题解析一、选择(每小题3分,共33分)1.已知=,那么下列式子中一定成立的是()A.4m=3n B.3m=4n C.m=4n D.mn=12【考点】比例的性质.【分析】根据比例的性质:分子分母交叉相乘,可得答案.【解答】解:由=,得4m=3n.A、4m=3n,故A正确;B、4m=3n,故B错误;C、m=,故C错误;D、4m=3n,故D错误;故选:A.【点评】本题考查了比例的性质,利用比例的性质:分子分母交叉相乘是解题关键.2.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0 B.m>0 C.m<﹣1 D.m>﹣1【考点】反比例函数的性质.【分析】如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()【解答】解:∵反比例函数y=的图象在所在象限内,y的值随x值的增大而减小,∴m+1>0,解得m>﹣1.故选D.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.3.抛物线y=x2向左平移1个单位,再向下平移2个单位,得到新的图象的二次函数表达式是()A.y=(x+1)2+2 B.y=(x﹣1)2﹣2 C.y=(x+1)2﹣2 D.y=(x﹣1)2+2【考点】二次函数图象与几何变换.【专题】计算题.【分析】原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(﹣1,﹣2),根据顶点式可确定抛物线解析式.【解答】解:由题意,得平移后抛物线顶点坐标为(﹣1,﹣2),又平移不改变二次项系数,∴得到的二次函数解析式为y=(x+1)2﹣2.故选C.【点评】主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.4.如图,△ABC中,点D、E分别是AB、AC的中点,则下列结论:①BC=2DE;②△ADE∽△ABC;③.其中正确的有()A.3个B.2个C.1个D.0个【考点】三角形中位线定理;相似三角形的判定与性质.【分析】若D、E是AB、AC的中点,则DE是△ABC的中位线,可根据三角形中位线定理得出的等量条件进行判断.【解答】解:∵D、E是AB、AC的中点,∴DE是△ABC的中位线;∴DE∥BC,BC=2DE;(故①正确)∴△ADE∽△ABC;(故②正确)∴,即;(故③正确)因此本题的三个结论都正确,故选A.【点评】此题主要考查了三角形中位线定理以及相似三角形的判定和性质.5.如图,▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.1:1 B.1:2 C.1:3 D.2:3【考点】相似三角形的判定与性质;平行四边形的性质.【分析】如图,证明AD∥BC,AD=BC;得到△DEF∽△BCF,进而得到;证明BC=AD=2DE,即可解决问题.【解答】解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC;∴△DEF∽△BCF,∴;∵点E是边AD的中点,∴BC=AD=2DE,∴.故选B.【点评】该题主要考查了平行四边形的性质、相似三角形的判定及其性质等几何知识点及其应用问题;牢固掌握平行四边形的性质、相似三角形的判定及其性质是关键.6.将y=x2+6x+7化为y=a(x﹣h)2+k的形式,h,k的值分别为()A.3,﹣2 B.﹣3,﹣2 C.3,﹣16 D.﹣3,﹣16【考点】二次函数的三种形式.【分析】将一般式化为顶点式,由于二次项系数是1,只需加上一次项系数的一半的平方来凑成完全平方式,从而得出h,k的值.【解答】解:∵y=x2+6x+7=x2+6x+9﹣9+7=(x+3)2﹣2,∴h=﹣3,k=﹣2.故选:B.【点评】此题考查二次函数的解析式的三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x﹣h)2+k;(3)交点式(与x轴):y=a(x﹣x1)(x﹣x2).7.如果点A(﹣1,y1),B(2,y2),C(3,y3)都在反比例函数y=的图象上,那么()A.y1<y2<y3B.y1<y3<y2C.y2<y1<y3D.y3<y2<y1【考点】反比例函数图象上点的坐标特征.【分析】直接把各点代入反比例函数的解析式,求出y1,y2,y3的值,再比较出其大小即可.【解答】解:∵点A(﹣1,y1),B(2,y2),C(3,y3)都在反比例函数y=的图象上,∴y1==﹣3,y2=,y3==1.∵﹣3<1<,∴y1<y3<y2.故选B.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1 B.C.2 D.【考点】相似三角形的判定与性质.【分析】由条件可证明△CBD∽△CAB,可得到=,代入可求得CD.【解答】解:∵∠DBC=∠A,∠C=∠C,∴△CBD∽△CAB,∴=,即=,∴CD=2,故选C.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定方法是解题的关键.9.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是()A.B.C.D.【考点】相似三角形的判定.【专题】网格型.【分析】本题主要应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案.【解答】解:已知给出的三角形的各边AB、CB、AC分别为、2、、只有选项B的各边为1、、与它的各边对应成比例.故选:B.【点评】此题考查三角形相似判定定理的应用.10.二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是()A.当x<,y随x的增大而减小B.函数有最小值C.a+b+c<0 D.当﹣1<x<2时,y>0【考点】二次函数的性质.【分析】观察可判断函数有最小值;由抛物线可知当﹣1<x<2时,可判断函数值的符号;观察当x=1时,函数值的符号,可判断a+b+c的符号;由抛物线对称轴和开口方向可知y随x的增大而减小,可判断结论.【解答】解:A、由图象可知在对称轴的左侧y随x的增大而减小,故正确;B、由图象可知函数有最小值,故正确;C、当x=1时,y<0,即a+b+c<0,故正确;D、由抛物线可知当﹣1<x<2时,y<0,故错误.故选:D.【点评】本题考查了二次函数图象的性质,解析式的系数的关系.关键是掌握各项系数与抛物线的性质之间的联系.11.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则直线y=ax+b与反比例函数y=在同一坐标系内的大致图象为()A.B.C.D.【考点】二次函数的图象;一次函数的图象;反比例函数的图象.【专题】压轴题.【分析】本题形数结合,根据二次函数y=ax2+bx+c(a≠0)的图象位置,可判断a、b、c的符号;再由一次函数y=ax+b,反比例函数y=中的系数符号,判断图象的位置.经历:图象位置﹣系数符号﹣图象位置.【解答】解:∵二次函数y=ax2+bx+c(a≠0)的图象开口向下,a<0;与y轴交于正半轴,c>0;对称轴x=﹣<0,故b<0;于是直线y=ax+b过二、三、四象限,反比例函数y=过二、四象限.故选B.【点评】此题考查一次函数,二次函数,反比例函数中系数及常数项与图象位置之间关系.二、填空题(12-23题每空2分,24题前两空每空1分,最后一空2分共30分)12.请写出一个开口向下,并且与y轴交于点(0,﹣2)的抛物线的表达式y=﹣x2﹣2x﹣2(答案不唯一).【考点】二次函数的性质.【专题】计算题;开放型.【分析】写出一个二次函数,使其二次项系数为负数,常数项为﹣2即可.【解答】解:根据题意得:y=﹣x2﹣2x﹣2(答案不唯一),故答案为:y=﹣x2﹣2x﹣2(答案不唯一)【点评】此题考查了二次函数的性质,熟练掌握二次函数性质是解本题的关键.13.若反比例函数y=的图象位于第二、四象限内,则m的取值范围是m<1.【考点】反比例函数的性质.【分析】直接根据反比例函数的性质即可得出结论.【解答】解:∵反比例函数y=的图象位于第二、四象限内,∴m﹣1<0,解得m<1.故答案为:m<1.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.14.抛物线y=(x﹣2)2+1的顶点坐标是(2,1),对称轴是x=2.【考点】二次函数的性质.【分析】利用抛物线的顶点式,直接写出顶点坐标与对称轴即可.【解答】解:∵抛物线y=(x﹣2)2+1,∴顶点坐标是(2,1),对称轴是x=2.故答案为:(2,1),x=2.【点评】此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h.15.抛物线y=﹣+3x﹣2与y=ax2的形状相同,而开口方向相反,则a=.【考点】二次函数的性质.【分析】抛物线的形状与|a|有关,开口方向与a的正负有关.【解答】解:∵抛物线y=﹣x2+3x﹣2与y=ax2的形状相同,∴二次项系数的绝对值相等,都为;∵开口方向相反,∴二次项系数互为相反数,即y=ax2中,a=.故答案为:.【点评】此题考查二次函数的性质,抛物线的开口大小由|a|决定,|a|越大,抛物线的开口越窄;|a|越小,抛物线的开口越宽.16.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为15m.【考点】相似三角形的应用.【分析】根据同时同地物高与影长成正比列式计算即可得解.【解答】解:设旗杆高度为x米,由题意得,=,解得x=15.故答案为:15.【点评】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比,需熟记.17.如图,点P在反比例函数y=的图象上,且PD⊥x轴于点D.若△POD的面积为3,则k的值是﹣6.【考点】反比例函数系数k的几何意义.【分析】根据反比例函数比例系数k的几何意义即可直接求解.【解答】解:S△POD=|k|=3,又∵k<0,∴k=﹣6.故答案是:﹣6.【点评】本题考查了反比函数k的几何意义,过图象上的任意一点作x轴、y轴的垂线,所得三角形的面积是|k|,是经常考查的知识点,也体现了数形结合的思想.18.如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E.若AD=1,DB=2,则△ADE的面积与△ABC的面积的比等于1:9.【考点】相似三角形的判定与性质.【分析】根据DE∥BC,即可证得△ADE∽△ABC,然后根据相似三角形的面积的比等于相似比的平方,即可求解.【解答】解:∵AD=1,DB=2,∴AB=AD+DB=3,∵DE∥BC,∴△ADE∽△ABC,∴=()2=()2=1:9.故答案为1:9.【点评】本题考查了三角形的判定和性质:熟练掌握相似三角形的面积比是相似比的平方是解题的关键.19.抛物线y=2x2+8x+m与x轴只有一个公共点,则m的值为8.【考点】抛物线与x轴的交点.【专题】判别式法.【分析】由抛物线y=2x2+8x+m与x轴只有一个公共点可知,对应的一元二次方程2x2+8x+m=0,根的判别式△=b2﹣4ac=0,由此即可得到关于m的方程,解方程即可求得m的值.【解答】解:∵抛物线与x轴只有一个公共点,∴△=0,∴b2﹣4ac=82﹣4×2×m=0;∴m=8.故答案为:8.【点评】此题主要考查了二次函数根的判别式的和抛物线与x轴的交点个数的关系.20.如图,∠DAB=∠CAE,要使△ABC∽△ADE,则补充的一个条件可以是∠B=∠D(注:只需写出一个正确答案即可).【考点】相似三角形的判定.【专题】开放型.【分析】已知一组角对应相等,要使△ABC∽△ADE,则可补充∠B=∠D或∠AED=∠ACB、AD:AB=AB:AC.【解答】解:根据相似三角形的判定:两角对应相等,两三角形相似;两边对应成比例且夹角相等,两三角形相似.已知∠DAB=∠CAE,则∠DAE=∠BAC,要使△ABC∽△ADE,则补充的一个条件可以是∠B=∠D 或∠AED=∠ACB、AD:AB=AB:AC.【点评】相似三角形的判定:(1)两角对应相等,两三角形相似;(2)两边对应成比例且夹角相等,两三角形相似;(3)三边对应成比例,两三角形相似;(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.21.如图,在△ABC中,AB=8,AC=6,点D在AC上,且AD=2,如果要在AB上找一点E,使△ADE与原三角形相似,那么AE=或.【考点】相似三角形的判定.【专题】计算题.【分析】两三角形有一公共角,再求夹此公共角的两边对应成比例即可.点E位置未确定,所以应分别讨论,△ABC∽△ADE或△ABC∽△AED.【解答】解:第一种情况:要使△ABC∽△ADE,∠A为公共角,AB:AD=AC:AE,即8:2=6:AE,∴AE=;第二种情况:要使△ABC∽△AED,∠A为公共角,AB:AE=AC:AD,即8:AE=6:2,∴AE=.故答案为:或.【点评】考查相似三角形的判定定理:两边对应成比例且夹角相等的两个三角形相似.需注意的是边的对应关系.22.如图所示的抛物线是二次函数y=ax2﹣3x+a2﹣1的图象,那么a的值是﹣1.【考点】二次函数的图象.【分析】由图象可知,抛物线经过原点(0,0),二次函数y=ax2﹣3x+a2﹣1与y轴交点纵坐标为a2﹣1,所以a2﹣1=0,解得a的值.再图象开口向下,a<0确定a的值.【解答】解:由图象可知,抛物线经过原点(0,0),所以a2﹣1=0,解得a=±1,∵图象开口向下,a<0,∴a=﹣1.【点评】主要考查了从图象上把握有用的条件,准确选择数量关系解得a的值,简单的图象最少能反映出2个条件:开口向下a<0;经过原点a2﹣1=0,利用这两个条件即可求出a的值.23.初三数学课本上,用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:x …﹣2 ﹣1 0 1 2 …y …﹣4 ﹣2 …根据表格上的信息回答问题:该二次函数y=ax2+bx+c在x=3时,y=﹣4.【考点】二次函数的图象.【专题】压轴题;图表型.【分析】由表格可知,(0,﹣2),(2,﹣2)是抛物线上两对称点,可求对称轴x=1,再利用对称性求出横坐标为3的对称点(﹣1,﹣4)即可.【解答】解:观察表格可知,当x=0或2时,y=﹣2,根据二次函数图象的对称性,(0,﹣2),(2,﹣2)是抛物线上两对称点,对称轴为x==1,顶点(1,﹣2),根据对称性,x=3与x=﹣1时,函数值相等,都是﹣4.故答案为:﹣4.【点评】观察二次函数的对应值的表格,关键是寻找对称点,对称轴,利用二次函数的对称性解答.24.在函数的图象上有点P1,P2,P3,…,P n,P n+1,它们的横坐标依次为1,2,3,…,n,n+1.过点P1,P2,P3,…,P n,P n+1分别作x轴、y轴的垂线段,构成如图所示的若干个矩形,将图中阴影部分的面积从左至右依次记为S1,S2,S3,…,S n,则点P1的坐标为(1,8);S2=;S n=.(用含n的代数式表示)【考点】反比例函数系数k的几何意义.【专题】规律型.【分析】先根据反比例函数图象上点的坐标特征得到P1(1,8),P2(2,4),P3(3,),P4(4,2),再利用矩形的面积公式分别计算出S1=,S2=,S3=,观察面积的值得到分子为8,分母为序号数和比序号数大1的数的积,由此得到Sn=.【解答】解:当x=1时,y==8,则P1(1,8);当x=2时,y==4,则P2(2,4);当x=3时,y==,则P3(3,);当x=4时,y==2,则P4(4,2);S1=1×(﹣)=,S2=1×(﹣)=,S3=1×(﹣)=,…,所以Sn=.故答案为(1,8),,.【点评】本题考查了反比例函数系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.三、解答题25.根据下列条件,分别求出对应的二次函数表达式.(1)已知图象过点(6,0),顶点坐标为(4,﹣8).(2)已知抛物线与x轴的交点是A(﹣2,0),B(3,0),且经过点C(0,6).【考点】待定系数法求二次函数解析式.【分析】(1)设抛物线顶点式解析式为y=a(x﹣4)2﹣8,然后把点(6,0)代入进行计算即可得解;(2)设抛物线交点式解析式y=a(x+2)(x﹣3),然后把点(0,6)代入计算即可得解.【解答】解:(1)设y=a(x﹣4)2﹣8,则a(6﹣4)2﹣8=0,解得a=2,则y=2(x﹣4)2﹣8;(2)设y=a(x+2)(x﹣3),则a(0+2)(0﹣3)=6,解得a=﹣1,则y=﹣(x+2)(x﹣3).【点评】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.26.如图矩形ABCD中,E为BC上一点,DF⊥AE于F.(1)求证:△ABE∽△DFA;(2)若AB=6,AD=12,BE=8,求DF的长.【考点】正方形的性质;相似三角形的判定与性质.【分析】(1)△ABE和△DFA都是直角三角形,还需一对角对应相等即可.根据AD∥BC可得∠DAF=∠AEB,问题得证;(2)运用相似三角形的性质求解.【解答】(1)证明:∵DF⊥AE,∴∠AFD=90°.(1分)∴∠B=∠AFD=90°.(2分)又∵AD∥BC,∴∠DAE=∠AEB.(3分)∴△ABE∽△DFA.(4分)(2)解:∵AB=6,BE=8,∠B=90°,∴AE=10.(6分)∵△ABE∽△DFA,∴=.(7分)即=.∴DF=7.2.(8分)【点评】此题考查了相似三角形的判定和性质,以及矩形的性质、勾股定理等知识点,难度中等.27.如图,▱ABCD中,E是CB延长线上一点,DE交AB于F.求证:AD•AB=AF•CE.【考点】相似三角形的判定与性质;平行四边形的性质.【专题】证明题.【分析】根据已知条件很容易就可推出△ECD∽△DAF,求出对应边的比例式,根据CD=AB,进行相关线段的等量代换即可.【解答】证明:在▱ABCD中,因为AB∥DC,所以∠CDE=∠BFE=∠AFD,又因为∠A=∠C,所以△ECD∽△DAF,所以=,又CD=AB,所以=,故AD•AB=AF•CE.【点评】本题主要考查相似三角形的判定与性质、平行四边形的性质,本题的关键是证明△ECD和△DAF相似,根据平行四边形的性质找到相等关系,进行等量代换.28.如图,一次函数y1=kx+b的图象与反比例函数y2=的图象交于A(m,3),B(﹣3,n)两点.(1)求一次函数的表达式;(2)观察函数图象,直接写出关于x的不等式>kx+b的解集.(3)求△AOB的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)把A和B代入反比例函数解析式即可求得坐标,然后用待定系数法求得一次函数的解析式;(2)不等式>kx+b的解集就是:对于相同的x的值,反比例函数的图象在上边的部分自变量的取值范围;(3)根据三角形的面积公式即可得到结论.【解答】解:(1)∵A(m,3),B(﹣3,n)两点在反比例函数y2=的图象上,∴m=2,n=﹣2.∴A(2,3),B(﹣3,﹣2).根据题意得:,解得:,∴一次函数的解析式是:y1=x+1;(2)根据图象得:0<x<2或x<﹣3.(3)∵一次函数的解析式是y1=x+1;∴直线AB与y轴的交点为(0,1),∴S△AOB=+=.【点评】本题综合考查一次函数与反比例函数的图象与性质,同时考查用待定系数法求函数解析式.本题需要注意无论是自变量的取值范围还是函数值的取值范围,都应该从交点入手思考;需注意反比例函数的自变量不能取0.29.已知二次函数y1=ax2+bx﹣3的图象经过点A(2,﹣3),B(﹣1,0),与y轴交于点C,与x 轴另一交点交于点D.(1)求二次函数的表达式;(2)求点C、点D的坐标;(3)画出二次函数的图象;(4)若一条直线y2,经过C、D两点,请直接写出y1>y2时,x的取值范围.【考点】待定系数法求二次函数解析式;二次函数的图象;二次函数与不等式(组).【专题】计算题.【分析】(1)把A点和B点坐标代入y1=ax2+bx﹣3得到关于a、b的方程组,然后解方程组即可;(2)计算自变量为0所对应的函数值即可得到C点坐标,计算函数值为0所对应的函数值即可得到D点坐标;(3)把解析式配成顶点式,然后利用描点法画出二次函数图象;(4)观察函数图象,写出抛物线在直线上方所对应的自变量的取值范围即可.【解答】解:(1)根据题意得,解得.所以抛物线解析式为y=x2﹣2x﹣3;(2)当x=0时,y=x2﹣2x﹣3=﹣3,则C(0,﹣3);当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则D(3,0);(3)y=x2﹣2x﹣3=(x﹣1)2﹣4,则抛物线的顶点坐标为(1,﹣4),如图,(4)当x<﹣1或x>3时,y1>y2.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.30.如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从点A出发,沿着AB以每秒4cm的速度向点B运动;同时点Q从C点出发,沿着CA以每秒3cm的速度向点A运动.设运动时间为x.(1)当x为何值时,PQ∥BC?(2)△APQ能否与△CQB相似?若能,求出AP的长;若不能,请说明理由.【考点】相似三角形的判定与性质.【专题】动点型.【分析】(1)当PQ∥BC时,根据平行线分线段成比例定理,可得出关于AP,PQ,AB,AC的比例关系式,我们可根据P,Q的速度,用时间x表示出AP,AQ,然后根据得出的关系式求出x的值.(2)本题要分两种情况进行讨论.已知了∠A和∠C对应相等,那么就要分成AP和CQ对应成比例以及AP和BC对应成比例两种情况来求x的值.【解答】解:(1)由题意得,PQ平行于BC,则AP:AB=AQ:AC,AP=4x,AQ=30﹣3x∴=∴x=(2)假设两三角形可以相似情况1:当△APQ∽△CQB时,CQ:AP=BC:AQ,即有=解得x=,经检验,x=是原分式方程的解.此时AP=cm,情况2:当△APQ∽△CBQ时,CQ:AQ=BC:AP,即有=解得x=5,经检验,x=5是原分式方程的解.此时AP=20cm.综上所述,AP=cm或AP=20cm.【点评】本题主要考查了相似三角形的判定和性质,根据三角形相似得出线段比或面积比是解题的关键.31.某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx﹣75.其图象如图所示.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?【考点】二次函数的应用.【专题】销售问题.【分析】(1)根据待定系数法,可得二次函数解析式,根据顶点坐标,可得答案;(2)根据函数值大于或等于16,可得不等式的解集,可得答案.【解答】解;(1)y=ax2+bx﹣75图象过点(5,0)、(7,16),∴,解得,y=﹣x2+20x﹣75的顶点坐标是(10,25)当x=10时,y最大=25,答:销售单价为10元时,该种商品每天的销售利润最大,最大利润为25元;(2)∵函数y=﹣x2+20x﹣75图象的对称轴为直线x=10,可知点(7,16)关于对称轴的对称点是(13,16),又∵函数y=﹣x2+20x﹣75图象开口向下,∴当7≤x≤13时,y≥16.答:销售单价不少于7元且不超过13元时,该种商品每天的销售利润不低于16元.【点评】本题考查了二次函数的应用,利用待定系数法求解析式,利用顶点坐标求最值,利用对称点求不等式的解集.32.已知:如图,一次函数y=x+2的图象与反比例函数(1,m)的图象交于A、B两点,且点A的坐标为(1,m).(1)求反比例函数C(n,1)的表达式;(2)点C(n,1)在反比例函数AB⊥CD的图象上,求△AOC面积;(3)在x轴上找出点P,使△ABP是以AB为斜边的直角三角形,请直接写出所有符合条件的点P 的坐标.。

九年级(上)期中数学试卷(含答案)

九年级(上)期中数学试卷(含答案)

九年级(上)期中数学试卷一.选择题(每小题3分,共30分)1.(3分)在艺术字中,有些字母是中心对称图形,下面的5个字母中,是中心对称图形的有()A.2个 B.3个 C.4个 D.5个2.(3分)二次函数y=﹣(x﹣1)2+3的图象的顶点坐标是()A.(﹣1,3)B.(1,3) C.(﹣1,﹣3)D.(1,﹣3)3.(3分)用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=94.(3分)若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1+x2的值是()A.1 B.5 C.﹣5 D.65.(3分)在平面直角坐标系xOy中,已知点A(2,3),若将OA绕原点O逆时针旋转180°得到OA′,则点A′在平面直角坐标系中的位置是在()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)如图,在⊙O中,圆心角∠BOC=60°,则圆周角∠BAC等于()A.60°B.50°C.40°D.30°7.(3分)把抛物线y=﹣x2向右平移一个单位,再向上平移3个单位,得到抛物线的解析式为()A.y=﹣(x﹣1)2+3 B.y=(x﹣1)2+3 C.y=﹣(x+1)2+3 D.y=(x+1)2+3 8.(3分)使用墙的一边,再用13m的铁丝网围成三边,围成一个面积为20m2的长方形,求这个长方形的两边长.设墙的对边长为xm,可得方程()A.x(13﹣x)=20 B.x•=20 C.x(13﹣x)=20 D.x•=209.(3分)如图所示,AB是⊙O的直径,CD是弦,CD⊥AB于点E,则下列结论中不一定正确的是()A.∠COE=∠DOE B.CE=DE C.AC=AD D.OE=BE10.(3分)如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是()A.B.C.D.二.填空题(本大题共10小题,每小题3分,共30分.把答案填在题中横线上)11.(3分)已知抛物线y=x2+4x+5的对称轴是直线x=.12.(3分)若关于x的方程x2+2x+k﹣1=0的一个根是0,则k=.13.(3分)某县2008年农民人均年收入为7 800元,计划到2010年,农民人均年收入达到9 100元.设人均年收入的平均增长率为x,则可列方程.14.(3分)钟表的运动可以看作是一种旋转现象,那么分针匀速旋转时,它的旋转中心是钟表的旋转轴的轴心,经过45分钟旋转了度.15.(3分)如图,AB是半圆O的直径,E是的中点,OE交弦BC于点D,已知BC=8cm,DE=2cm,则AD的长为cm.16.(3分)已知抛物线y=x2﹣2x﹣3,若点P(﹣2,5)与点Q关于该抛物线的对称轴对称,则点Q的坐标是.17.(3分)若一元二次方程(k﹣1)x2﹣4x﹣5=0有两个不相等实数根,则k的取值范围是.18.(3分)已知⊙O的半径为6cm,弦AB的长为6cm,则弦AB所对的圆周角的度数为.19.(3分)根据下列5个图形及相应点的个数的变化规律,试猜测第n个图中有个点.20.(3分)若x1,x2(x1<x2)是方程(x﹣a)(x﹣b)=1(a<b)的两个根,则实数a,b,x1,x2的大小关系为.三.解答题(本大题共8个小题,共60分)21.(12分)解方程(1)3(x﹣2)2=x(x﹣2)(2)x2﹣2x﹣3=0.22.(8分)已知一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB、AC的长是这个方程的两个实数根,第三边BC的长为5.当△ABC是等腰三角形时,求k的值.23.(9分)在建立平面直角坐标系的方格纸中,每个小方格都是边长为1的小正方形,△ABC的顶点均在格点上,点P的坐标为(﹣1,0),请按要求画图与作答:(1)把△ABC绕点P旋转180°得△A′B′C.(2)把△ABC向右平移7个单位得△A″B″C″.(3)△A′B′C与△A″B″C″是否成中心对称,若是,找出对称中心P′,并写出其坐标.24.(9分)某百货商店从一制衣厂以每件21元的价格购进一批服装,若以每件衣服售价为x元,则可卖出(350﹣10x)件,但物价局限定每件衣服加价不能超过20%,商店计划要盈利400元,需要卖出多少件衣服?每件衣服售价多少元?25.(10分)如图,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC ∥DE交BD于点H,DO及延长线分别交AC、BC于点G、F.(1)求证:DF垂直平分AC;(2)求证:FC=CE;(3)若弦AD=5cm,AC=8cm,求⊙O的半径.26.(12分)如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE 的最大面积及E点的坐标.参考答案与试题解析一.选择题(每小题3分,共30分)1.(3分)在艺术字中,有些字母是中心对称图形,下面的5个字母中,是中心对称图形的有()A.2个 B.3个 C.4个 D.5个【解答】解:H、I、N是中心对称图形,所以是中心对称图形的有3个.故选B.2.(3分)二次函数y=﹣(x﹣1)2+3的图象的顶点坐标是()A.(﹣1,3)B.(1,3) C.(﹣1,﹣3)D.(1,﹣3)【解答】解:二次函数y=﹣(x﹣1)2+3为顶点式,其顶点坐标为(1,3).故选:B.3.(3分)用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=9【解答】解:方程移项得:x2﹣2x=5,配方得:x2﹣2x+1=6,即(x﹣1)2=6.故选:B.4.(3分)若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1+x2的值是()A.1 B.5 C.﹣5 D.6【解答】解:依据一元二次方程根与系数得:x1+x2=5.故选:B.5.(3分)在平面直角坐标系xOy中,已知点A(2,3),若将OA绕原点O逆时针旋转180°得到OA′,则点A′在平面直角坐标系中的位置是在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:旋转后得到的点A′与点A成中心对称,旋转后A′的坐标为(﹣2,﹣3),所以在第三象限.故选:C.6.(3分)如图,在⊙O中,圆心角∠BOC=60°,则圆周角∠BAC等于()A.60°B.50°C.40°D.30°【解答】解:∵∠BOC=60°,∴∠BAC=∠BOC=30°.故选:D.7.(3分)把抛物线y=﹣x2向右平移一个单位,再向上平移3个单位,得到抛物线的解析式为()A.y=﹣(x﹣1)2+3 B.y=(x﹣1)2+3 C.y=﹣(x+1)2+3 D.y=(x+1)2+3【解答】解:抛物线y=﹣x2的顶点坐标为(0,0),把点(0,0)向右平移一个单位,再向上平移3个单位得到点的坐标为(﹣1,3),所以平移后的抛物线解析式为y=﹣(x+1)2+3.故选:A.8.(3分)使用墙的一边,再用13m的铁丝网围成三边,围成一个面积为20m2的长方形,求这个长方形的两边长.设墙的对边长为xm,可得方程()A.x(13﹣x)=20 B.x•=20 C.x(13﹣x)=20 D.x•=20【解答】解:设墙的对边长为x m,可得方程:x×=20.故选:B.9.(3分)如图所示,AB是⊙O的直径,CD是弦,CD⊥AB于点E,则下列结论中不一定正确的是()A.∠COE=∠DOE B.CE=DE C.AC=AD D.OE=BE【解答】解:如图,∵AB是⊙O的直径,CD是弦,CD⊥AB于点E,∴CE=DE,即AB为CD的垂直平分线,∴AC=AD;∴选项B、C正确;∵OC=OD,OE⊥CD,∴∠COE=∠DOE,∴选项A正确;故选:D.10.(3分)如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是()A.B.C.D.【解答】解:∵根据正方形的四边相等,四个角都是直角,且AE=BF=CG=DH,∴可证△AEH≌△BFE≌△CGF≌△DHG.设AE为x,则AH=1﹣x,根据勾股定理,得EH2=AE2+AH2=x2+(1﹣x)2即s=x2+(1﹣x)2.s=2x2﹣2x+1,∴所求函数是一个开口向上,对称轴是直线x=.∴自变量的取值范围是大于0小于1.故选:B.二.填空题(本大题共10小题,每小题3分,共30分.把答案填在题中横线上)11.(3分)已知抛物线y=x2+4x+5的对称轴是直线x=﹣2.【解答】解:由对称轴公式:对称轴是直线x=﹣=﹣=﹣2,故答案为:﹣2.12.(3分)若关于x的方程x2+2x+k﹣1=0的一个根是0,则k=1.【解答】解:设方程的另一根为x1,又∵x2+2x+k﹣1=0的一个根是0,∴x1•0=k﹣1,解得k=1.13.(3分)某县2008年农民人均年收入为7 800元,计划到2010年,农民人均年收入达到9 100元.设人均年收入的平均增长率为x,则可列方程7800(x+1)2=9100.【解答】解:设人均年收入的平均增长率为x,根据题意可列出方程为:7800(x+1)2=9100.故答案为:7800(x+1)2=9100.14.(3分)钟表的运动可以看作是一种旋转现象,那么分针匀速旋转时,它的旋转中心是钟表的旋转轴的轴心,经过45分钟旋转了270度.【解答】解:∵时钟上的分针匀速旋转一周的度数为360°,时钟上的分针匀速旋转一周需要60分钟,则时钟上的分针匀速旋转一分钟时的度数为:360÷60=6°,那么45分钟,分针旋转了45×6°=270°.故答案为:270.15.(3分)如图,AB是半圆O的直径,E是的中点,OE交弦BC于点D,已知BC=8cm,DE=2cm,则AD的长为cm.【解答】解:连接AC,则∠ACB=90°.∵E是的中点,OE交弦BC于点D,∴OE⊥CD,CD=BD=BC=×8=4cm.设⊙O的半径为r,则OD=r﹣2,OB=r.故OB2=OD2+BD2,即r2=(r﹣2)2+42,解得:r=5.故AB=2r=2×5=10cm.在Rt△ABC中,AC===6cm.在Rt△ADC中,AC=6cm,CD=4cm,故AD===2(cm).16.(3分)已知抛物线y=x2﹣2x﹣3,若点P(﹣2,5)与点Q关于该抛物线的对称轴对称,则点Q的坐标是(4,5).【解答】解:∵x=﹣=﹣=1.∴P(﹣2,5)关于对称轴的对称点Q的坐标是(4,5).故点Q的坐标是(4,5).故答案为:(4,5).17.(3分)若一元二次方程(k﹣1)x2﹣4x﹣5=0有两个不相等实数根,则k的取值范围是k>且k≠1.【解答】解:∵a=k﹣1,b=﹣4,c=﹣5,方程有两个不相等的实数根,∴△=b2﹣4ac=16﹣4×(﹣5)×(k﹣1)=20k﹣4>0,∴k>,又∵二次项系数不为0,∴k≠1,即k≥且k≠1.18.(3分)已知⊙O的半径为6cm,弦AB的长为6cm,则弦AB所对的圆周角的度数为30°或150°.【解答】解:根据题意,弦AB与两半径组成等边三角形,∴弦AB所对的圆心角=60°,①圆周角在优弧上时,圆周角=30°,②圆周角在劣弧上时,圆周角=180°﹣30°=150°.∴圆周角的度数为30°或150°;故答案为:30°或150°.19.(3分)根据下列5个图形及相应点的个数的变化规律,试猜测第n个图中有n2﹣n+1个点.【解答】解:根据题意分析可得:第n个图中,从中心点分出n个分支,每个分支上有(n﹣1)个点,不含中心点;则第n个图中有n×(n﹣1)+1=n2﹣n+1个点.20.(3分)若x1,x2(x1<x2)是方程(x﹣a)(x﹣b)=1(a<b)的两个根,则实数a,b,x1,x2的大小关系为x1<a<b<x2.【解答】解:用作图法比较简单,首先作出(x﹣a)(x﹣b)=0图象,随便画一个(开口向上的,与x轴有两个交点),再向下平移一个单位,就是(x﹣a)(x ﹣b)=1,这时与x轴的交点就是x1,x2,画在同一坐标系下,很容易发现:x1<a<b<x2,故答案为:x1<a<b<x2.三.解答题(本大题共8个小题,共60分)21.(12分)解方程(1)3(x﹣2)2=x(x﹣2)(2)x2﹣2x﹣3=0.【解答】解:(1)3(x﹣2)2﹣x(x﹣2)=0,(x﹣2)(3x﹣6﹣x)=0,x﹣2=0或3x﹣6﹣x=0,所以x1=2,x2=3;(2)(x﹣3)(x+1)=0,x﹣3=0或x+1=0,所以x1=3,x2=﹣1.22.(8分)已知一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB、AC的长是这个方程的两个实数根,第三边BC的长为5.当△ABC是等腰三角形时,求k的值.【解答】(1)证明:∵△=[﹣(2k+1)]2﹣4(k2+k)=1>0,∴无论k为何值,方程总有两个不相等的实数根;(2)解:∵△=1>0,∴AB≠AC,∴AB、AC中有一个数为5.当x=5时,原方程为:25﹣5(2k+1)+k2+k=0,即k2﹣9k+20=0,解得:k1=4,k2=5.当k=4时,原方程为x2﹣9x+20=0,∴x1=4,x2=5.∵4、5、5能围成等腰三角形,∴k=4符合题意;当k=5时,原方程为x2﹣11x+30=0,解得:x1=5,x2=6.∵5、5、6能围成等腰三角形,∴k=5符合题意.综上所述:k的值为4或5.23.(9分)在建立平面直角坐标系的方格纸中,每个小方格都是边长为1的小正方形,△ABC的顶点均在格点上,点P的坐标为(﹣1,0),请按要求画图与作答:(1)把△ABC绕点P旋转180°得△A′B′C.(2)把△ABC向右平移7个单位得△A″B″C″.(3)△A′B′C与△A″B″C″是否成中心对称,若是,找出对称中心P′,并写出其坐标.【解答】解:(1)如图,△A'B'C'即为所求;(2)如图,A''B''C''即为所求;(3)如图,P'(2.5,0).24.(9分)某百货商店从一制衣厂以每件21元的价格购进一批服装,若以每件衣服售价为x元,则可卖出(350﹣10x)件,但物价局限定每件衣服加价不能超过20%,商店计划要盈利400元,需要卖出多少件衣服?每件衣服售价多少元?【解答】解:由题意,得(350﹣10x)(x﹣21)=400,解得:x1=25,x2=31.∵x<21(1+20%),∴x<25.2.∴x=31应舍去.∴x=25.答:每件衣服的售价为25元.25.(10分)如图,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC ∥DE交BD于点H,DO及延长线分别交AC、BC于点G、F.(1)求证:DF垂直平分AC;(2)求证:FC=CE;(3)若弦AD=5cm,AC=8cm,求⊙O的半径.【解答】(1)证明:∵DE是⊙O的切线,且DF过圆心O,∴DF是⊙O的直径所在的直线,∴DF⊥DE,又∵AC∥DE,∴DF⊥AC,∴G为AC的中点,即DF平分AC,则DF垂直平分AC;(2分)(2)证明:由(1)知:AG=GC,又∵AD∥BC,∴∠DAG=∠FCG;又∵∠AGD=∠CGF,∴△AGD≌△CGF(ASA),(4分)∴AD=FC;∵AD∥BC且AC∥DE,∴四边形ACED是平行四边形,∴AD=CE,∴FC=CE;(5分)(3)解:连接AO,∵AG=GC,AC=8cm,∴AG=4cm;在Rt△AGD中,由勾股定理得GD2=AD2﹣AG2=52﹣42=9,∴GD=3;(6分)设圆的半径为r,则AO=r,OG=r﹣3,在Rt△AOG中,由勾股定理得AO2=OG2+AG2,有:r2=(r﹣3)2+42,解得r=,(8分)∴⊙O的半径为cm.26.(12分)如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.【解答】解:(1)∵抛物线y=ax2+bx+3经过点A(1,0),点C(4,3),∴,解得,所以,抛物线的解析式为y=x2﹣4x+3;(2)∵点A、B关于对称轴对称,∴点D为AC与对称轴的交点时△BCD的周长最小,设直线AC的解析式为y=kx+b(k≠0),则,解得,所以,直线AC的解析式为y=x﹣1,∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为直线x=2,当x=2时,y=2﹣1=1,∴抛物线对称轴上存在点D(2,1),使△BCD的周长最小;(3)如图,设过点E与直线AC平行线的直线为y=x+m,联立,消掉y得,x2﹣5x+3﹣m=0,△=(﹣5)2﹣4×1×(3﹣m)=0,解得:m=﹣,即m=﹣时,点E到AC的距离最大,△ACE的面积最大,此时x=,y=﹣=﹣,∴点E的坐标为(,﹣),设过点E的直线与x轴交点为F,则F(,0),∴AF=﹣1=,∵直线AC的解析式为y=x﹣1,∴∠CAB=45°,∴点F到AC的距离为AF•sin45°=×=,又∵AC==3,∴△ACE的最大面积=×3×=,此时E点坐标为(,﹣).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三上册数学期中考试试卷及答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】精编初三数学期中考试试卷(100分钟完成,满分150分)一、 填空题(每小题3分,满分36分) 1. 方程211=-x 的根是______________. 2. 方程1112+=+x x x 的根是________________. 3. 分解因式:=-+422x x _______________________. 4. 在公式21111R R R +=中,已知正数R 、R 1(1R R ≠),那么R 2= . 5. 用换元法解方程02711222=+---x x x x 时,可设y =12-x x,那么原方程可化为关于y 的整式方程是 .6. 某电子产品每件原价为800,首次降价的百分率为x ,第二次降价的百分率为2x ,那么经过两降价后每件的价格为_____________________元(用x 的代数式表示).7. 如图1,已知舞台AB 长10台的黄金分割点P 处,且BP AP <,则报幕员应走 米报幕(236.25≈,结果精确到米).8. 如图2,在ABC ∆中,点D 、E 分别在边AB 、AC 上,DE ∥BC ,5:2:=AC AE ,则=BC DE : .9. 已知ABC ∆与DEF ∆相似,且点A 与点E 是对应点,已知∠A =50o , ∠B =︒60,则∠F = .图1图210. 在△ABC 中,点D 、E 分别在边AB 、AC 上,要使△ADE 与△ABC 相似,只须添加一个条件,这个条件可以是___________(只要填写一种情况) . 11. 在△ABC 中,中线AD 和CE 相交于G ,则=AD AG :_________.如图3, 在△ABC 中, 点D 、E 分别在AB 、AC 上,DE 4,3==∆∆CDE ADE S S 二、选择题(每小题4分,满分16分)12. 下多项式中,在实数范围内能分解因式的是………………………………………( )(A )12+-x x ; (B )222+-x x ; (C )332+-x x ; (D )552+-x x .13. 下列方程中, 有实数根的是………………………………………………………( )(A )x x -=11; (B )11-=-x x ;(C )111112--=+-x x x ; (D )11111+-=+-x x x .14. 如果点D 、E 分别在ΔABC 的两边AB 、AC 上,下列条件中可以推出DE ∥BC 的是( )(A ) AD BD = 23 ,CE AE = 23 ; (B) AD AB = 23 ,DE BC = 23;(C ) AB AD = 32 ,EC AE = 12 ; (D) AB AD =34,AE EC = 34.15. 如图4,小正方形的边长均为l ,△ABC 与△DEF 的顶点都在小正方形的顶点上,则△DEF与△ABC 相似的是……………………………………………………………( )(A ) (B ) (C ) (D )三、(第17、18题每小题9分,第19、20、21题每小题10分,满分48分) 17.解方程:1113112=----x x x . 18. 方程组: ⎪⎪⎩⎪⎪⎨⎧-=---=-+-.1223,4122yx x yx x19. 函数542--=x x y 图象上一点P 的纵坐标比横坐标多1, 求这个点的坐标.图4 C ED F D EF E D F F D E 图320. 如图5,在△ABC 中,点D 、E 分别在边AB 、AC 上,C ADE ∠=∠,且3=AD 厘米,5=BD 厘米,6=AC 厘米,求线段EC 的长.21.已知:如图6,在四边形ABCD中,AD FBCE CD FC ⋅=⋅ABD DAE ∠=∠DB DE AD ⋅=2ACB DEC ∠=∠在矩形ABCD 中,2=AB ,5=BC ,点P 在BC 上,且3:2:=PC BP ,动点E 在边ADCD 于点F 、G .(1) 如图9,当点G 在线段CD 上时,设AE =x ,△EPF 与矩形ABCD 重叠部分的面积为y ,求y 关于x 的函数解析式,并写出定义域;(2) 当点E 在移动过程中,△DGF 是否可能为等腰三角形?如可能,请求出AE 的长;如不可能,请说明理由.初三数学期中考试试卷参考与评分意见一、1.23=x ; 2. 1=x ; 3.);51)(51(-+++x x 4. RR RR -11;5. ;02742=-+y y6. )21)(1(800x x --;7. ;8. 2:5 ;9. 60o 或70o; 10. 可填DEABAEAC AD =2:3; 12. 3:4. 二、13.D ; 14. B; 15. C; 16. B.三、17.解:11312-=+-+x x x ,(3分) ,0322=-+x x (2分)1,321=-=x x ,(2分)经检验:3-=x 是原方程的根,1=x 是增根.(2分) 所以原方程的根是3-=x .18. 解:设a x =-21,b y x =-1(1分) 则原方程组可化为⎩⎨⎧-=-=+.123,42b a b a (2分) 解此方程得⎩⎨⎧==.2,1b a (2分) ∴⎪⎪⎩⎪⎪⎨⎧=-=-.21,121yx x (1分) ∴ ⎪⎩⎪⎨⎧==.25,3y x (2分)C A B A BCD(备用图)图9经检验:⎪⎩⎪⎨⎧==25,3y x 是原方程组的解,∴所以原方程组的解是⎪⎩⎪⎨⎧==.25,3y x (1分)19. 解:设点)1,(+x x P ,(2分) 5412--=+x x x ,(2分) 0652=--x x ,(2分)1,621-==x x ,(2分) ∴点P 的坐标为)7,6(或()0,1-.(2分)20.解:∵C ADE ∠=∠,A A ∠=∠,(1分) ∴ADE ∆∽ACB ∆.(2分)∴AB AEAC AD =.(2分) ∵3=AD 厘米,5=BD 厘米,6=AC 厘米, ∴5363+=AE,(2分) 解得4=AE .(2分) ∴2=-=AE AC EC 厘米.(1分)21. 证明:∵FB CE CD FC ⋅=⋅,∴CD CE FB FC =.(2分)∵AD .FA FE CD CE =FAFEFB FC =2分) ∴DE (2分)∴四边形ABCD 是平行四边形.(1分) ∴∠B =∠D .(1分)四、22.证明:(1)∵ABD DAE ∠=∠,BDA ADE ∠=∠,∴ADE ∆∽BDA ∆.(2分)∴ADDEBD AD =,(2分) 即DB DE AD ⋅=2.(1分) (2)∵D 是AC 边上的中点,∴DC AD =.∵AD DEBD AD =,∴DCDE BD DC =,(2分) 又∵BDC CDE ∠=∠.(1分)∴CDE ∆∽BDC ∆.(2分)∴ACB DEC ∠=∠.(2分)23. 解:甲货车每次各运x 吨,(1分) 则乙货车每次各运(2+x )吨.(1分)由题意得52200200=+-x x .(3分) 化简整理得 08022=-+x x .(2分) 解得10,821-==x x . (2分) 经检验10,821-==x x 都是原方程的根,但10-=x 不合题意舍去,(1分) ∴8=x ,.102=+x (1分)答:甲、乙两辆货车每次各运8吨、10吨.(1分)24.解:道路出入口的边的长度为x 米.(1分)过点F 作FM ⊥EH ,可求得EH =x 23,可得小正方形的边长为x 23米.(2分)1374340302=-+x x x ,(3分) 054828032=+-x x ,(1分) 0)2)(2743(=--x x , (1分) 2,327421==x x .(2分)3274=x 不符合题意,舍去.(1分) 答:道路出入口的边的长度为2米.(1分)25. 解:(1)过点E 作BC EH ⊥,垂足为H .(1分)∵3:2:=PC BP ,5=BC ,∴2=BP ,3=PC ;∵x AE =,∴x HP -=2;∵EH =AB =2, ∴x S EHP -=∆2 ,(2分) ∵︒=∠=∠=∠90GCP EPF EHP ,∴∠EPH =90o –∠GPC =∠PGC ,(1分) ∴EHP ∆∽PCG ∆.(1分)∴.236,232,xCG x CG EH CP PH CG -=∴=-∴=(1分) ∴9924∆=-PCG S x .(1分) ∵PCG EPH EHCD S S S y ∆∆--=矩形,∴2745+=x y ,(2分) (232<≤x ).(1分)(2)当点G 在线段CD 上,DG DF =,DF -=23,1-=DF 不可能.(2分) 当点G 在线段CD 的延长线上时,DG DF =,DF +=23,1=DF .此时可解得0=AE ,即当点E 与点A 重合时,DGF ∆是等腰三角形.(2分)。

相关文档
最新文档