《锂离子电池知识》PPT课件
合集下载
锂离子电池原理介绍课件.pptx
LiCoO2+6C = Li(1-x)CoO2+LixC6
➢充电要求:额定电流1C/3,最大持续90A,峰值200A(30S)。
2024/10/9
1.2放电原理
➢ 锂电池充电原理:当电池放电时,形成阳极的碳材料中的锂离子经 过隔膜移动到阴极材料(锂化合物)中,一个放电电流过。。
放电正极上发生的反应为 Li1-xFePO4+ xLi ++ xe- →LiFePO4 放电负极上发生的反应为
2.3负极
➢负极——活性物质为石墨,或近似石墨结构的碳,导 电集流体使用厚度7-15微米的电解铜箔。
三、锂电池分类
圆柱离子电池
方形锂离子电池
软包离子电池
锂离子电池
纽扣锂离子电池
2024方法:按电池外观尺寸宽、厚、长 1、圆柱型18650型号,就是指电芯直径18mm长65mm。 2、方形锂离子383450型号,就是指电芯实体部分宽34mm厚3.8mm长50mm。 3、聚合物(软包)383450型号,就是指电芯实体部分宽34mm厚3.8mm长50mm。
3.8mm 18m m
65m m
圆柱型18650电芯 2024/10/9
50mm
34mm
方形锂离子383450电芯
50mm
34mm
3.8mm
聚合物(软包)383450
四、锂电池特性
A B C
D
2024/10/9
过充电危险:过充超过电池电压上限,会 导致电池内部温度过高,会引起电池燃烧 爆炸。 过。放电危险:锂电池内部存储电能是靠电 化学一种可逆的化学变化实现的,过度的 放电会导致这种化学变化有不可逆的反应 发生,因此锂电池最怕过放电,一旦放电 电压低于2.7V,将可能导致电池报废。
➢充电要求:额定电流1C/3,最大持续90A,峰值200A(30S)。
2024/10/9
1.2放电原理
➢ 锂电池充电原理:当电池放电时,形成阳极的碳材料中的锂离子经 过隔膜移动到阴极材料(锂化合物)中,一个放电电流过。。
放电正极上发生的反应为 Li1-xFePO4+ xLi ++ xe- →LiFePO4 放电负极上发生的反应为
2.3负极
➢负极——活性物质为石墨,或近似石墨结构的碳,导 电集流体使用厚度7-15微米的电解铜箔。
三、锂电池分类
圆柱离子电池
方形锂离子电池
软包离子电池
锂离子电池
纽扣锂离子电池
2024方法:按电池外观尺寸宽、厚、长 1、圆柱型18650型号,就是指电芯直径18mm长65mm。 2、方形锂离子383450型号,就是指电芯实体部分宽34mm厚3.8mm长50mm。 3、聚合物(软包)383450型号,就是指电芯实体部分宽34mm厚3.8mm长50mm。
3.8mm 18m m
65m m
圆柱型18650电芯 2024/10/9
50mm
34mm
方形锂离子383450电芯
50mm
34mm
3.8mm
聚合物(软包)383450
四、锂电池特性
A B C
D
2024/10/9
过充电危险:过充超过电池电压上限,会 导致电池内部温度过高,会引起电池燃烧 爆炸。 过。放电危险:锂电池内部存储电能是靠电 化学一种可逆的化学变化实现的,过度的 放电会导致这种化学变化有不可逆的反应 发生,因此锂电池最怕过放电,一旦放电 电压低于2.7V,将可能导致电池报废。
《锂离子电池》课件
安全性能与环境影响
安全性能
锂离子电池的安全性能是其应用领域的重要考量因素。由于锂离子电池内部存在 可燃物质,不当使用或过充过放可能导致电池起火或爆炸。因此,提高锂离子电 池的安全性能是技术发展的重要方向。
环境影响
锂离子电池在使用和处理过程中可能对环境产生一定影响。主要包括废旧电池处 理问题、电解液泄漏和重金属元素释放等。因此,发展环保型的锂离子电池技术 也是当前的重要研究方向。
能量密度与功率密度
能量密度
锂离子电池的能量密度是指单位体积或质量所存储的电能,是衡量电池储能能 力的重要指标。提高能量密度是锂离子电池技术发展的重要方向。
功率密度
锂离子电池的功率密度是指单位体积或质量所输出的电能,是衡量电池快速充 放电能力的重要指标。提高功率密度有助于提升电动汽车等设备的加速性能和 响应速度。
为锂离子电池产业提供更广阔的发展空间。
06
锂离子电池的挑战与解决 方案
锂离子电池的安全问题与解决方案
总结词
锂离子电池的安全问题是当前面临的重要挑 战,包括过热、过充、短路等情况下的安全 隐患。
详细描述
为了解决锂离子电池的安全问题,需要采取 一系列措施,如改进电池设计、提高电池管 理系统智能化水平、加强生产工艺控制等。 此外,研发新型安全材料也是重要的研究方
工作原理
锂离子电池通过锂离子在正负极之间的迁移实现电能的储存和释放。充电时,锂离子从正极脱出,通过电解液和 隔膜迁移到负极并嵌入;放电时,锂离子从负极脱出,通过电解液和隔膜迁移到正极并嵌入,同时电子通过外电 路传递形成电流。
锂离子电池的种类
01
02
03
根据正极材料
钴酸锂、磷酸铁锂、三元 材料等。
根据用途
《锂离子电池介绍》课件
02
锂离子电池的组成
正极材料
01
02
03
04
作用
正极材料是锂离子电池的重要 组成部分,主要负责存储和释
放能量。
常见种类
包括三元材料、钴酸锂、磷酸 铁锂等。
特点
具有较高的能量密度、循环寿 命长、自放电率低等特点。
应用
广泛应用于电动汽车、混合动 力汽车、手机、笔记本电脑等
领域。
负极材料
作用
负极材料是锂离子电池 的另一个重要组成部分 ,主要负责存储锂离子
VS
详细描述
电池组装通常在洁净的环境中进行,以确 保产品质量。组装过程包括将正负极片叠 放在一起,中间夹上隔膜,然后注入电解 液。最后,通过封装形成完整的电池。电 池的封装形式有多种,如圆柱形、扁平型 和棱柱形等。
电池测试
总结词
电池测试是确保电池性能和质量的重要环节 ,包括电性能测试、安全性能测试和循环寿 命测试等。
电极制备
总结词
电极制备是将正负极材料涂布在金属箔上,形成集流体和活 性物质的结构。
详细描述
电极制备过程中,首先将正负极材料与粘结剂混合,制成浆 料。然后,将浆料涂布在金属箔上,经过干燥和碾压,形成 电极片。电极片的质量直接影响电池的电化学性能和生产成 本。
电池组装
总结词
电池组装是将正负极片、隔膜和电解液 等组件组装在一起,形成完整的电池结 构。
回收与环保问题
总结词
锂离子电池回收和环保问题亟待解决
详细描述
锂离子电池中含有有毒有害物质,如钴、镍 等重金属和有机溶剂等。这些物质对环境和 人体健康造成潜在威胁。同时,锂离子电池 回收技术尚不成熟,回收率较低,也给环保
带来压力。
《锂离子电池》课件
隔膜
隔膜
要求
位于正负极之间,起到隔离正负极并允许 锂离子通过的作用。
隔膜需具有足够的机械强度、化学稳定性 好、孔径合适等特点。
功能
发展趋势
隔膜的性能对电池的安全性、内阻和循环 寿命具有重要影响。
开发新型隔膜材料以提高电池性能和安全 性是未来的研究方向。
03
锂离子电池的充放电性 能
充放电曲线
充放电曲线
容量与能量密度的影响因素
分析影响锂离子电池容量和能量密度的因素,如电极材料 、电解质等。
04
锂离子电池的安全性能 与维护
锂离子电池的安全问题
过充
当电池充电过度时,正极材料会 释放出氧气,通过电解液与负极 发生反应,导致电池内部温度和 压力升高,可能引发燃烧或爆炸
。
过放
过度放电会导致负极过渡金属锂 形成锂枝晶,刺穿隔膜,造成电 池短路,可能引发燃烧或爆炸。
温度过高
在高温环境下,锂离子电池内部 的化学反应速率会增加,可能导 致电池内部温度升高,引发燃烧
或爆炸。
锂离子电池的安全防护措施
01
02
03
安装保护电路
保护电路可以防止电池过 充和过放,避免电池内部 温度和压力升高。
使用安全材料
选用安全系数高的正负极 材料、电解液和隔膜等材 料,提高电池的安全性能 。
控制使用温度
避免在高温环境下使用锂 离子电池,可以降低电池 内部温度升高的风险。
锂离子电池的保养与维护
定期检查
定期检查电池的外观、电 压和电流等参数,及时发 现和处理问题。
控制充电次数
避免频繁充电和放电,按 照厂家推荐的充电次数进 行充电。
储存环境
锂离子电池应存放在干燥 、阴凉、通风良好的地方 ,避免阳光直射和高温环 境。
《锂离子电池介绍》课件
性能有重要影响。
发展趋势
寻找高比容量、高稳定 性、低成本的负极材料
是当前的研究重点。
电解液
作用
电解液在锂离子电池中起到传 输锂离子的作用,是电池内部
电荷转移的媒介。
种类
主要包括有机电解液和无机电 解液。
性能特点
电解液的离子电导率、电化学 稳定性、闪点等对电池的安全 性能和使用寿命有重要影响。
发展趋势
安全问题
锂离子电池在过充、过放、高温等条件下可能发生燃烧或爆炸,对使用者和环境造成威 胁。
解决方法
采用高安全性的材料,如阻燃电解质和高温稳定的正负极材料。同时,加强电池管理系 统,防止电池过充和过放,并实时监测电池温度和电压,确保电池在安全范围内工作。
锂离子电池的回收与再利用问题
回收与再利用问题
随着锂离子电池的大规模应用,废旧电池的处理和资源回收成为了一个重要的问题。
锂离子电池的种类
圆柱形锂离子电池
常见于电子产品,如手机、笔记本电 脑等。
方形锂离子电池
扣式锂离子电池
常用于小型电子设备,如手表、计算 器等。
适用于电动汽车、储能系统等领域。
锂离子电池的应用领域
01
02
03
电子产品
由于其高能量密度和较长 的使用寿命,锂离子电池 广泛应用于手机、笔记本 电脑等电子产品。
开发新型电解液体系以提高电 池性能和安全性是当前的研究
重点。
隔膜
作用
隔膜在锂离子电池中起到隔离正负极,防止 短路的作用,同时允许锂离子的通过。
性能特点
隔膜的孔径、孔隙率、透气性等对电池的充 放电性能和使用寿命有重要影响。
种类
主要包括聚烯烃隔膜和聚酯隔膜等。
发展趋势
发展趋势
寻找高比容量、高稳定 性、低成本的负极材料
是当前的研究重点。
电解液
作用
电解液在锂离子电池中起到传 输锂离子的作用,是电池内部
电荷转移的媒介。
种类
主要包括有机电解液和无机电 解液。
性能特点
电解液的离子电导率、电化学 稳定性、闪点等对电池的安全 性能和使用寿命有重要影响。
发展趋势
安全问题
锂离子电池在过充、过放、高温等条件下可能发生燃烧或爆炸,对使用者和环境造成威 胁。
解决方法
采用高安全性的材料,如阻燃电解质和高温稳定的正负极材料。同时,加强电池管理系 统,防止电池过充和过放,并实时监测电池温度和电压,确保电池在安全范围内工作。
锂离子电池的回收与再利用问题
回收与再利用问题
随着锂离子电池的大规模应用,废旧电池的处理和资源回收成为了一个重要的问题。
锂离子电池的种类
圆柱形锂离子电池
常见于电子产品,如手机、笔记本电 脑等。
方形锂离子电池
扣式锂离子电池
常用于小型电子设备,如手表、计算 器等。
适用于电动汽车、储能系统等领域。
锂离子电池的应用领域
01
02
03
电子产品
由于其高能量密度和较长 的使用寿命,锂离子电池 广泛应用于手机、笔记本 电脑等电子产品。
开发新型电解液体系以提高电 池性能和安全性是当前的研究
重点。
隔膜
作用
隔膜在锂离子电池中起到隔离正负极,防止 短路的作用,同时允许锂离子的通过。
性能特点
隔膜的孔径、孔隙率、透气性等对电池的充 放电性能和使用寿命有重要影响。
种类
主要包括聚烯烃隔膜和聚酯隔膜等。
发展趋势
锂离子电池基础知识新ppt课件.ppt
锂离子电池的充放电制式
❖ 充电制式:恒流充电 恒压充电 ❖ 放电制式:恒流放电 恒阻放电
锂离子电池的充放电曲线图
锂离子电池的优缺点
❖ 优点: ❖ 开路电压高,单体电池电压在3.6~3.8V ❖ 比能量高 ❖ 循环寿命长,自放电小 ❖ 无记忆性,可随时充放电,对环境污染小 ❖ 缺点: ❖ 过充放电保护问题 ❖ 电池成本高 ❖ 大电流放电性能不好, ❖ 电解液是有机溶剂的锂盐溶液,一旦漏液会引起起火,爆炸
聚合物锂离子电池
❖ 作为第三代锂离子电池 的聚合物锂电,有什么 特点和优势,下面我们 来简单的介绍一下
1.聚合物锂离子电池前景
❖ 随着便携式电子产品的应用越来越广、市场需求越 来越多,锂电池的需求量也随之增加。基于如此广 阔的市场,世界各大电池公司为了在这个市场领域 中取得领先的地位,无不致力于开发具有更高能量 密度、小型化、薄型化、轻量化、高安全性、长循 环寿命与低成本的新型电池。其中,聚合物锂离子 (Lithium ion polymer)电池因为具有上述各项优点, 更是各家厂商致力研发的目标。聚合物锂离子电池 基于安全、轻薄等特性,符合便携、移动产品的要 求,因此,在未来2~3年内,聚合物锂电池取代锂 离子电池市场的份额将达50%,被称为21世纪移动 设备的最佳电源解决方案。
电池类型 ( 特 性)
安全性能
几种充电电池性能比较
铅酸电池
镍镉电池
镍氢电池液态锂电池 Nhomakorabea聚合物锂电池
好
好
好
一般
优秀
工作电压 (V)
重量能量比 (Wh/Kg) 体积能量比 (Wh/1) 循环寿命
工作温度 (℃)
2 35
80
300 0~ 60
《锂离子基础知识》课件
推动能源转型
锂离子电池的发展将加速能源的 转型,使可再生能源得到更广泛
的应用。
提高能源利用效率
锂离子电池的高能量密度和长寿命 将提高能源利用效率,减少能源浪 费。
改变交通产业
锂离子电池在电动汽车领域的广泛 应用将深刻改变交通产业,推动电 动汽车的普及和替代传统燃油车。
THANKS
感谢观看
常用的正极材料包括钴酸锂、 镍酸锂、锰酸锂等,它们具有 较高的能量密度和稳定性。
正极材料的性能直接影响锂离 子电池的能量密度、循环寿命 和安全性能。
负极材料
负极材料是锂离子电池中存储锂 离子的场所,常用的负极材料包
括石墨、钛酸锂等。
负极材料的性能对电池的容量、 充放电速度和循环寿命有重要影
响。
负极材料的稳定性也是影响锂离 子电池安全性能的重要因素。
技术创新与改进方向
01
02
03
固态电解质
研发固态电解质是锂离子 电池的重要创新方向,固 态电解质能够提高电池的 安全性和能量密度。
锂硫电池
锂硫电池具有高能量密度 和低成本的优势,是下一 代锂离子电池的有力候选 者。
锂空气电池
锂空气电池具有极高的能 量密度,但目前仍存在寿 命和充电机制的问题,需 要进一步研究和改进。
锂离子电池的种类
总结词
介绍锂离子电池的主要类型及其特点。
详细描述
根据正极材料的不同,锂离子电池可分为钴酸锂、磷酸铁锂、三元材料等类型。 不同类型的锂离子电池在能量密度、充放电性能、安全性等方面存在差异。
锂离子电池的应用领域
总结词
概述锂离子电池在各个领域的应用情 况。
详细描述
锂离子电池广泛应用于消费电子产品 、电动汽车、储能系统等领域。其高 能量密度和长寿命等特点使得它在现 代社会中具有广泛的应用前景。
锂离子电池的发展将加速能源的 转型,使可再生能源得到更广泛
的应用。
提高能源利用效率
锂离子电池的高能量密度和长寿命 将提高能源利用效率,减少能源浪 费。
改变交通产业
锂离子电池在电动汽车领域的广泛 应用将深刻改变交通产业,推动电 动汽车的普及和替代传统燃油车。
THANKS
感谢观看
常用的正极材料包括钴酸锂、 镍酸锂、锰酸锂等,它们具有 较高的能量密度和稳定性。
正极材料的性能直接影响锂离 子电池的能量密度、循环寿命 和安全性能。
负极材料
负极材料是锂离子电池中存储锂 离子的场所,常用的负极材料包
括石墨、钛酸锂等。
负极材料的性能对电池的容量、 充放电速度和循环寿命有重要影
响。
负极材料的稳定性也是影响锂离 子电池安全性能的重要因素。
技术创新与改进方向
01
02
03
固态电解质
研发固态电解质是锂离子 电池的重要创新方向,固 态电解质能够提高电池的 安全性和能量密度。
锂硫电池
锂硫电池具有高能量密度 和低成本的优势,是下一 代锂离子电池的有力候选 者。
锂空气电池
锂空气电池具有极高的能 量密度,但目前仍存在寿 命和充电机制的问题,需 要进一步研究和改进。
锂离子电池的种类
总结词
介绍锂离子电池的主要类型及其特点。
详细描述
根据正极材料的不同,锂离子电池可分为钴酸锂、磷酸铁锂、三元材料等类型。 不同类型的锂离子电池在能量密度、充放电性能、安全性等方面存在差异。
锂离子电池的应用领域
总结词
概述锂离子电池在各个领域的应用情 况。
详细描述
锂离子电池广泛应用于消费电子产品 、电动汽车、储能系统等领域。其高 能量密度和长寿命等特点使得它在现 代社会中具有广泛的应用前景。
锂离子电池知识培训ppt课件
3
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
一.(2)锂离子电池定义及原理图
锂离子电池是一种充电电池,它
主要依靠锂离子在正极和负极之
间移动来工作。在充放电过程中, Li+ 在两个电极之间往返嵌入和 脱嵌:充电池时,Li+从正极脱 嵌,经过电解质嵌入负极,负极 处于富锂状态;放电时则相反。
镍氢电池
14
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
镍镉 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
锂离子电池容易与下面两种电 池混淆:
❖
(1)锂电池:存在锂单质。
❖
(2)锂离子聚合物电池:
用多聚物取代液态有机溶剂。
4
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
一.(3)电池的分类 从电池的使用上分:
一次电池:是只能一次性使用的电池, 如:碱性电池、碳性电池、钮扣电池。 二次电池:是可反复使用的电池。如: 镍镉(Nicd)、镍氢(Nimh)、铅 酸、锂离子可充电池(Li-ion)。
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
一.电池的基本知识
2
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
一.(2)锂离子电池定义及原理图
锂离子电池是一种充电电池,它
主要依靠锂离子在正极和负极之
间移动来工作。在充放电过程中, Li+ 在两个电极之间往返嵌入和 脱嵌:充电池时,Li+从正极脱 嵌,经过电解质嵌入负极,负极 处于富锂状态;放电时则相反。
镍氢电池
14
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
镍镉 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
锂离子电池容易与下面两种电 池混淆:
❖
(1)锂电池:存在锂单质。
❖
(2)锂离子聚合物电池:
用多聚物取代液态有机溶剂。
4
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
一.(3)电池的分类 从电池的使用上分:
一次电池:是只能一次性使用的电池, 如:碱性电池、碳性电池、钮扣电池。 二次电池:是可反复使用的电池。如: 镍镉(Nicd)、镍氢(Nimh)、铅 酸、锂离子可充电池(Li-ion)。
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
一.电池的基本知识
2
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
锂离子电池ppt课件.ppt
由于他所作出的卓越贡献,他于1971年被电化学会授予青年作家奖, 于2004年被授予电池研究奖,并且被推举为会员。
病原体侵 入机体 ,消弱 机体防 御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
锂离子电池的产生
20世纪80年代末,日本Sony公司 提出者
病原体侵 入机体 ,消弱 机体防 御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
锂离子电池:炭材料锂电池 后来,日本索尼公司发明了以炭材料为负极,以含锂的化合物作正
极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子,这就 是锂离子电池。当对电池进行充电时,电池的正极上有锂离子生成, 生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构, 它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂 离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用 电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正 极的锂离子越多,放电容量越高。 目前所说的锂离子电池通常为锂二次电池。
电池的容量
电池的容量有额定容量和实际容量 之分。锂离子电池规定在常温、恒流 (1C)、恒压(4.2V)控制的充电条件下, 充电3h、再以0.2C放电至2.75V时,所 放出的电量为其额定容量。 电池的实际 容量是指电池在一定的放电条件下所放 出的实际电量,主要受放电倍率和温度 的影响(故严格来讲,电池容量应指明 充放电条件)。
1.1977年,首次发现并提出石墨嵌锂化合物 作为二次电池的电极材料。在此基础上,于 1980年首次提出“摇椅式电池”(Rocking Chair Batteries)概念,成功解决了锂负 极材料的安全性问题。
病原体侵 入机体 ,消弱 机体防 御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
锂离子电池的产生
20世纪80年代末,日本Sony公司 提出者
病原体侵 入机体 ,消弱 机体防 御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
锂离子电池:炭材料锂电池 后来,日本索尼公司发明了以炭材料为负极,以含锂的化合物作正
极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子,这就 是锂离子电池。当对电池进行充电时,电池的正极上有锂离子生成, 生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构, 它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂 离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用 电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正 极的锂离子越多,放电容量越高。 目前所说的锂离子电池通常为锂二次电池。
电池的容量
电池的容量有额定容量和实际容量 之分。锂离子电池规定在常温、恒流 (1C)、恒压(4.2V)控制的充电条件下, 充电3h、再以0.2C放电至2.75V时,所 放出的电量为其额定容量。 电池的实际 容量是指电池在一定的放电条件下所放 出的实际电量,主要受放电倍率和温度 的影响(故严格来讲,电池容量应指明 充放电条件)。
1.1977年,首次发现并提出石墨嵌锂化合物 作为二次电池的电极材料。在此基础上,于 1980年首次提出“摇椅式电池”(Rocking Chair Batteries)概念,成功解决了锂负 极材料的安全性问题。
锂离子电池基础知识一课件
负极材料的比容量、嵌锂容量、首次效率、循环寿命和安全性等特性对 锂离子电池的性能具有重要影响。
负极材料需要具备较高的比容量、稳定的电化学性能、良好的安全性和 较低的成本等特点。
电解液
电解液在锂离子电池中起到传输 锂离子的作用,其性能对电池的 充放电性能和安全性具有重要影
响。
电解液需要具备较高的离子电导 率、稳定的电化学性能、良好的
自放电率是指电池在不使用情况下,电量 自行流失的速度。自放电率越低,电池的 储存寿命越长。
Part
04
锂离子电池的性能指标
能量密度与功率密度
能量密度
指电池单位体积或质量所具有的能量,通常用瓦时每升(Wh/L)或瓦时每千 克(Wh/kg)来表示。高能量密度意味着电池能够存储更多的电能,从而支持 更长的续航里程。
锂离子电池基础知识 一课件
• 锂离子电池简介 • 锂离子电池的组成结构 • 锂离子电池的工作原理 • 锂离子电池的性能指标 • 锂离子电池的制造工艺 • 锂离子电池的维护与使用
目录
Part
01
锂离子电池简介
定义与工作原理
定义
锂离子电池是一种二次电池,通过锂离子在正负极之间的迁移实现电能的储存与释放。
工作原理
充电时,正极上的电子通过外部电路传递给负极,同时正极上的锂离子穿过电解质迁移 到负极;放电时,负极上的电子通过外部电路返回正极,同时负极上的锂离子穿过电解
质迁移到正极。
锂离子电池的种类与特点
种类
根据正极材料的不同,锂离子电 池可分为钴酸锂、磷酸铁锂、三 元材料等类型。
特点
高能量密度、长寿命、快速充电 、环保等。
锂离子电池的应用领域
移动设备
手机、平板电脑、数码相机等。
负极材料需要具备较高的比容量、稳定的电化学性能、良好的安全性和 较低的成本等特点。
电解液
电解液在锂离子电池中起到传输 锂离子的作用,其性能对电池的 充放电性能和安全性具有重要影
响。
电解液需要具备较高的离子电导 率、稳定的电化学性能、良好的
自放电率是指电池在不使用情况下,电量 自行流失的速度。自放电率越低,电池的 储存寿命越长。
Part
04
锂离子电池的性能指标
能量密度与功率密度
能量密度
指电池单位体积或质量所具有的能量,通常用瓦时每升(Wh/L)或瓦时每千 克(Wh/kg)来表示。高能量密度意味着电池能够存储更多的电能,从而支持 更长的续航里程。
锂离子电池基础知识 一课件
• 锂离子电池简介 • 锂离子电池的组成结构 • 锂离子电池的工作原理 • 锂离子电池的性能指标 • 锂离子电池的制造工艺 • 锂离子电池的维护与使用
目录
Part
01
锂离子电池简介
定义与工作原理
定义
锂离子电池是一种二次电池,通过锂离子在正负极之间的迁移实现电能的储存与释放。
工作原理
充电时,正极上的电子通过外部电路传递给负极,同时正极上的锂离子穿过电解质迁移 到负极;放电时,负极上的电子通过外部电路返回正极,同时负极上的锂离子穿过电解
质迁移到正极。
锂离子电池的种类与特点
种类
根据正极材料的不同,锂离子电 池可分为钴酸锂、磷酸铁锂、三 元材料等类型。
特点
高能量密度、长寿命、快速充电 、环保等。
锂离子电池的应用领域
移动设备
手机、平板电脑、数码相机等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13 Hypercell R&D Department
锂离子电池结构——隔膜
Hypercell R&D Department
材质:单层PE(聚乙烯)或者 三层复合PP(聚丙烯)
+PE+PP 厚度:单层一般为0.016~0.020mm
三层一般为0.020~0.025mm
14
锂离子电池结构——电解液
2 Hypercell R&D Department
电池种类划分
一次电池 小型二次电池:镍镉、镍氢、锂离子 铅酸电池 动力电池 燃料电池 太阳能电池 其他新型电池
资料来源:D:\Veken\培训教程\电池种类.txt
3 Hypercell R&D Department
什么叫锂离子电池?
锂离子电池是指Li+ 嵌入化合物为正、负极的二次电池。 正极采用锂化合物LiXCoO2、LiXNiO2 或LiXMnO2 负极采用锂-碳层间化合物LiXC6。 电解质为溶解有锂盐LiPF6 、 LiAsF6等有机溶液。 在充放电过程中,Li+ 在两个电极之间往返嵌入和脱嵌,被形象
Hypercell R&D Department
性质:
无色透明液体,具有较强吸湿性。
应用:
主要用于可充电锂离子电池的电解液,只 能在干燥环境下使用操作(如环境水分小 于20ppm的手套箱内)。
规格:
溶剂组成 DMC:EMC:EC =1:1:1 (重量比)
LiPF6浓度 1mol/l
质量指标:
正极制片
Hypercell R&D Department
负极裁大片 负极划线刮粉 负极吸尘 负极片辊切 负极称重分档
负极制片
19
制片工艺流程
正极真空烘烤
负极真空烘烤
正极吸尘
负极片辊压
正极片辊压
负极焊极耳
正极焊极耳
负极贴胶纸
正极贴胶纸
负极冲压极耳
正极吸尘
负极吸尘
Hypercell R&D Department卷绕
锂离子电池结构——正极
正极物质:钴酸锂+碳黑+PVDF
正极基体:铝箔(约0.020mm厚)
Hypercell R&D Department
正极集流体:铝带(约0.1mm厚)
12
锂离子电池结构——负极
负极集流体:镍带(约0.07mm厚)
负极基体:铜箔(约0.015mm厚)
负极物质:石墨+CMC+SBR
应用领域
Li-ion Battery
7 Hypercell R&D Department
锂离子电池结构
正极 活性物质(LiCoO2\LiMnO2\LiNixCo1-xO2) 导电剂、溶剂、粘合剂、基体
负极 活性物质(石墨、MCMB) 粘合剂、溶剂、基体
隔膜(PP+PE) 电解液(LiPF6 + DMC EC EMC) 外壳五金件(铝壳、盖板、极耳、绝缘片)
的称为“摇椅电池”。 充电池时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富 锂状态。 放电时则相反。
4 Hypercell R&D Department
锂离子电池电化学反应机理
正极反应:LiCoO2==== Li1-xCoO2 + xLi+ + xe-
负极反应: C + xLi+ + xe- === CLix
正极拉浆
Hypercell R&D Department
负极 负极干粉处理 负极筛粉 负极搅拌 负极筛浆料 负极真空搅拌
负极拉浆
17
拉浆工艺流程
正、负极浆料
送带
上浆
烘烤
收带
正、负极裁片
18
Hypercell R&D Department
裁片工艺流程
正极裁大片 正极划线刮粉 正极片辊切 正极称重分档
注液工艺流程
真空烘烤
注液
贴胶纸
称重
擦洗
套胶圈
化成
23
Hypercell R&D Department
化成工艺流程
高温烘烤
压钢珠
化成 自检电压
分容
清洗 高温贮存 铝镍复合片点焊
测电压、贴不干胶,半成品入库
24 Hypercell R&D Department
检测包装工艺流程
充电 放电 反充电 清洗
全检电压 全检内阻 全检尺寸 装盒、包装
客户
25 Hypercell R&D Department
液态锂离子电池生产所用设备
真空搅拌机 拉浆机(涂布机) 裁切机 辊压机 卷绕机 激光焊机 真空注液机 化成检测柜
电池总反应: LiCoO2 + C ==== Li1-xCoO2 + CLix
放电时发生上述反应的 逆反应。
5 Hypercell R&D Department
锂离子电池特点
高能量密度 高工作电压 长循环寿命 电化学特性稳定 荷电保持能力强 无污染 无记忆效应
6 Hypercell R&D Department
卷绕
20
卷绕工艺流程
正、负极片
隔膜
配片
隔膜裁剪 卷绕
测短路
压芯 贴底部胶纸
Hypercell R&D Department
套绝缘片并固定
入壳
底部超声焊
铝镍复合带
负激光焊
21
激光焊工艺流程
上夹具 激光焊接 全检内阻
全检气密性
称重分级
注液
22
Hypercell R&D Department
8 Hypercell R&D Department
方(角)形锂离子电池结构图
9 Hypercell R&D Department
圆柱形锂离子电池结构图
密封圈
隔膜 限流开关
绝缘垫
10
Hypercell R&D Department
软包装锂离子电池结构图
11 Hypercell R&D Department
培训教程
锂离子电池基础知识
主讲:研发部 时间:2004/4 地点:海普赛能源科技有限公司培训室
1 Hypercell R&D Department
教程大纲
电池分类 锂离子电池之电化学反应机理 锂离子电池之应用领域 锂离子电池之结构 液态锂离子电池之工艺流程 液态锂离子电池之生产设备 锂离子电池之性能指标 锂离子电池质量认证
密度(25℃)g/cm3 1.23±0.03
水分(卡尔费休法) ≤20ppm
游离酸(以HF计) ≤50ppm
电导率(25℃)
10.4±0.5 ms/cm
15
液态锂离子电池生产工艺流程
配料
拉浆
裁片
制片
化成
注液
激光焊
卷绕
检测包装
16 Hypercell R&D Department
配料工艺流程
正极 正极干粉处理 正极混干粉 正极真空搅拌 正极筛浆料