SPSS实现一元线性回归分析实例(整理

合集下载

一元线性回归spss作业

一元线性回归spss作业

一元线性回归实验指导一、使用spss进行线性回归相关计算题目:为研究医药企业销售收入与广告支出的关系,随机抽取了20家医药企业,得到它们的销售收入和广告支出的数据如下表(数据在‘广告.sav’中)1.绘制散点图描述收入与广告支出的关系结果:(散点图粘贴在下面)从散点图可直观看出销售收入和广告支出(存在/不存在)线性关系2.计算两个变量的相关系数r及其检验相关性结果表格:(粘贴在下面)从结果中可看出,销售收入与广告支出的相关系数为(),双侧检验的P值(),r在0.01显著性水平下(),表明销售收入与广告支出之间(存在/不存在)线性关系。

3.一元线性回归分析计算回归分析;并输出标准化残差的pp图和直方图分析输出的结果:模型汇总表格:(粘贴在下面)这个表格给出相关系数R=()以及标准估计的误差()方差分析(ANOVA)表格:(粘贴在下面)这个表格给出回归模型的方差分析表,包括回归平方和SSR、回归均方MSR、残差平方和SSE、残差均方MSE、总平方和SST和总均方MST,F值129.762以及P值(),此处p 值(),说明回归的线性关系(显著/不显著)系数表格:(粘贴在下面)上面这个表格给出的是参数估计和检验的有关内容,包括回归方程的常数项、非标准化回归系数、常数项和回归系数检验的统计量t和显著性水平sig,以及回归系数的%95置信区间从此表可以得出销售收入与广告支出的估计方程为()。

回归系数()表示广告支出每变动1万元,销售收入平均变动()万元。

4.残差的检验从上面的输出结果中可得到标准化残差的标准pp图和直方图(粘贴在下面)同时在数据表格中出现残差以及估计值和区间的上下界,其中PRE_1为点估计值;RES_1为非标准化残差;ZRE_1为标准化残差;LMCI_1和UMCI_1表示平均值的置信区间(均值的预测区间);LICI_1和UICI_1表示个别值的预测区间的上界和下界;下面绘制非标转化残差图:(粘贴在下面)从残差图上可以看出,各个残差随机分布于0轴两侧,没有任何固定模式,这表明在销售收入与广告支出的一元线性回归中,线性假定以及等方差的假定成立。

SPSS相关性和回归分析一元线性方程案例解析

SPSS相关性和回归分析一元线性方程案例解析
1:点击“分析”—相关—双变量,进入如下界面:
将“居民总储蓄”和“居民总消费”两个变量移入“变量”框内,在“相关系数”栏目中选择“Pearson",(Pearson是一种简单相关系数分析和计算的方法,如果需要进行进一步分析,需要借助“多远线性回归”分析)在“显著性检验”中选择“双侧检验”并且勾选“标记显著性相关”点击确定,得到如下结果:
2:从anvoa b的检验结果来看(其实这是一个“回归模型的方差分析表)F的统计量为:29.057,P值显示为0.000,拒绝模型整体不显著的假设,证明模型整体是显著的
3:从“系数a”这个表可以看出“回归系数,回归系数的标准差,回归系数的T显著性检验等,回归系数常量为:2878.518,但是SIG为:0.452,常数项不显著,回归系数为:0.954,相对的sig为:0.000,具备显著性,由于在“anvoa b”表中提到了模型整体是“显著”的
SPSS-相关性和回归分析(一元线性方物和人都不是以个体存在的,它们都被复杂的关系链所围绕着,具有一定的相关性,也会具备一定的因果关系,(比如:父母和子女,不仅具备相关性,而且还具备因果关系,因为有了父亲和母亲,才有了儿子或女儿),但不是所有相关联的事物都具备因果关系。
所以一元线性方程为:居民总消费=2878.518+0.954*居民总储蓄
其中在“样本数据统计”中,随即误差一般叫“残差”:
从结果分析来看,可以简单的认为:居民总储蓄每增加1亿,那居民总消费将会增加0.954亿
提示:对于回归参数的估计,一般采用的是“最小二乘估计法”原则即为:“残差平方和最小“
点击“分析”--回归----线性”结果如下所示:
将“因变量”和“自变量”分别拖入框内(如上图所示)从上图可以看出:“自变量”指“居民总储蓄”, "因变量”是指“居民总消费”

用spss做一元线性回归分析

用spss做一元线性回归分析

用SPSS做一元线性回归分析粮食生产是一个关系到国家生存与发展的一个重要问题,粮食产量波动,制约着国民经济发展,影响着粮食的价格。

因此,研究影响粮食产量波动的因素的意义不可小觑。

本次分析主要通过SPSS以及线性回归分析方法,研究分析粮食产量与土地灌溉面积之间的关系。

大致的操作过程为:首先做散点图,查看两因素之间是否线性相关;如果线性相关,接着做线性回归分析,揭示其数量关系。

最后对回归方程做显著性检验以及经济意义的检验。

一、模型设定我们的研究目的在于分析粮食产量与土地灌溉之间的数量关系,选取了2012年我国各个省份的粮食产量(万吨)和有效土地灌溉面积(千公顷)数据,将“粮食产量”作为被解释变量Y,“有效土地灌溉面积”作为解释变量X。

1.建立数据文件打开SPSS的数据编辑器,对变量视图中一些内容进行编辑,然后将EXCEL表格内数据拷贝到SPSS中。

云南1634.2 1673.6西藏245.3 93.7陕西1274.3 1194.7甘肃1291.8 1014.6青海251.7 103.4宁夏477.6 359.0新疆3884.6 1224.7表一2.画散点图从菜单上依次点选:图形—旧对话框—散点/点状,定义简单分布,设置Y为粮食产量,X 为有效土地灌溉面积,点击确定,即可出现下面的散点图。

图一由散点图发现,粮食产量与有效土地灌溉面积之间线性相关。

所以建立如下线性模型:二、线性回归分析从菜单上依次点选:分析—回归—线性,出现线性回归对话框。

在主对话框中设置因变量为“粮食产量”,自变量为“有效土地灌溉面积”,“方法”选择默认的“进入”,即自变量一次全部进入的方法。

然后,单击右侧“保存”(注意:在“保存”中被选中的项目,都将在数据编辑窗口显示),在出现的界面中勾选95%的置信区间单值,未标准化残差。

最后,关于“统计量”,在默认情况下有“估计”和“模型拟合度”复选框被选中,再勾选“R方变化”复选框。

上述操作完成后,单击确定。

SPSS相关性和回归分析一元线性方程案例解析

SPSS相关性和回归分析一元线性方程案例解析
所以一元线性方程为:居民总消费=2878.518+0.954*居民总储蓄
其中在“样本数据统计”中,随即误差一般叫“残差”:
从结果分析来看,可以简单的认为:居民总储蓄每增加1亿,那居民总消费将会增加0.954亿
提示:对于回归参数的估计,一般采用的是“最小二乘估计法”原则即为:“残差平方和最小“
1:点击“分析”—相关—双变量,进入如下界面:
将“居民总储蓄”和“居民总消费”两个变量移入“变量”框内,在“相关系数”栏目中选择“Pearson",(Pearson是一种简单相关系数分析和计算的方法,如果需要进行进一步分析,需要借助“多远线性回归”分析)在“显著性检验”中选择“双侧检验”并且勾选“标记显著性相关”点击确定,得到如下结果:
从以上结果,可以看出“Pearson"的相关性为0.821,(可以认为是“两者的相关系数为0.821)属于“正相关关系”同时“显著性(双侧)结果为0.000,由于0.000<0.01,所以具备显著性,得出:“居民总储蓄”和“居民总消费”具备相关性,有关联。
既然具备相关性,那么我们将进一步做分析,建立回归分析,并且构建“一元线性方程”,如下所示:
2:从anvoa b的检验结果来看(其实这是一个“回归模型的方差分析表)F的统计量为:29.057,P值显示为0.000,拒绝模型整体不显著的假设,证明模型整体是显著的
3:从“系数a”这个表可以看出“回归系数,回归系数的标准差,回归系数的T显著性检验等,回归系数常量为:2878.518,但是SIG为:0.452,常数项不显著,回归系数为:0.954,相对的sig为:0.000,具备显著性,由于在“anvoa b”表中提到了模型整体是“显著”的
SPSS-相关性和回归分析(一元线性方程)案例解析

SPSS第十讲_线性回归分析

SPSS第十讲_线性回归分析

点击“OK”,结果一:确定系数表
结果一告诉我们什么?
表中调整后的R平方=0.044,表示整 个方程能够解释收入变化的4.4%。 与例1中的确定系数相比,提高了1.1 个百分点。
结果二:方差分析表
结果二告诉我们什么?
表中显著度(Sig)<0.001,表明整个方程 是显著的,也就是说自变量与因变量之间 具有显著的线性关系。 但这并不意味着每个自变量与因变量都具 有显著的线性关系,具体的结论还需要看 后面对每个自变量的回归系数的检验结果。
结果三告诉我们什么?
由此我们可以得到回归方程式: y=534.493+137.048×性别-112.371× 小学- 79.864×初中- 65.704×高中- 1.749×年龄
结果三告诉我们什么?
表中 Beta 栏的标准化回归系数的绝对值可 以用于比较各个自变量之间对因变量的贡 献大小:
性别(0.184) > 小学(0.117) > 初中(0.103) > 高中(0.082) > 年龄(0.061)
步骤1:点击“Recode”,弹出对话框
步骤2:将四分类的教育变量拖入中间空白框
步骤3:在Name栏中填写第一个虚拟变量edu1
步骤4:在Label栏中填写变量名标签-小学
步骤5:点击“Change”按钮
步骤6:点击“Old and New Values”按 钮
步骤7:将原变量中表示小学的“1”设为新变量的“1”
点击“OK”,结果一:确定系数表
结果一告诉我们什么?
表格中的R、R Square和Adjusted R Square都 是用于表示模型的解释能力
通常选择Adjusted R Square作为我们的结论依 据,调整后的R平方越大,说明性别和收入的线 性关系越强,即性别对收入的解释力越强

SPSS操作一元线性回归

SPSS操作一元线性回归

一元线性回归
一、数据说明
以sock作为本次实验的数据。

在本例中以股票收益率为自变量,市场收益率为因变量。

二、回归模型的建立
(1)打开数据sock。

从菜单选择Analyze→Regression→Linear,弹出Linear Regression对话框。

(2)在左侧的源变量框中选择变量市场收益率作为因变量进入Dependent框中。

选择股票收益率变量作为自变量进入Independents框中。

(3)点击Save,进入下面的对话框
通过上图可知,可以存储的有:Predicted Values(预测值系列)、Residuals(残差系列)、Distances(距离系列)、Prediction Intervals(预测值可信区间系列)、Influence Statistics(波动统计量系列)。

在方框中勾选中相应选项,单击Continue。

(4)单击ok,得到结果:
看出:相关系数R=0.885 拟合优度R方=0.783 调整后的拟合优度=0.777
标准误差估计=5.85491
由上表可见,所用的回归模型F统计量值=119.224,显著性系数=0.000,因此我们用的这个回归模型是有统计学意义的。

由上表得出股票收益率与市场收益率之间的一元线性方程为:Y=0.625X+0.880
(5)关闭结果,回到数据编辑窗口:。

实验报告四.spss一元线性相关回归分析预测

实验报告四.spss一元线性相关回归分析预测

实验报告四.spss一元线性相关回归分析预测
本实验使用spss 17.0软件,针对50个被试者,使用一元线性相关回归分析预测变
量X和Y的关系。

一、实验目的
通过一元线性相关回归分析,预测50个被试者的被试变量X(会计实操次数)和被试变量Y(综合评价分)之间的关系,来检验变量X是否能够预测变量Y的值。

二、实验流程
(2)数据收集:通过收集50个被试者的实际实操次数与综合评价分,建立反映这两
者之间关系的一元线性回归方程。

(3)数据分析:通过SPSS软件的一元线性相关回归分析预测变量X和Y的关系,使
用R方值进行检验研究结果的显著性。

以分析变量X对于变量Y的影响程度。

三、实验结果及分析
1.回归分析结果如下所示:变量X的系数b = 0.6755,t = 7.561,p = 0.000,说
明变量X和被试变量Y之间存在着显著的相关关系;R方值为0.941,说明变量X可以较
好地预测变量Y。

2.可以得出一元线性回归方程为:Y=0.67×X+5.293,其中,b为系数,X是自变量,Y是因变量。

四、结论
(1)50个被试者实际实操次数与综合评价分之间存在着显著的相关性;
(2)变量X可以较好地预测变量Y,R方值较高;。

一元线性回归分析例题

一元线性回归分析例题

SPSS一元线性回归分析例题(体检数据中的体重和肺活量的分析)某单位对12名女工进行体检,体检项目包括体重(kg)和肺活量(L),数据如下:X(体重:kg) 42.00 42.00 46.00 46.00 46.00 50.0050.00 50.00 52.00 52.00 58.00 58.00Y(肺活量:L) 2.55 2.20 2.75 2.40 2.80 2.813.41 3.10 3.46 2.85 3.50 3.00用x表示体重,y表示肺活量,建立数据文件。

利用一元线性回归分析描述其关系。

基本操作提示:Step 1 建立数据文件,并打开该数据文件。

Step 2 选择菜单Analyz e→Regressio n→Linear,打开主对话框。

在“Dependent”(因变量)列表框中选择变量“肺活量”,作为线性回归分析的被解释变量;在“Independent”(自变量)列表框中选择变量“体重”,作为解释变量。

Step 3 单击“Statistics”按钮,在打开的对话框中,依次选择“Estimates”(显示回归系数的估计值)、“Confidence intervals”、“Model fit”(模型拟合)、“Descriptives”、“Casewise diagnostic”(个案诊断)和“All Cases”选项。

选择完毕后,单击“Continue”按钮,返回主对话框。

Step 4 单击“Plots”(图形)按钮,在打开的主对话框中,选择“DEPENDENT”(因变量)作为y轴变量,“*ZPRED”(标准化预测值)作为x轴变量;并在“Standardized Residual Plots”(标准化残差图)中选择“Histogram”(直方图)和“Normal probabilityplot”(正态概率图,即P-P图)选项。

选择完毕后,单击“Continue”按钮,返回主对话框。

Step 5 单击“Save”(保存)按钮,在打开的主对话框中,在“Predicted Values”(预测值)选项区域中选择“Unstandardized”和“S. E. ofmean predictions”(预测值均数的标准误差)选项;“PredictionIntervals”(预测区间)选项区域中选择“Mean”和“Individual”选项;“Residuals”(残差)选项区域中选择“Unstandardized”选项。

一元线性回归spss作业

一元线性回归spss作业

一元线性回归实验指导一、使用spss进行线性回归相关计算题目:为研究医药企业销售收入与广告支出的关系,随机抽取了20家医药企业,得到它们的销售收入和广告支出的数据如下表(数据在‘广告.sav’中)1.绘制散点图描述收入与广告支出的关系结果:(散点图粘贴在下面)从散点图可直观看出销售收入和广告支出(存在/不存在)线性关系2.计算两个变量的相关系数r及其检验相关性结果表格:(粘贴在下面)从结果中可看出,销售收入与广告支出的相关系数为(),双侧检验的P值(),r在0.01显著性水平下(),表明销售收入与广告支出之间(存在/不存在)线性关系。

3.一元线性回归分析计算回归分析;并输出标准化残差的pp图和直方图分析输出的结果:模型汇总表格:(粘贴在下面)这个表格给出相关系数R=()以及标准估计的误差()方差分析(ANOVA)表格:(粘贴在下面)这个表格给出回归模型的方差分析表,包括回归平方和SSR、回归均方MSR、残差平方和SSE、残差均方MSE、总平方和SST和总均方MST,F值129.762以及P值(),此处p 值(),说明回归的线性关系(显著/不显著)系数表格:(粘贴在下面)上面这个表格给出的是参数估计和检验的有关内容,包括回归方程的常数项、非标准化回归系数、常数项和回归系数检验的统计量t和显著性水平sig,以及回归系数的%95置信区间从此表可以得出销售收入与广告支出的估计方程为()。

回归系数()表示广告支出每变动1万元,销售收入平均变动()万元。

4.残差的检验从上面的输出结果中可得到标准化残差的标准pp图和直方图(粘贴在下面)同时在数据表格中出现残差以及估计值和区间的上下界,其中PRE_1为点估计值;RES_1为非标准化残差;ZRE_1为标准化残差;LMCI_1和UMCI_1表示平均值的置信区间(均值的预测区间);LICI_1和UICI_1表示个别值的预测区间的上界和下界;下面绘制非标转化残差图:(粘贴在下面)从残差图上可以看出,各个残差随机分布于0轴两侧,没有任何固定模式,这表明在销售收入与广告支出的一元线性回归中,线性假定以及等方差的假定成立。

SPSS如何进行线性回归分析操作 精品

SPSS如何进行线性回归分析操作 精品

SPSS如何进行线性回归分析操作本节内容主要介绍如何确定并建立线性回归方程。

包括只有一个自变量的一元线性回归和和含有多个自变量的多元线性回归。

为了确保所建立的回归方程符合线性标准,在进行回归分析之前,我们往往需要对因变量与自变量进行线性检验。

也就是类似于相关分析一章中讲过的借助于散点图对变量间的关系进行粗略的线性检验,这里不再重复。

另外,通过散点图还可以发现数据中的奇异值,对散点图中表示的可能的奇异值需要认真检查这一数据的合理性。

一、一元线性回归分析用SPSS进行回归分析,实例操作如下:1.单击主菜单Analyze / Regression / Linear…,进入设置对话框如图7-9所示。

从左边变量表列中把因变量y选入到因变量(Dependent)框中,把自变量x选入到自变量(Independent)框中。

在方法即Method一项上请注意保持系统默认的选项Enter,选择该项表示要求系统在建立回归方程时把所选中的全部自变量都保留在方程中。

所以该方法可命名为强制进入法(在多元回归分析中再具体介绍这一选项的应用)。

具体如下图所示:2.请单击Statistics…按钮,可以选择需要输出的一些统计量。

如RegressionCoefficients(回归系数)中的Estimates,可以输出回归系数及相关统计量,包括回归系数B、标准误、标准化回归系数BETA、T值及显著性水平等。

Model fit 项可输出相关系数R,测定系数R2,调整系数、估计标准误及方差分析表。

上述两项为默认选项,请注意保持选中。

设置如图7-10所示。

设置完成后点击Continue返回主对话框。

回归方程建立后,除了需要对方程的显著性进行检验外,还需要检验所建立的方程是否违反回归分析的假定,为此需进行多项残差分析。

由于此部分内容较复杂而且理论性较强,所以不在此详细介绍,读者如有兴趣,可参阅有关资料。

3.用户在进行回归分析时,还可以选择是否输出方程常数。

利用spss进行一元线性回归

利用spss进行一元线性回归
勾选“模型拟合度”,在结果中会输出“模型汇总”表 勾选“估计”,则会输出“系数”表 “绘制”:在这一项设置中也可以做散点图 “保存”: 注意:在保存中被选中的项目,都将在数据编辑窗口显示。 在本例中我们勾选 95% 的置信区间单值,未标准化残差 “选项”:只需要在选择方法为逐步回归后,才需要打开
【统计量】按钮
“回归系数”复选框组:定义回归系数的输出情况
勾选“估计”可输出回归系数 B及其标准误差, t 值和 p值 勾选“误差条图的表征”则输出每个回归系数的 95% 可信区间 勾选“协方差矩阵”则会输出各个自变量的相关矩阵和方差、协方差矩 阵。
“残差”复选框组:
用于选择输出残差诊断的信息,可选的有 Durbin-Watson 残差序列相关 性检验、个案诊断。
【模型汇总】 此表为所拟合模型的情况汇总,显示在模型
相关系数 R=0.904 拟合优度 R方=0.816 调整后的拟合优度 =0.813 标准估计的误差 =92.98256
1 中:
R方(拟合优度):是回归分析的决定系数,说明自变量和因变量形 成的散点与回归曲线的接近程度,数值介于 0 和1 之间,这个数值越大 说明回归的越好,也就是散点越集中于回归线上。
【选项】按钮
注意:选项按钮只需要在选择方法为逐步回归后,才需要打开
“步进方法标准”单选钮组:设置纳入和排除标准,可按 P值或 F 值来设置。 “在等式中包含常量”复选框:用于决定是否在模型中包括常数 项,默认选中。 “缺失值”单选钮组:用于选择对缺失值的处理方式,可以是不 分析任一选入的变量有缺失值的记录(按列表排除个案)而无论 该缺失变量最终是否进入模型;不分析具体进入某变量时有缺失 值的记录(按对排除个案);将缺失值用该变量的均数代替(使 用均值替代)。

SPSS10一元线性回归

SPSS10一元线性回归

然后,定义变量。将数据录入之后(录入方法与 Excel 近似),即可进入 Variable View 定义变量(图 2)。这里只说定义名称——在 Name 下按顺序给出名称。Data View 的列对应于 Data View 的行(图 3)。
图 2 进入 Data View
1
图 3 定义变量名称
再说调入数据。也可以从 Excel 中调入数据,不过 Excel 的工作表 sheet 最好是干净 的,即除了原始数据以外没有其它内容。调入的方法是,在标题栏下的图标中点击 , 或者打开下拉菜单 File,选择 Open→Data (图 4),在随后弹出的对话框中将“文件类 型”改为“Excel( *.xls)”(图 5);然后在“查找范围( I)”中找到保存数据的目录 (图 6);再然后选中文件名称,点击“打开( O)”,再弹出的对话框中指定数据所在 的工作表( Worksheet )(图 7 )。点击“ OK ”确定, Excel 中保存的数据就会出现在 SPSS 的数据显示区(图 8)。只要在 Excel 中存在数据标志,SPSS 就会默认原来的数据 标志为变量名称,而不必再在 SPSS 中为变量命名(但好像只能显示前四位汉字,如“最 大积雪深度”的后面两个字就显示不了;如果在 Excel 中的变量名称前四位汉字同名,在 SPSS 中只能承认前面的一个变量,后一个变量必须重新命名)。

显然小于10%-15%,检验可以通过。
s 1.419 0.0388 y 36.53
a R es i du a ls St a ti s ti c s
Predicted Value Std. Predicted Value Standard Error of .449 .912 Predicted Value Adjusted Predicted 22.557 50.928 Value Residual -1.911 2.369 Std. Residual -1.347 1.670 Stud. Residual -1.758 1.897 Deleted Residual -3.257 3.059 Stud. Deleted Residual -2.100 2.393 Mahal. Distance .002 2.820 Cook's Distance .003 1.089 Centered Leverage Value .000 .313 a. Dependent Variable: 灌溉面积y(千亩)

用SPSS进行一元线性回归分析

用SPSS进行一元线性回归分析
中输入数据。建立因变量历期“历期” 在 SPSS 数据编辑窗口中,创建“年份”、“ 温度”和“发蛾盛期” 变量,并把数据输入相应的变量中。或者打 开已存在的数据文件“DATA6-1.SAV”。
2)启动线性回归过程 单击 SPSS 主菜单的“Analyze”下的“Regression”中“ Linear”项,将打开如图1-1所示的线性回归过程窗口。
8)其它选项 在主对话框里单击“Options” 按钮,将打开如图1-6所示的对话框。
图1-6 “ Options”设置对话框 ①“Stepping Method Criteria”框用于进行逐步回归时内部数值的设定。其中各项为: “Use probability of F” 如果一个变量的 F 值的概率小于所设置的进入值(Entry) ,那么这个变量将被选 入回归方程 中; 当变量的 F 值的概率大于设置的剔除值 (Removal) , 则该变量将从回归方程中被剔除。 由此可见,设置 “Use probability of F” 时,应使进入值小于剔除值。 “Ues F value” 如果一个变量的 F 值大于所设置的进入值( Entry) , 那么这个变量将被选入回归方程中; 当变量的 F 值小于设置的剔除值(Removal) ,则该变量将从回归方程中被剔除。同时,设置“ Use F value” 时,应使进 入值大于剔除值。 ②“Include constant in equation ”选择此项表示在回归方程中有常数项。 本例选中“Include constant in equation ”选项在回归方程中保留常数项。 ③“Missing Values”框用于设置对缺失值的处理方法。其中各项为: “Exclude cases listwise” 剔除所有含有缺失值的观测值。 “Exchude cases pairwise”仅剔除参与统计分析计算的变量中含有缺失值的观测量。 “Replace with mean”用变量的均值取代缺失值。 本例选中“Exclude cases listwise” 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SPSS实现一元线性回归分析实例
2009-12-14 15:31
1、准备原始数据。

为研究某一大都市报开设周日版的可行性,获得了34种报纸的平日和周日的发行量信息(以千为单位)。

数据如图1所示。

SPSS17.0
图1
2、判断是否存在线性关系。

制作直观散点图:
(1)SPSS:菜单Analyze/Regression/linear Regression,如图2所示:
图2
(2)打开对话框如图3
图3
图3中,Dependent是因变量,Independent是自变量,分别将左栏中的sunday选入因变量,daily选入自变量,newspaper作为标识标签选入case labels.
(3)点击图3对话框中的plots按钮,如图4所示:
图4
将因变量DEPENTENT 选入Y:,自变量 ZPRED 选入X: continue 返回上级对话框。

单击主对话框OK.便生成散点图如图5所示:
图5
从以上散点图可看出,二者变量之间关系趋势呈线性关系。

2、回归方程
菜单Analyze/Regression/linear Regression,
在图3对话框的右边单击statistics如图6所示:
图6
regression coefficient回归系数,estimates估计值,confidence intervals level:95%置信区间,model fit拟合模型。

点击continue返回主对话框,单击OK.结果如图7、图8所示:
图7
图7中第一个图是变量的输入与输出,从图下的提示可知所有变量均输入与输出,没有遗漏。

图7中的第二图是模型总和R值,R平方值,R调整后的平方值,及标准误。

图8
图8中第一图为方差统计图,包括回归平方和,自由度,方程检验F值及P值。

图8第二图为回归参数图,从图中可知,constant为回归方程截距,即13.836,回归系数为1.340,标准误分别为:35.804和0.071,及t检验值和95%的置信区间的最大值和最小值。

因此回。

相关文档
最新文档