高中物理中的滑块问题含解析
(完整版)高中物理中的滑块问题(含解析)
高中物理中的滑块问题1.(2010淮阴中学卷)如图,在光滑水平面上,放着两块长度相同,质量分别为M 1和M 2的木板,在两木板的左端各放一个大小、形状、质量完全相同的物块。
开始时,各物均静止,今在两物体上各作用一水平恒力F 1、F 2,当物块和木板分离时,两木板的速度分别为v 1和v 2,物体和木板间的动摩擦因数相同,下列说法正确的是 ( BD ) A .若F 1=F 2,M 1>M 2,则v 1>v 2 B .若F 1=F 2,M 1<M 2,则v 1>v 2 C .若F 1>F 2,M 1=M 2,则v 1>v 2 D .若F 1<F 2,M 1=M 2,则v 1>v 22.如图所示,长2m ,质量为1kg 的木板静止在光滑水平面上,一木块质量也为1kg (可视为质点),与木板之间的动摩擦因数为0.2。
要使木块在木板上从左端滑向右端而不至滑落,则木块初速度的最大值为( D )A .1m/sB .2 m/sC .3 m/sD .4 m/s3.如图所示,小木块质量m =1kg ,长木桉质量M =10kg ,木板与地面以及木块间的动摩擦因数均为μ=0.5.当木板从静止开始受水平向右的恒力F =90 N 作用时,木块以初速v 0=4 m /s 向左滑上木板的右端.则为使木块不滑离木板,木板的长度l 至少要多长?22112132121/3)(t t a s s m Mgm M mg F a ⨯===+--=μμ 22202225.2421/5t t t a t v s s m g a -=-===μs t ta t a v 2120==+-解得由m s s l 421=+=板长:4.如图所示,质量M=1.0kg 的长木板静止在光滑水平面上,在长木板的右端放一质量m=1.0kg 的小滑块(可视为质点),小滑块与长木板之间的动摩擦因数=0.20.现用水平横力F=6.0N 向右拉长木板,使小滑块与长木板发生相对滑动,经过t=1.0s 撤去力F.小滑块在运动过程中始终没有从长木板上掉下.求:(1)撤去力F 时小滑块和长木板的速度个是多大; (2)运动中小滑块距长木板右端的最大距离是多大?F 1F 2 M Fm(1).对滑和木板分别利用牛顿第二定律和运动学公式sm t a v s m MmgF a s m t a v s m g a /4/4/2/21222211121===-=====μμ(2).最大位移就是在滑块和木板相对静止时1s 后.没有拉力.只有相互间的摩擦力 滑块加速度大小均为α=2m/s 2(方向相反)v 1+αt 2=v 2-αt 2 代入数据 2+2t 2=4-2t 2 解得 t 2=0.5s 此时2个的速度都是v=3m/s木块和木板的位移分别为m t v v t v s 25.22221111=⋅++⋅=m t v v t v s 75.32222122=⋅++⋅= m s s s 5.112=-=∆5.(2010龙岩二中卷)如图所示,一质量M =2.0kg 的长木板静止放在光滑水平面上,在木板的右端放一质量m =1.0kg 可看作质点的小物块,小物块与木板间的动摩擦因数为μ=0.2.用恒力F 向右拉动木板使木板在水平面上做匀加速直线运动,经过t =1.0s 后撤去该恒力,此时小物块恰好运动到距木板右端l =1.0m 处。
高中物理斜面滑块专题
高中物理斜面滑块专题
【原创实用版】
目录
1.斜面滑块的基本概念
2.斜面滑块的物理原理
3.斜面滑块的应用实例
4.斜面滑块的解题技巧
5.总结
正文
高中物理斜面滑块专题
一、斜面滑块的基本概念
斜面滑块是物理学中一个重要的力学问题,它涉及到物体在斜面上滑动的诸多现象。
斜面滑块问题主要研究物体在斜面上滑动时的速度、加速度、位移以及与之相关的力学能的转化。
二、斜面滑块的物理原理
1.斜面上的物体受到重力、支持力和摩擦力三种力的作用。
2.根据牛顿第二定律,物体在斜面上的加速度 a=gsinθ-μgcosθ,其中 g 为重力加速度,θ为斜面倾角,μ为摩擦因数。
3.物体在斜面上的位移公式为:x=vt+1/2at,其中 v为物体在斜面上的初速度,t 为物体在斜面上滑动的时间。
4.物体在斜面上的机械能守恒,即重力势能转化为动能和热能,总能量保持不变。
三、斜面滑块的应用实例
斜面滑块问题在生活中有很多应用,例如:滑梯、跳台、汽车传动系统等。
这些应用都需要对斜面滑块问题进行深入研究,以确保其安全、稳定和高效。
四、斜面滑块的解题技巧
1.仔细分析题目,确定研究对象和受力情况。
2.画出物体受力分析图,找出重力、支持力和摩擦力的方向。
3.运用牛顿第二定律,求出物体在斜面上的加速度。
4.根据运动学公式,求解物体在斜面上的位移、速度等物理量。
5.注意能量守恒定律,分析机械能的转化情况。
五、总结
斜面滑块问题作为高中物理力学部分的一个重要专题,需要同学们掌握其基本概念、物理原理、应用实例和解题技巧。
(完整版)高中物理滑块-板块模型(解析版)
滑块—木板模型一、模型概述滑块-木板模型(如图a),涉及摩擦力分析、相对运动、摩擦生热,多次互相作用,属于多物体多过程问题,知识综合性较强,对能力要求较高,另外,常见的子弹射击木板(如图b)、圆环在直杆中滑动(如图c)都属于滑块类问题,处理方法与滑块-木板模型类似。
二、滑块—木板类问题的解题思路与技巧:1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动);2.判断滑块与木板间是否存在相对运动。
滑块与木板存在相对运动的临界条件是什么?⑴运动学条件:若两物体速度或加速度不等,则会相对滑动。
⑵动力学条件:假设两物体间无相对滑动,先用整体法算出共同加速度,再用隔离法算出其中一个物体“所需要”的摩擦力f;比较f与最大静摩擦力f m的关系,若f > f m,则发生相对滑动;否则不会发生相对滑动。
3. 分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;4. 对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.5. 计算滑块和木板的相对位移(即两者的位移差或位移和);6. 如果滑块和木板能达到共同速度,计算共同速度和达到共同速度所需要的时间;7. 滑块滑离木板的临界条件是什么?当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘达到共同速度(相对静止)是滑块滑离木板的临界条件。
【典例1】如图所示,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块。
假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。
现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2。
下列反映a1和a2变化的图线中正确的是(如下图所示)()【答案】 A【典例2】如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上。
A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ。
滑块木板模型(解析版)-高考物理5种类碰撞问题
滑块木板模型【问题解读】两类情景水平面光滑,木板足够长,木板初速度为零水平面光滑,木板足够长,木板初速度不为零图示v ---t 图像物理规律动量守恒,最终二者速度相同mv 0=(m +M )v 共,机械能不守恒,损失的机械能等于产生的热量Q =fs =12mv 20-12(m +M )v 2,式中s 为木块在木板上相对滑动的距离,f 为木块与木板之间的摩擦力动量守恒,最终二者速度相同M v 0-mv 0=(m +M )v 共,机械能不守恒,损失的机械能等于产生的热量Q =fs =12mv 20+12M v 20-12(m +M )v 共2,式中s 为木块在木板上相对滑动的距离,f 为木块与木板之间的摩擦力。
【高考题典例】1.(14分)(2024年高考新课程卷)如图,一长度l =1.0m 的均匀薄板初始时静止在一光滑平台上,薄板的右端与平台的边缘O 对齐。
薄板上的一小物块从薄板的左端以某一初速度向右滑动,当薄板运动的距离Δl =l6时,物块从薄板右端水平飞出;当物块落到地面时,薄板中心恰好运动到O 点。
已知物块与薄板的质量相等。
它们之间的动摩擦因数μ=0.3,重力加速度大小g =10m/s 2。
求(1)物块初速度大小及其在薄板上运动的时间;解题思路本题考查的考点:动量守恒定律、动能定理、平抛运动规律。
(1)设物块质量m ,初速度为v 0,薄板质量m ,物块滑上薄板,由动量守恒定律mv 0=mv 1+mv 2μmgl =12mv 20-12mv 21-12mv 22物块在薄板上运动加速度a 1=μg =3m/s 2物块在薄板上运动位移s =7l /6v 20-v 21=2a 1s联立解得:v 0=4m/s ,v 1=3m/s ,v 2=1m/s由v 0-v 1=at 1,解得t 1=13s(2)物块抛出后薄板匀速运动,l2-Δl =v 2t 2解得t 2=13s平台距地面的高度h =12gt 22=59m2.(2023年高考选择性考试辽宁卷)如图,质量m 1=1kg 的木板静止在光滑水平地面上,右侧的竖直墙面固定一劲度系数k =20N /m 的轻弹簧,弹簧处于自然状态。
高中物理难点分类解析滑块与传送带模型问题(经典)
滑块—木板模型例1如图1所示,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最大值。
分析:为防止运动过程中A落后于B(A不受拉力F的直接作用,靠A、B间的静摩擦力加速),A、B一起加速的最大加速度由A决定。
解答:物块A能获得的最大加速度为:.∴A、B 一起加速运动时,拉力F的最大值为:.变式1例1中若拉力F作用在A上呢如图2所示。
解答:木板B能获得的最大加速度为:。
∴A、B一起加速运动时,拉力F的最大值为:.变式2在变式1的基础上再改为:B与水平面间的动摩擦因数为(认为最大静摩擦力等于滑动摩擦力),使A、B以同一加速度运动,求拉力F的最大值。
解答:木板B能获得的最大加速度为:,设A、B一起加速运动时,拉力F的最大值为F m,则:解得:《例2 如图3所示,质量M=8kg的小车放在光滑的水平面上,在小车右端加一水平恒力F,F=8N,当小车速度达到1.5m/s时,在小车的前端轻轻放上一大小不计、质量m=2kg的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长,求物体从放在小车上开始经t=1.5s通过的位移大小。
(g 取10m/s2)解答:物体放上后先加速:a1=μg=2m/s2,此时小车的加速度为:,当小车与物体达到共同速度时:v共=a1t1=v0+a2t1,解得:t1=1s ,v共=2m/s,以后物体与小车相对静止:(∵,物体不会落后于小车)物体在t=1.5s内通过的位移为:s=a1t12+v共(t-t1)+ a3(t-t1)2=2.1m练习1如图4所示,在水平面上静止着两个质量均为m=1kg、长度均为L=1.5m的木板A和B,A、B 间距s=6m,在A的最左端静止着一个质量为M=2kg的小滑块C,A、B与C之间的动摩擦因数为μ1=0.2,A、B与水平地面之间的动摩擦因数为μ2=0.1。
最大静摩擦力可以认为等于滑动摩擦力。
高中物理滑块练习及答案解析
高中物理滑块练习及答案解析一、计算题(每空?分,共?分)1、如下图中甲所示为传送装置的示意图。
绷紧的传送带长度L=2.0m,以v=3.0m/s的恒定速率运行,传送带的水平部分AB距离水平地面的高度h=0.45m。
现有一行李箱(可视为质点)质量m=10kg,以v0=1.0 m/s的水平初速度从A端滑上传送带,被传送到B端时没有被及时取下,行李箱从B端水平抛出,行李箱与传送带间的动摩擦因数m=0.20,不计空气阻力,重力加速度g取l0 m/s2。
(1)求行李箱从传送带上A端运动到B端过程中摩擦力对行李箱冲量的大小;(2)传送带与轮子间无相对滑动,不计轮轴处的摩擦,求为运送该行李箱电动机多消耗的电能;(3)若传送带的速度v可在0~5.0m/s之间调节,行李箱仍以v0的水平初速度从A端滑上传送带,且行李箱滑到B 端均能水平抛出。
请你在图乙中作出行李箱从B端水平抛出到落地点的水平距离x与传送带速度v的关系图象。
(要求写出作图数据的分析过程)2、如图所示,质量M= 4.0kg的长木板B静止在光滑的水平地面上,在其右端放一质量m= 1.0kg的小滑块A(可视为质点)。
初始时刻,A、B分别以v0= 2.0m/s向左、向右运动,最后A恰好没有滑离B板。
已知A、B之间的动摩擦因数μ = 0.40,取g=10m/s2。
求:⑴A、B相对运动时的加速度a A和a B的大小与方向;⑵A相对地面速度为零时,B相对地面运动已发生的位移x;⑶木板B的长度l。
3、水平放置的传送带AB间的距离L=10m,传送带在电动机带动下以v=2m/s的速度匀速运动,如下图所示。
在A点轻轻放上一个质量为m=2kg的小物块,物块向右运动s=2m后和传送带保持静止(取g=10m/s2)求:(1)物块与传送带间的动摩擦因数.(2)若在A点,每隔1s放上一个初速为零的物块,经过相当长的时间稳定后,传送带上共有几个物块?此时电动机的功率比不放物块时增加多少?(3)若在A点由静止释放第一个物块,3s后再释放第二个物块,为使第二个物块在传送带上与第一个物块碰撞,第二个物块释放时的初速度v0至少需要多大?4、利用皮带运输机将物体由地面运送到高出水平地面的C平台上,C平台离地面的竖直高度为5m,已知皮带和物体问的动摩擦因数为0.75,运输机的皮带以2m/s的速度匀速顺时针运动且皮带和轮子之间不打滑。
在外力作用下的滑块——滑板模型问题透析
在外力作用下的滑块——滑板模型问题透析摘要:滑块——滑板模型问题是动力学中的综合性问题,可以通过考查学生运用力与运动相关规律解决物理问题的知识掌握情况的同时,全面考查学生综合能力,因此滑块——滑板模型问题也成为历年高考热点,在外力作用下的滑块——滑板模型问题更是热点中的重点和难点。
从教学角度思考,如果学生能够掌握好在外力作用下的滑块——滑板模型问题的分析思路和方法,不仅有助于学生进一步认识和理解力与运动的相关规律,更有助于提升学生的物理思维能力和探究能力。
关键词:外力作用下;滑块滑板模型;问题透析滑块——滑板模型问题主要涉及两个物体或者三个物体之间通过相互作用的摩擦力或在外力作用下发生相对滑动的多运动过程,属于多体多过程问题,可以把其定位成追及问题来思考,进行相对运动分析,着重三个物理量分析:一是速度分析,如靠近、远离、滑下、不滑下等;二是时间分析,设定各运动过程的时间为未知量;三是位移分析,从追及问题的角度来寻找相对位移,从而确定对地位移关系,这解决问题的关键之处。
在分析问题之初要观察三个初始条件:一是动摩擦因数,如滑块与滑板之间、滑板与地面之间;二是初始情况,如初位置、初速度等;三是板长,有限长还是无限长;在分析问题之中要进行共速分析,此状态是涉及临界、突变等问题的节点,也是解决此类问题进程中的关键的关键。
本文以在外力作用下的滑块——滑板模型问题为例来透析解决此类问题的思维策略。
例1如图1所示,光滑水平面上静止放着长L=2m,质量M=3.0kg的木板.一个质量m=1.0kg的小物体放在离木板右端b=0.40m处,m和M之间的动摩擦因数μ=0.1,今对木板施加向右的拉力F=10.0N,为使木板能自物体下方分离出来,此拉力作用不得少于多长时间?图1解析运动过程如图2所示:图2设拉力最小作用时间为t,据牛顿第二定律有得: m/s2得: m/s2从拉力作用到撤去拉力的瞬时,有……①……②……③由①②③解得:……④撤去拉力后,物体m仍做匀加速运动,木板M做匀减速运动,经时间t1,物体m滑到木板的左端,两者的速度等于v共,有解得: m/s2……⑤……⑥⑤代入⑥解得:再利用位移关系(也可以:)将各量代入解得:……⑦从图中不难看出:……⑧由④⑦⑧得到: s.透析定位为滑块与滑板的追及问题,题设要求分离出来,依题意必然是在滑板左边分离,滑块相对滑板向左运动,取水平向右为正方向,则:设拉力最小作用时间为t1,撤去拉力后直到分离运动时间为t2,则:恰好分离时两者速度相等,则:据牛顿第二定律有:联立解之得:由上解我们可以看到,从追及问题的定位可以很快找到位移关系,从共速分析中可以很快找到时间关系,从运动过程和受力分析中辨别各段运动性质及加速度变化,列方程求解。
高中物理-专题3.20 滑块板块问题(能力篇)(解析版)
2021年高考物理100考点最新模拟题千题精练第三部分 牛顿运动定律专题3.20滑块板块问题(能力篇)一.选择题1.如图所示,长木板静止于光滑水平地面,滑块叠放在木板右端,现对木板施加水平恒力,使它们向右运动.当滑块与木板分离时,滑块相对地面的位移为x 、速度为v .若只减小滑块质量,重新拉动木板,滑块与木板分离时( )A .x 变小,v 变小B .x 变大,v 变大C .x 变小,v 变大D .x 变大,v 变小【参考答案】A【名师解析】长木板和滑块做初速度为0的匀加速直线运动,根据牛顿第二定律得滑块的加速度a 1=μg ,长木板加速度a 2=F -μmg M ,由运动学公式可得滑块与木板分离时,滑块相对地面的位移为x =12a 1t 2,滑块相对长木板的位移为L =12a 2t 2-12a 1t 2,滑块相对地面的速度v =a 1t ,若只减小滑块质量,再次拉动木板,根据牛顿第二定律得滑块的加速度a 1=μg 不变,长木板加速度a 2=F -μmg M变大,由滑块相对长木板的位移为L =12a 2t 2-12a 1t 2可得运动时间变小,滑块相对地面的位移为x =12a 1t 2变小,滑块相对地面的速度为v =a 1t 变小,故A 正确,B 、C 、D 错误.2. (2016福建名校联考)如图3所示,质量为m 的木块P 在质量为M 的长木板ab 上滑行,长木板放在水平地面上一直处于静止状态.若长木板ab 与地面间的动摩擦因数为μ1,木块P 与长木板ab 间的动摩擦因数为μ2,则长木板ab 受到地面的摩擦力大小为 ( )A .μ1MgB .μ1(m +M )gC .μ2mgD .μ1Mg +μ2mg【参照答案】 C【名师解析】质量为m 的木块P 在质量为M 的长木板ab 上滑行,M 对m 的摩擦力等于μ2mg ,由牛顿第三定律可知,m 对M 的摩擦力大小等于μ2mg 。
对M 由平衡条件可得长木板ab 受到地面的摩擦力大小为μ2mg 。
1鼎盛-高中物理最经典-滑块—木板模型问题的分析和技巧
滑块—木板模型问题的分析和技巧1.解题关键正确地对各物体进行受力分析(关键是确定物体间的摩擦力方向),并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况.2.规律选择既可由动能定理和牛顿运动定律分析单个物体的运动,又可由能量守恒定律分析动能的变化、能量的转化,在能量转化过程往往用到ΔE 内=-ΔE 机=F f x 相对,并要注意数学知识(如图象法、归纳法等)在此类问题中的应用.模型二 传送带模型例2 如图所示,传送带与水平面之间的夹角为θ=30°,其上A 、B 两点间的距离为l =5 m ,传送带在电动机的带动下以v =1 m/s 的速度匀速运动.现将一质量为m =10 kg 的小物体(可视为质点)轻放在传送带上的A 点,已知小物体与传送带之间的动摩擦因数μ=32,在传送带将小物体从A 点传送到B 点的过程中,求:(g 取10 m/s 2)(1)传送带对小物体做的功;(2)电动机做的功.【解析】 (1)小物体刚开始运动时,根据牛顿第二定律有μmg cos θ-mg sin θ=ma解得小物体上升的加速度为a =g 4=2.5 m/s 2 当小物体的速度为v =1 m/s 时,位移为x =v 22a=0.2 m 然后小物体以v =1 m/s 的速度做匀速运动到达B 点.由功能关系得W =ΔE k +ΔE p =12m v 2+mgl sin θ=255 J. (2)电动机做功使小物体的机械能增加,同时小物体与传送带间因摩擦产生热量Q ,由v =at 得t =v a=0.4 s 相对位移x ′=v t -v 2t =0.2 m 摩擦产生的热量Q =μmgx ′cos θ=15 J故电动机做的功为W电=W+Q=270 J.【答案】(1)255 J(2)270 J传送带问题的分析流程和技巧1.分析流程2.相对位移一对相互作用的滑动摩擦力做功所产生的热量Q=F f·x相对,其中x相对是物体间相对路径长度.如果两物体同向运动,x相对为两物体对地位移大小之差;如果两物体反向运动,x相对为两物体对地位移大小之和.3.功能关系(1)功能关系分析:W F=ΔE k+ΔE p+Q.(2)对W F和Q的理解:①传送带的功:W F=Fx传;②产生的内能Q=F f x相对.[高考真题]1.(2016·四川卷,1)韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员.他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他做功 1 900 J,他克服阻力做功100 J.韩晓鹏在此过程中()A.动能增加了1 900 JB.动能增加了2 000 JC.重力势能减小了1 900 JD.重力势能减小了2 000 J【解析】由动能定理可知,ΔE k=1 900 J-100 J=1 800 J,故A、B均错.重力势能的减少量等于重力做的功,故C正确、D错.答案 C2.(2014·山东卷,20)2013年我国相继完成“神十”与“天宫”对接、“嫦娥”携“玉兔”落月两大航天工程.某航天爱好者提出“玉兔”回家的设想:如图,将携带“玉兔”的返回系统由月球表面发射到h高度的轨道上,与在该轨道绕月球做圆周运动的飞船对接,然后由飞船送“玉兔”返回地球.设“玉兔”质量为m ,月球半径为R ,月面的重力加速度为g 月.以月面为零势能面,“玉兔”在h 高度的引力势能可表示为E p =GMmh R (R +h ),其中G 为引力常量,M 为月球质量.若忽略月球的自转,从开始发射到对接完成需要对“玉兔”做的功为( )A.mg 月R R +h(h +2R ) B .mg 月R R +h (h +2R ) C.mg 月R R +h (h +22R ) D .mg 月R R +h(h +12R ) 【解析】 设玉兔在h 高度的速度为v ,则由万有引力定律得,G Mm (R +h )2=m v 2R +h,可知玉兔在该轨道上的动能为E k =12GMm (R +h ),由功能关系可知对玉兔做的功为:W =E k +E p =12GMm (R +h )+GMmh R (R +h ),结合在月球表面:G Mm R 2=mg 月,整理可知W =mg 月R R +h(h +12R ),故正确选项为D.【答案】 D3.(2014·广东卷,16)如图所示是安装在列车车厢之间的摩擦缓冲器结构图,图中①和②为楔块,③和④为垫板, 楔块与弹簧盒、垫板间均有摩擦,在车厢相互撞击使弹簧压缩的过程中( )A .缓冲器的机械能守恒B .摩擦力做功消耗机械能C .垫板的动能全部转化为内能D .弹簧的弹性势能全部转化为动能【解析】 由于楔块与弹簧盒、垫板间有摩擦力,即摩擦力做负功,则机械能转化为内能,故A 错误,B 正确;垫板动能转化为内能和弹性势能,故C 错误;而弹簧弹性势能也转化为动能和内能,故D 错误.【答案】 B[名校模拟]4.(2018·宁夏银川一中模拟)如图所示,水平传送带两端点A 、B 间的距离为L ,传送带开始时处于静止状态.把一个小物体放到右端的A 点,某人用恒定的水平力F 使小物体以速度v 1匀速滑到左端的B 点,拉力F 所做的功为W 1、功率为P 1,这一过程物体和传送带之间因摩擦而产生的热量为Q 1.随后让传送带以v 2的速度逆时针匀速运动,此人仍然用相同的恒定的水平力F 拉物体,使它以相对传送带为v 1的速度匀速从A 滑行到B ,这一过程中,拉力F 所做的功为W 2、功率为P 2,物体和传送带之间因摩擦而产生的热量为Q 2.下列关系中正确的是( )A .W 1=W 2,P 1<P 2,Q 1=Q 2B .W 1=W 2,P 1<P 2,Q 1>Q 2C .W 1>W 2,P 1=P 2,Q 1>Q 2D .W 1>W 2,P 1=P 2,Q 1=Q 2【解析】 当传送带不运动时,拉力做功W 1=FL ,物体从A 运动到B 的时间t 1=L v 1,因摩擦而产生的热量Q 1=fL .当传送带运动时,拉力做功W 2=FL ,物体从A 运动到B 的时间t 2=L v 1+v 2<t 1,因摩擦而产生的热量Q 2=f v 1t 2.拉力做功功率P 1=W 1t 1,P 2=W 2t 2,比较可知W 1=W 2,P 1<P 2.又v 1t 2<v 1t 1,v 1t 1=L ,得Q 1>Q 2,故选B.【答案】 B5.(2018·山东临沂高三上学期期中)如图所示,一质量为m 的小球用两根不可伸长的轻绳a 、b 连接,两轻绳的另一端分别系在竖直杆的A 、B 两点上,当两轻绳伸直时,a 绳与杆的夹角为30°,b 绳水平,已知a 绳长为2L ,当竖直杆以自己为轴转动,角速度ω从零开始缓慢增大过程中,下列说法正确的是( )A .从开始至b 绳伸直但不提供拉力时,绳a 对小球做功为0B .b 绳伸直但不提供拉力时,小球的向心加速度大小为33gC .从开始至b 绳伸直但不提供拉力时,小球的机械能增加了⎝⎛⎭⎫2-536mgL D .当ω= g 3L时,b 绳未伸直 【解析】 细绳对球的拉力方向与球的位移方向不垂直,故一定对球做正功,使其机械能增大,A 错;ma =mg tan 30°,a =33g ,B 对;m v 2L =mg tan θ,E k =12m v 2=36mgL ,A 球ΔE =E k +E p =36mgL +mg (2L -3L )=⎝⎛⎭⎫2-536·mgL ,C 对;令mLω2=mg tan 30°,得ω=3g 3L,D 对. 【答案】 BCD6.(2018·江苏南通高三模拟)如图所示,将质量为2m 的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m 的环,环套在竖直固定的光滑直杆上,光滑定滑轮与直杆的距离为d .现将环从与定滑轮等高的A 处由静止释放,当环沿直杆下滑距离也为d 时(图中B 处),下列说法正确的是(重力加速度为g )( )A .环刚释放时轻绳中的张力等于2mgB .环到达B 处时,重物上升的高度为(2-1)dC .环在B 处的速度与重物上升的速度大小之比为22 D .环减少的机械能大于重物增加的机械能【解析】 环释放后重物加速上升,故绳中张力一定大于2mg ,A 项错误;环到达B 处时,绳与直杆间的夹角为45°,重物上升的高度h =(2-1)d ,B 项正确;如图所示,将B 处环速度v 进行正交分解,重物上升的速度与其分速度v 1大小相等,v 1=v cos 45°=22v ,所以,环在B 处的速度与重物上升的速度大小之比等于2,C 项错误;环和重物组成的系统机械能守恒,故D 项错误.【答案】 B课时作业(十七)[基础小题练]1.自然现象中蕴藏着许多物理知识,如图所示为一个盛水袋,某人从侧面缓慢推袋壁使它变形,则水的势能( )A .变大B .变小 C.不变 D .不能确定【解析】 人缓慢推水袋,对水袋做正功,由功能关系可知,水的重力势能一定增加,A 正确.【答案】 A2.如图所示,A 物体用板托着,细绳跨过轻质光滑定滑轮与A 、B 相连,绳处于绷直状态,已知A 、B 的质量分别为2m 和m .现将板抽走,则A 下落一段距离的过程中( )A .A 物体减少的机械能大于B 物体增加的机械能B .A 物体减少的机械能等于B 物体增加的机械能C .悬挂滑轮的绳子对天花板的拉力大于3mgD .悬挂滑轮的绳子对天花板的拉力小于3mg【解析】 对A 、B 组成的系统,没有机械能与其他形式能的转化,因此系统的机械能守恒,A 物体减少的机械能等于B 物体增加的机械能,A 错误,B 正确;对滑轮受力分析,根据平衡条件得F =2F T ,对A 、B 整体受力分析,根据牛顿第二定律得2mg -mg =3ma ,对B 物体受力分析得F T -mg =ma ,联立得F =83mg ,C 错误,D 正确. 【答案】 BD3.小车静止在光滑的水平导轨上,一个小球用细绳悬挂在车上由图中位置无初速度释放,在小球下摆到最低点的过程中,下列说法正确的是( )A .绳对球的拉力不做功B .球克服绳拉力做的功等于球减少的机械能C .绳对车做的功等于球减少的重力势能D .球减少的重力势能等于球增加的动能【解析】 小球下摆的过程中,小车的机械能增加,小球的机械能减少,球克服绳拉力做的功等于减少的机械能,选项A 错误,选项B 正确;绳对车做的功等于球减少的机械能,选项C 错误;球减少的重力势能等于球增加的动能和小车增加的机械能之和,选项D 错误.【答案】 B4.悬崖跳水是一项极具挑战性的极限运动,需要运动员具有非凡的胆量和过硬的技术.跳水运动员进入水中后受到水的阻力而做减速运动,设质量为m 的运动员刚入水时的速度为v ,水对他的阻力大小恒为F ,那么在他减速下降深度为h 的过程中,下列说法正确的是(g 为当地的重力加速度)( )A .他的动能减少了(F -mg )hB .他的重力势能减少了mgh -12m v 2 C .他的机械能减少了FhD .他的机械能减少了mgh【解析】 合力做的功等于动能的变化,合力做的功为(F -mg )h ,A 正确;重力做的功等于重力势能的减少量,故重力势能减小了mgh ,B 错误;重力以外的力做的功等于机械能的变化,故机械能减少了Fh ,C 正确,D 错误.【答案】 AC5.如图所示,在光滑斜面上的A 点先后水平抛出和静止释放两个质量相等的小球1和2,不计空气阻力,最终两小球在斜面上的B 点相遇,在这个过程中( )A .小球1重力做的功大于小球2重力做的功B .小球1机械能的变化大于小球2机械能的变化C .小球1到达B 点的动能大于小球2的动能D .两小球到达B 点时,在竖直方向的分速度相等【解析】 重力做功只与初、末位置的高度差有关,与物体经过的路径无关,所以重力对1、2两小球所做的功相等,A 错误;1、2两小球从A 点运动到B 点的过程中,只有重力对其做功,所以它们的机械能均守恒,B 错误;由动能定理可得,对小球1有:mgh =E k1-E k0,对小球2有:mgh =E k2-0,显然E k1>E k2,C 正确;由上面的分析可知,两小球到达B 点时,小球1的速度大于小球2的速度,且小球1的速度方向与竖直方向的夹角小于小球2速度方向与竖直方向的夹角,因此,小球1在竖直方向上的速度大于小球2在竖直方向上的速度,D 错误.【答案】 C6.如图所示,水平传送带AB 长为21 m ,以6 m/s 的速度顺时针匀速转动,台面与传送带平滑连接于B 点,半圆形光滑轨道半径R =1.25 m ,与水平台面相切于C 点,BC 长x =5.5 m ,P 点是圆弧轨道上与圆心O 等高的一点.一质量为m =1 kg 的物块(可视为质点),从A 点无初速度释放,物块与传送带及台面间的动摩擦因数均为0.1,则关于物块的运动情况,下列说法正确的是( )A .物块不能到达P 点B .物块能越过P 点做斜抛运动C .物块能越过P 点做平抛运动D .物块能到达P 点,但不会出现选项B 、C 所描述的运动情况【解析】 物块从A 点释放后在传送带上做加速运动,假设到达台面之前能够达到传送带的速度v ,则由动能定理得,μmgx 1=12m v 2,得x 1=18 m <21 m ,假设成立.物块以6 m/s 冲上台面,假设物块能到达P 点,则到达P 点时的动能E k P 可由动能定理求得,-μmgx -mgR =E k P -12m v 2,得E k P =0,可见,物块能到达P 点,速度恰为零,之后从P 点沿圆弧轨道滑回,不会出现选项B 、C 所描述的运动情况,D 正确.【答案】 D[创新导向练]7.生活娱乐——蹦床娱乐中的能量转化问题在儿童乐园的蹦床项目中,小孩在两根弹性绳和蹦床的协助下实现上下弹跳.如图所示,某次蹦床活动中小孩静止时处于O 点,当其弹跳到最高点A 后下落可将蹦床压到最低点B ,小孩可看成质点,不计空气阻力.下列说法正确的是( )A .从A 运动到O ,小孩重力势能减少量大于动能增加量B .从O 运动到B ,小孩动能减少量等于蹦床弹性势能增加量C .从A 运动到B ,小孩机械能减少量小于蹦床弹性势能增加量D .若从B 返回到A ,小孩机械能增加量等于蹦床弹性势能减少量【解析】 从A 运动到O 点,小孩重力势能减少量等于动能增加量与弹性绳的弹性势能的增加量之和,选项A正确;从O运动到B,小孩动能和重力势能的减少量等于弹性绳和蹦床的弹性势能的增加量,选项B错误;从A运动到B,小孩机械能减少量大于蹦床弹性势能增加量,选项C错误;若从B返回到A,小孩机械能增加量等于蹦床和弹性绳弹性势能减少量之和,选项D错误.【答案】 A8.物理与生物——以“跳蚤”弹跳为背景考查能量问题在日常生活中,人们习惯于用几何相似性放大(或缩小)的倍数去得出推论,例如一个人身体高了50%,做衣服用的布料也要多50%,但实际上这种计算方法是错误的.若物体的几何线度为L,当L改变时,其他因素按怎样的规律变化?这类规律可称之为标度律,它们是由量纲关系决定的.在上例中,物体的表面积S=kL2,所以身高变为1.5倍,所用的布料变为1.52=2.25倍.以跳蚤为例:如果一只跳蚤的身长为2 mm,质量为0.2 g,往上跳的高度可达0.3 m.可假设其体内能用来跳高的能量E∝L3(L为几何线度),在其平均密度不变的情况下,身长变为2 m,则这只跳蚤往上跳的最大高度最接近()A.0.3 m B.3 mC.30 m D.300 m【解析】根据能量关系可知E=mgh,由题意可知E=kL3,则mgh=kL3;因跳蚤的平均密度不变,则m=ρL3,则ρgh=k,因ρ、g、k均为定值,故h不变,则这只跳蚤往上跳的最大高度最接近0.3 m,故选A.【答案】 A9.就地取材——利用“弹弓”考查功能关系问题弹弓是80后童年生活最喜爱的打击类玩具之一,其工作原理如图所示,橡皮筋两端点A、B固定在把手上,橡皮筋ABC恰好处于原长状态,在C处(AB连线的中垂线上)放一固体弹丸,一手执把,另一手将弹丸拉至D点放手,弹丸就会在橡皮筋的作用下迅速发射出去,打击目标,现将弹丸竖直向上发射,已知E是CD的中点,则()A.从D到C,弹丸的动能一直在增大B.从D到C的过程中,弹丸在E点的动能一定最大C.从D到C,弹丸的机械能先增大后减少D.从D到E弹丸增加的机械能大于从E到C弹丸增加的机械能【解析】在CD连线中的某一处,弹丸受力平衡,但是此点不一定是E点,所以从D到C ,弹丸的速度先增大后减小,弹丸的动能先增大后减小,故A 、B 错误;从D 到C ,橡皮筋对弹丸做正功,弹丸机械能一直在增加,故C 错误;从D 到E 橡皮筋作用在弹丸上的合力大于从E 到C 橡皮筋作用在弹丸上的合力,两段长度相等,所以DE 段橡皮筋对弹丸做功较多,即机械能增加的较多,故D 正确,故选D.【答案】 D10.综合应用——能量转化与守恒定律的实际应用如图所示,倾角θ=37°的光滑斜面上粘贴有一厚度不计、宽度为d =0.2 m 的橡胶带,橡胶带的上表面与斜面位于同一平面内,其上、下边缘与斜面的上、下边缘平行,橡胶带的上边缘到斜面的顶端距离为L =0.4 m ,现将质量为m =1 kg 、宽度为d 的薄矩形板上边缘与斜面顶端平齐且从斜面顶端静止释放.已知矩形板与橡胶带之间的动摩擦因数为0.5,重力加速度大小为g =10 m/s 2,不计空气阻力,矩形板由斜面顶端静止释放到完全离开橡胶带的过程中(此过程矩形板始终在斜面上),sin 37°=0.6,cos 37°=0.8,下列说法正确的是( )A .矩形板受到的摩擦力大小为4 NB .矩形板的重力做功为3.6 JC .产生的热量为0.8 JD .矩形板的上边缘穿过橡胶带下边缘时其速度大小为2355m/s 【解析】 当矩形板全部在橡胶带上时摩擦力为F f =μmg cos 37°=4 N ,此时摩擦力最大,其他情形摩擦力均小于4 N ,故A 错误;重力对矩形板做功W G =mgh =mg (L +d )sin 37°=3.6 J ,B 正确;从滑上橡胶带到完全离开橡胶带,因矩形板受到的摩擦力与位移的变化为线性关系,则产生的热量Q =0+μmg cos 37°2×2d =0.8 J ,C 正确;从释放到完全离开橡胶带,对矩形板由动能定理有mg (L +d )sin 37°-0+μmg cos 37°2×2d =12m v 2,代入可得v =2355m/s ,D 正确.【答案】 BCD[综合提升练]11.如图所示,A 、B 间是一个风洞,水平地板AB 延伸至C 点,通过半径r =0.5 m 、圆心角为θ的光滑圆弧CD 与足够长的光滑斜面DE 连接,斜面倾角为θ.可以看成质点、质量m =2 kg 的滑块在风洞中受到水平向右的恒定风力F =20 N ,滑块与地板AC 间的动摩擦因数μ=0.2.已知x AB =5 m ,x BC =2 m ,如果将滑块在风洞中A 点由静止释放,已知sin θ=0.6,cos θ=0.8,重力加速度g 取10 m/s 2.求(计算结果要求保留3位有效数字):(1)滑块经过圆弧轨道的C 点时对地板的压力大小及在斜面上上升的最大高度;(2)滑块第一次返回风洞速率为零时的位置;(3)滑块在A 、C 间运动的总路程.【解析】 (1)滑块在风洞中A 点由静止释放后,设经过C 点时速度为v 1,由动能定理得Fx AB -μmgx AC =12m v 21 在C 点由牛顿第二定律有F N C -mg =m v 21r代入数据解得F N C =308 N ,由牛顿第三定律知滑块经过C 点时对地板的压力为308 N 滑块由C 点上滑过程中,机械能守恒12m v 21=mgr (1-cos θ)+mgh 代入数据解得h =3.50 m.(2)滑块返回风洞时,风力与摩擦力皆为阻力,设滑块运动到P 点时速率为零,由能量守恒得12m v 21=μmg (x BC +x PB )+Fx PB 代入数据解得x PB =83m ≈2.67 m 滑块第一次返回风洞速率为零时的位置在B 点左侧2.67 m 处.(3)整个过程等效为滑块从A 处在风力和滑动摩擦力的共同作用下被推到B 处,然后在足够长水平面上滑行至静止,设总路程为s ,由动能定理得Fx AB -μmgs =0代入数据解得s =25.0 m.【答案】 (1)308 N 3.50 m (2)在B 点左侧2.67 m 处 (3)25.0 m12.如图所示,在竖直方向上A 、B 两物体通过劲度系数为k =16 N/m 的轻质弹簧相连,A 放在水平地面上,B 、C 两物体通过细线绕过轻质定滑轮相连,C 放在倾角α=30°的固定光滑斜面上.用手拿住C ,使细线刚好拉直但无拉力作用,并保证ab 段的细线竖直、cd 段的细线与斜面平行.已知A 、B 的质量均为m =0.2 kg ,重力加速度取g =10 m/s 2,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态.释放C 后它沿斜面下滑,A 刚离开地面时,B 获得最大速度,求:(1)从释放C 到物体A 刚离开地面时,物体C 沿斜面下滑的距离;(2)物体C 的质量;(3)释放C 到A 刚离开地面的过程中细线的拉力对物体C 做的功.【解析】 (1)设开始时弹簧的压缩量为x B ,得kx B =mg ①设物体A 刚离开地面时,弹簧的伸长量为x A ,得kx A =mg ②当物体A 刚离开地面时,物体C 沿斜面下滑的距离为h =x A +x B ③由①②③解得h =2mg k=0.25 m .④ (2)物体A 刚离开地面时,物体B 获得最大速度v m ,加速度为零,设C 的质量为M ,对B 有F T -mg -kx A =0⑤对C 有Mg sin α-F T =0⑥由②⑤⑥解得M =4m =0.8 kg.(3)由于x A =x B ,物体B 开始运动到速度最大的过程中,弹簧弹力做功为零,且B 、C 两物体速度大小相等,由能量守恒有Mgh sin α-mgh =12(m +M )v 2m 解得v m =1 m/s对C 由动能定理可得Mgh sin α+W T =12M v 2m解得W T =-0.6 J.【答案】 (1)0.25 m (2)0.8 kg (3)-0.6 J。
高中物理中的滑块问题(含解析)
高中物理中的滑块问题1.(2010淮阴中学卷)如图,在光滑水平面上,放着两块长度相同,质量分别为M 1和M 2的木板,在两木板的左端各放一个大小、形状、质量完全相同的物块。
开始时,各物均静止,今在两物体上各作用一水平恒力F 1、F 2,当物块和木板分离时,两木板的速度分别为v 1和v 2,物体和木板间的动摩擦因数相同,下列说法正确的是 ( BD ) A .若F 1=F 2,M 1>M 2,则v 1>v 2 B .若F 1=F 2,M 1<M 2,则v 1>v 2 C .若F 1>F 2,M 1=M 2,则v 1>v 2 D .若F 1<F 2,M 1=M 2,则v 1>v 22.如图所示,长2m ,质量为1kg 的木板静止在光滑水平面上,一木块质量也为1kg (可视为质点),与木板之间的动摩擦因数为0.2。
要使木块在木板上从左端滑向右端而不至滑落,则木块初速度的最大值为( D )A .1m/sB .2 m/sC .3 m/sD .4 m/s3.如图所示,小木块质量m =1kg ,长木桉质量M =10kg ,木板与地面以及木块间的动摩擦因数均为μ=0.5.当木板从静止开始受水平向右的恒力F =90 N 作用时,木块以初速v 0=4 m /s 向左滑上木板的右端.则为使木块不滑离木板,木板的长度l 至少要多长?22112132121/3)(t t a s s m Mgm M mg F a ⨯===+--=μμ 22202225.2421/5t t t a t v s s m g a -=-===μ s t ta t a v 2120==+-解得由m s s l 421=+=板长:木块和木板的位移分别为m t v v t v s 25.22221111=⋅++⋅=m t v v t v s 75.32222122=⋅++⋅= m s s s 5.112=-=∆5.(2010龙岩二中卷)如图所示,一质量M =2.0kg 的长木板静止放在光滑水平面上,在木板的右端放一质量m =1.0kg 可看作质点的小物块,小物块与木板间的动摩擦因数为μ=0.2.用恒力F 向右拉动木板使木板在水平面上做匀加速直线运动,经过t =1.0s 后撤去该恒力,此时小物块恰好运动到距木板右端l =1.0m 处。
高中物理《解题手册》专题滑块模型
专题十一滑块模型[重点难点提示]以滑块为模型的物理问题,将其进行物理情景的迁移,或对其初始条件与附设条件做某些演变、拓展,便于构成许多内涵丰富、情景各异的综合问题。
由于这类问题涉及受力和运动分析、动量和功能分析以及动力学、运动学、动量守恒、能量守恒等重要内容的综合应用,因此,滑块模型问题成为高考考查学生知识基础和综合的能力的一大热点。
通过对滑块模型问题的分析、研讨,掌握其基本特征,分清其在不同情景中的物理本质,对于启迪学生思维和培养学生的各种能力,特别是提高学生解题能力和开发学生研究性学习潜能的作用都是不可低估的。
[习题分类解析]如图所示,一颗质量为m 的子弹以速度v 0射人静止在光滑水平面上的木块M 中且未穿出。
设子弹与木块间的摩擦为f 。
子弹打进深度d 相对木块静止,此时木块前进位移为s 。
分析与解答:对系统,由动量守恒有:mv 0=(M +m )v 对子弹由动能定理有: 对木块由动能定理: 得: 动能的损失: 故打入深度2021)(mv m M f M f E d k ⋅+=∆=变式1如图所示,在光滑的水平桌面上,静放着一质量为980g 的长方形匀质木块,现有一颗质量为20g 的子弹以300m/s 的水平速度沿其轴线射向木块,结果子弹留在木块中没有射出,和木块一起以共同的速度运动。
已知木块沿子弹运动方向的长度为10cm ,子弹打进木块的深度为6cm 。
设木块对子弹的阻力保持不变。
(1)求子弹和木块的共同速度以及它们在此过程中所增加的内能。
(2)若子弹是以400m/s 的水平速度从同一方向水平射向该木块的,则它能否射穿该木块?分析与解答:设子弹的初速度为v 0,射入木块的共同速度为v.以子弹和木块为系统,由动量守恒定律有v m M mv )(0+=(2分)解得s m s m m M mv v /0.6/02.098.030002.00=+⨯=+=此过程系统所增加的内能(2)设以v 0′=400m/s 的速度刚好能够射穿材质一样厚度为d′的另一个木块.则对以子弹和木块组成的系统,由动量守恒定律有此过程系统所损耗的机械能由功能关系有d f s f E fd fs E '='='∆==∆相相, 两式相比即有d dd f fd s f fs E E '='='='∆∆相相 于是有cm cm cm d E E d 10147156868821568>=⨯=∆'∆=' 因为d′>10cm,所以能够穿透此木块.变式2固定在地面的水平桌子左端放有质量M 的木块,木块厚10cm ,其右端和桌子右边缘相距L =4.0m ,木块和桌面间的动摩擦因数μ=0.80。
重难点08滑块--滑板模型专题高一物理题组法突破重难点(人教版2019必修第一册)(解析版)
人教版新教材高中物理必修第一册第四章运动和力的关系相对运动模型---滑块滑板模型专题(题组分类训练)题组特训特训内容题组一外力作用下的滑块滑板(水平面)模型题组二有一定初速度的滑块滑板(水平面)模型题组三滑块滑板中的图像问题题组四倾斜面上的滑块滑板模型基础知识清单2.解题方法:(1)明确各物体对地的运动和物体间的相对运动情况,确定物体间的摩擦力方向.(2)分别隔离两物体进行受力分析,准确求出各物体在各个运动过程中的加速度(注意两过程的连接处加速度可能突变).(3)物体之间的位移(路程)关系或速度关系是解题的突破口.求解中应注意联系两个过程的纽带,即每一个过程的末速度是下一个过程的初速度.3.常见的两种位移关系: 滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.4.注意摩擦力的突变: 当滑块与木板速度相同时,二者之间的摩擦力通常会发生突变,由滑动摩擦力变为静摩擦力或者消失,或者摩擦力方向发生变化,速度相同是摩擦力突变的一个临界条件.5.解题思路题组特训一:外力作用下的滑块滑板(水平面)模型1. (多选)如图所示,质量为m1的足够长木板静止在光滑水平地面上,其上放一质量为m 2的木块.t =0时刻起,给木块施加一水平恒力F .分别用a 1、a 2和v 1、v 2表示木板、木块的加速度和速度大小,下列图中可能符合运动情况的是( )【答案】AC【解析】木块和木板可能保持相对静止,一起做匀加速直线运动,加速度大小相等,故A 正确;木块可能相对于木板向前滑动,即木块的加速度a 2大于木板的加速度a 1,都做匀加速直线运动,故B 、D 错误,C 正确.2.(多选)如图所示,在光滑水平面上叠放着A 、B 两物体,已知m A = 6kg 、m B = 2kg ,A 、B 间动摩擦因数μ = 0.2,在物体A 上施加水平向右的力F ,g 取10m/s 2,则( )A .当拉力F < 12N 时,A 静止不动B .当拉力F > 16N 时,A 相对B 滑动C .当拉力F = 16N 时,B 受A 的摩擦力等于4ND .当拉力F < 48N 时,A 相对B 始终静止 【答案】CD【解析】当A 、B 发生相对运动时的加速度为 220.2610m/s 6m/s 2A Bm ga m μ⨯⨯=== 则发生相对运动时最大拉力为 ()86N 48N A B F m m a =+=⨯=当拉力0 < F < 48N 时,A 相对于B 静止,而对于地面来说是运动的,A 错误、D 正确; 由选项A 知当拉力48N > F > 16N 时,A 相对于B 静止,而对于地面来说是运动的,B 错误; 拉力F = 16N 时,A 、B 始终保持静止,当F = 16N 时,整体的加速度为2216m/s 2m/s 8A B F a m m '===+则B 对A 的摩擦力为 22N 4N B f m a '==⨯=C 正确。
高中物理滑块木板模型(经典)
高中物理“滑块—木板”模型1.模型特点:滑块(视为质点)置于木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的作用下发生相对滑动.2.位移关系:如图所示,滑块由木板一端运动到另一端的过程中,滑块和木板同向运动时,位移之差Δx=x1-x2=L(板长);滑块和木板反向运动时,位移大小之和x2+x1=L.3.解题关键点(1)由滑块与木板的相对运动来判断“板块”间的摩擦力方向.(2)当滑块与木板速度相同时,“板块”间的摩擦力可能由滑动摩擦力转变为静摩擦力或者两者间不再有摩擦力(水平面上共同匀速运动).4.处理“板块”模型中动力学问题的流程1.如图所示,在光滑的水平面上有一足够长的质量为M=4 kg的长木板,在长木板右端有一质量为m=1 kg的小物块,长木板与小物块间的动摩擦因数为μ=0.2,长木板与小物块均静止,现用F =14 N 的水平恒力向右拉长木板,经时间t =1 s 撤去水平恒力F ,g 取10 m/s 2,则:(1)在F 的作用下,长木板的加速度为多大? (2)刚撤去F 时,小物块离长木板右端多远? (3)最终长木板与小物块一起以多大的速度匀速运动? (4)最终小物块离长木板右端多远?答案 (1)3 m/s 2 (2)0.5 m (3)2.8 m/s (4)0.7 m2.(多选)滑沙运动是小孩比较喜欢的一项运动,其运动过程可类比为如图所示的模型,倾角为37°的斜坡上有长为1 m 的滑板,滑板与沙间的动摩擦因数为2140.小孩(可视为质点)坐在滑板上端,与滑板一起由静止开始下滑,小孩与滑板之间的动摩擦因数取决于小孩的衣料,假设图中小孩与滑板间的动摩擦因数为0.4,小孩的质量与滑板的质量相等,斜坡足够长,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2,则下列判断正确的是( )A .小孩在滑板上下滑的加速度大小为2 m/s 2B .小孩和滑板脱离前滑板的加速度大小为0.8 m/s 2C .经过1 s 的时间,小孩离开滑板D .小孩离开滑板时的速度大小为0.8 m/s 答案 BC3. (多选)(2021·全国乙卷·21)水平地面上有一质量为m 1的长木板,木板的左边上有一质量为m 2的物块,如图(a)所示.用水平向右的拉力F 作用在物块上,F 随时间t 的变化关系如图(b)所示,其中F 1、F 2分别为t 1、t 2时刻F 的大小.木板的加速度a 1随时间t 的变化关系如图(c)所示.已知木板与地面间的动摩擦因数为μ1,物块与木板间的动摩擦因数为μ2,假设最大静摩擦力均与相应的滑动摩擦力相等,重力加速度大小为g .则( )A .F 1=μ1m 1gB .F 2=m 2(m 1+m 2)m 1(μ2-μ1)gC .μ2>m 1+m 2m 2μ1D .在0~t 2时间段物块与木板加速度相等 答案 BCD4.(多选)如图甲所示,水平地面上静止放置一质量为M 的木板,木板的左端有一个可视为质点的、质量m =1 kg 的滑块.现给滑块一向右的初速度v 0=10 m/s ,此后滑块和木板在水平地面上运动的速度图像如图乙所示,滑块最终刚好停在木板的右端,取g =10 m/s 2.下列说法正确的是( )A .滑块与木板间的动摩擦因数μ1=0.4B .木板与地面间的动摩擦因数μ2=0.1C .木板的长度L =4 mD .木板的质量M =1.5 kg 答案 ABD5.(多选)如图甲所示,一滑块置于足够长的长木板左端,木板放置在水平地面上.已知滑块和木板的质量均为2 kg ,现在滑块上施加一个F =0.5t (N)的变力作用,从t =0时刻开始计时,滑块所受摩擦力随时间变化的关系如图乙所示.设最大静摩擦力与滑动摩擦力相等,重力加速度g 取10 m/s 2,则下列说法正确的是( )A .滑块与木板间的动摩擦因数为0.4B .木板与水平地面间的动摩擦因数为0.2C .图乙中t 2=24 sD .木板的最大加速度为2 m/s 2 答案 ACD6.(多选)如图甲所示,一长木板静止在水平地面上,在t =0时刻,一小物块以一定速度从左端滑上长木板,之后长木板运动的v -t 图像如图乙所示,已知小物块与长木板的质量均为m =1 kg ,已知木板足够长,g 取10 m/s 2,则( )A.小物块与长木板间动摩擦因数μ=0.5B.在整个运动过程中,物块与木板构成的系统所产生的热量70 JC.小物块的初速度为v0=12 m/sD.0~2 s与2~3 s物块和木板构成的系统机械能减少量之比为17∶1答案ACD7.(2022·山东邹城市模拟)质量为M=1.0 kg的长木板A在光滑水平面上以v1=0.5 m/s的速度向左运动,某时刻质量为m=0.5 kg的小木块B以v2=4 m/s的速度从左端向右滑上长木板,经过时间t=0.6 s小木块B相对A静止,求:(1)两者相对静止时的运动速度v;(2)从木块滑上木板到相对木板静止的过程中,木板A的动量变化量的大小;(3)小木块与长木板间的动摩擦因数μ.答案(1)1 m/s,方向水平向右(2)1.5 kg·m/s(3)0.58.(2021·湖北省1月选考模拟·15)如图a,在光滑水平面上放置一木板A,在A上放置物块B,A和B的质量均为m=1 kg.A与B之间的动摩擦因数μ=0.2.t=0时刻起,对A施加沿水平方向的力,A和B由静止开始运动.取水平向右为正方向,B相对于A的速度用v BA=v B-v A 表示,其中v A和v B分别为A和B相对水平面的速度.在0~2 s时间内,相对速度v BA随时间t变化的关系如图b所示.运动过程中B始终未脱离A,重力加速度取g=10 m/s2.求:(1)0~2 s时间内,B相对水平面的位移大小;(2)t=2 s时刻,A相对水平面的速度.答案(1)3.5 m(2)09.质量M=3kg的长木板放在水平光滑的平面上,在水平恒力F=11N作用下由静止开始向右运动,如图所示,当速度达到1m/s时,将质量m=4kg的物体轻轻放到木板的右端,已知物块与木板间摩擦因数μ=0.2,(g=10m/s2)求:(1)物体经多长时间才与木板保持相对静止;(2)物块与木板相对静止后, 物块受到的摩擦力多大?答案:1s 6.28NF。
第三章 微专题24 “滑块-木板”模型问题-2025年高中物理《加练半小时》新教材版
第三章运动和力的关系第三章运动和力的关系微专题24“滑块-木板”模型问题1.滑块—木板同速后能否一起运动的判断:先假设能一起运动,对整体分析求出共同加速度a 共。
再分析仅靠摩擦力带动的物体,此物体的最大加速度a m =F fm m。
若a m ≥a 共,则两物体以后一起运动,若a m <a 共,则两物体以后相对滑动。
2.滑块由木板的一端运动到另一端的过程中,若滑块和木板同向运动,位移之差等于板长;若相向运动,位移大小之和等于板长。
1.如图所示,在光滑的水平地面上静止地叠放着两个物体A 、B ,A 、B 之间的动摩擦因数为0.2,A 质量为2kg ,B 质量为1kg ,从t =0时刻起,A 受到一向右的水平拉力F 的作用,F 随时间的变化规律为F =(6+2t )N 。
t =5s 时撤去外力,运动过程中A 一直未从B 上滑落,最大静摩擦力等于滑动摩擦力(g 取10m/s 2),则()A .t =2s 时,A 、B 发生相对滑动B .t =3s 时,B 的速度大小为8m/sC .撤去拉力瞬间,A 的速度大小为19m/sD .撤去拉力后,再经过1s ,A 、B 速度相等答案C 解析当A 、B 之间的摩擦力恰好达到最大静摩擦力时,A 、B 之间刚好出现相对滑动,对B 物体,根据牛顿第二定律有μm A g =m B a ,此时的加速度为a =4m/s 2,对A 、B 整体,根据牛顿第二定律有F =(m A +m B )a =12N =(6+2t )N ,所以t =3s ,故A 错误;0~3s 内A 、B 一起运动,t =0时A 、B 的加速度为a 0=F 0m A +m B =2m/s 2,则t =3s 时,B 的速度为v 3=a t =a 0+a 2t 1=9m/s ,故B 错误;5s 时A 物体的加速度为a 2=F -μm A g m A =16-0.2×202m/s 2=6m/s 2,则5s 时A 物体的速度为v A =v 3+a A t 2=9m/s +4+62×2m/s =19m/s ,故C 正确;撤去拉力时,B 的速度v B =v 3+μm A g m Bt 2=9m/s +8m/s =17m/s ,设经过t 3时间两物体速度相等则有v A -μm A g m A t 3=v B +μm A g m B t 3,解得t 3=13s ,故D 错误。
高中物理木板滑块问题
木板滑块专题第一类:力学问题模型特点:两个及两个以上的物体叠放,并且在摩擦力的相互作用下发生相对滑动.建模指导解决此类问题的基本思路:(1) 分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;(2) 对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程,特别注意滑块和木板的位移都是相对于地面的位移;(3) 审题画出运动过程的草图建立正确的物理情景帮助自己理解过程。
【例1】木板M 静止在光滑水平面上,木板上放着一个小滑块m ,与木板之间的动摩擦因数μ,为了使得m 能从M 上滑落下来,求下列各种情况下力F 的大小范围。
(1) (2)【例2】如图1所示,光滑水平面上放置质量分别为m 、2m 的物块A 和木板B ,A 、B 间的最大静摩擦力为μmg ,现用水平拉力F 拉B ,使A 、B 以同一加速度运动,求拉力F 的最大值。
【变式1】 上例中若拉力F 作用在A 上呢?如图2所示。
【变式2】在变式1的基础上再改为:B 与水平面间的动摩擦因数为1/6*μ(认为最大静摩擦力等于滑动摩擦力),使A 、B 以同一加速度运动,求拉力F 的最大值。
F M m m F M【例3】如图所示,木块A 质量为1kg ,木块B 质量为2kg ,叠放在水平地面上,AB 之间最大静摩擦力为5N ,B 与地面之间摩擦系数为0.1,今用水平力F 作用于A ,保持AB相对静止的条件是F 不超过 ?N 。
(g m s 102/)【例4】如图所示,m A =1kg ,m B =2kg ,A 、B 间静摩擦力的最大值是5N ,水平面光滑。
用水平力F 拉B ,当拉力大小分别是F=10 N 和F=20 N 时,A 、B 的加速度各多大?第二类:运动学问题【例题9】 如图所示,一质量为m =2kg 、初速度为6m/s 的小滑块(可视为质点),向右滑上一质量为M =4kg 的静止在光滑水平面上足够长的滑板,m 、M 间动摩擦因数为μ=0.2。
滑板滑块问题 高中物理专题7
专题7滑板滑块问题【规律和方法】1.模型特点:涉及两个物体,并且物体间存在相对滑动。
2.摩擦力方向的特点(1)若两个物体同向运动,且两个物体“一快一慢”,则“快”的物体受到的另一个物体对它的摩擦力为阻力,“慢”的物体受到的另一个物体对它的摩擦力为动力。
(2)若两个物体反向运动,则每个物体受到的另一个物体对它的摩擦力均为阻力。
3.运动特点(1)滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移大小之差等于板长;反向运动时,位移大小之和等于板长。
设板长为L ,滑块位移大小为x 1,滑板位移大小为x 2同向运动时:如图甲所示,L =x 1-x 2反向运动时:如图乙所示,L =x 1+x 2(2)若滑块与滑板最终相对静止,则它们的末速度相等。
4.方法与技巧(1)弄清各物体初态对地的运动和相对运动(或相对运动趋势),根据相对运动(或相对运动趋势)情况,确定物体间的摩擦力方向。
(2)正确地对各物体进行受力分析,并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况。
(3)速度相等是这类问题的临界点,此时往往意味着物体间的相对位移最大,物体的受力和运动情况可能发生突变。
(4)分析两物体运动过程时可用速度-时间图象记录物体的运动过程。
【典例分析】【例1】(有外力+水平面光滑)如图所示,光滑水平面上静止放着长L =1.6m ,质量为M =3kg 的木块(厚度不计),一个质量为m =1kg 的小物体放在木板的最右端,m和M 之间的动摩擦因数μ=0.1,今对木板施加一水平向右的拉力F ,(g 取10m/s 2)(1)为使小物体不掉下去,F 不能超过多少?(2)如果拉力F =10N 恒定不变,求小物体所能获得的最大速度?(3)如果拉力F =10N ,要使小物体从木板上掉下去,拉力F 作用的时间至少为多少?【例2】(速度图象记录物体运动过程)图l 中,质量为m 的物块叠放在质量为2m 的足够长的木板上方右侧,木板放在光滑的水平地面上,物块与木板之间的动摩擦因数为μ=0.2.在木板上施加一水平向右的拉力F ,在0~3s 内F 的变化如图2所示,图中F 以mg 为单位,重力加速度g =10m/s 2.整个系统开始时静止.(1)求1s 、1.5s 、2s 、3s 末木板的速度以及2s 、3s 末物块的速度;(2)在同一坐标系中画出0~3s 内木板和物块的−图象,据此求0~3s 内物块相对于木板滑过的距离。
高中物理叠加体问题例解
高中物理叠加体问题例解问滑块在木板上滑行的距离。
解析:首先需要注意,该问题是一个叠加体问题,需要运用物理知识进行分析。
根据题意,可以先画出受力图,确定各个物体所受的力,包括重力、摩擦力和弹力等。
在此基础上,运用牛顿第二定律和运动学知识,计算出各物体的加速度大小,并画出各物体运动的示意图,将抽象问题变具体。
然后,根据速度-时间图象,从速度、位移的角度分析物体的运动过程,计算出滑块在木板上滑行的距离。
最后,需要注意整体法和隔离法的灵活运用,深刻理解力和加速度对应关系,将物体运动过程分成几个阶段来处理。
例2】一块带电的金属块在电场和磁场的作用下沿斜面滑动,求滑到底端时机械能的变化量。
一块质量为m,带电量为q的金属块沿倾角为θ的粗糙斜面由静止开始下滑,电场强度为E,方向竖直向下,磁感应强度为B,方向垂直纸面向里,斜面高度为h。
设金属块滑到斜面底端时的速度为v,则机械能的变化量为ΔE = mv²/2 - mgh - qEh。
例3】求地面对静止木楔的摩擦力。
一个质量为10kg的木楔静止于粗糙水平面与地面间的动摩擦因数为0.2.在木楔的倾角为30°的斜面上,有一个质量为1.0kg的物块由静止开始沿斜面下滑,当滑行路程s=1.4m时,其速度v=1.4m/s。
求地面对木楔的摩擦力大小和方向(取g=10m/s²)。
首先判断物块沿斜面向下做匀加速直线运动,加速度为a=v²/2s=0.7m/s²。
由于a小于gsinθ=5m/s²,可知物块受到摩擦力的作用。
对物块应用牛顿第二定律,得到物块受到的摩擦力为4.3N。
对木楔应用平衡条件,设地面对木楔的摩擦力为f,则有f = N′sinθ - f′cosθ = 0.61N,即地面对木楔的摩擦力为0.61N,方向与图设方向相同。
物理题的解答,重在对物理规律的理解和运用,不要生硬套公式。
对于两个或两个以上的物体,正确选取并转移研究对象,理解物体间相互作用的规律是解题的基本能力要求。
_新教材高中物理第4章牛顿运动定律素养培优课5滑块__木板模型和传送带模型练习含解析教科版必修第一册
滑块——木板模型和传送带模型(建议用时:25分钟)1.如图所示,质量为m1的足够长木板静止在水平面上,其上放一质量为m2的物块.物块与木板的接触面是光滑的.从t=0时刻起,给物块施加一水平恒力F.分别用a1、a2和v1、v2表示木板、物块的加速度和速度大小,下列图像符合运动情况的是( )D[由于物块与木板的接触面光滑,所以物块m2做匀加速直线运动.而木板所受合外力为零,仍静止不动.故选项D正确.]2.如图所示,物块从传送带的顶端由静止开始下滑,当传送带静止时,物块从A到B 所用时间为T1,当皮带顺时转动时,物块从A到B所用时间为T2,下列说法正确的是 ( )A.T1=T2B.T1>T2C.T1<T2D.无法确定A[皮带顺时针转动时,物块所受的滑动摩擦力不变,合外力不变,即物体的加速度没发生变化,所以物块从A到B用时不变,选项A正确.]3.如图所示,足够长的水平传送带以v0=2 m/s的速率顺时针匀速运行.t=0时,在最左端轻放一个小滑块,t=2 s时,传送带突然制动停下.已知滑块与传送带之间的动摩擦因数为μ=0.2,g取10 m/s2.下列关于滑块相对地面运动的vt图像正确的是 ( )B [刚被放在传送带上时,滑块受到滑动摩擦力作用做匀加速运动,a =μg =2 m/s 2,滑块运动到与传送带速度相同需要的时间t 1=v 0a=1 s ,然后随传送带一起匀速运动的时间t 2=t -t 1=1 s ,当传送带突然制动停下时,滑块在传送带摩擦力作用下做匀减速运动直到静止,a ′=-a =-2 m/s 2,运动的时间t 3=Δv a ′=0-2-2s =1 s ,选项B 正确.] 4.如图所示,水平传送带A 、B 两端相距x =3.5 m ,工件与传送带间的动摩擦因数μ=0.1.工件滑上A 端时速度v A =4 m/s ,达到B 端的瞬时速度设为v B ,则下列说法中错误的是 ( )A .若传送带不动,则vB =3 m/sB .若传送带逆时针匀速转动,v B 一定等于3 m/sC .若传送带顺时针匀速转动,v B 一定等于3 m/sD .若传送带顺时针匀速转动,v B 可能等于3 m/sC [若传送带不动或逆时针匀速转动时,物体相对传送带向右运动,受到的摩擦力向左,物体做匀减速运动,加速度a =μmg m =μg =1 m/s 2,到达B 点时速度v B ,由运动学规律知v 2B -v 2A =-2ax 解得v B =3 m/s ;故选项A 、B 正确;若传送带顺时针转动,当v 带<v A 时,物体受的摩擦力向左,物体做a =1 m/s 2的匀减速直线运动,到达B 点时v B 一定也等于3 m/s ;若v 带>v A 时,物体受到的摩擦力向右,物体做a =1 m/s 2的匀加速直线运动,到达B 点时v B >4 m/s ;故选项D 正确,选项C 错误,C 符合题意.]5.如图所示,物块在静止的足够长的传送带上以速度v 0匀速下滑时,传送带突然启动,方向如图中箭头所示,在传送带的速度由零逐渐增加到2v 0后匀速运动的过程中,下列分析正确的是( )A .物块下滑的速度不变B .物块开始在传送带上加速到2v 0后匀速C .物块先向下匀速运动,后向下加速,最后沿传送带向下匀速运动D .物块受的摩擦力方向始终沿斜面向上C [在传送带的速度由零逐渐增加到v 0的过程中,物块相对于传送带下滑,故物块受到的滑动摩擦力向上,故这段过程中物块继续匀速下滑,在传送带的速度由v 0逐渐增加到2v 0过程中,物块相对于传送带上滑,物块受到的滑动摩擦力沿传送带向下,物块加速下滑,当物块的速度达到2v 0时,物块相对传送带静上,随传送带匀速下滑,故选项C 正确.]6.(多选)如图所示,由相同材料做成的A 、B 两物体放在长木板上,随长木板一起以速度v 向右做匀速直线运动,它们的质量分别为m A 和m B ,且m A >m B .某时刻木板停止运动,设木板足够长,下列说法中正确的是( )A .若木板光滑,由于A 的惯性较大,A 、B 间的距离将增大B .若木板粗糙,由于B 的惯性较小,A 、B 间的距离将减小C .若木板光滑,A 、B 间距离保持不变D .若木板粗糙,A 、B 间距离保持不变CD [若木板光滑,A 、B 的加速度为零,两者将以相同的速度v 向右做匀速直线运动,间距保持不变,故选项A 错误,C 正确;若木板粗糙,由牛顿第二定律知a =μmg m=μg ,两者加速度a 相同,间距仍保持不变,故选项B 错误,D 正确.]7.(多选)如图所示,一足够长的水平传送带以恒定的速度向右传动.将一物体轻轻放在传送带的左端,以v 、a 、x 、f 表示物体速度大小、加速度大小、位移大小和所受摩擦力的大小.下列选项正确的是 ( )AB [在物体加速过程中,加速度a =μg ,物体做匀加速直线运动,当达到共同速度时,不再受摩擦力,a =0;物体做匀速直线运动,故选项A 、B 正确.]8.(多选)如图甲所示,倾角为θ的足够长的传送带以恒定的速率v 0沿逆时针方向运动.t =0时将质量m =1 kg 的物体(可视为质点)轻放在传送带上,物体相对地面的v t 图像如图乙所示.设沿传送带向下为正方向,g 取10 m/s 2.则 ( )甲 乙A .传送带的速率v 0=10 m/sB .传送带的倾角θ=30°C .物体与传送带之间的动摩擦因数μ=0.5D .1.0~2.0 s 物体不受摩擦力AC [当传送带速度v 0大于物体速度时,物体受到的摩擦力向下,由牛顿第二定律得加速度a 1=g sin θ+μg cos θ,向下加速;当传送带速度v 0小于物体速度时,物体受到的摩擦力向上,加速度a 2=g sin θ-μg cos θ;由图知当v =10 m/s 时是a 发生变化时,即此时v 物=v 0=10 m/s ,故选项A 正确;由图知a 1=Δv Δt =10 m/s 2,a 2=Δv Δt=2 m/s ,分别代入上面两式得μ=0.5,θ=37°,故选项B 、D 错误,选项C 正确.]9.如图所示,A 、B 两个物体叠放在一起,静止在粗糙水平地面上,B 与水平地面间的动摩擦因数μ1=0.1,A 与B 间的动摩擦因数μ2=0.2.已知A 的质量m =2 kg ,B 的质量M =3 kg ,重力加速度g 取10 m/s 2.现对物体B 施加一个水平向右的恒力F ,为使A 与B 保持相对静止,则恒力的最大值是(物体间的最大静摩擦力等于滑动摩擦力)( )A .20 NB .15 NC .10 ND .5 NB [对A ,有μ2mg =ma ;对A 、B 整体,有F max -μ1(m +M )g =(m +M )a ,联立解得F max =(m +M )(μ1+μ2)g ,故F max =15 N ,选项B 正确.](建议用时:15分钟)10.(多选)如图所示,一水平方向足够长的传送带以恒定的速率v 1沿顺时针方向运动,把一质量为m 的物体无初速度地轻放在左端,物体与传送带间的动摩擦因数为μ,重力加速度为g ,则下列说法正确的是 ( )A .物体一直受到摩擦力作用,大小为μmgB .物体最终的速度为v 1C .开始阶段物体做匀加速直线运动D .物体在匀速阶段受到的静摩擦力向右BC [在物体加速过程中,所受的摩擦力F f =μmg ,加速度a =μg ,当速度达到v 1时,物体与传送带一起做匀速运动,所受的摩擦力为0,故B 、C 正确,A 、D 错误.]11.(多选)如图所示,A 、B 两个物块的质量分别为2m 和m ,静止叠放在水平地面上.A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ.最大静摩擦力等于滑动摩擦力,重力加速度为g .现对A 施加一水平拉力F ,则 ( )A .当F <2μmg 时,A 、B 都相对地面静止B .当F =52μmg 时,A 的加速度为13μg C .当F >3μmg 时,A 相对B 滑动D .无论F 为何值,B 的加速度不会超过12μg BCD [A 、B 间的最大静摩擦力为2μmg ,B 和地面之间的最大静摩擦力为32μmg ,对A 、B 整体,只要F >32μmg ,整体就会运动,选项A 错误;当A 对B 的摩擦力为最大静摩擦力时,A 、B 将要发生相对滑动,故A 、B 一起运动的加速度的最大值满足2μmg -32μmg =ma max ,B运动的最大加速度a max =12μg ,选项D 正确;对A 、B 整体,有F -32μmg =3ma max ,则F >3μmg 时两者会发生相对运动,选项C 正确;当F =52μmg 时,两者相对静止,一起滑动,加速度满足F -32μmg =3ma ,解得a =13μg ,选项B 正确.] 12.如图所示,一质量为m B =2 kg 的木板B 静止在光滑的水平面上,其右端上表面紧靠一固定斜面轨道的底端(斜面底端与木板B 右端的上表面之间有一段小圆弧平滑连接),轨道与水平面的夹角θ=37°,一质量也为m A =2 kg 的物块A 由斜面轨道上距轨道底端x 0=8 m 处由静止释放,物块A 刚好没有从木板B 的左端滑出,已知物块A 与斜面轨道间的动摩擦因数为μ1=0.25,与木板B 上表面间的动摩擦因数为μ2=0.2,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2,物块A 可看作质点.(1)物块A 刚滑上木板B 时的速度为多大?(2)物块A 从刚滑上木板B 到相对木板B 静止共经历了多长时间?木板B 有多长?[解析] (1)设物块A 沿斜面下滑的加速度为a 1,则m A g sin θ-μ1m A g cos θ=m A a 1解得a 1=4 m/s 2物块A 滑到木板B 上时的速度为v 1=2a 1x 0=2×4×8 m/s =8 m/s.(2)物块A 在木板B 上滑动时,它们在水平方向上的受力大小相等,质量也相等,故它们的加速度大小相等,数值为a 2=μ2m A g m A=μ2g =2 m/s 2 设木板B 的长度为L ,二者相对静止时经历的时间为t 2,最终的共同速度为v 2,在达到共同速度时,木板B 滑行的距离为x ,利用位移关系得v 1t 2-12a 2t 22-12a 2t 22=L 对物块A 有v 2=v 1-a 2t 2v 22-v 21=-2a 2(x +L )对木板B 有v 22=2a 2x联立解得相对滑行时间和木板B 的长度分别为 t 2=2 s ,L =8 m.[答案] (1)8 m/s (2)2 s 8 m13.如图为火车站使用的传送带示意图,绷紧的传送带水平部分长度L =4 m ,并以v 0=1 m/s 的速度匀速向右运动.现将一个可视为质点的旅行包无初速度地轻放在传送带的左端,已知旅行包与传送带之间的动摩擦因数μ=0.2,g 取10 m/s 2.(1)求旅行包经过多长时间到达传送带的右端;(2)若要旅行包从左端运动到右端所用时间最短,传送带速度的大小应满足什么条件?[解析] (1)旅行包无初速度地轻放在传送带的左端,先在滑动摩擦力作用下做匀加速直线运动,加速度a =μmg m=μg =0.2×10 m/s 2=2 m/s 2 匀加速运动的时间t 1=v 0a =0.5 s匀加速运动的位移x =12at 21=0.25 m 此后旅行包匀速运动,匀速运动的时间t 2=L -x v 0=3.75 s 所以旅行包从左端运动到右端所用时间 t =t 1+t 2=4.25 s.(2)要使旅行包在传送带上运行时间最短,必须使旅行包在传送带上一直加速, 由v 2=2aL 得v=2aL=4 m/s即传送带速度必须大于等于4 m/s. [答案](1)4.25 s (2)v≥4 m/s。
专题05 滑块木板模型--2024届新课标高中物理模型与方法(解析版)
2024版新课标高中物理模型与方法专题05滑块木板模型目录【模型归纳】 (1)模型一光滑面上外力拉板 (1)模型二光滑面上外力拉块 (1)模型三粗糙面上外力拉板 (2)模型四粗糙面上外力拉块 (2)模型五粗糙面上刹车减速 (2)【常见问题分析】 (3)问题1.板块模型中的运动学单过程问题 (3)问题2.板块模型中的运动学多过程问题1——至少作用时间问题 (3)问题3.板块模型中的运动学多过程问题2——抽桌布问题 (4)问题4.板块模型中的运动学粗糙水平面减速问题 (4)【模型例析】 (5)【模型演练】 (13))g-μ抽桌布问题图(a)图(b)μ1及小物块与木板间的动摩擦因数μ2;木板右端离墙壁的最终距离。
第二步:分解过程模型。
(1)认为地面各点的粗糙程度相同,小物块和木板一起向右做匀变速运动,到速度大小为(2)木板与墙壁碰撞过程:小物块受到滑动摩擦力(设置的初始条件块速度不变,木板的速度方向突变(设置的初始条件),如图丙所示。
(3)然后小物块向右减速,木板向左减速,经1s小物块速度减小为零小,故小物块速度为零时,木板仍有速度。
然后小物块向左加速,图戊所示)。
(4)分析临界条件,包括时间关系和空间关系,如图戊所示。
(5)在小物块和木板具有共同速度后,两者向左做匀变速直线运动直至停止【答案】(1)0.10.4(2)6m(3)6.5m【解析】(1)根据图象可以判定碰撞前小物块与木板共同速度为-0【例2】(2023·全国·高三专题练习)如图,两个滑块A 和B 的质量分别为A 1kg m =和B 5kg m =,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为10.5μ=;木板的质量为4kg m =,与地面间的动摩擦因数为20.1μ=。
某时刻A 、B 两滑块开始相向滑动,初速度大小均为0=3m/s v 。
A 、B 相遇时,A 与木板恰好相对静止。
设最大静摩擦力等于滑动摩擦力,取重力加速度大小2=10m /s g 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理中的滑块问题1.(2010淮阴中学卷)如图,在光滑水平面上,放着两块长度相同,质量分别为M 1和M 2的木板,在两木板的左端各放一个大小、形状、质量完全相同的物块。
开始时,各物均静止,今在两物体上各作用一水平恒力F 1、F 2,当物块和木板分离时,两木板的速度分别为v 1和v 2,物体和木板间的动摩擦因数相同,下列说法正确的是 ( BD ) A .若F 1=F 2,M 1>M 2,则v 1>v 2 B .若F 1=F 2,M 1<M 2,则v 1>v 2 C .若F 1>F 2,M 1=M 2,则v 1>v 2 D .若F 1<F 2,M 1=M 2,则v 1>v 22.如图所示,长2m ,质量为1kg 的木板静止在光滑水平面上,一木块质量也为1kg (可视为质点),与木板之间的动摩擦因数为0.2。
要使木块在木板上从左端滑向右端而不至滑落,则木块初速度的最大值为( D )A .1m/sB .2 m/sC .3 m/sD .4 m/s3.如图所示,小木块质量m =1kg ,长木桉质量M =10kg ,木板与地面以及木块间的动摩擦因数均为μ=0.5.当木板从静止开始受水平向右的恒力F =90 N 作用时,木块以初速v 0=4 m /s 向左滑上木板的右端.则为使木块不滑离木板,木板的长度l 至少要多长?22112132121/3)(t t a s s m Mgm M mg F a ⨯===+--=μμ 22202225.2421/5t t t a t v s s m g a -=-===μs t ta t a v 2120==+-解得由m s s l 421=+=板长:4.如图所示,质量M=1.0kg 的长木板静止在光滑水平面上,在长木板的右端放一质量m=1.0kg 的小滑块(可视为质点),小滑块与长木板之间的动摩擦因数=0.20.现用水平横力F=6.0N 向右拉长木板,使小滑块与长木板发生相对滑动,经过t=1.0s 撤去力F.小滑块在运动过程中始终没有从长木板上掉下.求:(1)撤去力F 时小滑块和长木板的速度个是多大; (2)运动中小滑块距长木板右端的最大距离是多大?F 1F 2 M Fm(1).对滑和木板分别利用牛顿第二定律和运动学公式sm t a v s m MmgF a s m t a v s m g a /4/4/2/21222211121===-=====μμ(2).最大位移就是在滑块和木板相对静止时1s 后.没有拉力.只有相互间的摩擦力 滑块加速度大小均为α=2m/s 2(方向相反)v 1+αt 2=v 2-αt 2 代入数据 2+2t 2=4-2t 2 解得 t 2=0.5s 此时2个的速度都是v=3m/s木块和木板的位移分别为m t v v t v s 25.22221111=⋅++⋅=m t v v t v s 75.32222122=⋅++⋅= m s s s 5.112=-=∆5.(2010龙岩二中卷)如图所示,一质量M =2.0kg 的长木板静止放在光滑水平面上,在木板的右端放一质量m =1.0kg 可看作质点的小物块,小物块与木板间的动摩擦因数为μ=0.2.用恒力F 向右拉动木板使木板在水平面上做匀加速直线运动,经过t =1.0s 后撤去该恒力,此时小物块恰好运动到距木板右端l =1.0m 处。
在此后的运动中小物块没有从木板上掉下来.求:(1)小物块在加速过程中受到的摩擦力的大小和方向; (2)作用于木板的恒力F 的大小; (3)木板的长度至少是多少?解:(1)小物块受力分析如图所示,设它受到的摩擦力大小为f1N f μ= 01=-mg Nf=0.2×1.0×10N=2N 方向水平向右(2)设小物块的加速度为a 1,木板在恒力F 作用下做匀加速直线运动时的加速度为a 2,此过程中小物块的位移为s 1,木板的位移为s 2 则有:1ma f = 21m/s 0.2=a21121t a s =22221t a s =l s s =-12212)(21t a a l -= 22m/s 0.4=a 代入数值得:对木板进行受力分析,如图所示,根据牛顿第二定律:F-f’=Ma 2,则F=f’+Ma 2, 代入数值得出F =10N 。
(3)设撤去F 时小物块和木板的速度分别为v 1和v 2,撤去F 后,木板与小物块组成的系统动量守恒,当小物块与木板相对静止时,它们具有共同速度V 共 m/s0.4m/s 0.22211====t a v t a v根据动量守恒定律得: mv 1+Mv 2=(m+M ) V 共m/s 310m/s 0.20.10.40.220.1=+⨯+⨯=共V对小物块:根据动能定理: 2122121mv mV fs -=共对木板:根据动能定理:2222121)(Mv MV l s f -='+-共 代入数据:m 32='l所以木板的长度至少为L =l +l '=35m ≈1.7m ) 6.如图所示,一辆M=8kg,长L=2m 的平板小车静止在水平地面上,小车的左端放置一物块(可视为质点)。
已知小车高度h=0.80 m 。
物块的质量m=1.0kg ,它与小车平板间的动摩擦因数μ=0.20。
现用F=26 N 水平向左的恒力拉小车,经过一段时间后,物块与小车分离。
不计小车与地面间的摩擦。
取g=10m/s 2,求:(1)物块与小车分离前,小车向左运动的最大距离; (2)当物块落地时,物块与小车右端的水平距离。
答案:(1)6.0m (2)1.06 m 。
解:(1)21/2sm g a ==μ ①22/3s m MmgF a =-=μ ② 231212==a a v v ③ 12112a v s = ④ 22222a v s = ⑤ 12s s L -= ⑥利用①~⑥并代入数据解得s 2=6m (2) 2'2/826s m M F a ==⑦s ght 4.022==⑧ m t a t v s 66.22122'222'2=+= ⑨m t v s 6.121'1== ⑩m s s 06.111'2=-7.如图所示,水平地面上一个质量M=4.0kg 、长度L=2.0m 的木板,在F=8.0 N 的水平拉力作用下,以v 0=2.0m/s 的速度向右做匀速直线运动。
某时刻将质量m=1.0 kg 的物块(物块可视为质点)轻放在木板最右端。
(1)若物块与木板间无摩擦,求物块离开木板所需的时间; (2)若物块与木板间有摩擦,且物块与木板间的动摩擦因数和木板与地面间的动摩擦因数相等,求将物块放在木板上后,经过多长时间木板停止运动。
(结果保留二位有效数字) 答案:(1)1.2s(2)4.0 s 解(1)2.0===Mg F MgF μμ 2/5.0)(s m Mgm M F a -=+-=μ 2021at t v L += 代入数据得:t ≈1.2s(2)21/2s m g a ==μ 22/1)2(s m M g M m F a -=+-=μ共速时12011t a v t a v +== 解得m v s t 34321==接着一起做匀减速直线运动2/5.0)('s m MM m F a a -=+-==μ直到速度为零,停止运动,s a v t 38'2==总时间s t t t 31021=+=8.(2010长沙市一中卷)如图所示,质量M = 1kg 的木板静止在粗糙的水平地面上,木板与地面间的动摩擦因数μ1=0.1,在木板的左端放置一个质量m =1kg 、大小可以忽略的铁块,铁块与木板间的动摩擦因数μ2=0.4,取g =10m/s 2,试求:(1)若木板长L =1m ,在铁块上加一个水平向右的恒力F =8N ,经过多长时间铁块运动到木板的右端?(2)若在铁块上的右端施加一个大小从零开始连续增加的水平向左的力F ,通过分析和计f 2/N1 02 3 4 56 4 F/N 2 6 8 10 12 14算后,请在图中画出铁块受到木板的摩擦力f 2随拉力F 大小变化的图像。
(设木板足够长)解析:(1)木块的加速度大小 21F mg a mμ-==4m/s 2铁块的加速度大小 212()mg M m ga Mμμ-+==2m/s 2设经过时间t 铁块运动到木板的右端,则有22121122a t a t L -=解得:t =1s(2)①当F ≤ μ1(mg +Mg )=2N 时,A 、B 相对静止且对地静止,f 2=F ②设F =F 1时,A 、B 恰保持相对静止,此时系统的加速度 2a a ==2m/s 2以系统为研究对象,根据牛顿第二定律有11()()F M m g M m a μ-+=+解得:F 1=6N所以,当2N<F ≤6N 时,M 、m 相对静止,系统向右做匀加速运动,其加速度 1()12F M m g Fa M m μ-+==-+,以M 为研究对象,根据牛顿第二定律有 21()f M m g Ma μ-+=, 解得:212Ff =+ ③当F >6N ,A 、B 发生相对运动,22f mg μ==4N画出f 2随拉力F 大小变化的图像如右f 2 /N 1 02 3 4 5 6 4 F/2 6 8 10 12 149.如图所示,质量m 1=0.3 kg 的小车静止在光滑的水平面上,车长L=15 m,现有质量m 2=0.2 kg 可视为质点的物块,以水平向右的速度v 0=2 m/s 从左端滑上小车,最后在车面上某处与小车保持相对静止。
物块与车面间的动摩擦因数μ=0.5,取g=10 m/s 2,求(1)物块在车面上滑行的时间t;(2)要使物块不从小车右端滑出,物块滑上小车左端的速度v ′0不超过多少。
(1)0.24s (2)5m/s【解析】本题考查摩擦拖动类的动量和能量问题。
涉及动量守恒定律、动量定理和功能关系这些物理规律的运用。
(1)设物块与小车的共同速度为v ,以水平向右为正方向,根据动量守恒定律有 ()v m m v m 2102+= ① 设物块与车面间的滑动摩擦力为F ,对物块应用动量定理有022v m v m t F --= ② 其中 g m F 2μ= ③ 解得()gm m v m t 2101+=μ代入数据得 s 24.0=t ④ (2)要使物块恰好不从车厢滑出,须物块到车面右端时与小车有共同的速度v ′,则()v m m v m '+='2102 ⑤ 由功能关系有()gL m v m m v m 22212022121μ+'+=' ⑥ 代入数据解得 =5m/s故要使物块不从小车右端滑出,物块滑上小车的速度v 0′不能超过5m/s 。