第4章拉深工艺与拉深模.pptx
第四章 拉深工艺及模具设计PPT课件
屈强比 s 小b ,板料不容易起皱。
23.09.2020
18
拉深过程中起皱条件
平端面凹模拉深时,毛坯首次拉深不起皱的条件:
t 0.09~0.071d
D
D
锥形凹模首次拉深时,材料不起皱的条件:
t 0.031 d
D
D
采用或不采用压边圈的条件
拉深方法
用压边圈 可用可不用 不用压边圈
23.09.2020
28
【例】如图所示的圆筒形拉深件,材料为08钢,料厚为2 mm,求其毛
坯尺寸。
解: h200t 2001199 2
d90t 90288
因该零件相对高度
h /d 1/9 8 9 8 2 .26
而高度 h19 195 ~2 000
查表4-3可知,修边余量 8mm,因而毛坯直径为 d1 82 mm
23.09.2020
22
筒壁的拉裂
主要取决于: 一方面是筒壁传力区中的拉应力;另一方面是筒壁传力区 的抗拉强度。
当筒壁拉应力超过筒壁材料的抗拉强度时,拉深件就会在底部圆 角与筒壁相切处——“危险断面”产生破裂。
防止拉裂的措施:
根据板材的成形性能,采用适当的拉深比和压边力,增加凸模 的表面粗糙度,改善凸缘部分变形材料的润滑条件,合理设计模具
它是冲压基本工序之一。可以加工旋转体零件,还可加 工盒形零件及其它形状复杂的薄壁零件。
23.09.2020
3
拉深工艺分类:
不变薄拉深: 把毛坯拉压成空心体,或者把空心体拉压成外
形更小而板厚没有明显变化的空心体的冲压工序。
变薄拉深: 是指凸、凹模之间间隙小于空心毛坯壁厚,把
空心毛坯加工成侧壁厚度小于毛坯壁厚的薄壁制件 的冲压工序。
第四章第1、2、3、4、5节N
第四章 拉深
特点: 1.反拉深时变形集中在rd区,与rd区包角为1800,摩擦阻力比正 拉深时大,不易起皱,常可不用压边。 2.折弯要减少一半。材料硬化程度要比正拉深时低些。 3.反拉深允许变形程度可大些。 4.拉深系数不能太大。影响凹模壁厚。
结束
第四章 拉深
三、凹模圆角区摩擦对 的影响 将板料流经、区视为皮带绕带轮旋转,便可用欧拉张力公式 进行估算。
第四章 拉深
四、材料硬化对 的影响 当考虑材料硬化对筒壁处拉应力的影响时, 应为瞬时的屈服流动应力。 便不是常数,
缩颈点处断面收缩率 材料,硬化也越强烈,
,越大的
应力的最大值一般出现在板料包满凸模和凹模 圆角时,而这时材料已高度硬化,屈服流动应 力已远远超过其初始值。
第四章 拉深
第三节 影响径向拉应力的因素
一、压边对 的影晌 凸缘区板料在流入凹模过程中将受到压边圈与凹模端面的双重 摩擦阻力作用,使筒壁处拉应力增大
为筒壁截面积的近似值。
第四章 拉深
二、凹模圆角区弯矩对 的影响 处在位置1是平直的,进入rd区被弯曲,中心面曲率半径为R。位 置3,又被反弯拉直。凸缘区板料中被反复两次弯曲。
第四章 拉深
第四章拉深
在压力机上使用模具将平板毛坯制成带底的圆筒形件或矩形件的 成形方法称为拉深。杯形件,盒形件。是冲压的基本工序之一。 以拉深件代替铸造壳体形件是发展趋势
第四章 拉深
第四章 拉深
第一节圆筒形件拉深变形分析
一、拉深变形过程及变形特点 无压边的拉深过程,有压边的拉深。
第四章 拉深工艺与拉深模设计
第四章 拉深
变形特点:变形区主要 集中在凸缘区,即D与d 之间的环形部分。变形 区任一点在径向受到了 拉伸,而切向受到了压 缩。同一圆周上的各点 的切向压缩变形是相等 的。径向变形不具有均 匀性,越靠近凸缘边缘, 径向拉伸变形与切 拉深
拉深工艺与拉深模设计课件.pptx
第四章 拉深工艺与拉深模设计
第六节 拉深件的工艺性
二、拉深件的结构工艺性(续)
4.拉深件的底或凸缘上的孔边到侧壁的距离应满足: a≥R+0.5t(或 rd + 0.5t)
5.拉深件的底与壁、 凸缘与壁、矩形件四 角的圆角半径应满足:
rd ≥t,R≥2t,r≥3t。 否则,应增加整形工序。
• 4、All that you do, do with your might; things done by halves are never done right. ----R.H. Stoddard, American poet做一切事都应尽力而为,半途而废永远不行 8.5.20208.5.202011:0311:0311:03:1011:03:10
第七节 拉深模的典型结构
二、后续工序拉深模
1.无压边装置的后续工序拉深模 2.有压边装置的后续工序拉深模
无压边装置反拉深模 3.反拉深模 压边圈在上模的反拉深模
压边圈在下模的反拉深模
第四章 拉深工艺与拉深模设计
第七节 拉深模的典型结构
三、落料拉深复合模
正装落料拉深复合模
第四章 拉深工艺与拉深模设计
第四章 拉深工艺与拉深模设计
第六节 拉深件的工艺性
二、拉深件的结构工艺性(续)
6.拉深件不能同时标注内外形尺寸;带台阶的拉深件,其高 度方向的尺寸标注一般应以底部为基准,若以上部为基准,高 度尺寸不易保证。
带台阶拉深件的尺寸标注
第四章 拉深工艺与拉深模设计
第六节 拉深件的工艺性
三、拉深件的材料
用于拉深的材料一般要求具有较好的塑性、低的屈强比、 大的板厚方向性系数 b / t 和小的板平面方向性。
拉深工艺与拉深模设计(PPT146页)
拉深件
拉深模
播放动画
4.1
拉深模设计程序
审图 拉深工艺性分析 拉深工艺方案制定
毛坯尺寸计算 拉深次数确定 冲压力及压力中心计算 冲压设备选择 凸、凹模结构设计 总体结构设计 冲压模装配图绘制 非标零件图绘制
课后思考
1、阐述拉深模设计程序,与冲裁模设计程 序比较,在确定工艺方案时有什么区别?
4.2 审图与拉深工艺性分析
m总——需多次拉深成形制件的总拉深系数。
注意:拉深系数系愈小,表示拉深变形程度愈大。
极限拉深系数:指当拉深系数减小至使拉深件起 皱、断裂或严重变薄超差时的临界拉深系数。
4.4.2 圆筒形拉深件拉深次数及工序尺寸计算
1.拉深次数
当md=d/D>m极限时,可以一次拉深,否则需多 次拉深。
1)推算法:根据极限拉深系数和毛坯直径,从第 一道拉深工序开始逐步向后推算各工序的直径, 一直算到得出的直径小于或等于工件直径,即可 确定所需的拉深次数。
2)尽量避免半敞开及非对称的空心件,应考虑设 计成对称(组合)的拉深,然后剖开;
3)在设计拉深件时,应注明必须保证外形或内形 尺寸,不能同时标注内外形尺寸;带台阶的拉 深件,其高度方向的尺寸标注一般应以底部为 基准。
4)拉深件口部尺寸公差应适当。
5)一般拉深件允许壁厚变化范围0.6t1.2t,若 不允许存在壁厚不均现象,应注明;
2)除底部孔有可能与落料、拉深复合冲压外, 凸缘部分及侧壁部分的孔、槽均需在拉深工 序完成后再冲出;
3)当拉深件的尺寸精度要求高或带有小的圆角 半径时.应增加整形工序;
4)修边工序一般安排在整形工序之后;
5)修边冲孔常可复合完成。
电线插座外壳的冲压程序
实例分析 生产批量:大批量
第 4 章 拉深工艺与拉深模
第4章 拉深工艺与拉深模 (Drawing Process and Drawing Die)教学目标了解拉深工艺及拉深件的结构工艺性、变形过程分析、拉深件的质量问题及防止措施,基本掌握拉深工艺设计、拉深模具典型结构组成及工作过程分析、拉深模具设计。
应该具备的能力:具备拉深件的工艺性分析、工艺计算和典型结构工作过程分析、拉深模设计的基本能力。
教学要求能力目标知识要点权重自测分数了解拉深工艺及拉深件的结构工艺性拉深概念及拉深件的结构工艺性12.5%理解拉深变形过程分析拉深变形过程及变形分析、拉深件的质量问题及防止措施12.5%基本掌握拉深工艺设计毛坯尺寸计算、拉深系数、拉深次数、各次拉深半成品件尺寸的计算25%熟悉拉深模具典型结构拉深模分类、典型结构、拉深模主要特点25%熟悉拉深模具设计拉深力计算,压边装置及压边力、压力机的选择,凸、凹模工作尺寸计算25% 引例壳形件在生产生活中经常见到,如下图所示的机壳、电动机叶片、摩托车轮护瓦,还有诸如不锈钢饭盒、易拉罐等产品。
这些零件从板料成为深腔件,就是通过拉深工艺实现的,其发生的塑性变形比较大,那么所用模具如何设计?这就是本章所要解决的问题。
思考电动机叶片模具的制造过程中包括哪些冲压工序。
模具设计与制造·108· ·108·4.1 拉深工艺与拉深件工艺性(Drawing Process andProcessability of Drawing Part)4.1.1 拉深件与拉深工艺分类(Drawing Part and Classification of Drawing Process)拉深是指利用模具将平板毛坯冲压成各种开口的空心零件,或将已制成的开口空心件压制成其他形状和尺寸空心件的一种冲压加工方法。
1.拉深件分类冲压生产中,拉深的种类很多,各种拉深件按变形力学特点可以分为表4-1所示的基本类型。
表4-1 拉深件的分类拉深件名称 拉深件简图变形特点 轴对称零件 圆筒形件 带凸缘圆筒形件 阶梯形件1.拉深过程中变形区是坯料的凸缘部分,其余部分是传力区;2.坯料变形区在切向压应力和径向拉应力作用下,产生切向压缩与径向伸长的一向受压一向受拉的变形;3.极限变形程度主要受坯料传力区承载能力的限制 盒形件 带凸缘盒形件 其他形状零件 1.变形性质同前,区别在于一向受拉一向受压的变形在坯料周边上分布不均匀,圆角部分变形大,直边部分变形小; 2.在坯料的周边上,变形程度大与变形程度小的部分之间存在着相互影响与作用 直壁类拉深件 非轴对称零件 曲面凸缘的零件 除具有前项相同的变形性质外,还有如下特点:1.因零件各部分高度不同,在拉深开始时有严重的不均匀变形;2.拉深过程中,坯料变形区内还要发生剪切变形轴对称零件球面类零件 锥形件 其他曲面零件 拉深时坯料变形区由两部分组成: 1.坯料外部是一向受拉一向受压的拉深变形;2.坯料的中间部分是受两向拉应力的胀形变形区 曲面类拉深件非轴对称零件 平面凸缘零件 曲面凸缘零件 1.拉深时坯料的变形区也是由外部的拉深变形区和内部的胀形变形区所组成,但这两种变形在坯料中的分布是不均匀的; 2.曲面凸缘零件拉深时,在坯料外周变形区内还有剪切变形第4章 拉深工艺与拉深模 ·109··109·虽然这些零件的冲压过程都叫做拉深,但是由于其几何形状不同,在拉深过程中,它们的变形区位置、变形性质、毛坯各部位的应力状态和分布规律等都有相当大的差别,所以在确定拉深的工艺参数、工序数目与工艺顺序等方面都不一样。
第四章 拉深工艺与模具设计
t D
Ky (1
m1 )
以后各次拉深中制件不起皱的条件是: 实践证明:
t di1
K
y
(
1 m1
1)
直壁圆筒形件的首次拉深中起皱最易发生的时刻:拉深的初期
(二)拉裂 当筒壁拉应力超过筒壁材料的抗拉强度时,拉深件就会在底部圆角与 筒壁相切处——“危险断面”产生破裂。
为防止拉裂,可以从以下几方面考虑: (1)根据板材成形性能,采用适当的拉深比和压边力; (2)增加凸模表面粗糙度;改善凸缘部分的润滑条件; (3)合理设计模具工作部分形状;选用拉深性能好的材料等。
第四章 拉深工艺与模具设计
拉深变形过程分析
直壁旋转体零件拉深 工艺计算
非直壁旋转体零件拉深 成形方法
盒形件的拉深
拉深工艺设计 拉深模具的类型与结构
其他拉深方法 拉深模工作部分的设计
返回
拉伸:
拉深是利用拉深模具将冲裁好的平板毛坯压制成各种开口的空心工 件,或将已制成的开口空心件加工成其它形状空心件的一种冲压加 工方法。拉深也叫拉延。
(二)筒壁传力区的受力分析
1.压边力Q引起的摩擦力:
m
2Q dt
2.材料流过凹模圆角半径产生弯曲变形的阻力
w
1 4
b
rd
t t
/
2
3.材料流过凹模圆角后又被拉直成筒壁的反向弯曲w 力 仍按上式进行计
算,拉深初期凸模圆角处的弯曲应力也按上式计算
w
w
1 4
b
rd
t t
2)筒底圆角半径rn
筒底圆角半径rn即是本道拉深凸模的圆角半径rp,确定方法如下:
r r 一般情况下,除末道拉深工序外,可取 pi = di。 对于末道拉深工序:
第4章 拉深工艺与拉深模
2013-7-29
10
面积相等原则:将三角 形阴影部分切除,把留 下的狭条沿直径d的圆周 折弯后竖起来并加以焊 接,就得到一个直径为d, 高度为h=(D-d)/2的圆 筒件,说明被切除的三 角形阴影部分在模具的 作用下发生了塑性流动, 从而使拉深后的工件高 度增加了Δh,所以h> (D-d)/2。
rn rpn 2
42 2013-7-29
(3)半成品高度尺寸的计算
D2 rn h n 0.25 d d n 0.43 d d n 0.32rn n n
4 拉深工艺力的计算 (1)压边力 是否采用压边圈?查表4.6(P125) 压边力过大,会增加坯料拉入凹模的拉力,容易拉 裂工件;过小,则不能防止凸缘起皱。
2013-7-29
30
(2)拉深件毛坯尺寸的确定 根据拉深后工件表面积与拉深前毛坯表面积相等 这一原则来计算
(1)确定修边余量:查表4.1、4.2(P119)查处Δh (2)计算工件表面积,分解成若干简单几何体 (3)求出毛坯尺寸
2013-7-29 31
表4.1筒形件的修边余量(mm)
2013-7-29
2013-7-29
24
拉深起皱后,轻者 凸缘变形区材料仍 能被拉进凹模,会 使工件口部产生波 纹,影响工件的质 量。
2013-7-29
25
起皱严重时,起皱的凸缘 材料不能通过凸、凹模间 隙而引起拉深件拉裂。 拉深是否起皱与σ 3大小 有关,也与毛坯的相对厚 度t/D有关,而σ 3与拉深 的变形程度有关。而每次 拉深的变形程度较大而 t/D较小时就会起皱。 防止起皱的方法是压边圈, 或者减小拉深变形程度、 加大毛坯厚度。
2013-7-29
43
模具第四章拉深模
一、拉深变形过程
的分析
1、拉深变形过程及特点
圆筒形件的拉深过程如图4-1所示。 直径为D的圆形平板毛坯2被凸模1拉 入凸、凹模的间隙里,形成直径为d 高为H的空心圆柱体4。在这一过程 中,板料金属是如何流动的呢?
如图4-2所示,把直径为D的圆板料 分成两部分:一部分是直径为d的圆 板,另一部分是直径为(D-d)的 圆环部分,把这块板料拉深成直径为 d的空心圆筒。在这个拉伸试验完成 后,发现板料的第一部分变化不大, 即直径为d的圆板仍保持原形状作为 空心圆筒的底,板料的圆环部分变化 相当大,变成了圆柱体的筒壁,这一 部分的金属发了流动。
硬化指数n值愈大,材料变形愈均匀,愈不易发生拉深细颈,因 此拉裂和危险截面变薄也会推迟出现,可使极限拉深因数减小。
厚向异性因数γ 大,板平面方向比厚度方向变形容易,则主变 形区不易起皱,危险截面不易变薄、拉裂,可使板料极限拉深 因数减小。
材料的深长率δ 是材料的塑性指标, δ 值愈小,塑性变形能力 愈差,则极限拉深因数也会增大。
第四章 拉深模
第一节 拉深模的设计基础 第二节 拉深模的设计示范
第一节 拉深模的设计基础
拉深是把一定形状的平板毛坯或空心件通过拉 深模制成各种空心零件的工序。在冲压生产中 拉深是一种广泛使用的工序,用拉深工序可得 到的制件一般可分为三类:
1、旋转体零件:如搪瓷脸盆、铝锅等。 2、方形零件:如饭盒、汽车油箱等。 3、复杂形状零件:如汽车覆盖件等。
⑵拉深条件
①模具的几何参数:
1)凸、凹模的间隙Z 模具的间隙适当大些,材料被拉入间隙
后的挤压小,摩擦阻力也小,拉深力也会减小,极限拉深因数亦减小。
2)凹模圆角半径rd 凹模圆角半径rd适当大些,材料沿凹模圆角
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 —凹模
2.起皱
危害:
1.毛坯凸缘起皱严重时不 能通过凸模和凹模间 隙而被拉断。
2.轻微起皱的毛坯凸缘虽 可通过间隙,但会在筒 壁上留下皱痕,影响零 件的表面质量。
影响因素:
1.σ3
2. t/(Rt-r0)
四.拉深时筒壁传力区的受力情况与拉断
图5-9 拉深时压边力引起的摩擦阻力
四.拉深时筒壁传力区的受力情况与拉断
第四章 拉深工艺与拉深模设计
本章目录
第一节 拉深的基本原理 第二节 旋转体拉深件毛坯尺寸的确定 第三节 圆筒形件的拉深系数 第四节 圆筒形件的拉深次数及工序尺寸确定
第五节 圆筒形件拉深的压边力与拉深力
第九节 拉深件的工艺性 第十节 拉深模
第一节 拉深的基本原理
一.拉深变形过程、特点及拉深分类 拉深(俗称拉延):是利用模具将平板毛坯制成开口空心零件的一种冲压工艺。
凸缘区起皱:由于切向压应力引起板料失去稳定而产生弯曲; 传力区拉裂:由于拉应力超过抗拉强度引起板料断裂。
第四章 拉深工艺与拉深模设计
三、拉深件的起皱与拉裂(续)
1.凸缘变形区的起皱
主要决定于:
一方面是切向压应力σ3的大小,越大越容易失稳起皱; 另一方面是凸缘区板料本身的抵抗失稳的能力。 凸缘宽度越大,厚度越薄,材料弹性模量和硬化模量越 小,抵抗失稳能力越小。
拉深时扇形单元的受力与变形情况
二.拉深过程中毛坯的应力和应变状态
图5-4 拉深时毛坯的变形特点 a)平板毛坯的一部分 b)毛坯在拉深过程中的变形 c)拉深成圆筒形件
图5-5 拉深时毛坯内各部分的内应力
第五章 拉深
第一节 拉深的基本原理
拉深件的起皱与拉裂
拉深过程中的质量问题: 主要是凸缘变形区的起皱和筒壁传力区的拉裂。
2
>10~ 1.2 1.6
2.5
20
(2)计算工件表面积
圆筒直壁部分表面积
A1 d (H R)
圆角球台部分表面积
A底2 部 表4 面[2积 R(d 2R) 8R2 )
工件总A3面积4: (d 2R)2
A
A1
A2
A3
d
(H
R)
4
[2
R(d
2R)
8R
2
)]
4
(d
2R)2
(3)求出毛坯尺寸
最易起皱的位置:凸缘边缘区域 起皱最强烈的时刻:在Rt=(0.7~0.9)R0时 防止起皱:压边
第四章 拉深工艺与拉深模设计
拉深件的起皱与拉裂(续)
2.筒壁的拉裂
主要取决于:
一方面是筒壁传力区中的拉应力; 另一方面是筒壁传力区的抗拉强度。 当筒壁拉应力超过筒壁材料的抗拉强度时,拉深件就会在 底部圆角与筒壁相切处——“危险断面”产生破裂。
σ1
=1.1σ sm
ln
Rt R
σ3
=1.1σ
sm
(1
ln
Rt R
)
σ1max
=1.1σ sm
ln
Rt r0
σ3max =1.1σ sm
拉深某一瞬间|σ1|=|σ3 |的位置
1.1σ sm
ln
Rt R
1.1σsm(1 ln
Rt R
)
R 0.61Rt |σ3 |=|σ1 |
R > 0.61Rt |σ3 |>|σ1 |
R < 0.61Rt |σ3 |<|σ1 |
在整个拉深过程中,当Rt =(0.7 ~ 0.9)R0时,
σ1max达最大值[(σ1max )max],是拉深最容易拉裂时刻
2.起皱
• 起皱:在拉深过程中,毛坯凸缘在切向压应力作用下, 可能产生塑性失稳而拱起的现象。
图5-8 凸缘起皱
1—凸模
2 —毛坯
第二节 旋转体拉深件毛坯尺寸的确定
(1)计算法:简单形状 (2)图解法和解析法:复杂形状
一.计算法
(1)确定修边余量 表4-2 无凸缘拉深件的修边余量δ (mm)
工件 高度 h
≤10
工件的相对高度h/d
>0.5 ~ > 0.8 ~ > 1.6 ~ > 2.5 ~
0.8
1.6
2.5
4
1.0 1.2 1.5
防止拉裂:
一方面要通过改善材料的力学性能,提高筒壁抗拉强度; 另一方面通过正确制定拉深工艺和设计模具,降低筒壁所 受拉应力。
三.拉深时凸缘变形区的应力分布和起皱
图5-7 圆筒形件拉深时的应力分析
1.凸缘变形区的力学分析
(σ1
+
dσ1
)(R
+
dR)φt
-
σ1Rφt
+
2σ
3dRtsin
φ 2
=
0
σ1 (σ3)=βσs
图5-16 求拉深件毛坯尺寸图解法
D0 8LRx
1—凸模
图5-1 拉深示意图
2 —压边圈
3 —毛坯
4 —凹模
第四章 拉深工艺与拉深模设计
第一节 拉深的基本原理
拉深 不变薄拉深
变薄拉深
拉深模: 拉深所使用的模具。
拉深模特点:结构相对较简单,与冲裁模比较,工作部分有较
大的圆角。
用拉深方法可以制成筒形、阶梯形、锥形、球形、 盒形和其它不规则形状的薄壁零件。
4
D02
A
D0 (d 2R)2 4d (H R) 2 R(d 2R) 8R2
二.解析法
A 2 RxL
4
D02
2
Rx L
D0 8Rx L
n
Li Rxi L1Rx1 L2 Rx2
i 1
n
A 2 Li Rxi i 1
n
D0 8 Li Rxi i 1
Ln Rxn
三.图解法
图5-10 凹模圆角处的受力状态
四.拉深时筒壁传力区的受力情况与拉断
图5-11 毛坯的弯矩示意图
筒壁危险断面上的有效抗拉强度为:
σk
1.155σb
2
σb rd 1
t
若σP>σK,拉深件即产生拉裂。
2.拉裂
图5-12 拉深件拉裂
影响拉裂的因素
(1)压边力 (2)相对圆角半径 凹模 (rd/t)<2 凸模 (rp/t)<5 (rp/t)=5~20 (3)润滑 凹模与凸模润滑效果相反 (4)凸模和凹模间隙 (5)表面粗糙度
特点:生产效率高,省材料,零件的强度和刚度好,精 度较高,拉深可加工范围非常广泛,直径从几毫米 的小零件直至2~3m的大型零件。
拉深过程:在凸模的作用下, 直径为D0的毛坯被拉进凸 凹模之间的间隙里形成圆 筒件。
变形区:毛坯的外部环形部 分。
不变形区:底部。
已变形区:被拉入凸、凹模 之间的直壁部分。
拉深过程中出现的现象(1):高度变化
多余的三角形废料没有被裁去,而是通过塑形变形被 转移到增加圆筒形零件的高度,使h>(D0-d)/2
圆筒形拼装成形
拉深过程中出现的现象(2):厚度变化
图5-3 圆筒形拉深件壁厚的变化(%)
拉深件厚度和硬度的分布
a1>a2 > a3 > . . . > a b1 = b2 = b3=. . . =b0