广东省东莞四中2020-2021学年高一上学期期中考试数学试卷 图片版含答案

合集下载

2021年高一上学期期中数学试卷 含解析

2021年高一上学期期中数学试卷 含解析

2021年高一上学期期中数学试卷含解析一、选择题每小题5分,共60分,请将所选答案填在答卷对应题号的空格内. 1.若A=,B={x|1≤x<2},则A∪B=()A.{x|x≤0}B.{x|x≥2}C.D.{x|0<x<2}2.函数f(x)=log2(3x+1)的值域为()A.(0,+∞)B.,那么函数f(x2﹣1)的定义域是()A. B. C. D.5.设偶函数f(x)的定义域为R,当x∈(x1<x2)的长度为x2﹣x1,已知函数y=2|x|的定义域为,值域为,则区间的长度的最大值与最小值的差为.三、解答题共70分,解题要有推理过程或演算步骤17.已知A={x∈R|x2﹣2x﹣8=0},B={x∈R|x2+ax+a2﹣12=0},B是A的非空子集,求实数a的值.18.已知f(x)=1+log3x,(1≤x≤9),求函数g(x)=f2(x)+f(x2)的最大值与最小值.19.已知奇函数(1)求实数m的值,并在给出的直角坐标系中画出y=f(x)的图象.(2)若函数f(x)在区间上单调递增,试确定a的取值范围.20.某公司要将一批不易存放的蔬菜从A地运到B地,有汽车、火车两种运输工具可供选择,两种运输工具的主要参考数据如表:运输工具途中速度(km/h)途中费用(元/km)装卸时间(h)装卸费用(元)汽车50 8 2 1000火车100 4 4 xx若这批蔬菜在运输过程(含装卸时间)中损耗为300元/h,设A、B两地距离为xkm(1)设采用汽车与火车运输的总费用分别为f(x)与g(x),求f(x)与g(x);(2)试根据A、B两地距离大小比较采用哪种运输工具比较好(即运输总费用最小).(注:总费用=途中费用+装卸费用+损耗费用)21.已知函数.(Ⅰ)当时,利用函数单调性的定义判断并证明f(x)的单调性,并求其值域;(Ⅱ)若对任意x∈,那么函数f(x2﹣1)的定义域是()A. B. C. D.【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】函数f(x)的定义域为,可得﹣1≤x2﹣1≤1,解出即可得出.【解答】解:∵函数f(x)的定义域为,由﹣1≤x2﹣1≤1,解得.∴函数f(x2﹣1)的定义域是.故选:D.【点评】本题考查了函数的定义域的求法,考查了推理能力与计算能力,属于中档题.5.设偶函数f(x)的定义域为R,当x∈(x1<x2)的长度为x2﹣x1,已知函数y=2|x|的定义域为,值域为,则区间的长度的最大值与最小值的差为 1 .【考点】函数的最值及其几何意义.【专题】函数的性质及应用.【分析】根据指数函数的图象和性质,结合函数的值域求出a,b的取值情况即可得到结论.【解答】解:若2|x|=1,则x=0.若2|x|=2,则x=1或x=﹣1,∵函数y=2|x|的定义域为,值域为,∴若a=﹣1,则0≤b≤1,若b=1,则﹣1≤a≤0,即当a=﹣1,b=0或a=0,b=1时,b﹣a最小为1,当a=﹣1,b=1时,b﹣a的值最大为1﹣(﹣1)=2,故区间的长度的最大值与最小值的差为2﹣1=1,故答案为:1【点评】本题主要考查函数最值的求解,根据指数函数的图象和性质,结合函数的值域求出a,b的取值情况是解决本题的关键.三、解答题共70分,解题要有推理过程或演算步骤17.已知A={x∈R|x2﹣2x﹣8=0},B={x∈R|x2+ax+a2﹣12=0},B是A的非空子集,求实数a的值.【考点】集合的包含关系判断及应用.【专题】计算题;集合.【分析】解一元二次方程求得集合A,由B是A的非空子集,分类讨论,分别求出实数a的取值.【解答】解:由已知,A={﹣2,4}.∵B是A的非空子集,∴B={﹣2}或{4}或{﹣2,4}.若B={﹣2},则有,解得:a=4;若B={4},则有,解得a∈∅;若B={﹣2,4},由韦达定理可得,解得a=﹣2综上,所求实数a的值为﹣2或4.【点评】本题主要考查集合关系中参数的取值范围问题,一元二次方程的解法,体现了分类讨论的数学思想,属于中档题.18.已知f(x)=1+log3x,(1≤x≤9),求函数g(x)=f2(x)+f(x2)的最大值与最小值.【考点】函数的最值及其几何意义.【专题】计算题.【分析】根据对数的运算法则,化简g(x)=f2(x)+f(x2)=(log3x+2)2﹣2,其中1≤x≤3,看作关于log3x的二次函数,再利用二次函数性质求解.【解答】解:g(x)的定义域由确定,解得:1≤x≤3,g(x)=f2(x)+f(x2)=(1+log3x)2+(1+log3x2)=(log3x+2)2﹣2,1≤x≤3,令t=log3x,0≤t≤1,有:y=g(x)=(t+2)2﹣2,在上为增函数,∴当t=0即x=1时,g(x)min=2;当t=1即x=3时,g(x)max=7.【点评】本题考查对数的运算性质、二次函数的性质,换元法.正确的求出g(x)的定义域是关键,也是本题极易出错的地方.19.已知奇函数(1)求实数m的值,并在给出的直角坐标系中画出y=f(x)的图象.(2)若函数f(x)在区间上单调递增,试确定a的取值范围.【考点】函数单调性的性质;函数的图象.【专题】计算题;数形结合;转化思想;待定系数法.【分析】(1)由奇函数的定义,对应相等求出m的值;画出图象.(2)根据函数的图象知函数的单调递增区间,从而得到|a|﹣2的一个不等式,解不等式就求得a 的取值范围.【解答】解:(1)当x<0时,﹣x>0,f(﹣x)=﹣(x)2+2(﹣x)=﹣x2﹣2x又f(x)为奇函数,∴f(﹣x)=﹣f(x)=﹣x2﹣2x,∴f(x)=x2+2x,∴m=2y=f(x)的图象如右所示(2)由(1)知f(x)=,由图象可知,f(x)在上单调递增,要使f(x)在上单调递增,只需解之得﹣3≤a<﹣1或1<a≤3【点评】考查奇函数的定义,应用转化的思想求值;作函数的图象,求a的取值范围,体现了作图和用图的能力,属中档题.20.某公司要将一批不易存放的蔬菜从A地运到B地,有汽车、火车两种运输工具可供选择,两种运输工具的主要参考数据如表:运输工具途中速度(km/h)途中费用(元/km)装卸时间(h)装卸费用(元)汽车50 8 2 1000火车100 4 4 xx若这批蔬菜在运输过程(含装卸时间)中损耗为300元/h,设A、B两地距离为xkm(1)设采用汽车与火车运输的总费用分别为f(x)与g(x),求f(x)与g(x);(2)试根据A、B两地距离大小比较采用哪种运输工具比较好(即运输总费用最小).(注:总费用=途中费用+装卸费用+损耗费用)【考点】函数模型的选择与应用.【专题】应用题.【分析】(1)根据表格,利用总费用=途中费用+装卸费用+损耗费用,分别求出运输的总费用;(2)分类讨论,比较它们的大小,由此确定采用哪种运输工具较好【解答】解:(1)∵总费用=途中费用+装卸费用+损耗费用∴用汽车运输的总费用为:用火车运输的总费用为:(2)由f(x)<g(x)得由f(x)=g(x)得由f(x)>g(x)得故当A、B两地距离小于时,采用汽车运输好;当A、B两地距离等于时,采用汽车或火车都一样;当A、B两地距离大于时,采用火车运输好【点评】本题以实际问题为载体,考查函数模型的构建,考查解不等式,解题的关键是正确运用表格中的数据21.已知函数.(Ⅰ)当时,利用函数单调性的定义判断并证明f(x)的单调性,并求其值域;(Ⅱ)若对任意x∈.又,令,则k≥g(t)max.∵在(﹣∞,1]上是增函数,故.所以.【点评】本题考查的知识点是函数的定义域,值域,熟练掌握指数函数、对数函数、幂函数、二次函数的图象和性质,是解答的关键.34798 87EE 蟮36415 8E3F 踿D 27485 6B5D 歝 ?$}22743 58D7 壗&k24975 618F 憏。

广东省东莞四中2020-2021学年高一上学期10月考试数学试题含答案

广东省东莞四中2020-2021学年高一上学期10月考试数学试题含答案

D. f (x) 是定义域上的增函数
(1)分别求 A B , (CR B) A ; (2)已知 C {x | a x a 1} ,若 C B ,求实数 a 的取值范围构成的集合.
三、填空题(共(共 20 分)
13.(本题
5
分)函数
f
(x)
x(x
x(
x
4), x 4), x
0, 0,
对于选项 C,由 a2 b2 0 a,b 全不为 0,由 a,b 全不为 0 a2 b2 0 ,故 C 错误;对于选项 D,由 a2 b2 0 a,b 不全为 0,反之,由 a,b 不全为 0 a2 b2 0 ,故 D 正确;
由题:
f
x
x 1, x 1 ln x,0 x 1 ,
故选:C. 【点睛】 本题考查了分类讨论思想,考查了一元二次不等式恒成立问题,属于基础题. 7.B 【解析】 【分析】 【详解】
试题分析:设
f
(x)
=t,则 t
1 2
,
3
,从而
F (x)
的值域就是函数
y
t
1 t
,t
1 2
, 3
的值域,由“勾函数”的图象
可知, 2 F (x) 10 ,故选 B. 3
1- x
x -1
【分析】
故选:AC
根据不等式的基本性质对各项依次进行判断,即可选出正确答案.
A. x2 9 是 x3 27 的必要不充分条件
B.在 ABC 中,“ AB2 AC 2 BC 2 ”是“ ABC 为直角三角形”的充要条件
C.若 a,b R ,则“ a2 b2 0 ”是“a,b 全不为 0”的充要条件
D.若 a,b R ,则“ a2 b2 0 ”是“a,b 不全为 0”的充要条件

诗莞四中2020_2021学年高一上学期10月考试数学试题

诗莞四中2020_2021学年高一上学期10月考试数学试题

广东省东莞四中2020-2021学年高一上学期10月考试数学试题一、单选题(共40分)1.(本题5分)已知集合{|14,}A x x x Z =-≤<∈,则集合A 中元素的个数为( ) A .3B .4C .5D .62.(本题5分)已知集合{0,1,2,3}A =,{|02}B x R x =∈≤≤,则A B 的子集个数为( ) A .2 B .4C .7D .83.(本题5分)已知集合{}10,2,1,0,1,21x A x B x ⎧⎫+=≤=--⎨⎬-⎩⎭,则A B =( )A .{2,2}-B .{2,1,2}--C .{1,0,1}-D .{1,0}-4.(本题5分)设a R ∈,则4a >的一个必要不充分条件是( ) A .1a >B .1a <C .5a >D .5a <5.(本题5分)若0a b <<,R c ∈则下列不等式正确的是( ). A .22a b <B .11a b >C .22acbc < D .a b >-6.(本题5分)若不等式2210axax +-<对于一切实数x 都恒成立,则实数a 的取值范围是( ) A .(],1-∞-B .()1,0-C .(]1,0-D .[)0,+∞7.(本题5分)若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是( )A .1[,3]2B .10[2,]3 C .510[,]23D .10[3,]38.(本题5分)已知()()()1,1ln ,01x x f x x x ⎧-≥⎪=⎨<<⎪⎩则关于a 的不等式()()21f a f a -<的解集为( ) A .10,2⎛⎫⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭C .(),1-∞D .1,2⎛⎫+∞ ⎪⎝⎭二、多选题(共(共20分)9.(本题5分)在下列结论中,正确的有( ) A .29x=是327x=-的必要不充分条件B .在ABC ∆中,“222AB AC BC +=”是“ABC ∆为直角三角形”的充要条件C .若,a b ∈R ,则“220ab +≠”是“a ,b 全不为0”的充要条件 D .若,a b ∈R ,则“220ab +≠”是“a ,b 不全为0”的充要条件E.一个四边形是正方形是它是菱形的必要条件10.(本题5分)下列各组函数是同一函数的是( ) A .2()21f x x x =--与2(s)s 21g s =-- B .()f x =与()g x =C .()x f x x=与01()g x x =D .()f x x =与()g x11.(本题5分)对于实数,,a b c ,下列说法正确的是( )A .若0a b >>,则11a b <B .若a b >,则22ac bc≥C .若0a b >>,则2ab a <D .若c a b >>,则a bc a c b>-- 12.(本题5分)关于函数()1x f x x,下列结论正确的是( )A .()f x 的图象过原点B .()f x 是奇函数C .()f x 在区间(1,+∞)上单调递增D .()f x 是定义域上的增函数三、填空题(共(共20分) 13.(本题5分)函数(4),0,()(4),0,x x x f x x x x +≥⎧=⎨-<⎩若f (x )=12,则x =_____________。

2023-2024学年广东省东莞市四校联考高一(上)期中数学试卷【答案版】

2023-2024学年广东省东莞市四校联考高一(上)期中数学试卷【答案版】

2023-2024学年广东省东莞市四校联考高一(上)期中数学试卷一、单选题(本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,一个选项符合要求,选对得5分,错选得0分.)1.若集合A ={0,1,2},则下列结论正确的是( ) A .{0}∈AB .0∉AC .{0,﹣1,1,2}⊆AD .∅⊆A2.命题“∀x ∈[0,+∞),x 3+x ≥0”的否定是( ) A .∀x ∈(﹣∞,0),x 3+x <0 B .∃x 0∈[0,+∞),x 03+x 0<0 C .∀x ∈(﹣∞,0),x 3+x ≥0D .∃x 0∈[0,+∞),x 03+x 0≥03.已知x ∈R ,则“x <1”是“x 2<1”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件4.函数y =lg(2−x)1x+1的定义域为( ) A .(﹣1,2] B .[﹣1,2) C .(﹣1,2) D .[﹣1,2)5.设函数f (x )={x 2−2x ,x ≤0f(x −3),x >0,则f (9)的值为( )A .﹣7B .﹣1C .0D .126.设a =30.7,b =(13)−0.8,c =log 0.70.8,则a ,b ,c 的大小关系为( ) A .a <b <cB .b <a <cC .b <c <aD .c <a <b7.下列可能是函数y =x 2−1e|x|的图象的是( )A .B .C .D .8.已知函数f (x )={(1−3a)x +a +1,x <22a x ,x ≥2满足对任意的x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0成立,则实数a 的取值范围为( )A .(0,12]B .(13,12]C .[12,1)D .(13,1)二、多项选择题(本题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合要求.全部选对得5分,部分选对得2分,错选得0分.) 9.以下结论正确的是( ) A .不等式a +b ≥2√ab 恒成立 B .存在a ,使得不等式a +1a ≤2成立 C .若a ,b ∈(0,+∞),则ba +a b ≥2D .若正实数x ,y 满足x +2y =1,则2x+1y ≥1010.已知a >b >0,c <d <0,则下列不等式中错误的是( ) A .−1a<−1bB .c 2<cdC .a +c <b +dD .a d<bc11.函数f (x )=x +1,g (x )=(x +1)2,用M (x )表示f (x ),g (x )中的较大者,记为M (x )=max {f (x ),g (x )},则下列说法正确的是( ) A .M (2)=3 B .∀x ≥1,M (x )≥4 C .M (x )有最大值D .M (x )最小值为012.已知函数f (x )是偶函数,f (x +1)是奇函数,当x ∈[2,3]时,f (x )=1﹣|x ﹣2|,则下列选项正确的是( )A .f (x )在(﹣3,﹣2)上为减函数B .f (x )的最大值是1C .f (x )的图象关于直线x =﹣2对称D .f (x )在(﹣4,﹣3)上f (x )<0三、填空题(本题共4小题,每题5分,共20分) 13.不等式﹣x 2+2x +8>0的解集是 .14.设全集U 是实数集R ,M ={x |x <﹣2或x >2},N ={x |1<x <3},则图中阴影部分所表示的集合是 .15.已知奇函数f (x )是定义在(﹣1,1)上的减函数,则不等式f (1﹣x )+f (1﹣3x )<0的解集为 . 16.定义:函数f (x )在区间[a ,b ]上的最大值与最小值的差为f (x )在区间[a ,b ]上的极差,记作d (a ,b).①若f(x)=x2﹣2x+2,则d(1,2)=;②若f(x)=x+mx,且d(1,2)≠|f(2)﹣f(1)|,则实数m的取值范围是.四、解答题(本大题共6小题,第17题10分,18、19、20、21、22题各12分,共70分.解答应写出文字说明、证明过程或演算步骤.必须把解答过程写在答题卡相应题号指定的区域内,超出指定区域的答案无效.)17.(10分)已知集合A={x|﹣3<x<2},B={x|m﹣1<x<2m+1}.(1)若m=2,求A∪B;(2)若A∩B=B,求实数m的取值范围.18.(12分)已知幂函数f(x)=(m2﹣3m+3)x m+1为偶函数.(1)求幂函数f(x)的解析式;(2)若函数g(x)=f(x)+1x,根据定义证明g(x)在区间(1,+∞)上单调递增.19.(12分)已知f(x)为R上的奇函数,当x≥0时,f(x)=log12(x+4)+m.(1)求m的值并求出f(x)在R上的解析式;(2)若f(a)>1,求a的取值范围.20.(12分)已知函数f(x)=x2﹣(a2+6a+9)x+a+1.(1)若a>0,且关于x的不等式f(x)<0的解集是{x|m<x<n},求1m +1n的最小值;(2)设关于x的不等式f(x)<0在[0,1]上恒成立,求a的取值范围.21.(12分)某企业为积极响应国家垃圾分类号召,在科研部门的支持下进行技术创新,新上一个把厨余垃圾加工处理为可重新利用的化工产品的项目.已知该企业日加工处理量x(单位:吨)最少为70吨,最多为100吨.日加工处理总成本y(单位:元)与日加工处理量x之间的函数关系可近似地表示为y=12x2+40x+3200,且每加工处理1吨厨余垃圾得到的化工产品的售价为110元.(1)该企业日加工处理量为多少吨时,日加工处理每吨厨余垃圾的平均成本最低?此时该企业处理1吨厨余垃圾处于亏损还是盈利状态?(2)为了使该企业可持续发展,政府决定对该企业进行财政补贴,补贴方案共有两种:①每日进行定额财政补贴,金额为2300元;②根据日加工处理量进行财政补贴,金额为30x元.如果你是企业的决策者,为了获得最大利润,你会选择哪种补贴方案?为什么?22.(12分)已知函数f(x)对任意实数x,y,恒有f(x+y)=f(x)+f(y),当x>0时,f(x)<0,且f(1)=﹣2.(1)判断f(x)的奇偶性;(2)求f(x)在区间[﹣3,3]上的最大值;(3)若f(x)<m2﹣2am+2对所有的x∈[﹣1,1],a∈[﹣1,1]恒成立,求实数m的取值范围.2023-2024学年广东省东莞市四校联考高一(上)期中数学试卷参考答案与试题解析一、单选题(本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,一个选项符合要求,选对得5分,错选得0分.)1.若集合A={0,1,2},则下列结论正确的是()A.{0}∈A B.0∉AC.{0,﹣1,1,2}⊆A D.∅⊆A解:{0}⊂A而不是{0}∈A,故A不正确;由0∈A,可知B不正确;集合{0,﹣1,1,2}中含有元素﹣1,它不在A中,故{0,﹣1,1,2}⊈A,C不正确;空集是任何集合的子集,故∅⊆A,D正确.故选:D.2.命题“∀x∈[0,+∞),x3+x≥0”的否定是()A.∀x∈(﹣∞,0),x3+x<0B.∃x0∈[0,+∞),x03+x0<0C.∀x∈(﹣∞,0),x3+x≥0D.∃x0∈[0,+∞),x03+x0≥0解:命题为全称命题,则命题的否定是:∃x0∈[0,+∞),x03+x0<0,故选:B.3.已知x∈R,则“x<1”是“x2<1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件解:x2<1,解得﹣1<x<1.∴“x<1”是“x2<1”的必要不充分条件.故选:B.4.函数y=lg(2−x)1√x+1的定义域为()A.(﹣1,2]B.[﹣1,2)C.(﹣1,2)D.[﹣1,2)解:由{2−x>0x+1>0,解得﹣1<x<2.∴函数y=lg(2−x)+1x+1的定义域为(﹣1,2).故选:C.5.设函数f (x )={x 2−2x ,x ≤0f(x −3),x >0,则f (9)的值为( )A .﹣7B .﹣1C .0D .12解:∵函数f (x )={x 2−2x ,x ≤0f(x −3),x >0,∴f (9)=f (0)=02﹣20=﹣1.故选:B .6.设a =30.7,b =(13)−0.8,c =log 0.70.8,则a ,b ,c 的大小关系为( ) A .a <b <cB .b <a <cC .b <c <aD .c <a <b解:∵b =(13)−0.8=30.8>30.7>30=1, ∴b >a >1,∵log 0.70.8<log 0.70.7=1,∴c <1, ∴c <a <b . 故选:D . 7.下列可能是函数y =x 2−1e |x|的图象的是( ) A . B .C .D .解:函数定义域为R ,排除选项AB ,当x >1时,y >0,排除选项D , 故选:C . 8.已知函数f (x )={(1−3a)x +a +1,x <22a x ,x ≥2满足对任意的x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0成立,则实数a 的取值范围为( ) A .(0,12]B .(13,12]C .[12,1)D .(13,1)解:因为函数f (x )={(1−3a)x +a +1,x <22a x ,x ≥2满足对任意的x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0成立,则函数f (x )在R 上是单调递减函数,则一定有{1−3a <00<a <1(1−3a)×2+a +1≥2a 2,解得{a >130<a <1−3≤a ≤12,即13<a ≤12,所以实数a 的范围为(13,12], 故选:B .二、多项选择题(本题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合要求.全部选对得5分,部分选对得2分,错选得0分.) 9.以下结论正确的是( ) A .不等式a +b ≥2√ab 恒成立 B .存在a ,使得不等式a +1a ≤2成立 C .若a ,b ∈(0,+∞),则ba +a b ≥2D .若正实数x ,y 满足x +2y =1,则2x+1y ≥10解:不等式a +b ≥2√ab 成立的条件是a ≥0,b ≥0,故A 不正确; 当a 为负数时,不等式a +1a ≤2成立,故B 正确; 若a ,b ∈(0,+∞),则ba+a b ≥2,当且仅当a =b 时等号成立,C 正确;由于2x+1y=(2x+1y)(x +2y)=4+4y x+x y≥4+2√4y x⋅x y=8,当且仅当4y x=xy,即x =12,y =14时取等号,故D 不正确. 故选:BC .10.已知a >b >0,c <d <0,则下列不等式中错误的是( )A .−1a <−1bB .c 2<cdC .a +c <b +dD .a d<bc解:在a >b 两边同除以负数﹣ab 得−1b<−1a,即−1a>−1b,与A 项矛盾. 由c <d <0,c 2﹣cd =c (c ﹣d )>0,得c 2>cd ,与B 项矛盾. 由a +c ﹣(b +d )=(a ﹣b )+(c ﹣d ),a ﹣b >0,c ﹣d <0, 故(a ﹣b )+(c ﹣d )不一定小于0,故C 不正确.由c <d <0得﹣c >﹣d >0,又a >b >0,两式相乘得﹣ac >﹣bd , 两边同除以负数﹣cd ,可得ad<bc ,故D 正确.故选:ABC .11.函数f (x )=x +1,g (x )=(x +1)2,用M (x )表示f (x ),g (x )中的较大者,记为M (x )=max {f (x ),g (x )},则下列说法正确的是( ) A .M (2)=3 B .∀x ≥1,M (x )≥4 C .M (x )有最大值D .M (x )最小值为0解:令g (x )>f (x ),即(x +1)2>(x +1),解得x <﹣1或x >0, 所以可知M (x )=max {f (x ),g (x )}={(x +1)2,x <−1或x >0x +1,−1≤x ≤0,作出M (x )的图象,如图所示:所以M (2)=(2+1)2=9,故A 错误;当∀x ≥1时,M (x )=(x +1)2≥(1+1)2=4,故B 正确;由M (x )=(x +1)2(x <﹣1或x >0)可知,函数无最大值,故C 错误; 当x <﹣1或x >0时,M (x )>0,当﹣1≤x ≤0时,1≥M (x )≥0, 所以M (x )最小值为0,故D 正确. 故选:BD .12.已知函数f (x )是偶函数,f (x +1)是奇函数,当x ∈[2,3]时,f (x )=1﹣|x ﹣2|,则下列选项正确的是( )A .f (x )在(﹣3,﹣2)上为减函数B .f (x )的最大值是1C .f (x )的图象关于直线x =﹣2对称D .f (x )在(﹣4,﹣3)上f (x )<0解:当x ∈[2,3]时,f (x )=1﹣|x ﹣2|,且f (x )在[2,3]递减,由偶函数的图象关于y 轴对称,可得f (x )在(﹣3,﹣2)单调递增,选项A 错误; 函数f (x )是偶函数,可得f (﹣x )=f (x ),f(x+1)是奇函数,可得f(﹣x+1)=﹣f(x+1),所以f(﹣x)=﹣f(x+2),即f(x)=﹣f(x+2),所以f(x+4)=﹣f(x+2)=f(x),可得f(x)的最小正周期为4,由f(﹣4+x)=f(x),可得f(x)的图象关于直线x=﹣2对称,选项C正确;当x∈[2,3]时,f(x)=1﹣|x﹣2|=3﹣x,由f(x)为偶函数.可得x∈[﹣3,﹣2]时,f(x)=x+3,x∈[1,2]时,x﹣4∈(﹣3,﹣2),则f(x﹣4)=x﹣1,所以x∈[1,2]时,f(x)=x﹣1;由于f(x)的图象关于(1,0),可得f(1)=0,f(0)=﹣f(2)=﹣1,所以x∈[0,1)时,f(x)=x﹣1;由f(x)的图象关于y轴对称,可得x∈[﹣1,0)时,f(x)=﹣x﹣1.则f(x)在一个周期内的最小值为﹣1,最大值为1,选项B正确;所以当x∈(﹣4,﹣3)时,f(x)=f(x+4)=x+3∈(﹣1,0),选项D正确.故选:BCD.三、填空题(本题共4小题,每题5分,共20分)13.不等式﹣x2+2x+8>0的解集是{x|﹣2<x<4}解:不等式﹣x2+2x+8>0等价于x2﹣2x﹣8<0由于方程x2﹣2x﹣8=0的解为:x=﹣2或x=4所以﹣2<x<4故答案为:{x|﹣2<x<4}14.设全集U是实数集R,M={x|x<﹣2或x>2},N={x|1<x<3},则图中阴影部分所表示的集合是{x|1<x≤2}.解:由韦恩图可知,图中阴影部分所表示的集合是N∩(∁U M),因为M={x|x<﹣2或x>2},N={x|1<x<3},所以∁U M={x|﹣2≤x≤2},则N∩(∁U M)={x|1<x≤2}.故答案为:{x|1<x≤2}.15.已知奇函数f (x )是定义在(﹣1,1)上的减函数,则不等式f (1﹣x )+f (1﹣3x )<0的解集为 (0,12) .解:根据题意,奇函数f (x )是定义在(﹣1,1)上的减函数,则f (1﹣x )+f (1﹣3x )<0,则f (1﹣x )<﹣f (1﹣3x ),变形可得f (1﹣x )<f (3x ﹣1). 又函数f (x )是定义在(﹣1,1)上的减函数,所以{−1<1−x <1−1<3x −1<11−x >3x −1,解得0<x <12,故所求不等式的解集为(0,12).故答案为:(0,12).16.定义:函数f (x )在区间[a ,b ]上的最大值与最小值的差为f (x )在区间[a ,b ]上的极差,记作d (a ,b ).①若f (x )=x 2﹣2x +2,则d (1,2)= 1 ;②若f(x)=x +mx ,且d (1,2)≠|f (2)﹣f (1)|,则实数m 的取值范围是 (1,4) . 解:①f (x )=x 2﹣2x +2的对称轴为x =1, 可得f (x )在[1,2]递增, 可得f (x )的最大值为f (2)=2, 最小值为f (1)=1, 可得d (1,2)=2﹣1=1; ②若f(x)=x +mx ,且d (1,2)≠|f (2)﹣f (1)|, 可得f (x )不为单调函数,若m =0时,f (x )为[1,2]的递增函数, 若m <0时,f (x )为[1,2]的递增函数, 若m >0时,由于f (x )在x =√m 处取得极值, 则1<√m <2,可得1<m <4, 即m 的范围是(1,4). 故答案为:1,(1,4).四、解答题(本大题共6小题,第17题10分,18、19、20、21、22题各12分,共70分.解答应写出文字说明、证明过程或演算步骤.必须把解答过程写在答题卡相应题号指定的区域内,超出指定区域的答案无效.)17.(10分)已知集合A ={x |﹣3<x <2},B ={x |m ﹣1<x <2m +1}.(1)若m =2,求A ∪B ;(2)若A ∩B =B ,求实数m 的取值范围.解:(1)由题意A ={x |﹣3<x <2},∵m =2,∴B ={x |1<x <5},可得A ∪B ={x |﹣3<x <5};(2)∵A ∩B =B ,∴B ⊆A ,∴当B =∅,即m ﹣1≥2m +1,即m ≤﹣2时满足题意;当B ≠∅,即m >﹣2时,{m −1≥−32m +1≤2,即−2<m ≤12. 综上,实数m 的取值范围为{m|m ≤12}=(﹣∞,12]. 18.(12分)已知幂函数f (x )=(m 2﹣3m +3)x m +1为偶函数.(1)求幂函数f (x )的解析式;(2)若函数g(x)=f(x)+1x,根据定义证明g (x )在区间(1,+∞)上单调递增. 解:(1)由已知可得m 2﹣3m +3=1,解得m =1或2,又函数为偶函数,则m =1,则f (x )=x 2;(2)g (x )=f(x)+1x =x +1x, 证明:设任意1<x 1<x 2,则g (x 1)﹣g (x 2)=x 1+1x 1−x 2−1x 2=(x 1﹣x 2)(1−1x 1x 2), 因为1<x 1<x 2,则x 1﹣x 2<0,x 1x 2>1,所以1−1x 1x 2>0, 则g (x 1)﹣g (x 2)<0,即g (x 1)<g (x 2),所以函数g (x )在(1,+∞)上单调递增.19.(12分)已知f (x )为R 上的奇函数,当x ≥0时,f(x)=log 12(x +4)+m .(1)求m 的值并求出f (x )在R 上的解析式;(2)若f (a )>1,求a 的取值范围.解:(1)由题可知f (0)=﹣2+m =0,即m =2,即有当x ≥0时,f (x )=lo g 12(x +4)+2,经检验符合题意,则x ≥0时,f (x )=lo g 12(x +4)+2,当x <0时,则﹣x >0,f (﹣x )=lo g 12(﹣x +4)+2,又f (x )为奇函数,所以f (﹣x )=﹣f (x ),所以f (x )=﹣f (﹣x )=﹣lo g 12(﹣x +4)﹣2,x <0,故f (x )在R 上的解析式为f (x )={log 12(x +4)+2,x ≥0−log 12(−x +4)−2,x <0. (2)由函数性质可知f (x )在[0,+∞)上单调递减,则f (x )在R 上单调递减,又因为f(−4)=−log 128−2=1,所以f (a )>1,即f (a )>f (﹣4),所以当a <﹣4时,f (a )>1,即a 的取值范围为(﹣∞,﹣4).20.(12分)已知函数f (x )=x 2﹣(a 2+6a +9)x +a +1.(1)若a >0,且关于x 的不等式f (x )<0的解集是{x |m <x <n },求1m +1n 的最小值; (2)设关于x 的不等式f (x )<0在[0,1]上恒成立,求a 的取值范围.解:(1)因为a >0,且关于x 的不等式f (x )<0的解集是{x |m <x <n },所以x =m 和x =n 是方程x 2﹣(a 2+6a +9)x +a +1=0的两根,所以m +n =a 2+6a +9,mn =a +1.所以1m +1n =m+n mn =a 2+6a+9a+1=(a+1)2+4(a+1)+4a+1=(a +1)+4a+1+4≥4+4=8,当且仅当a =1时等号成立,所以1m +1n 的最小值为8. (2)因为关于x 的不等式f (x )<0在[0,1]上恒成立,所以{f(0)<0f(1)<0,所以{a +1<01−(a 2+6a +9)+a +1<0,解得a <﹣1, 所以a 的取值范围为(﹣∞,﹣1).21.(12分)某企业为积极响应国家垃圾分类号召,在科研部门的支持下进行技术创新,新上一个把厨余垃圾加工处理为可重新利用的化工产品的项目.已知该企业日加工处理量x (单位:吨)最少为70吨,最多为100吨.日加工处理总成本y (单位:元)与日加工处理量x 之间的函数关系可近似地表示为y =12x 2+40x +3200,且每加工处理1吨厨余垃圾得到的化工产品的售价为110元.(1)该企业日加工处理量为多少吨时,日加工处理每吨厨余垃圾的平均成本最低?此时该企业处理1吨厨余垃圾处于亏损还是盈利状态?(2)为了使该企业可持续发展,政府决定对该企业进行财政补贴,补贴方案共有两种:①每日进行定额财政补贴,金额为2300元;②根据日加工处理量进行财政补贴,金额为30x 元.如果你是企业的决策者,为了获得最大利润,你会选择哪种补贴方案?为什么?解:(1)由题意可知,每吨厨余垃圾平均加工成本为y x=x 2+3200x +40,x ∈[70,100], 又x 2+3200x+40≥2√x 2⋅3200x +40=120, 当且仅当x 2=3200x ,即x =80时,每吨厨余垃圾的平均加工成本最低,因为120>110,所以此时该企业处理1吨厨余垃圾处于亏损状态;(2)若该企业采用补贴方式①,设该企业每日获利为y 1,则y 1=110x −(12x 2+40x +3200)+2300=−12x 2+70x −900=−12(x −70)2+1550,因为x ∈[70,100],所以当x =70吨时,企业获得最大利润,为1550元;若该企业采用补贴方式②,设该企业每日获利为y 2,则y 2=110x +30x −(12x 2+40x +3200)=−12x 2+100x −3200=−12(x −100)2+1800,因为x ∈[70,100],所以当x =100吨时,企业获得最大利润,为1800元;综上:选择方案一,当日加工处理量为70吨时,可以获得最大利润1550元;选择方案二,当日加工处理量为100吨时,可以获得最大利润1800元;所以为了获得最大利润,应选择方案二进行补贴.22.(12分)已知函数f (x )对任意实数x ,y ,恒有f (x +y )=f (x )+f (y ),当x >0时,f (x )<0,且f (1)=﹣2.(1)判断f (x )的奇偶性;(2)求f (x )在区间[﹣3,3]上的最大值;(3)若f (x )<m 2﹣2am +2对所有的x ∈[﹣1,1],a ∈[﹣1,1]恒成立,求实数m 的取值范围. 解:由题意函数f (x )对任意实数x ,y ,恒有f (x +y )=f (x )+f (y ),令y =x =0,可得f (0)=0,领y ﹣x ,可得f (x )+f (﹣x )=0,即f (﹣x )=﹣f (x ),则f (x )是奇函数.(2)由f (x )=f [(x ﹣y )+y ]=f (x ﹣y )+f (y ),∴f (x )﹣f (y )=f (x ﹣y ),设x >y ,那么x ﹣y >0,∵当x >0时,f (x )<0,∴f (x ﹣y )<0,即f (x )﹣f (y )<0,∴f (x )<f (y ),可得f (x )是单调递减函数;可得f (x )在区间[﹣3,3]上的最大值为f (﹣3);∵f (1)=﹣2,∴f (﹣1)=2,那么f (﹣3)=f (﹣2﹣1)=f (﹣2)+f (﹣1)=3f (﹣1)=6,故得f (x )在区间[﹣3,3]上的最大值为f (﹣3)=6;(3)根据(2)可得f (x )在区间[﹣1,1]上的最大值为f (﹣1)=2;那么f (x )<m 2﹣2am +2对所有的x ∈[﹣1,1],a ∈[﹣1,1]恒成立,即m 2﹣2am +2>2 可得m 2﹣2am >0,在a ∈[﹣1,1]恒成立,令g (a )=﹣2am +m 2>0,在a ∈[﹣1,1]恒成立,可得{g(−1)>0g(1)>0,解得m >2或m <﹣2, 故得实数m 的取值范围是(﹣∞,﹣2)∪(2,+∞).。

2020-2021东莞市高中必修一数学上期中试卷含答案

2020-2021东莞市高中必修一数学上期中试卷含答案

2020-2021东莞市高中必修一数学上期中试卷含答案一、选择题1.函数tan sin tan sin y x x x x =+--在区间(2π,32π)内的图象是( ) A . B .C .D .2.已知函数()1ln 1xf x x -=+,则不等式()()130f x f x +-≥的解集为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .11,32⎛⎤ ⎥⎝⎦C .12,43⎡⎫⎪⎢⎣⎭D .12,23⎡⎫⎪⎢⎣⎭3.1()xf x e x=-的零点所在的区间是( ) A .1(0,)2B .1(,1)2C .3(1,)2D .3(,2)24.已知函数y=f (x )定义域是[-2,3],则y=f (2x-1)的定义域是( ) A .50,2⎡⎤⎢⎥⎣⎦B .[]1,4-C .1,22⎡⎤-⎢⎥⎣⎦D .[]5,5-5.已知()201911,02log ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,若存在三个不同实数a ,b ,c 使得()()()f a f b f c ==,则abc 的取值范围是( ) A .(0,1)B .[-2,0)C .(]2,0-D .(0,1)6.函数f(x)=23x x +的零点所在的一个区间是 A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)7.若函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩单调递增,则实数a 的取值范围是( ) A .9,34⎛⎫⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()1,3D .()2,38.已知()()2,11,1x x f x f x x ⎧<⎪=⎨-≥⎪⎩,则()2log 7f =( )A .7B .72C .74D .789.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B I 中元素的个数为( ) A .3 B .2 C .1D .010.函数2y 34x x =--+的定义域为( )A .(41)--,B .(41)-,C .(11)-,D .(11]-, 11.已知函数()f x 的定义域为R .当0x <时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,11()()22f x f x +=-.则(6)f =( ) A .2-B .1-C .0D .212.函数()(1)f x x x =-在[,]m n 上的最小值为14-,最大值为2,则n m -的最大值为( ) A .52B .5222+C .32D .2二、填空题13.若函数()24,43,x x f x x x x λλ-≥⎧=⎨-+<⎩恰有2个零点,则λ的取值范围是______. 14.1232e 2(){log (1)2x x f x x x ,,-<=-≥,则f (f (2))的值为____________. 15.函数f(x)为奇函数,且x>0时,f(x)=x +1,则当x<0时,f(x)=________. 16.函数的定义域为______________.17.已知()21f x x -=,则()f x = ____.18.已知函数()log ,03,40a x x f x x x >⎧=⎨+-≤<⎩,其中0a >且1a ≠,若函数()f x 的图象上有且只有一对点关于y 轴对称,则a 的取值范围是__________. 19.若4log 3a =,则22a a -+= .20.已知实数0a ≠,函数2,1()2,1x a x f x x a x +<⎧=⎨--≥⎩若()()11f a f a -=+,则a 的值为___________. 三、解答题21.已知函数()()221+0g x ax ax b a =-+>在区间[2,3]上有最大值4和最小值1.(1)求a 、b 的值; (2)设()()2g x f x x =-,若不等式()0f x k ->在x ∈(]2,5上恒成立,求实数k 的取值范围.22.已知函数2()(2)3f x x a x =+--.(1)若函数()f x 在[]2,4-上是单调函数,求实数a 的取值范围;(2)当5a =,[1,1]x ∈-时,不等式()24f x m x >+-恒成立,求实数m 的范围. 23.计算下列各式的值:(Ⅰ)22log lg25lg4log (log 16)+- (Ⅱ)2102329273()( 6.9)()()482-----+24.已知()f x 是定义在()1,1-上的奇函数,且当01x <<时,()442xx f x =+,(1)求()f x 在()1,0-上的解析式;(2)求()f x 在()1,0-上的值域;(3)求13520172018201820182018f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L 的值. 25.已知()42log ,[116]f x x x =+∈,,函数()()()22[]g x f x f x =+.(1)求函数()g x 的定义域;(2)求函数()g x 的最大值及此时x 的值.26.近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资120万元,根据行业规定,每个城市至少要投资40万元,由前期市场调研可知:甲城市收益P 与投入a (单位:万元)满足6P =,乙城市收益Q 与投入b (单位:万元)满足124Q b =+,设甲城市的投入为x (单位:万元),两个城市的总收益为()f x (单位:万元).(1)当甲城市投资50万元时,求此时公司总收益;(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】解:函数y=tanx+sinx-|tanx-sinx|=2tan ,tan sin {2sin ,tan sin x x x x x x<≥分段画出函数图象如D 图示, 故选D .2.D解析:D 【解析】 【分析】根据题意可得函数()f x 的奇偶性以及单调性,据此原不等式转化为()()31f x f x ≥-,求解可得x 的取值范围,即可得出结论. 【详解】根据题意,函数()1ln 1xf x x-=+, 则有101xx->+,解可得11x -<<, 即函数的定义域为()1,1-,关于原点对称, 又由()()11lnln 11x xf x f x x x+--==-=--+, 即函数()f x 为奇函数, 设11xt x -=+,则y lnt =, 12111x t x x -==-++,在()1,1-上为减函数, 而y lnt =在()0,∞+上为增函数, 故()1ln1xf x x-=+在区间()1,1-上为减函数, ()()()()13013f x f x f x f x +-≥⇒≥--()()3131111311x x f x f x x x ≤-⎧⎪⇒≥-⇒-<<⎨⎪-<-<⎩,解可得:1223x ≤<,即不等式的解集为12,23⎡⎫⎪⎢⎣⎭; 故选:D . 【点睛】本题考查函数的奇偶性与单调性的综合应用,解题时不要忽略函数的定义域,属于中档题.3.B解析:B 【解析】 函数f (x )=e x ﹣1x 是(0,+∞)上的增函数,再根据f (12)2<0,f (1)=e ﹣1>0,可得f (12)f (1)<0,∴函数f (x )=e x ﹣1x 的零点所在的区间是(12,1),故选B .点睛:判定函数的零点所在区间,只需计算区间端点处的函数值,并判断是否异号,只要异号,则区间内至少有一个零点存在.4.C解析:C 【解析】∵函数y =f (x )定义域是[−2,3], ∴由−2⩽2x −1⩽3, 解得−12⩽x ⩽2, 即函数的定义域为1,22⎡⎤-⎢⎥⎣⎦,本题选择C 选项.5.C解析:C 【解析】 【分析】画出函数图像,根据图像得到20a -<≤,1bc =,得到答案. 【详解】()201911,02log ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,画出函数图像,如图所示:根据图像知:20a -<≤,20192019log log b c -=,故1bc =,故20abc -<≤. 故选:C .【点睛】本题考查了分段函数的零点问题,画出函数图像是解题的关键.6.B解析:B 【解析】试题分析:因为函数f(x)=2x +3x 在其定义域内是递增的,那么根据f(-1)=153022-=-<,f (0)=1+0=1>0,那么函数的零点存在性定理可知,函数的零点的区间为(-1,0),选B . 考点:本试题主要考查了函数零点的问题的运用.点评:解决该试题的关键是利用零点存在性定理,根据区间端点值的乘积小于零,得到函数的零点的区间.7.B解析:B 【解析】 【分析】利用函数的单调性,判断指数函数底数的取值范围,以及一次函数的单调性,及端点处函数值的大小关系列出不等式求解即可 【详解】解:Q 函数6(3)3,7(),7x a x x f x a x ---⎧=⎨>⎩…单调递增, ()301373a a a a⎧->⎪∴>⎨⎪-⨯-≤⎩解得934a ≤<所以实数a 的取值范围是9,34⎡⎫⎪⎢⎣⎭.故选:B . 【点睛】本题考查分段函数的应用,指数函数的性质,考查学生的计算能力,属于中档题.8.C解析:C 【解析】 【分析】根据函数的周期性以及分段函数的表达式,结合对数的运算法则,代入即可得到结论. 【详解】2222log 4log 7log 83=<<=Q ,20log 721∴<-<,()()2log 72227log 7log 7224f f -∴=-==. 故选:C . 【点睛】本题主要考查函数值的计算,根据分段函数的表达式以及函数的周期性进行转化是解决本题的关键.9.B解析:B 【解析】试题分析:集合中的元素为点集,由题意,可知集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点,22⎛ ⎝⎭,22⎛⎫-- ⎪ ⎪⎝⎭,则A B I 中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.10.C解析:C 【解析】要使函数有意义,需使210{340x x x +>--+>,即1{41x x >--<<,所以1 1.x -<< 故选C11.D解析:D 【解析】试题分析:当时,11()()22f x f x+=-,所以当时,函数是周期为的周期函数,所以,又函数是奇函数,所以,故选D.考点:函数的周期性和奇偶性.12.B解析:B【解析】【分析】根据二次函数的图象和性质,求出最大值和最小值对应的x的取值,然后利用数形结合即可得到结论.【详解】当x≥0时,f(x)=x(|x|﹣1)=x2﹣x=(x﹣12)2﹣1144≥-,当x<0时,f(x)=x(|x|﹣1)=﹣x2﹣x=﹣(x+12)2+14,作出函数f(x)的图象如图:当x≥0时,由f(x)=x2﹣x=2,解得x=2.当x=12时,f(12)=14-.当x<0时,由f(x)=)=﹣x2﹣x=14 -.即4x2+4x﹣1=0,解得x=24444432248-±+⨯-±=⨯=421282-±-±=,∴此时x=122-,∵[m,n]上的最小值为14-,最大值为2,∴n=2,12122m--≤≤,∴n﹣m的最大值为2﹣122--=5222+,故选:B.【点睛】本题主要考查函数最值的应用,利用二次函数的图象和性质是解决本题的关键,利用数形结合是解决本题的基本数学思想.二、填空题13.【解析】【分析】根据题意在同一个坐标系中作出函数和的图象结合图象分析可得答案【详解】根据题意在同一个坐标系中作出函数和的图象如图:若函数恰有2个零点即函数图象与轴有且仅有2个交点则或即的取值范围是:解析:(1,3](4,)+∞U . 【解析】 【分析】根据题意,在同一个坐标系中作出函数4y x =-和243y x x =-+的图象,结合图象分析可得答案. 【详解】根据题意,在同一个坐标系中作出函数4y x =-和243y x x =-+的图象,如图:若函数()f x 恰有2个零点,即函数()f x 图象与x 轴有且仅有2个交点, 则13λ<…或4λ>,即λ的取值范围是:(1,3](4,)+∞U 故答案为:(1,3](4,)+∞U .【点睛】本题考查分段函数的图象和函数的零点,考查数形结合思想的运用,考查发现问题解决问题的能力.14.2【解析】【分析】先求f (2)再根据f (2)值所在区间求f (f (2))【详解】由题意f (2)=log3(22–1)=1故f (f (2))=f (1)=2×e1–1=2故答案为:2【点睛】本题考查分段函数 解析:2 【解析】 【分析】先求f (2),再根据f (2)值所在区间求f (f (2)). 【详解】由题意,f (2)=log 3(22–1)=1,故f (f (2))=f (1)=2×e 1–1=2,故答案为:2. 【点睛】本题考查分段函数求值,考查对应性以及基本求解能力.15.【解析】当x<0时-x>0∴f(-x)=+1又f(-x)=-f(x)∴f(x)=故填 解析:1x ---【解析】当x <0时,-x >0,∴f (-x )= x -+1,又f (-x )=-f (x ),∴f (x )=1x ---,故填1x ---.16.-11【解析】【分析】根据定义域基本要求可得不等式组解不等式组取交集得到结果【详解】由题意得:1-x2≥02cosx -1>0⇒-1≤x≤1cosx>12cosx>12⇒x ∈-π3+2kππ3+2kπ 解析:【解析】 【分析】根据定义域基本要求可得不等式组,解不等式组取交集得到结果. 【详解】由题意得:,函数定义域为:【点睛】本题考查具体函数定义域的求解问题,关键是根据定义域的基本要求得到不等式组.17.【解析】【分析】利用换元法求函数解析式【详解】令则代入可得到即【点睛】本题考查利用换元法求函数解析式考查基本代换求解能力 解析:()21?x + 【解析】 【分析】利用换元法求函数解析式. 【详解】 令 1t x -=则 t 1,x =+代入 ()21f x x -=可得到()()21f t t =+ ,即()()21f x x =+. 【点睛】本题考查利用换元法求函数解析式,考查基本代换求解能力.18.【解析】将在轴左侧的图象关于轴对称到右边与在轴右侧的图象有且只有一个交点当时一定满足当时必须解得综上的取值范围是点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关解析:(0,1)1,4⋃() 【解析】将()f x 在y 轴左侧的图象关于y 轴对称到右边,与()f x 在y 轴右侧的图象有且只有一个交点.当01a <<时一定满足,当1a >时必须log 41a >,解得4a <.综上a 的取值范围是()0,11,4⋃().点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.19.【解析】【分析】【详解】∵∴∴考点:对数的计算【解析】 【分析】 【详解】∵4log 3a =,∴432a a =⇒=222a -+== 考点:对数的计算20.【解析】【分析】分两种情况讨论分别利用分段函数的解析式求解方程从而可得结果【详解】因为所以当时解得:舍去;当时解得符合题意故答案为【点睛】本题主要考查分段函数的解析式属于中档题对于分段函数解析式的考解析:34a =-【解析】 【分析】分0a >,0a <两种情况讨论,分别利用分段函数的解析式求解方程()()11f a f a -=+,从而可得结果.【详解】因为2,1()2,1x a x f x x a x +<⎧=⎨--≥⎩所以,当0a >时,()()2(1)(11)21a f a f a a a a -+=-+=⇒--+,解得:3,2a =-舍去;当0a <时,()()2(1)(11)21a f a f a a a a ++=--=⇒--+,解得34a =-,符合题意,故答案为34-. 【点睛】本题主要考查分段函数的解析式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.三、解答题21.(1)1,0a b ==;(2)4k <. 【解析】【分析】(1)函数()g x 的对称轴方程为1x =,开口向上,则在[]2,3上单调递增,则可根据最值列出方程,可解得,a b 的值.(2)由题意只需()min k f x <,则只需要求出()f x 在(]2,5上的最小值,然后运用基本不等式求最值即可. 【详解】解:(1)()g x Q 开口方向向上,且对称轴方程为 1x =,()g x ∴在[]2,3上单调递增()()()()min max 2441139614g x g a a b g x g a a b ⎧==-++=⎪∴⎨==-++=⎪⎩.解得1a =且0b =.(2)()0f x k ->Q 在(]2,5x ∈上恒成立 所以只需()min k f x <.有(1)知()221112224222x x f x x x x x x -+==+=-++≥=--- 当且仅当122x x -=-,即3x =时等号成立. 4k ∴<. 【点睛】本题考查二次函数的最值的求法,注意讨论对称轴和区间的位置关系,考查不等式恒成立问题的解法,注意运用参数分离和基本不等式的应用,属于中档题. 22.(1)(,6][6,+)∞∞--U ;(2)3(,)4∞-. 【解析】 【分析】(1)首先求函数的对称轴22a x -=-,令242a --≥或 222a --≤-,求实数a 的取值范围;(2)不等式等价于21x x m ++>恒成立,令()21g x x x =++,转化为()min g x m >,[]1,1x ∈-恒成立,求m 的取值范围. 【详解】解:(1)函数()f x 的对称轴为22a x -=-, 又函数()f x 在[]2,4-上是单调函数,242a -∴-≥或 222a --≤-, 解得6a ≤-或6a ≥.∴实数a 的取值范围为(,6][6,)-∞-+∞U ;(2)当5a =,[]1,1x ∈-时,()24f x m x >+-恒成立,即21x x m ++>恒成立, 令()21g x x x =++,()min g x m >恒成立,函数()g x 的对称轴[]11,12x =-∈-,∴()min 1324g x g ⎛⎫=-= ⎪⎝⎭,即34m >, m ∴的范围为3(,)4-∞.【点睛】本题考查二次函数单调性,恒成立的的综合问题,属于基础题型.23.(Ⅰ)12;(Ⅱ)12. 【解析】试题分析:(1)根据对数运算法则log ,lg lg lg ,ma a m m n mn =+= 化简求值(2)根据指数运算法则01(),1,m n mn mm a a a a a-===,化简求值 试题解析:(Ⅰ)原式()3111log 3lg 254222222=+⨯-=+-=. (Ⅱ)原式1223233343441112292992⎛⎫⨯⨯- ⎪⎝⎭⎛⎫⎛⎫=--+=--+= ⎪ ⎪⎝⎭⎝⎭. 24.(1)()1124xf x -=+⋅(2)2133,⎛⎫-- ⎪⎝⎭(3)10092 【解析】 【分析】(1)令0x <<-1,则01x <-<,代入解析式可求得()f x -.再根据奇函数性质即可求得()f x 在()1,0-上的解析式;(2)利用分析法,先求得当0x <<-1时,4x 的值域,即可逐步得到()f x 在()1,0-上的值域; (3)根据函数解析式及所求式子的特征,检验()()1f x f x +-的值,即可由函数的性质求解. 【详解】(1)当0x <<-1时,01x <-<,()4142124x x xf x ---==++⋅, 因为()f x 是()1,1-上的奇函数 所以()()1124x f x f x -=--=+⋅, (2)当0x <<-1时,14,14x⎛⎫∈ ⎪⎝⎭,3124,32x ⎛⎫+⋅∈ ⎪⎝⎭,121,12433x-⎛⎫∈-- ⎪+⋅⎝⎭, 所以()f x 在()1,0-上的值域为21,33⎛⎫-- ⎪⎝⎭; (3)当01x <<时,()442x x f x =+,()()11444411424242424x x x x x x xf x f x --+-=+=+=++++⋅, 所以1201732015520131201820182018201820182018f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=+=+== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L , 故135********20182018201820182f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L . 【点睛】本题考查了奇函数的性质及解析式求法,利用分析法求函数的值域,函数性质的推断与证明,对所给条件的分析能力要求较高,属于中档题.25.(1)[1]4,;(2)4x =时,函数有最大值13. 【解析】 【分析】(1)由已知()f x 的定义域及复合函数的定义域的求解可知,2116116x x ≤≤⎧⎨≤≤⎩,解不等式可求(2)由已知可求()()()22[]g x f x f x +=,结合二次函数的性质可求函数g x ()的最值及相应的x . 【详解】解:(1)()42log [116]f x x x =+∈Q ,,,()()()22[]g x f x f x +=.由题意可得,2116116x x ≤≤⎧⎨≤≤⎩, 解可得,14x ≤≤即函数()g x 的定义域[1]4,; (2)()42log ,[116]f x x x =+∈Q ,, ()()()()222224444[]2log 2log log 6log 6g x f x f x x x x x ∴=+=+++=++设4log t x =,则[01]t ∈,, 而()()226633g t t t t =++=+-在[0]1,单调递增, 当1t =,即4x =时,函数有最大值13.【点睛】本题主要考查了对数函数的性质,二次函数闭区间上的最值求解,及复合函数的定义域的求解,本题中的函数()g x 的定义域是容易出错点.26.(1)43.5(2)当甲城市投资72万元,乙城市投资48万元时,总收益最大,且最大收益为44万元. 【解析】(1)当50x =时,此时甲城市投资50万元,乙城市投资70万元,所以总收益()50f =167024+⨯+=43.5(万元). (2)由题知,甲城市投资x 万元,乙城市投资()120x -万元,所以()f x =()1612024x +-+=126,4x -+ 依题意得4012040x x ≥⎧⎨-≥⎩,解得4080x ≤≤,故()f x =()12640804x x -+≤≤,令t =,则t ⎡∈⎣,所以y =21264t -++=21(444t --+.当t =,即72x =万元时,y 的最大值为44万元,所以当甲城市投资72万元,乙城市投资48万元时,总收益最大,且最大收益为44万元.。

2020-2021学年上学期高一期中数学试题及答案

2020-2021学年上学期高一期中数学试题及答案

2020-2021学年上学期高一期中数学试题及答案第I卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1•设全集为R,集合A = {x∖0<x<2}, B = {xlx≥l),则An(QB)=( )A.{xlθ<x≤l)B. {xlθ<x<l)C. {xll≤x<2}D. {xlθ<J<2)【答案】B【解析】由题意可得C R B = {x∣x<l}, 结合交集的泄义可得An (C R B) = {O<X<1},故本题选择B选项.2.已知幕函数/(X)过点(2,丄),则/⑴在其定义域内( )4A.为偶函数B.为奇函数C.有最大值D.有最小值【答案】A【解析】设幕函数为fM = x∖代入点(2,1),即2u=l, Λf∕ = -2,4 4f(x) = χ-2,定义域为(-00,0)U(O,+OO),为偶函数且/(x) = x^2∈(0,+oo),故选A.3.幕函数f(x) = (m2-2m + ∖)x2m~l在(0,乜)上为增函数,则实数加的值为( )A. 0B. 1C. 1 或2D. 2【答案】D【解析】因为函数/(X)是幕函数,所以加2_2加+ 1 =],解得加=0或Hl = 2, 因为函数/(X)在(0,-KC)上为增函数,所以2∕w-l>0,即w>∣, I n = 2, 故选D・4.函数f(x) =Ig(X2-I)V-X2 +x + 2的定义域为(A. (-∞厂2) U(I,+∞) B ・(一2,1) C. (-∞,-l)U(2,+∞)D. (1,2)【答案】Dx 2-l>O 【解析】?^l<x<2, A 函数的左义域为(1,2)・【答案】Cα-lvθ OVaVl,得 ≥β≤"<l,故选 C.22(α-l)-2d ≥ IOg (I 2下而各组函数中是同一函数的是(^(Λ) = √X +1 √x -l【答案】A【解析】函数y = 4-2?与V = -X √Σ27的定义域均为(-O 0],且 y = √=2√ =^J-2x ∙ y/7 = -Xy∣-2x ‘所以两函数对应法则相同,故A 正确:函数V = (√7)2的左义域为[O, +S),函数V=IxI 的左义域为R , 所以两函数不是同一函数,故B 错误;2函数/(x) = X 的定义域为R ,函数g (X)=—的左义域为{x∣x≠O}t 所以两函数不是同一函数,故C 错误;5.若函数/U)=在R 上单调递减,则实数d 的取值范用是(-x fc +x+2>0【解析】若函数∕ω =(G-I)X-2α, X<2y = J-2χ3 与 y = -x√-2x(G-I)X -2G , x<2函数^(X) = √7+T.√7^T 的上义域为[i,4∙s),所以两函数不是同一函数,故D 错误,【解析]V fM 与gd)都是偶函数,∙∙J(χ)∙g(χ)也是偶函数, 由此可排除A 、D, 又由 X→-H>o 时,/(x)∙^(x)→→0 ,可排除 B, 故选C.8・IOg W 2 = «, IOg Jπ3 = ⅛,则加2网的值为( )A. 6B ・ 7 C. 12 D ・ 18【答案】C【解析】Tlog 川2 = α, log fπ3 = Z?, ∙∙∙"{=2, =3,Irr a ^ = 〃严〃/ = (Hi o )2Hi h =22×3 = 12,故选 C.9.若函数/(x) = log l (-x 2+4x + 5)在区间(3∕n -2√π + 2)内单调递增.则实数加的取值范围 为()函数/(x) = √2√^T的泄义域为[芈2 ,+oθ)U(-°°,-故选A.7.函数/(x) = log 2g(x) = -x 2+2 ,则函数f(x)∙g(x)的图象大致()【答案】C【答案】C【解析】解不等式-χ2+4x+5>0,即4x-5v0,解得一1VXV5, 内层函数W =→2+4.V + 5在区间(72)上单调递增,在区间(2,5)上单调递减, 而外层函数y = Iog 1 "在左义域上为减函数,2由复合函数法可知,函数fW = IOg I (→∙2÷4x + 5)的单调递增区间为(2,5), 2由于函数f(x) = IOg I (-X 2+ 4Λ∙+5)在区间(3m- 2, m + 2)上单调递增,-2≥24所以,3ιn -2<m + 2 9 解得一 Smv2,3//? + 2 ≤ 5 4因此,实数加的取值范围是[-,2),故选C.【答案】Br的+3 = 4 U-IOgM = 4【解析】因为/(α)=4,所以< C 或(C a≤0a>0故选B.11.已知定义在R 上的奇函数/(X)满足/(x+2) = -∕(x),当时[0,1] , /(x) = 2x -l,则()A. /⑹ nV*)B. /⑹ vf(¥)v/(_7)22X^, +310.设函数fM = ↑t IIl-IOg2 九4 B. [亍4 C. l-,2)弋,若/(¢/) = 4,则实数d 的值为( x>0A.B.D.1 16a≤0 a>0C. /(-7) < /(y) < /(6)D. /(y) < /(6) < /(-7)【答案】B【解析】由题意得,因为/(x+2) = -∕(x),则/(x+4) = ∕(x), 所以函数/S)表示以4为周期的周期函数, 又因为/⑴ 为奇函数,所以/(-X) =-/U),所以/(6) = /(4 + 2) = /(2) = -/(O) = 0, /(-7) = /(-8 + 1) = /(1) = 1,12.已知函数/(Λ-) = Iog 1 (?-av-«)对任意两个不相等的实数Λ-p x 2∈(-σ□,-l),都满3 2足不等式"" >0,则实数G 的取值范围是()A- I -I ^) B- (^-Il c∙ hl 41D ∙ [7》【答案】C瞬析嘶 詈严2>。

广东诗莞四中2020_2021学年高一数学上学期第四周周测试题

广东诗莞四中2020_2021学年高一数学上学期第四周周测试题

广东省东莞四中2020-2021学年高一数学上学期第四周周测试题一、单选题:每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列在表示元素与集合或集合与集合之间的关系中,正确的是( ) A .{}{}21,2∈B .{}1,2∅∈C .{}31x x ∉>-D .{}{}200x x x x <⊆>2.已知集合A ={}12x x <<,B =302x x ⎧⎫<<⎨⎬⎩⎭,则下图阴影部分表示的集合是( )A .{}01x x ≤≤ B .{}01x x <≤C .{}01x x ≤< D .{}01x x <<3.集合{}(,)0,C x y y x =-=集合11(,),222y x D x y y x ⎧⎫⎧=+⎪⎪⎪=⎨⎨⎬⎪⎪⎪=-⎩⎩⎭则集合,C D 之间的关系为( ) A .D C ∈ B .C D ∈ C .C D ⊆ D .D C ⊆4.已知集合A={}1,2,3,B={}2,4. 定义集合A ,B 之间的运算A*B={|}x x A x B ∈∉且,则集合A*B 等于( ) A .{}1,2,3 B .{}2,4C .{}1,3D .5.满足集合{}a ⊂≠P ⊆{},,a b c 的集合P 的个数是( )A .1B .2C .3D .46.命题“对任意x ∈R ,都有20x ≥”的否定为( ) A .对任意x ∈R ,都有20x < B .不存在x ∈R ,都有20x < C .存在0x ∉R ,使得200x < D .存在0x ∈R ,使得200x <7.设集合{}|2Mx x =>,{}|3P x x =<,那么“x M ∈或x P ∈”是“x M P ∈⋂”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.下列命题中真命题是( )A .“”是的充分条件 B .“”是的必要条件C .“是“”的必要条件 D .“”是“”的充分条件二、 多选题:有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.设集合2{|0}A x x x =+=,则下列表述不正确的是( )A .{0}A ∈B .1A ∉C .{1}A -∈D .0A ∈10.给出以下几组集合,其中是相等集合的有( )A .{}{}(5,3),5,3M N =-=-B .{}{}1,3,3,1M N =-=-C .{},0M N =∅=D .{}{}22|320,|320M x x x N y y y =-+==-+=11.下列说法正确的是( )A .“ac bc =”是“a b =”的充分不必要条件B .“11a b>”是“a b <”的既不充分也不必要条件 C .若“x A ∈”是“x B ∈”的充分条件,则A B ⊆D .“0a b >>”是“nna b >(n ∈N ,2n ≥)”的充要条件 12.下列结论成立的是( )A .若ac bc >,则a b >B .若a b >,c d <,则a c b d +>+C .若a b >,c d >,则a db c ->- D .若0a b <<,则22a b >三、填空题: 每小题5分,共20分13.“a >1且b >1”是“ab >1”成立的____条件.(填“充分不必要”,“必要不充分”,“充要条件”或“既不充分也不必要”).14.设a ,b∈R,集合{1,a +b ,a}=,则b -a =________. 15.若集合A ==∅,则实数a 的取值范围是 .16.已知条件p :{}260x x x +-=,条件q :{}10x mx +=,且q 是p 的充分不必要条件,则m 的取值集合是 .四、解答题:每题12分,解答应写出文字说明、证明过程或演算步骤。

2020-2021东莞市高一数学上期中一模试题(含答案)

2020-2021东莞市高一数学上期中一模试题(含答案)

2020-2021东莞市高一数学上期中一模试题(含答案)一、选择题1.对于实数x ,规定[]x 表示不大于x 的最大整数,那么不等式[][]2436450x x -+<成立的x 的取值范围是( ) A .315,22⎛⎫⎪⎝⎭B .[]28,C .[)2,8D .[]2,72.已知函数)25fx =+,则()f x 的解析式为( )A .()21f x x =+ B .()()212f x x x =+≥C .()2f x x =D .()()22f x xx =≥3.已知全集U =R ,集合A ={x |x 2-x -6≤0},B ={x |14x x +->0},那么集合A ∩(∁U B )=( )A .{x |-2≤x <4}B .{x |x ≤3或x ≥4}C .{x |-2≤x <-1}D .{x |-1≤x ≤3}4.设奇函数()f x 在[1,1]-上是增函数,且(1)1f -=-,若函数2()21f x t at ≤-+对所有的[1,1]x ∈-都成立,当[1,1]a ∈-时,则t 的取值范围是( ) A .1122t -≤≤ B .22t -≤≤C .12t ≥或12t ≤-或0t = D .2t ≥或2t ≤-或0t =5.已知函数2221,2,()2,2,x x x x f x x -⎧-++<=⎨≥⎩且存在三个不同的实数123,,x x x ,使得123()()()f x f x f x ==,则123x x x ++的取值范围为( )A .(4,5)B .[4,5)C .(4,5]D .[4,5]6.已知111,2,,3,23a ⎧⎫∈-⎨⎬⎩⎭,若()a f x x =为奇函数,且在(0,)+∞上单调递增,则实数a 的值是( ) A .1,3-B .1,33C .11,,33-D .11,,3327.已知定义在R 上的函数()21()x mf x m -=-为实数为偶函数,记0.5(log 3),a f =2b (log 5),c (2)f f m ==,则,,a b c ,的大小关系为( )A .a b c <<B .c a b <<C .a c b <<D .c b a <<8.若函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩单调递增,则实数a 的取值范围是( )A.9,34⎛⎫⎪⎝⎭B.9,34⎡⎫⎪⎢⎣⎭C.()1,3D.()2,39.已知集合{|20}A x x=-<,{|}B x x a=<,若A B A=I,则实数a的取值范围是( )A.(,2]-∞-B.[2,)+∞C.(,2]-∞D.[2,)-+∞10.已知函数21,0,()|log,0,x xf xx x⎧+≤⎪=⎨⎪⎩若函数()y f x a=-有四个零点1x,2x,3x,4x,且12x x<3x<4x<,则312342()x x xx x++的取值范围是()A.(0,1)B.(1,0)-C.(0,1]D.[1,0)-11.已知()()2,11,1x xf xf x x⎧<⎪=⎨-≥⎪⎩,则()2log7f=()A.7B.72C.74D.7812.已知函数()()()ln1ln1f x x x=+--,若实数a满足()()120f a f a+->,则a 的取值范围是()A.()1,1-B.()0,1C.10,2⎛⎫⎪⎝⎭D.1,12⎛⎫⎪⎝⎭二、填空题13.若函数()24,43,x xf xx x xλλ-≥⎧=⎨-+<⎩恰有2个零点,则λ的取值范围是______. 14.设25a b m==,且112a b+=,则m=______.15.某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算.某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为____元.16.设函数()f x是定义在R上的偶函数,记2()()g x f x x=-,且函数()g x在区间[0,)+∞上是增函数,则不等式2(2)(2)4f x f x x+->+的解集为_____17.函数的定义域为___.18.已知()21f x x -=,则()f x = ____.19.用{}min ,,a b c 表示,,a b c 三个数中最小值,则函数{}()min 41,4,8f x x x x =++-+的最大值是 . 20.已知()2x a x af x ++-=,g(x)=ax+1 ,其中0a >,若()f x 与()g x 的图象有两个不同的交点,则a 的取值范围是______________.三、解答题21.一种放射性元素,最初的质量为500g ,按每年10﹪衰减. (Ⅰ)求t 年后,这种放射性元素质量ω的表达式;(Ⅱ)由求出的函数表达式,求这种放射性元素的半衰期(剩留量为原来的一半所需要的时间).(精确到0.1;参考数据:)22.求关于x 的方程2210ax x ++=至少有一个负根的充要条件.23.2019年,随着中国第一款5G 手机投入市场,5G 技术已经进入高速发展阶段.已知某5G 手机生产厂家通过数据分析,得到如下规律:每生产手机()010x x ≤≤万台,其总成本为()G x ,其中固定成本为800万元,并且每生产1万台的生产成本为1000万元(总成本=固定成本+生产成本),销售收入()R x 万元满足()24004200,05,20003800,510.x x x R x x x ⎧-+≤≤=⎨-<≤⎩(1)将利润()f x 表示为产量x 万台的函数;(2)当产量x 为何值时,公司所获利润最大?最大利润为多少万元?24.已知函数()()2210g x ax ax b a =-++>在区间[]2,3上有最大值4和最小值1,设()()g x f x x=. (1)求,a b 的值; (2)若不等式()220xxf k -⋅≥在区间[]1,1-上恒成立,求实数k 的取值范围.25.已知集合A ={x |x 2-2x -3≤0},B ={x |x 2-2mx +m 2-4≤0,m ∈R ,x ∈R}. (1)若A ∩B ={x |0≤x ≤3},求实数m 的值; (2)若A ⊆∁R B ,求实数m 的取值范围.26.设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,tan a b A =,且B 为钝角. (1)证明:2B A π-=; (2)求sin sin A C +的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【解析】 【分析】 【详解】分析:先解一元二次不等式得315[]22x <<,再根据[]x 定义求结果. 详解:因为[][]2436450x x -+<,所以315[]22x << 因为[][]2436450x x -+<,所以28x ≤<, 选C.点睛:本题考查一元二次不等式解法以及取整定义的理解,考查基本求解能力.2.B解析:B 【解析】 【分析】利用换元法求函数解析式,注意换元后自变量范围变化. 【详解】2t =,则2t ≥,所以()()()()2224t 251,2,f t t t t =-+-+=+≥即()21f x x =+ ()2x ≥.【点睛】本题考查函数解析式,考查基本求解能力.注意换元后自变量范围变化.3.D解析:D 【解析】依题意A ={x |-2≤x ≤3},B ={x |x <-1或x >4},故∁U B ={x |-1≤x ≤4},故A ∩(∁U B )={x |-1≤x ≤3},故选D.4.D解析:D 【解析】试题分析:奇函数()f x 在[]1,1-上是增函数, 且()11f -=-,在[]1,1-最大值是21,121t at ∴≤-+,当0t ≠时, 则220t at -≥成立, 又[]1,1a ∈-,令()[]22,1,1r a ta t a =-+∈-, 当0t >时,()r a 是减函数, 故令()10r ≥解得2t ≥, 当0t <时,()r a 是增函数, 故令()10r -≥,解得2t ≤-,综上知,2t ≥或2t ≤-或0t =,故选D. 考点:1、函数的奇偶性与单调性能;2、不等式恒成立问题.【方法点晴】本题主要考查函数的奇偶性与单调性能、不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合(()y f x =图象在()y g x =上方即可);③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数.本题是利用方法①求得t 的范围.5.A解析:A 【解析】不妨设123x x x <<,当2x <时,()()212f x x =--+,此时二次函数的对称轴为1x =,最大值为2,作出函数()f x 的图象如图,由222x -=得3x =,由()()()123f x f x f x ==,,且1212x x +=,即122x x +=,12332,x x x x ∴++=+ 由图可知3323,425x x <<∴<+<, 即123x x x ++的取值范围是()4,5,故选A.6.B解析:B 【解析】 【分析】先根据奇函数性质确定a 取法,再根据单调性进行取舍,进而确定选项. 【详解】因为()af x x =为奇函数,所以11,3,3a ⎧⎫∈-⎨⎬⎩⎭因为()()0,f x +∞在上单调递增,所以13,3a ⎧⎫∈⎨⎬⎩⎭因此选B. 【点睛】本题考查幂函数奇偶性与单调性,考查基本判断选择能力.7.B解析:B 【解析】由()f x 为偶函数得0m =,所以0,52log 3log 32121312,a =-=-=-=2log 521514b =-=-=,0210c =-=,所以c a b <<,故选B.考点:本题主要考查函数奇偶性及对数运算.8.B解析:B 【解析】 【分析】利用函数的单调性,判断指数函数底数的取值范围,以及一次函数的单调性,及端点处函数值的大小关系列出不等式求解即可 【详解】解:Q 函数6(3)3,7(),7x a x x f x a x ---⎧=⎨>⎩…单调递增,()301373a a a a⎧->⎪∴>⎨⎪-⨯-≤⎩解得934a ≤<所以实数a 的取值范围是9,34⎡⎫⎪⎢⎣⎭. 故选:B . 【点睛】本题考查分段函数的应用,指数函数的性质,考查学生的计算能力,属于中档题.9.B解析:B 【解析】由题意可得{}|2A x x =<,结合交集的定义可得实数a 的取值范围是[)2,+∞ 本题选择B 选项.10.C解析:C 【解析】作出函数函数()21,0,|log ,0,x x f x x x ⎧+≤⎪=⎨⎪⎩的图象如图所示,由图象可知,123442,1,12x x x x x +=-=<≤, ∴ ()312334422222x x x x x x x ++=-+=-+, ∵422y x =-+在412x <≤上单调递增, ∴41021x <-+≤,即所求范围为(]0,1。

广东省东莞市2023-2024学年高一数学上学期期中试卷(含答案)

广东省东莞市2023-2024学年高一数学上学期期中试卷(含答案)

,集合 ⺙ 㖙
ᦙ , ⺙㖙
.
(1)求

(2)求
18.已知 是定义在 , 上的偶函数,且
, 时,
(1)求函数 的表达式;
(2)判断并证明函数在区间 , 上的单调性.
⺙ 䁟.
19.已知函数
⺙ 䁟 䁟.
(1)若 ⺙
,判断
(2)若对任意
,䁟 ,
的奇偶性并加以证明. 䀀 恒成立,求实数 的取值范围.
20.已知二次函数 ⺙ 䁟 䁟 ,不等式
D. , 䁟
6.设函数 ⺙
, ,则
䁟 ,ᦙ
⺙( )
A.6
B.7
C.9
D.10
7.给出幂函数:①f(x)=x;②f(x)=x2;③f(x)=x3;④f(x)= ;⑤f(x)= .其中满足条件
䁟䀀

(x1>x2>0)的函数的个数是( )
A.1 个
B.2 个
C.3 个
D.4 个
8.已知函数 ⺙
, ,䀀
满足对任意实数
题号
广东省东莞市 2023-2024 学年高一数学上学期期中试卷
姓名:__________ 班级:__________考号:__________




总分
评分
一、单选题 1.下列元素与集合的关系中,正确的是( )
A.
B.

C.
D.
2.已知集合 ⺙ 㖙 , , , ⺙ 㖙 , ,
,则 ⺙( )
A.0
ᦙ ”是“ ᦙ ᦙ ”的必要
5
【解析】【解答】由已知得
所以函数
⺙ 䁟䁟
故答案为:B.
䀀 ,解得 䀀 且 的定义域为 ,

2024-2025学年广东省东莞市两校高一(上)期中数学试卷(含答案)

2024-2025学年广东省东莞市两校高一(上)期中数学试卷(含答案)

2024-2025学年广东省东莞市两校高一(上)期中数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.集合A={(x,y)|y=2x},B={(x,y)|y=4−2x},则A∩B=( )A. {1,2}B. {(1,2)}C. {(2,1)}D. ⌀2.Q是有理数集,R是实数集,命题p:∀x∈Q,x∈∁R Q,则( )A. p是真命题,¬p:∃x∈Q,x∉∁R QB. p是真命题,¬p:∃x∉Q,x∉∁R QC. p是假命题,¬p:∃x∈Q,x∉∁R QD. p是假命题,¬p:∃x∉Q,x∉∁R Q3.“方程x2−ax+1=0有实根”是“a≥2”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.函数f(x)=xx2−3x+2的定义域是( )A. [0,+∞)B. [0,1)∪(1,+∞)C. [0,2)∪(2,+∞)D. [0,1)∪(1,2)∪(2,+∞)5.函数f(x)=1x+1+2在[0,1]上的最小值为( )A. 2B. 52C. 22D. 36.设a=0.91.2,b=1.20.3,c=1.10.3,则( )A. b>c>aB. a>b>cC. b>a>cD. a>c>b7.若f(x)={x2−2ax+a,x<0(a−3)x+1,x≥0在(−∞,+∞)上是减函数,则( )A. 0≤a≤3B. 0≤a<3C. 1≤a≤3D. 1≤a<38.已知正实数a,b满足2a+b=6,则2a +1b+2的最小值为( )A. 45B. 43C. 98D. 94二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

9.下列“若p,则q”形式的命题中,p是q的充分不必要条件的是( )A. 若a >b ,则ac 2>bc 2B. 若ac 2>bc 2,则a >bC. 若a <b <0,则1a >1bD. 若1a >1b ,则a <b <010.下列与函数有关的命题中,正确的是( )A. 若f(4x−1)=x 2−2x−1,则f(3)=2B. 若幂函数f(x)的图象经过点(8,2 2),则f(14)=2C. 若奇函数f(x)在(0,+∞)有最小值4,则f(x)在(−∞,0)有最大值−4D. 若偶函数f(x)在(0,+∞)是减函数,则f(x)在(−∞,0)是增函数11.下列求最值的运算中,运算方法错误的有( )A. 当x <0时,x +1x =−[(−x)+1−x ]≤−2,当且仅当x =1x 取等,解得x =−1或1,又由x <0,所以x =−1,故x <0时,x +1x 的最大值是−2.B. 当x >1时,x +2x−1≥2 x ⋅2x−1,当且仅当x =2x−1取取等,解得x =−1或2,又由x >1,所以x =2,故x >1时,x +2x−1的最小值为4.C. 由于x 2+9x 2+4=x 2+4+9x 2+4−4≥2 (x 2+4)⋅9x 2+4−4=2,当且仅当x 2+4=9x 2+4取等,故x 2+9x 2+4的最小值是2.D. 当x ,y >0,且x +4y =2时,由于2=x +4y ≥2 x ⋅4y =4 xy ,∴ xy ≤12,又1x +1y ≥2 1x ⋅1y =2xy ≥4,当且仅当x =4y ,x =y 取等,故当x ,y >0,且2=x +4y 时,1x +1y 的最小值为4.三、填空题:本题共3小题,每小题5分,共15分。

2020-2021东莞市高一数学上期中第一次模拟试题(含答案)

2020-2021东莞市高一数学上期中第一次模拟试题(含答案)

2020-2021东莞市高一数学上期中第一次模拟试题(含答案)一、选择题1.设集合{1,2,3,4}A =,{}1,0,2,3B =-,{|12}C x R x =∈-≤<,则()A B C =U IA .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}2.已知函数f (x )=23,0{log ,0x x x x ≤>那么f 1(())8f 的值为( )A .27B .127C .-27D .-1273.设()(),0121,1x x f x x x ⎧<<⎪=⎨-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭( ) A .2B .4C .6D .84.1()xf x e x=-的零点所在的区间是( ) A .1(0,)2B .1(,1)2C .3(1,)2D .3(,2)25.已知0.6log 0.5a =,ln0.5b =,0.50.6c =,则( ) A .a c b >>B .a b c >>C .c a b >>D .c b a >>6.函数()1ln f x x x ⎛⎫=-⎪⎝⎭的图象大致是( ) A . B .C .D .7.函数2()ln(28)f x x x =--的单调递增区间是 A .(,2)-∞- B .(,1)-∞ C .(1,)+∞D .(4,)+∞8.已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞) 9.若a >b >0,0<c <1,则A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b10.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =I ,则实数a 的取值范围是( ) A .(,2]-∞-B .[2,)+∞C .(,2]-∞D .[2,)-+∞11.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B I 中元素的个数为( ) A .3B .2C .1D .012.已知函数()f x 的定义域为R .当0x <时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,11()()22f x f x +=-.则(6)f =( ) A .2-B .1-C .0D .2二、填空题13.方程组2040x y x +=⎧⎨-=⎩的解组成的集合为_________.14.已知函数()(0,1)x f x a b a a =+>≠的定义域和值域都是[]1,0-,则a b += .15.己知函数()f x 是定义在R 上的周期为2的奇函数,01x <<时,()4xf x =,5()(2019)2f f -+的值是____.16.某在校大学生提前创业,想开一家服装专卖店,经过预算,店面装修费为10000元,每天需要房租水电等费用100元,受营销方法、经营信誉度等因素的影响,专卖店销售总收入P 与店面经营天数x 的关系是P(x)=21300,0300245000,300x x x x ⎧-≤<⎪⎨⎪≥⎩则总利润最大时店面经营天数是___.17.已知偶函数()f x 满足3()8(0)f x x x =-≥,则(2)0f x ->的解集为___ ___18.已知2a =5b =m ,且11a b+=1,则m =____. 19.函数的定义域为______________.20.10343383log 27()()161255---+=__________.三、解答题21.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益()f x 与投资额x 成正比,且投资1万元时的收益为18万元,投资股票等风险型产品的收益()g x 与投资额x 的算术平方根成正比,且投资1万元时的收益为0.5万元, (1)分别写出两种产品的收益与投资额的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益为多少万元?22.已知函数f (x )=4x -2·2x +1-6,其中x ∈[0,3]. (1)求函数f (x )的最大值和最小值;(2)若实数a 满足f (x )-a ≥0恒成立,求a 的取值范围. 23.已知函数2()(2)3f x x a x =+--.(1)若函数()f x 在[]2,4-上是单调函数,求实数a 的取值范围;(2)当5a =,[1,1]x ∈-时,不等式()24f x m x >+-恒成立,求实数m 的范围. 24.若()f x 是定义在(0,)+∞上的函数,且满足()()()xf f x f y y=-, 当1x >时,()0f x >. (1)判断并证明函数的单调性;(2)若(2)1f =,解不等式1(3)()2f x f x+-<.25.已知函数21()(,,)ax f x a b c Z bx c+=∈+是奇函数,且(1)2,(2)3f f =<(1)求a ,b ,c 的值;(2)判断函数()f x 在[1,)+∞上的单调性,并用定义证明你的结论; (3)解关于t 的不等式:2(1)(3)0f t f t --++>. 26.已知函数2()log (0,1)2axf x a a x-=>≠+. (Ⅰ)当a=3时,求函数()f x 在[1,1]x ∈-上的最大值和最小值;(Ⅱ)求函数()f x 的定义域,并求函数2()()(24)4f x g x ax x a=--++的值域.(用a 表示)【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果.详解:由并集的定义可得:{}1,0,1,2,3,4A B ⋃=-, 结合交集的定义可知:(){}1,0,1A B C ⋃⋂=-. 本题选择C 选项.点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力.2.B解析:B 【解析】 【分析】利用分段函数先求f (1)8)的值,然后在求出f 1(())8f 的值. 【详解】 f=log 2=log 22-3=-3,f=f (-3)=3-3=.【点睛】本题主要考查分段函数求值以及指数函数、对数函数的基本运算,属基础题.3.C解析:C 【解析】由1x ≥时()()21f x x =-是增函数可知,若1a ≥,则()()1f a f a ≠+,所以01a <<,由()(+1)f a f a =2(11)a a =+-,解得14a =,则1(4)2(41)6f f a ⎛⎫==-= ⎪⎝⎭,故选C. 【名师点睛】求分段函数的函数值,首先要确定自变量的范围,然后选定相应关系式,代入求解;当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围.4.B解析:B 【解析】 函数f (x )=e x ﹣1x 是(0,+∞)上的增函数,再根据f (12)e 2<0,f (1)=e ﹣1>0,可得f (12)f (1)<0,∴函数f (x )=e x ﹣1x 的零点所在的区间是(12,1),故选B .点睛:判定函数的零点所在区间,只需计算区间端点处的函数值,并判断是否异号,只要异号,则区间内至少有一个零点存在.5.A解析:A 【解析】由0.50.6log 0.51,ln 0.50,00.61><<<,所以1,0,01a b c ><<<,所以a c b >>,故选A .6.B解析:B 【解析】 【分析】通过函数在2x =处函数有意义,在2x =-处函数无意义,可排除A 、D ;通过判断当1x >时,函数的单调性可排除C ,即可得结果. 【详解】当2x =时,110x x-=>,函数有意义,可排除A ; 当2x =-时,1302x x -=-<,函数无意义,可排除D ; 又∵当1x >时,函数1y x x=-单调递增, 结合对数函数的单调性可得函数()1ln f x x x ⎛⎫=- ⎪⎝⎭单调递增,可排除C ; 故选:B. 【点睛】本题主要考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合与分类讨论的思维能力,属于中档题.7.D解析:D 【解析】由228x x -->0得:x ∈(−∞,−2)∪(4,+∞), 令t =228x x --,则y =ln t ,∵x ∈(−∞,−2)时,t =228x x --为减函数; x ∈(4,+∞)时,t =228x x --为增函数; y =ln t 为增函数,故函数f (x )=ln(228x x --)的单调递增区间是(4,+∞), 故选D.点睛:形如()()y f g x =的函数为()y g x =,() y f x =的复合函数,() y g x =为内层函数,()y f x =为外层函数. 当内层函数()y g x =单增,外层函数()y f x =单增时,函数()()y f g x =也单增;当内层函数()y g x =单增,外层函数()y f x =单减时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单增时,函数()()y f g x =也单减;当内层函数()y g x =单减,外层函数()y f x =单减时,函数()()y f g x =也单增. 简称为“同增异减”.8.C解析:C 【解析】分析:首先根据g (x )存在2个零点,得到方程()0f x x a ++=有两个解,将其转化为()f x x a =--有两个解,即直线y x a =--与曲线()y f x =有两个交点,根据题中所给的函数解析式,画出函数()f x 的图像(将(0)xe x >去掉),再画出直线y x =-,并将其上下移动,从图中可以发现,当1a -≤时,满足y x a =--与曲线()y f x =有两个交点,从而求得结果.详解:画出函数()f x 的图像,xy e =在y 轴右侧的去掉,再画出直线y x =-,之后上下移动,可以发现当直线过点A 时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点, 即方程()f x x a =--有两个解, 也就是函数()g x 有两个零点, 此时满足1a -≤,即1a ≥-,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.9.B解析:B 【解析】试题分析:对于选项A ,a b 1gc 1gclog c ,log c lg a lg b==,01c <<Q ,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用c y x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.10.B解析:B 【解析】由题意可得{}|2A x x =<,结合交集的定义可得实数a 的取值范围是[)2,+∞ 本题选择B 选项.11.B解析:B 【解析】试题分析:集合中的元素为点集,由题意,可知集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点22,22⎛⎫ ⎪ ⎪⎝⎭,22,22⎛⎫-- ⎪ ⎪⎝⎭,则A B I 中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.12.D解析:D 【解析】 试题分析:当时,11()()22f x f x +=-,所以当时,函数是周期为的周期函数,所以,又函数是奇函数,所以,故选D .考点:函数的周期性和奇偶性.二、填空题13.【解析】【分析】解方程组求出结果即可得答案【详解】由解得或代入解得或所以方程组的解组成的集合为故答案为【点睛】该题考查的是有关方程组解集的问题需要注意的问题是解是二维的再者就是需要写成集合的形式属于 解析:()(){}2,2,2,2--【解析】 【分析】解方程组2040x y x +=⎧⎨-=⎩,求出结果即可得答案.【详解】由240x -=,解得2x =或2x =-,代入0x y +=,解得22x y =⎧⎨=-⎩或22x y =-⎧⎨=⎩, 所以方程组240x y x +=⎧⎨-=⎩的解组成的集合为{}(2,2),(2,2)--, 故答案为{}(2,2),(2,2)--. 【点睛】该题考查的是有关方程组解集的问题,需要注意的问题是解是二维的,再者就是需要写成集合的形式,属于简单题目.14.【解析】若则在上为增函数所以此方程组无解;若则在上为减函数所以解得所以考点:指数函数的性质解析:32-【解析】若1a >,则()f x 在[]1,0-上为增函数,所以11{10a b b -+=-+=,此方程组无解;若01a <<,则()f x 在[]1,0-上为减函数,所以10{11a b b -+=+=-,解得1{22a b ==-,所以32a b +=-.考点:指数函数的性质.15.【解析】【分析】根据题意由函数的奇偶性与周期性分析可得f (﹣)=f (﹣)=﹣f ()结合解析式求出f ()的值又因为f (2019)=f (1+2×1009)=f (1)=0;据此分析可得答案【详解】解:根据 解析:2-【解析】 【分析】根据题意,由函数的奇偶性与周期性分析可得f(﹣52)=f(﹣12)=﹣f(12),结合解析式求出f(12)的值,又因为f(2019)=f(1+2×1009)=f(1)=0;据此分析可得答案.【详解】解:根据题意,函数f(x)是定义在R上的周期为2的奇函数,则f(﹣52)=f(﹣12)=﹣f(12),f(2019)=f(1+2×1009)=f(1),又由函数f(x)是定义在R上的周期为2的奇函数,则有f(1)=f(﹣1)且f(1)=﹣f (﹣1),故f(1)=0,则f(2019)=0,又由0<x<l时,f(x)=4x,则f(12)=124=2,则f(﹣52)=﹣f(12)=﹣2;则5f f(2019)2⎛⎫-+⎪⎝⎭=﹣2;故答案为:﹣2【点睛】本题考查函数的周期性与函数值的计算,属于基础题.16.200【解析】【分析】根据题意列出总利润L(x)的分段函数然后在各个部分算出最大值比较大小就能确定函数的最大值进而可求出总利润最大时对应的店面经营天数【详解】设总利润为L(x)则L(x)=则L(x)解析:200【解析】【分析】根据题意,列出总利润L(x)的分段函数,然后在各个部分算出最大值,比较大小,就能确定函数的最大值,进而可求出总利润最大时对应的店面经营天数.【详解】设总利润为L(x),则L(x)=2120010000,0300 210035000,300x x xx x⎧-+-≤<⎪⎨⎪-+≥⎩则L(x)=21(200)10000,0300 210035000,300x xx x⎧--+≤<⎪⎨⎪-+≥⎩当0≤x<300时,L(x)max=10000,当x≥300时,L(x)max=5000,所以总利润最大时店面经营天数是200.【点睛】本题主要考查分段函数的实际应用,准确的写出各个部分的函数关系式是解决本题的关键.17.【解析】【分析】通过判断函数的奇偶性增减性就可以解不等式【详解】根据题意可知令则转化为由于偶函数在上为增函数则即即或即或【点睛】本题主要考查利用函数的性质(奇偶性增减性)解不等式意在考查学生的转化能 解析:{|40}x x x ><或【解析】 【分析】通过判断函数的奇偶性,增减性就可以解不等式. 【详解】根据题意可知(2)0f =,令2x t -=,则转化为()(2)f t f >,由于偶函数()f x 在()0,∞+上为增函数,则()(2)f t f >,即2t>,即22x -<-或22x ->,即0x <或4x >.【点睛】本题主要考查利用函数的性质(奇偶性,增减性)解不等式,意在考查学生的转化能力,分析能力及计算能力.18.10【解析】因为2a=5b=m 所以a=log2mb=log5m 由换底公式可得=logm2+logm 5=logm10=1则m=10点睛:(1)在对数运算中先利用幂的运算把底数或真数进行变形化成分数指数解析:10 【解析】因为2a =5b =m ,所以a =log 2m ,b =log 5m , 由换底公式可得11a b+=log m 2+log m 5=log m 10=1,则m =10. 点睛:(1)在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后再运用对数运算法则化简合并,在运算中要注意化同底或指数与对数互化.(2)熟练地运用对数的三个运算性质并配以代数式的恒等变形是对数计算、化简、证明常用的技巧.19.-11【解析】【分析】根据定义域基本要求可得不等式组解不等式组取交集得到结果【详解】由题意得:1-x2≥02cosx -1>0⇒-1≤x≤1cosx>12cosx>12⇒x∈-π3+2kππ3+2kπ 解析:【解析】 【分析】根据定义域基本要求可得不等式组,解不等式组取交集得到结果. 【详解】由题意得:,函数定义域为:【点睛】本题考查具体函数定义域的求解问题,关键是根据定义域的基本要求得到不等式组.20.【解析】 三、解答题21.(1)()11,(),(0)82f x xg x x x ==≥;(2)投资债券等稳健型产品为16万元,投资股票等风险型产品为4万元,投资收益最大为3万元. 【解析】 【分析】(1)投资债券等稳健型产品的收益()f x 与投资额x 成正比,投资股票等风险型产品的收益()g x 与投资额x 的算术平方根成正比,用待定系数法求这两种产品的收益和投资的函数关系;(2)由(1)的结论,设投资股票等风险型产品为x 万元,则投资债券等稳健型产品为20x -万元,这时可构造出一个关于收益y 的函数,然后利用求函数最大值的方法进行求解. 【详解】(1)依题意设()1,()f x k x g x k x ==,1211(1),(1)82f k g k ====,()11,(),(0)82f x xg x x x ==≥;(2)设投资股票等风险型产品为x 万元,则投资债券等稳健型产品为20x -万元,11(20)()(20)82y f x g x x x =-+=-21(2)3,0208x x =-+≤≤Q ,2,4x x ==万元时,收益最大max 3y =万元, 20万元资金,投资债券等稳健型产品为16万元, 投资股票等风险型产品为4万元,投资收益最大为3万元. 【点睛】本题考查函数应用题,考查正比例函数、二次函数的最值、待定系数法等基础知识与基本方法,属于中档题.22.(1)f (x )min =-10,f (x )max =26;(2)(-∞,-10].【解析】试题分析:(1)由题意可得,f (x )=4x -2·2x +1-6,令t=2x ,从而可转化为二次函数在区间[1,8]上的最值的求解(2)由题意可得,a≤f (x )恒成立⇔a ≤f (x )min 恒成立,结合(1)可求 试题解析:(1)f (x )=(2x )2-4·2x -6(0≤x ≤3). 令t =2x ,∵0≤x ≤3,∴1≤t ≤8.则h (t )=t 2-4t -6=(t -2)2-10(1≤t ≤8).当t ∈[1,2]时,h (t )是减函数;当t ∈(2,8]时,h (t )是增函数. ∴f (x )min =h (2)=-10,f (x )max =h (8)=26. (2)∵f (x )-a ≥0恒成立,即a ≤f (x )恒成立, ∴a ≤f (x )min 恒成立.由(1)知f (x )min =-10,∴a ≤-10. 故a 的取值范围为(-∞,-10]. 23.(1)(,6][6,+)∞∞--U ;(2)3(,)4∞-. 【解析】 【分析】(1)首先求函数的对称轴22a x -=-,令242a --≥或 222a --≤-,求实数a 的取值范围;(2)不等式等价于21x x m ++>恒成立,令()21g x x x =++,转化为()min g x m >,[]1,1x ∈-恒成立,求m 的取值范围. 【详解】解:(1)函数()f x 的对称轴为22a x -=-, 又函数()f x 在[]2,4-上是单调函数,242a -∴-≥或 222a --≤-, 解得6a ≤-或6a ≥.∴实数a 的取值范围为(,6][6,)-∞-+∞U ;(2)当5a =,[]1,1x ∈-时,()24f x m x >+-恒成立,即21x x m ++>恒成立, 令()21g x x x =++,()min g x m >恒成立,函数()g x 的对称轴[]11,12x =-∈-,∴()min 1324g x g ⎛⎫=-= ⎪⎝⎭,即34m >, m ∴的范围为3(,)4-∞.本题考查二次函数单调性,恒成立的的综合问题,属于基础题型. 24.(1)增函数,证明见解析;(2){|01}x x << 【解析】 试题分析:(1)由题意结合所给的抽象函数关系可由120x x >>时有()()120f x f x ->,即()f x 在定义域内为增函数;(2)原问题等价于x 的不等式组(3)43010x x x x⎧⎪+<⎪+>⎨⎪⎪>⎩,求解不等式组可得01x <<.试题解析: (1)增函数证明:令12,x x y x ==,且120x x >>,则121x x > 由题意知:1122()()()x f f x f x x =- 又∵当x >1时,()0f x > ∴12()0x f x > ∴()()120f x f x -> ∴()f x 在定义域内为增函数(2)令x =4,y =2 由题意知:4()(4)(2)2f f f =- ∴()()422122f f ==⨯=()13()((3))(4)f x f f x x f x+-=+<又∵()f x 是增函数,可得(3)43010x x x x⎧⎪+<⎪+>⎨⎪⎪>⎩ ∴01x <<.点睛:抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数.由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一.抽象性较强,灵活性大,解抽象函数重要的一点要抓住函数中的某些性质,通过局部性质或图象的局部特征,利用常规数学思想方法(如化归法、数形结合法等),这样就能突破“抽象”带来的困难,做到胸有成竹.另外还要通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性质来指导我们解决抽象函数问题的方法. 25.⑴1,0a b c ===⑵增函数⑶22t -<< 【解析】【详解】(1)()f x Q 为奇函数,()()f x f x ∴-=-即2211ax ax bx c bx c++=--++ 得bx c bx c -+=--解得0c =又1(1)221a f b a b+==⇒=+Q 412(2)32021a a fb a +-=<⇒<+Q 解得1201a a Z a a -<<∈∴==Q 或 当0a =时12b =与b Z ∈矛盾舍,当1a =时1b =综上1,0a b c === ⑵函数()f x 在[1,)+∞上为增函数任取1212,[1,),x x x x ∈+∞<且则2212121212121211()(1)()()x x x x x x f x f x x x x x ++---=-= 1212,[1,),x x x x ∈+∞<Q 且1212(1,),0x x x x ∴⋅∈+∞-<且 1212()()0()()f x f x f x f x ∴-<<即得证函数()f x 在[1,)+∞上为增函数⑶222(1)(3)0(3)(1)(1)f t f t f t f t f t --++>∴+>---=+Q211,31t t +≥+>Q ,函数()f x 在[1,)+∞上为增函数 213(1)(2)0t t t t ∴+<+⇒+-<解得222t t <⇒-<<考点:函数奇偶性的性质;函数单调性的判断与证明26.(Ⅰ)max ()1f x =,min ()1f x =-;(Ⅱ)()f x 的定义域为(2,2)-,()g x 的值域为(4(1),4(1))a a -+-.【解析】 【分析】 【详解】试题分析:(Ⅰ)当3a =时,求函数()f x 在[1,1]x ∈-上的最大值和最小值,令()22xu x x-=+,变形得到该函数的单调性,求出其值域,再由()()log a f x u x =为增函数,从而求得函数()f x 在[1,1]x ∈-上的最大值和最小值;(Ⅱ)求函数()f x 的定义域,由对数函数的真数大于0求出函数()f x 的定义域,求函数()g x 的值域,函数()f x 的定义域,即()g x 的定义域,把()f x 的解析式代入()g x 后整理,化为关于x 的二次函数,对a 分类讨论,由二次函数的单调性求最值,从而得函数()g x 的值域. 试题解析:(Ⅰ)令24122x u x x -==-++,显然u 在[1,1]x ∈-上单调递减,故u ∈1[,3]3,故3log [1,1]y u =∈-,即当[1,1]x ∈-时,max ()1f x =,(在3u =即1x =-时取得)min ()1f x =-,(在13u =即1x =时取得) (II)由20()2xf x x->⇒+的定义域为(2,2)-,由题易得:2()2,(2,2)g x ax x x =-+∈-, 因为0,1a a >≠,故()g x 的开口向下,且对称轴10x a=>,于是: 1o当1(0,2)a ∈即1(,1)(1,)2a ∈+∞U 时,()g x 的值域为(11((2),()](4(1),]g g a aa-=-+;2o当12a ≥即1(0,]2a ∈时,()g x 的值域为((2),(2))(4(1),4(1))g g a a -=-+- 考点:复合函数的单调性;函数的值域.。

广东省东莞市高一上学期期中数学试卷

广东省东莞市高一上学期期中数学试卷

广东省东莞市高一上学期期中数学试卷姓名:班级:成绩:、选择题(共8题;共16分)2・(2分)函数门巧=応・仗(11)的泄义域是()A・(g -1)B・(L + oc)C ・(・l,l)5L+oc)D・+ « )3・(2 分)(2017 •舒城模拟)设x二0.820. 5 , y=lo g^J512 , z=s inl.则x、y、z 的大小关系为()A・x<y<zB・y<z<xC・z<x<yD・z<y<x4・(2分)(2016髙三上•新津期中)设D是函数y=f (x)定义域内的一个区间,若存在xOGD,使f (x0)=-x0 ♦5 -a+ - 则称x0是f (x)的一个“次不动点”,也称f(X)在区间D上存在次不动点.若函数f(X)=ax2 - 3x在区间[1,4]上存在次不动点,则实数a的取值范围是()A・(-°°» 0)B・1 (0,2 )C・1[2 , +8)D・1 (-°°»2 ]5.(2 分)已知f (x)二2x+l,则f (2)二(D . 26.(2分)能够把圆0:〃十沪==16的周长和面积同时分为相等的两部分的函数称为圆0的“和谐函数”,下列函数不是圆0的“和谐函数”的是()A . f'M=4x i-^XB . /⑴“芸c /(x)=tan5D . fW =e x+r r7.(2分)下列命题中的假命题是()A . V T€^2X,1>0B ・taivv = 2C ・ TxER 1D . YMN:(X・1F>08・(2分)、若函数y= (x+1)(x-a)为偶函数,则圧()二填空题(共7题;共8分)9・(1 分)(2016 髙一上•汉中期中)若 loga2=m, loga3=n, (a>0 且 aHl )则 a2m+n= _______ 10. (1分)(2019髙一上•翁牛特旗月考)下列叙述正确的有 _________ ・①集合 =5 = -1;,贝ij jr5 = {2,3}:c 0 4j—x② 若函数①)=“5-3的左义域为R ,则实数fl<"12 :③ 函数/W = r-^ ,诋{一2,0)是奇函数;④ 函数几0= -卫十处+0在区间(2 +«)上是减函数2m ) V0恒成立,则实数m 的取值范国是15. (2分)已知函数f (X )由表给岀,则f (f (2))二 ___ •满足f (f (x )) >1的x 的值是三.解答题(共题;共分)16・(5 分)已知集合 A 二(2, 4), B 二(a, 3a ) (1)若AGB,求实数a 的取值范用: (2)若AAB^0,求实数a 的取值范用.17. (10分)(2019高三上•徳州期中)某辆汽车以x 千米/小时的速度在髙速公路上匀速行驶(考虑到髙lL_^3600j11・ (1分)12. (1分)13. (1分)14. (1分)1 1若幕函数f (x )二mxa 的图象经过点A ( ) 4^2,则苗(2016髙三上•枣阳期中)已知函数f (X )满足f (5x )二x,则f (2)二.函数f (X )=loga (3-ax )在区间(2, 6)上递增,则实数a 的取值范困是.(2015 髙二上•孟津期末)设 f (x )二x3+x, xER,当 0W ()W 兀时,f (mcos 0 ) +f (sin 0 -速公路行车安全要求60<.¥<120 )时,每小时的油耗(所需要的汽油量)为5、X f升,其中k为常数,且48<^< 100 .(1)若汽车以120千米/小时的速度行驶时,每小时的汕耗为10升,欲使每小时的油耗不超过升,求r的取值范围;(2)求该汽车行驶100千米的油耗的最小值.18.(15分)(2016高一下•赣榆期中)已知aVO,函数f (x)二acosx+也+血丫 +『1_沁丫,貝中xG[-71 71— 9一」•(1)设t二也+晌 + /1 - sim ,求t的取值范围,并把f (x)表示为t的函数g(t);(2)求函数f (x)的最大值(可以用a表示);/T K(3)若对区间[-2 , 2 ]内的任意xl, x2,总有,f (xl) -f (x2) Wl,求实数a的取值范围.19.(5分)当xG[O, 1]时,不等式ax3-x2+4x+3N0恒成立,求实数a的取值范用.20.(10分)(2019髙一上•嘉兴期中)已知函数f (x)二x-a—1, (a为常数).(1)若f(X)在xG[O, 2]上的最大值为3,求实数a的值;(2)已知g(X)二x・f (x) +a-m,若存在实数aW (-1, 2],使得函数g (x)有三个零点,求实数m的取值范围.一、选择题(共8题;共16分)2、答案:略3-1、D4-1、D5-1、A6-1、D7- 1. °8-1、°填空题(共7题;共8分)【第1空】12【第1空】②(?)【第位】1【第i空】log52【第1空】0<a<5【第1空】(返,+2)【第1空】1【第2空】1或3参考答案9-1.10-1、11-1、12-1、13-1、14-1H I3s :w D>A "(2k )二丄 f晋二(1)唳A ln B 邛a IA 」•-3O IV 4(2)吐AflBM養・目阑讯2A a A 4焙2人3a A 4 •K 402 A 4,x 'X A e2「»a ^s a s ®暦冏冊 * ca 〈4 •爭s 专'3120 岁牛 — * 十-^^H l o 、暑匸 qo • 田誉丄。

广东省东莞四中2020-2021学年高一上学期第10周周测数学试卷 Word版含答案

广东省东莞四中2020-2021学年高一上学期第10周周测数学试卷 Word版含答案

1
a 2
3 ,∴ a a1
7 ,∴ a2
a2
47 ,
∴原式
47 1 7 1
6.
18.解:(1)当 a 3 时, N=x | 4 x 5 , 所以 ðU N={x | x 4或x 5}
所以 M CU N =x | x 4或x 5
(2)① 2a 1 a 1,即 a 2 时, N , 此时满足 N M .
(2)试判断 f(x)在(0,+∞)内的单调性,并用定义证明
2
2020-2021 第一学期高一数学周测参考答案(第 10 周)
一、单项选择题(共 10 小题,每小题 4 分,满分 40 分.每小题只有一个符合题意选项) 1.D 2.A 3. A 4. D 5. A 6. A 7. D 8. B 二、多项选择题 9.BCD 10.ABC 11.ABD 12.CD
4.a,b 中至少有一个不为零的充要条件是( )
二、多选题
9.下列四个不等式中,解集为 的是( A. x2 x 1 0

B. 2x2 3x 4 0
C. x2 3x 10 0
D.
x2
4x
a
4 a
0(a
0)
10.已知 a Z ,关于 x 的一元二次不等式 x2 6x a 0 的解集中有且仅有 3 个整数,则 a 的值可以
18.已知集合U 为全体实数集, M={x | x 2或x 5 }, N={x | a+1 x 2a-1}. (1)若 a 3 , 求 M CU N (2)若 N M ,求实数 a 的取值范围.
20.已知函数 f(x)=1- 2 . x
(1)若 g(x)=f(x)-a 为奇函数,求 a 的值;
C.若 f x 在[1, ) 上为增函数,则 f x 在 (, 1] 上为减函数

广东省东莞四中2020-2021学年高一上学期期中数学试卷及解析

广东省东莞四中2020-2021学年高一上学期期中数学试卷及解析

广东省东莞四中2020-2021学年高一上学期期中数学试卷 注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.“0a b >>”是“a b<”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件第II 卷(非选择题)二、填空题2.当1x >时,1x x +-的最小值为___________. 3.函数()()2212f x x a x =+-+在区间(],4-∞上递减,则实数a 的取值范围是__________.参考答案1.A【解析】1.根据充分条件与必要条件的概念,直接判断,即可得出结果.由0a b >>得110b a a b ab --=<,则11a b<; 若1a =-,1b =,则11a b <,但不能推出0a b >>; 因此“0a b >>”是“11a b <”的充分不必要条件. 故选:A.2.3【解析】2. 化简得到111111x x x x +=-++--,结合基本不等式,即可求解.由1x >,可得10x ->,则11111311x x x x +=-++≥=--, 当且仅当111x x -=-时,即2x =等号成立, 所以11x x +-的最小值为3. 故答案为:3.3.(],3-∞-【解析】3.先求得函数的对称轴方程1x a =-,再根据函数在区间(],4-∞上递减,由14a -≥求解. 函数()()2212f x x a x =+-+的对称轴方程为:1x a =-, 因为函数在区间(],4-∞上递减,所以14a -≥ ,解得3a ≤-,所以实数a 的取值范围是(],3-∞-,故答案为:(],3-∞-。

广东省东莞市第四高级中学2020-2021学年高一上学期第15周周测数学试题(12月)

广东省东莞市第四高级中学2020-2021学年高一上学期第15周周测数学试题(12月)

东莞四中高一数学第15周周测试题班别 姓名一、单选题:每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{A y y ==,{5B x x =<-或}1x >,则( )A .[0,1)B .[)1,1-C .[0,1]D .[1,1]-2.以下各角中,是第二象限角的为( ) A .83π-B .76π-C .76π D .53π 3.函数y()023x -,则该函数的定义域为( ) A .322,,1233⎛⎫⎛⎤-⋃ ⎪ ⎥⎝⎭⎝⎦B .3,12⎡⎤-⎢⎥⎣⎦ C .[323,],1232⎛⎤-⋃ ⎥⎝⎦D .3,12⎛⎤-⎥⎝⎦4.已知函数()3x bf x a +=+(01a a >≠,)恒过定点()1,4-,则b 的值为( ).A .1B .1-C .2D .2-5.若正数a ,b 满足1a >,1b >,且3a b +=,则1411a b +--的最小值为( ) A .4 B .6 C .9D .166.已知f (x )=3x (x e +x e -)+2,f (a )=4,则f (-a )=( ) A .-1B .0C .1D .27.在R 上定义运算:x y x ⊗=(1y -),若任意x ∈R 使得()x a -⊗()x a +<1成立,则实数a 的取值范围是( ).A .13,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭ B .13,22⎛⎫- ⎪⎝⎭ C .31,22⎛⎫- ⎪⎝⎭D .31,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭8.已知函数()f x 在区间[)0,+∞上是增函数,且g x f x .若()()lg 1g x g >,则x 的取值范围是( )A .1,10B .1,10⎛⎫+∞⎪⎝⎭ C .1,1010⎛⎫⎪⎝⎭D . 二、多选题:每小题5分,全部选对得5分,部分选对得3分,有选错的得0分. 9.下列说法正确的是( ) A .1x x+的最小值为2 B .21x +的最小值为1C .02x <<,()32x x -的最大值为3D .2274x x ++最小值为4 10.当(1,)x ∈+∞时,幂函数a y x =的图像在直线y x =的下方,则a 的值可能为( )A .12B .2C .3D .1-11.符号[]x 表示不超过x 的最大整数,如[]3.143=,[]1.62-=-,定义函数:()[]f x x x =-,则下列命题正确的是( ) A .()0.80.2f -=B .当12x ≤<时,()1f x x =-C .函数()f x 的定义域为R ,值域为[)0,1D .()202010..0909f =12.已知函数[)22,(,0)()ln ,(0,1)43,1,x x f x x x x x x -⎧∈-∞⎪=∈⎨⎪-+-∈+∞⎩,若函数()()g x f x m =-恰有2个零点,则实数m 可以是( )A .1-B .0C .1D .2三、填空题: 每小题5分,共20分.13.定义在[,]a b 上的偶函数2()(5)f x x a x b =+++的最大值为_________.14.已知254a =,1325b =,432c =,将a ,b ,c 从小到大排序为_______________.15.若()f x 是定义在R 上的奇函数,当0x ≥时,()122xf x x m ⎛⎫=-+ ⎪⎝⎭(m 为常数),则当0x <时,()f x =_______________.16.定义在()(),00,-∞⋃+∞上的奇函数()f x ,若函数()f x 在()0,∞+上为增函数,且()10f =,则不等式()f x x<0的解集为_________.四、解答题:每题12分,解答应写出文字说明、证明过程或演算步骤.17. 设全集U =R ,集合{}lg()0A x x a =->,{}2340B x x x =--<. (1)当1a =时,求AB ;(2)若A B A ⋃=,求实数a 的取值范围.18.已知函数()log (31)a f x x =+,()log (13)a g x x =-(0a >且1)a ≠.(1)求()()()F x f x g x =-的定义域;(2)判断函数()F x 的奇偶性;(3)若()()0f x g x ->,求x 的取值范围.19.已知函数()21x f x a e =-+为奇函数. (1)求实数a 的值,并用函数单调性的定义证明函数()f x 的单调性; (2)解不等式()f lnx >0.20.已知函数()4,0log ,0a x x f x x x +≤⎧=⎨>⎩且点()4,2在函数()f x 的图象上.(1)求函数()f x 的解析式,并在图中的直角坐标系中画出函数()f x 的图象;(2)求不等式()1f x <的解集;(3)若方程()20f x m -=有两个不相等的实数根,求实数m 的取值范围.东莞四中高一数学周测★答案★(第15周)17.解:(1)当1a =时,由lg(1)0x ->得11x ->,解得2x >,所以(2,)A =+∞, 由{}2340B x x x =--<解得{}|14B x x =-<<,所以.(2){}{}lg()01A x x a xx a =->=+,由A B A ⋃=得B A ⊆,所以(1,4)(1,)a -⊆++∞,所以11a ≤-+,解得2a ≤-,所以实数a 的取值范围是(,2]-∞-.18. 解:(1)()log (31)log (13)a a F x x x =+--,31013x x +>⎧⎨->⎩,解得:1133x -<<,所以()F x 的定义域为11,33⎛⎫- ⎪⎝⎭.(2)由(1)可知()F x 的定义域关于原点对称,又()log (13)log (31)()a a F x x x F x -=--+=-,所以()F x 是奇函数.(3)()()0f x g x ->,即log (31)log (13)a a x x +>-,当1a >时,3101303113x x x x+>⎧⎪->⎨⎪+>-⎩,解得:103x <<,当01a <<时,3101303113x x x x+>⎧⎪->⎨⎪+<-⎩,解得:103x -<<.19.解:(1)∵10x e +≠的解集是R ,∴()f x 的定义域是R . 又∵()f x 是奇函数,∴()0f =0.∴()0f =a -1=0,即a =1.经检验知,当a =1时,()()f x f x -=-,符合题意.,且有()211x f x e =-+, 任取12x x ∈,R ,且1x <2x ,则()1f x -()122221111x x f x e e =--+++=()12122()(1)1x x x xe e e e -++, ∴y =x e 为増函数,1x <2x ,∴012x x e e <<. ∴11x e +>0,21x e +>012x x e e -,<0. ∴()1f x -()20f x <,即()1f x <()2f x . ∴()f x 在R 上是增函数.(2)由()211x f x e =-+,可得()22111111lnxx f lnx e x x -=-=-=+++ ∴1010x x x -⎧>⎪+⎨⎪>⎩ 解得x >1, ∴原不等式的解集为(1,+∞). 20. (1)()24,0log ,0x x f x x x +≤⎧=⎨>⎩,图像见解析(2)()(),30,2-∞-(3)(],2-∞解:(1)由()f x 图象过点4,2得log 42a =,即24a =,解得2a =,则()24,0log ,0x x f x x x +≤⎧=⎨>⎩, 函数()f x 的图象如图:(2)()1f x <即为041x x ≤⎧⎨+<⎩或20log 1x x >⎧⎨<⎩,即3x <-或02x <<,则解集为()(),30,2-∞-;(3)()20f x m -=有两个不相等的实数根,即有()y f x =的图象和直线2y m =有两个交点, 由图象可得24m ≤,即2m ≤,可得m 的取值范围是(],2-∞.东莞市第四中学第15周周末练习题★答案★1.C 2.D 3.D4.A ∵f (x )满足关系式()()()f x y f x f y +=⋅,所以()00(0)(0)f f f +=⋅,即()20[(0)]f f =又()0f x >恒成立,所以()01f =5.B 【详解】因为2211,102211,0122t t S t t ⎧--≤≤⎪⎪=⎨⎪+<≤⎪⎩,所以其对应图象为B,6. B 【详解】令()2g x x =-,由 ()0g x =,解得 2x =, 令 ()22h x x x =+-,由 ()0h x =,解得 2x =-或1x =,当2λ≤-时,方程()0f x =仅有1个实数解2x =;当21λ-<≤时,方程()0f x =恰有2个实数解2x =-,2x =; 当12λ<≤时,方程()0f x =有3个实数解2x =-,1x =,2x =; 当2λ<时,方程()0f x =恰有2个实数解2x =-,1x =. 7.AC 8.AD11.解:(1)要使函数有意义,必须2320x x -->,解得31x -<<,所以函数()f x 的定义域是(3,1)-(2)当01a <<时,函数()f x 在区间(3,1)--上单调递减,在区间(1,1)-上单调递增(3)当01a <<时,函数()f x 在区间[1,0]-上单调递增,所以()f x 在[1,0]-的最大值是(0)f ,最小值是(1)f -,所以3(0)(1)log 3log 4log 14a a a f f --=-==, 34a =当1a >时,函数()f x 在区间[1,0]-上单调递减,所以()f x 在[1,0]-的最大值是(1)f -,最小值是(0)f ,所以4(1)(0)log 4log 3log 13a a af f --=-==,43a = 12.解:(1)当[0x ∈,)+∞时,2()4f x x x =-+,任取(,0)x ∈-∞时,则(0,)x -∈+∞22()()4()4f x x x x x -=--+-=--,又因为()y f x =为奇函数,所以()()f x f x -=-,所以2()()4f x f x x x =--=+,所以224,0()4,0x x x f x x x x ⎧-+=⎨+<⎩;图象如图所示(2)由(1)知:224,0()4,0x x x f x x x x ⎧-+=⎨+<⎩;由图可知,()y f x =在(,2)-∞-,(2,)+∞上递减, 在()2,2-上递增,因为函数()y f x =在区间(,1)t t +上是单调函数,当12t +-,即3-t 时,函数()y f x =在区间[t ,1]t +单调递减;当2t -,且12t +,即21t -时,函数()y f x =在区间[t ,1]t +单调递增;当2t 时,函数()y f x =在区间[t ,1]t +单调递减.综上, 3-t 或2t 时,函数()y f x =在区间[t ,1]t +单调递减;当21t -时,函数()y f x =在区间[t ,1]t +单调递增.即t 的取值范围是:3-t 或2t 或21t -.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档