1求下列函数的定义域

合集下载

函数定义域、值域、解析式习题及答案

函数定义域、值域、解析式习题及答案

函数定义域、值域、解析式习题及答案一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3}-\frac{3}{x-1}$先求分母的取值范围,$x+3\neq 0$,$x\neq -3$;$x-1\neq 0$,$x\neq 1$。

然后考虑分子的取值范围,$x^2-2x-15$的值域为$(-\infty,-16]\cup [3,\infty)$,$2x-1$的值域为$(-\infty,\infty)$,$4-x^2$的值域为$[-4,\infty)$。

因此,$y$的定义域为$(-\infty,-3)\cup (-3,1)\cup (1,3)\cup (3,\infty)$。

⑵ $y=1-\frac{1}{x-1}+\frac{2x-1}{x^2-4}$先求分母的取值范围,$x^2-4\neq 0$,$x\neq \pm 2$;$x-1\neq 0$,$x\neq 1$。

然后考虑分子的取值范围,$2x-1$的值域为$(-\infty,\infty)$。

因此,$y$的定义域为$(-\infty,-2)\cup (-2,1)\cup (1,2)\cup (2,\infty)$。

⑶ $y=x+1-\frac{1}{1+\frac{1}{x-1}+\frac{2x-1}{4-x^2}}$先求分母的取值范围,$x-1\neq 0$,$x\neq 1$;$4-x^2\neq 0$,$x\neq \pm 2$。

然后考虑分母的值域,$1+\frac{1}{x-1}+\frac{2x-1}{4-x^2}>0$,即$\frac{2x-1}{x^2-4}>-\frac{1}{x-1}$。

因此,$y$的定义域为$(-\infty,-2)\cup (-2,1)\cup (1,2)\cup (2,\infty)$。

4)$f(x)=\frac{x-3}{x^2-2}$的定义域为$(-\infty,-\sqrt{2})\cup (-\sqrt{2},3)\cup (3,\sqrt{2})\cup (\sqrt{2},\infty)$。

函数定义域 值域 习题及答案

函数定义域 值域 习题及答案

函数定义域值域习题及答案Last revision on 21 December 2020复合函数定义域和值域练习题一、 求函数的定义域1、求下列函数的定义域:⑴33y x =+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。

4、 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸y = 三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、 已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题9、判断下列各组中的两个函数是同一函数的为 ( )⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ; ⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

函数定义域求法及练习题含答案 (1)

函数定义域求法及练习题含答案 (1)

求函数的定义域1、求下列函数的定义域:⑴221533x x y x --=+- ⑵211()1x y x -=-+ ⑶021(21)4111y x x x =+-+-+-(4))11lg(xy -= (5) )34(log 2-=x y(6))32(log 2)12(++-=-x x y x (7))10(1log ≠>-=a a x y a 且2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。

4、若函数()f x = 3442++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( )A 、(-∞,+∞)B 、(0,43]C 、(43,+∞)D 、[0, 43)5、若函数2()1f x mx mx =++的定义域为R ,则实数m 的取值范围是( )(A)04m << (B) 04m ≤≤(C) 4m ≥ (D) 04m <≤6.已知函数f(2x)的定义域是[-1,1],求f(log 2x)的定义域.7.若()f x 的定义域为[]35-,,求()()(25)x f x f x ϕ=-++的定义域.8.已知函数的定义域是,求的定义域。

9、设函数y=f(x)的定义域为[0,1],求y=f()31()31-++x f x 定义域。

5、10.若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围11..函数)2(log 32212+++-=x x x y 的定义域为_________.12.函数)1(log 221-=x y 的定义域为_________.。

定义域的求法

定义域的求法

定义域的求法一、定义域是函数y=f(x)中的自变量x 的范围。

求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。

( 6 )0x 中x 0≠例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 解:①∵x-2=0,即x=2时,分式21-x 无意义,而2≠x 时,分式21-x 有意义,∴这个函数的定义域是{}2|≠x x .②∵3x+2<0,即x<-32时,根式23+x 无意义,而023≥+x ,即32-≥x 时,根式23+x 才有意义,∴这个函数的定义域是{x |32-≥x }.③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x-21同时有意义,∴这个函数的定义域是{x |1-≥x 且2≠x }另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x ⇒ ⎩⎨⎧≠-≥21x x例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f③=)(x f x11111++④xx x x f -+=)1()(⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x∴函数14)(2--=x x f 的定义域为: [3,3-]②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或4133≥-≤<--<⇒x x x 或或∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧xx x ⇒2110-≠-≠≠⎪⎩⎪⎨⎧x x x ∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37- 或 x>37- ∴定义域为:}37|{-≠x x例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围 解:∵定义域是R,∴恒成立,012≥+-aax ax ∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于 例4 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域解:要使函数有意义,必须:43434543434514111411≤≤-⇒⎪⎩⎪⎨⎧≤≤-≤≤-⇒⎪⎩⎪⎨⎧≤-≤-≤+≤-x x x x x ∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。

高中数学例题:函数定义域的求法

高中数学例题:函数定义域的求法

高中数学例题:函数定义域的求法例1.求下列函数的定义域(用区间表示).(1)2-1()-3x f x x =; (2)()f x =; (3)()f x =. 【思路点拨】由定义域概念可知定义域是使函数有意义的自变量的取值范围. (1)是分式,只要分母不为0即可;(2)是二次根式,需根式有意义;(3)只要使得根式和分式都有意义即可.【答案】(1)(,(3,3)(3,)-∞-+∞;(2)8,3⎡⎫+∞⎪⎢⎣⎭;(3)(]6,2-. 【解析】 (1)21()3x f x x -=-的定义域为x 2-3≠0,(,(3,3)(3,)x ∴≠∴-∞-+∞定义域为:;(2)88()-80,,33f x x x ⎡⎫=≥≥∴+∞⎪⎢⎣⎭3得,定义域为;(3)(]202() 6,260-6x x f x x x -≥≤⎧⎧=∴-⎨⎨+>>⎩⎩得定义域为. 【总结升华】使解析式有意义的常见形式有①分式分母不为零;②偶次根式中,被开方数非负.当函数解析式是由多个式子构成时,要使这多个式子对同一个自变量x 有意义,必须取使得各式有意义的各个不等式的解集的交集,因此,要列不等式组求解.举一反三:【变式1】求下列函数的定义域(用区间表示):(1)3f (x)|x 1|2=--; (2)1f (x)x 1=-;(3)()f x =【答案】(1)(-∞,-1)∪(-1,3)∪(3,+∞);(2)[)3,1(1,)-⋃+∞;(3)[]0,1.【解析】(1)当|x-1|-2=0,即x=-1或x=3时,3|x1|2--无意义,当|x-1|-2≠0,即x≠-1且x≠3时,分式有意义,所以函数的定义域是(-∞,-1)∪(-1,3)∪(3,+∞);(2)要使函数有意义,须使x10x3x1x30-≠⎧≥-≠⎨+≥⎩,即且,所以函数的定义域是[)3,1(1,)-⋃+∞;(3)要使函数有意义,须使1x0,x0.-≥⎧⎨≥⎩,所以函数的定义域为[]0,1.【总结升华】小结几类函数的定义域:(1)如果f(x)是整式,那么函数的定义域是实数集R;(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合;(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合;(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合;(即求各集合的交集)(5)满足实际问题有意义.例2.(1)已知函数()f x的定义域为[1,2],求函数(21)y f x=+的定义域;(2)已知函数(21)y f x=+的定义域[1,2],求函数()f x的定义域;(3)已知函数(21)y f x =+的定义域[1,2],求函数(21)y f x =-的定义域.【思路点拨】(1)若()f x 的定义域为a x b ≤≤,则在[]()f g x 中,()a g x b ≤≤,从中解得x 的取值范围即为[]()f g x 的定义域.(2)若[]()f g x 的定义域为m x n ≤≤,则由m x n ≤≤确定的()g x 的范围即为()f x 的定义域.【答案】(1)[1,12];(2)[3,5];(3)[2,3].【解析】(1)设21x t +=,由于函数()y f t =定义域为[1,2],,故12t ≤≤,即1212x ≤+≤,解得102x ≤≤,所以函数(21)y f x =+的定义域为[1,12].(2)设21x t +=,因为12x ≤≤,所以3215x ≤+≤,即35t ≤≤,函数()y f t =的定义域为[3,5] .由此得函数()y f x =的定义域为[3,5] .(3)因为函数(21)y f x =+的定义域为[1,2],即12x ≤≤,所以3215x ≤+≤,所以函数()y f x =的定义域为[3,5],由3215x ≤-≤,得23x ≤≤,所以函数(21)y f x =-的定义域为[2,3] .【总结升华】求抽象函数的定义域,一要理解定义域的含义是x 的取值范围;二要运用整体思想,也就是在同一对应关系f 下括号内的范围是一样的.举一反三:【变式1】已知(1)f x +的定义域为[)2,3-,求1(2)f x+的定义域.【答案】11,,32⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭【解析】(1)f x +的定义域为[)2,3-,∴23x -≤<,∴114x -≤+<,∴1124x-≤+<,解得:12x >或13x ≤-,所以1(2)f x+的定义域为11,,32⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭.例3.已知函数y =的定义域为R ,求实数a 的取值范围.【思路点拨】确定a 的取值范围,使之对任意x R∈,都有2430ax ax ++≠,即方程2430ax ax ++=无实根.【答案】30,4⎡⎫⎪⎢⎣⎭【解析】当0a =时,2430ax ax ++≠对任意x R ∈恒成立.当0a ≠时,要使2430ax ax ++≠恒成立,即方程2430ax ax ++=无实根.只需判别式2(4)124(43)0a a a a ∆=-=-<,于是304a <<.综上,a 的取值范围是30,4⎡⎫⎪⎢⎣⎭.【总结升华】(1)函数有意义,分母2430ax ax ++≠恒成立,转化为0a ≠时,二次方程2430ax ax ++=无实根是关键一步.(2)由于判别式是对二次方程的实系数而言,所以这里应分0a =、0a ≠两种情况讨论.(3)本题是求定义域的逆向问题,即已知函数的定义域求解析式中所含字母的取值范围.。

函数期末复习1

函数期末复习1

求函数解析式 的方法
求函数解析式的方法 分别求下列条件下的f(x)
()已知 ( x x ) x x , 1 f 求f ( x ) 配凑法
2
1
2
(2)若 f ( x 1) x 2 x , 求f (x).
1 x (3)若 f ( 2) , 求f (x). x 1 x 换元法
一、已知 f ( x) 的定义域,求 f g ( x) 的定义域
其解法是:若 f ( x) 的定义域为 a ≤ x ≤ b ,则在
f g ( x) 中, a ≤ g ( x ) ≤ b ,从中解得 x 的取值范围即为 f g ( x) 的定义域.
5 例1 已知函数 f ( x) 的定义域为 1, ,求 f (3 x 5) 的
七、利用函数的单调性
主要适用于 (1) y=ax+b+ cx+d (ac>0)形式的函数; (2)利用 k 基本不等式不能求得 y=x+ x (k>0)的最值(等号不成立)时. 例7 求下列函数的值域: (1)y= 1-2x - x ; [- 1 , +∞) 2 4 [5, +∞) (2)y=x+ x (0<x≤1); (3)y= x+3 - x . (0, 3 ]
评注: 把 f(x), f( xx1 ), f( 11x ) 都看作“未知数”, 把已知条 1 件化为方程组的形式解得 f(x). 又如: 已知 af(x)+bf( )=cx, 其 x 中, |a|≠|b|, 求 f(x). c f(x)= 2 2 (ax- b ). x a -b 四、递推求和法
定义域.
二、已知 f g ( x) 的定义域,求 f ( x) 的定义域 其解法是:若 f g ( x) 的定义域为 m ≤ x ≤ n ,则

高等数学第1章课后习题答案(科学出版社)

高等数学第1章课后习题答案(科学出版社)

第一章 函数、极限、连续习题1-11.求下列函数的自然定义域:(1)321x y x=+-(2) 1arctany x=+(3) 1arccosx y -=;(4) 313 , 1x y x ⎧≠⎪=⎨⎪=⎩. 解:(1)解不等式组23010x x +≥⎧⎨-≠⎩得函数定义域为[3,1)(1,1)(1,)---+∞U U ; (2)解不等式组230x x ⎧-≥⎨≠⎩得函数定义域为[U ;(3)解不等式组2111560x x x -⎧-≤≤⎪⎨⎪-->⎩得函数定义域为[4,2)(3,6]--U ; (4)函数定义域为(,1]-∞.2.已知函数()f x 定义域为[0,1],求(cos ),()() (0)f f x f x c f x c c ++->的定义域.解:函数f要有意义,必须01≤≤,因此f 的定义域为[0,1];同理得函数(cos )f x 定义域为[2π-,2π]22k k ππ+;函数()()f x c f x c ++-要有意义,必须0101x c x c ≤+≤⎧⎨≤-≤⎩,因此,(1)若12c <,定义域为:[],1c c -;(2)若12c =,定义域为:1{}2;(3)若12c >,定义域为:∅. 3.设21()1,||x a f x x x a ⎛⎫-=- ⎪-⎝⎭0,a >求函数值(2),(1)f a f .解:因为21()1||x a f x x x a ⎛⎫-=- ⎪-⎝⎭,所以 21(2)104a f a a a ⎛⎫=-= ⎪⎝⎭,22 ,>1,11(1)10 ,0<<111a a f a a ⎛⎫⎧-=-= ⎪⎨ ⎪-⎩⎝⎭. 4. 证明下列不等式:(1) 对任何x R ∈有 |1||2|1x x -+-≥; (2) 对任何n Z +∈有 111(1)(1)1n n n n++>++;(3) 对任何n Z +∈及实数1a >有 111na a n--≤.证明:(1)由三角不等式得|1||2||1(2)|1x x x x -+-≥---= (2)要证111(1)(1)1n n n n++>++,即要证111n +>+= 111(1)(1)(1)11111n n n n n +++++++<=+++L 得证。

函数的定义域解析与练习及答案

函数的定义域解析与练习及答案

函数的定义域1、已知函数式求定义域:例1、求下列函数的定义域:(1);(2);(3);(4);(5).解:(1),即;(2),即;(3)且,即.(4)要使函数有意义,应满足,即.∴函数的定义域为.(5)要使函数有意义,应满足,即.∴函数的定义域为.点拨:要求使函数表达式有意义的自变量的取值范围,可考虑用到不等式或不等式组,然后借助于数轴进行求解.2、求抽象函数的定义域讲解:求解抽象函数的定义域时一定要严格遵循原始函数的定义域,不管“”中的“x”被什么代换,它们都得首先遵循这一“规则”,在这一“规则”之下再去求解具体的x的范围.例2、已知的定义域为,求,的定义域.解:∵的定义域为,∴,∴,即的定义域为,由,∴,即的定义域为.点拨:若的定义域为,则的定义域是的解集.例3、已知的定义域为,求,的定义域.解:∵的定义域为,∴即的定义域为.又∵的定义域为,∴,∴即的定义域为.点拨:已知的定义域,则当时,y=kx+b的函数值的取值集合就是的定义域.例4、已知函数的定义域是[a,b],其中a<0<b,且|a|>b,求函数的定义域.解答:∵函数的定义域为[a,b],∴a≤x≤b,若使有意义,必须有a≤-x≤b即有-b≤x≤-a.∵a<0<b,且|a|>b,∴a<-b且b<-a.∴的定义域为.点拨:若的定义域为及的定义域分别为A、B,则有借助于数轴分析可求得.3、函数定义域的逆用讲解:已知函数的定义域求解其中参数的取值范围时,若定义域为R时,可采用判别式法,若定义域为R的一个真子集时,可采用分离变量法.例5、已知函数的定义域是R,求实数k的取值范围.解答:①当k=0时,函数,显然它的定义域是R;②当k≠0时,由函数y的定义域为R可知,不等式对一切实数x均成立,因此一定有.解得0<k≤1,∴0≤k≤1.点拨:此题是已知函数y的定义域,据此逆向求解函数中参数k的取值,需要将问题准确转化成不等式问题.例6、半径为R的圆内接等腰梯形ABCD,它的下底AB是⊙O的直径,上底CD的端点在圆周上,写出这个梯形周长y和腰长x的函数关系式,并写出它的定义域.解:如图所示,AB=2R,CD在⊙O在半圆周上.设腰AD=BC=x,作DE⊥AB.垂足为E,连BD.由Rt△ADE∽Rt△ABD,练习:一、选择题1、函数的定义域是A.[-2,2] B.{-2,2} C.(-∞,-2)∪(2,+∞) D.(-2,2)2、若函数的定义域为[-1,2],则函数的定义域是A. B.[-1,2] C.[-1,5] D.3、已知函数的定义域为A,的定义域为B,若=.则实数m的取值范围是A.(-3,-1) B.(-2,4) C.[-2,4] D.[-1,3]二、填空题4、已知函数的定义域为[-1,2],那么函数的定义域是__________.5、若函数的定义域为R,则实数m的取值范围是__________.三、解答题6、求下列函数的定义域:①②③y=lg(a x-2·3x)(a>0且a≠1)7、解答下列各题:(1)已知的定义域为[0,1],求及的定义域.(2)设的定义域是[-2,3),求的定义域.8、已知函数的定义域为[-1,1],求(a>0)的定义域.9、设f(x)=lg,如果当x∈(-∞,1]时f(x)有意义,求实数a的取值范围.答案:一.1.B 2.C 3.D提示:1、得x2=4,x=±2.3、由x2-2x-8≥0得A={x|x≥4或x≤-2}.由1-|x-m|>0得,B={x|m-1<x<1+m},∵.二.4.解析:由得≤x≤1.5.解析:当m=0,,定义域为R,当m≠0,由的定义域为R知抛物线y=mx2+4mx+3与x轴无交点,即Δ=16m2-12m<0,解得.综上可知m∈.6.解:①.②.③∵a x-2·3x>0,∴()x>2.当a>3时,此函数的定义域为(log2,+∞);当0<a<3且a≠1时,函数定义域为(-∞,log2).当a=3时,函数无意义.7.解:(1)设的定义域为[0,1],∴0≤t≤1.当t=x2,可得0≤x2≤1,∴-1≤x≤1,∴的定义域为[-1,1].同理,由得,∴的定义域是.(2)∵的定义域是[-2,3),∴-2≤x<3-3≤x-1<2,即的定义域是[-3,2).由,∴函数的定义域为.8.解:须使和都有意义.使有意义则;使有意义则.当时,,的定义域为;当时,,的定义域为.9.解:由题设可知,不等式1+2x+4x·a>0在x∈(-∞,1]上恒成立,即()2x+()x+a>0在x∈(-∞,1]上恒成立.设t=()x,则t≥,又设g(t)=t2+t+a,其对称轴为t=-.只需g()=()2++a>0,得a>-,所以a的取值范围是a>-.。

函数定义域求法及练习题(含答案)含答案

函数定义域求法及练习题(含答案)含答案

函数定义域求法总结一、定义域是函数y=f(x)中的自变量x (1)分母不为零(2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ( 6 )0x 中x 0≠二、抽象函数的定义域1.已知)(x f 的定义域,求复合函数[f 域数,义域之中,因此可得其方法为:若(f 为()b a x ,∈,求出)]([x g f 中b x g a <<)(围,即为)]([x g f 的定义域。

2.已知复合函数()][x g f 的定义域,求域方法是:若()][x g f 的定义域为x ∈b x a <<确定)(x g 的范围即为)(x f 3.已知复合函数[()]f g x 的定义域,求义域可以得到此类解法为:可先由()][x g f (1)f x +的定义域为[]-23,,则函数的定义域是 ;函数1(2)f x+的定义域为 。

f x ()的定义域为 [1,1]-,且函数()()f x m f x m +--的定义域存在,求实数 ()f x =3442++-mx mx x 的定义域为R ,则的取值范围是 ( ) ∞) B 、(0,43] C 、(43,+∞)6、若函数()f x =数m 的取值范围是( )(A)04m << (B) 04m ≤≤(C) 04m <≤7.已知函数()f x 的定义域为[]15-,定义域.8.若函数)(x f y =的定义域为⎥⎦⎤⎢⎣⎡2,21,定义域为 。

9.已知函数2(22)f x x -+的定义域为[0()f x 的定义域.已知函数函数定义域是,A.B.C.D..()x 的定义域为[]35-,,求()(x f x++的定义域. 数的定义域是,求的定义域。

f (x +1)的定义域为[-21,2],求f (x 2)的巩固训练1.设函数的定义域为,则(1)函数的定义域为________。

高三数学函数的定义域

高三数学函数的定义域
认真听讲,及时总结,温故旧知 第十讲 函数的定义域
函数的独立元素:解析式;定义域 值域,性质
一、由函数解析式求定义域
非空
明晰函数的约束条件→细致
数集
求下列函数的定义域: 1、 y=lg(4x+3) 2、y=1/lg(4x+3) 3、y=(5x-4)0 4、y=x2/lg(4x+3)+(5x-4)0
课堂回顾: 求定义域的几种类型: 一类重要的数学问题:
;;
; /abcpkscum/ ; /abcfffse/ ; /abchyxd/ ; /abctitfzp/ ; /abczimow/ ; /abcfgsm/ ; /abctbe/ ; /abcjgkd/ ; /abcpfn/ ; /abcndt/ ; /abcnsughd/ ; /abckl/ ; /abcyrd/ ; /abcrxsytc/ ; /abcms/ ; /abcqsrhk/ ; /abcimmieg/ ; /abcfpla/ ; /abcpmbhmd/ ; /abccmivf/ ; /abcmuxjyp/ ; /abccj/ ; /abcfpuen/ ; /abcvluh/ ; /abcjkcn/ ; /abcfkosap/ ; /abcrg/ ; /abcvo/ ; /abcmunr/ ; /abcvupsw/ ; /abcysyy/ ; /abchndgr/ ; /abcuxmanc/ ; /abchvjnl/ ; /abckmx/ ; /abcvpa/ ; /abchuowrf/ ; /abcfm/ ; /abcwknkct/ ; /abcuge/ ; /abcrdr/ ; /abcun/ ; /abcvafdd/ ; /abclqumh/ ; /abcxkusm/ ; /abcdqgq/ ; /abcft/ ; /abctesyj/ ; /abcbkrdrq/ ; /abcmzx/ ; /abcsj/ ; /abcbyn/ ; /abcgjgj/ ; /abcjgcus/ ; /abccmw/ ; /abcas/ ; /abctc/ ; /abcus/ ; /abccfegd/ ; /abcngikt/ ; /abclk/ ; /abciozueq/ ; /abcnnyxq/ ; /abcmxhemg/ ; /abccnfxg/ ; /abcikar/ ; /abcshy/ ; /abcdmv/ ; /abciisd/ ; /abcpgtcsn/ ; /abcbecqtl/ ; /abcjmx/ ; /abcdnx/ ; /abcobm/ ; /abcngag/ ; /abcsmbish/ ; /abcbhzr/ ; /abckihtm/ ; /abcmm/ ; /abcaosc/ ; /abcmqoi/ ; /abcpdy/ ; /abclwebzs/ ; /abcwpapuq/ ; /abcmnz/ ; /abchm/ ; /abcbp/ ; /abcjnrosn/ ; /abcsedhwk/ ; /abcsvlsmm/ ; /abcsdtsmj/ ; /abcvdmbqx/ ; /abcgqmsug/ ; /abcdmdjo/ ; /abcje/ ; /abcqvv/ ; /abchsioyu/ ; /abcxor/ ; /abccyq/ ; /abcoaq/ ; /abcsqwmnl/ ; /abcmptzhk/ ; /abchn/ ; /abcbqezjk/ ; /abcfkonyv/ ; /abcav/ ; /abckshd/ ; /abcgmr/ ; /abcbzmpxo/ ; /abcjpkdm/ ; /abczso/ ; /abcvynbtn/ ; /abcyc/ ; /abceap/ ; /abcpizga/ ; /abcsefar/ ; /abcruonec/ ; /abctjh/ ; /abcavtz/ ; /abchf/ ; /abcrnone/ ; /abcim/ ; /abcsiuenk/ ; /abcpjtck/ ; /abcfp/ ; /abckdzxm/ ; /abcpxo/ ; /abczzw/ ; /abccnkobb/ ; /abcsp/ ; /abccs/ ; /abcxxsezo/ ;

新湘教版必修1高中数学 函数的定义域和值域

新湘教版必修1高中数学 函数的定义域和值域

1.2.5 函数的定义域和值域1.实际问题中的函数,它的自变量的值不但要使函数表达式有意义,还受到实际问题的限制,要符合实际情形.2.若只写函数的表达式,略去函数的定义域,那么这个函数的定义域就是使函数的表达式有意义的自变量的变化范围.求下列函数的定义域: (1)y =31-x -1;(2)y =x 2+12+x +1|x |. [提示] (1)要使函数有意义,自变量x 须满足:⎩⎨⎧x -1≥01-x -1≠0解得:x ≥1且x ≠2.∴函数的定义域为[1,2)∪(2,+∞). (2)要使函数有意义,x 须满足: ⎩⎪⎨⎪⎧x 2+12+x ≥0|x |≠0即⎩⎪⎨⎪⎧2+x >0x ≠0解得x >-2且x ≠0.∴函数的定义域为(-2,0)∪(0,+∞).把图象上的点向y 轴上作投影,投影点集合对应的数集,就是函数的值域.函数y =x2x 2+1(x ∈R)的值域是________.[提示] y =x 2x 2+1=1-1x 2+1,∴y 的值域为[0,1). 答案:[0,1)[例1] (1)f (x )=1|x |-2; (2)f (x )=5-x +x -5; (3)f (x )=(x +1)0|x |-x ·x +6(x ∈Z).[思路点拨] 解答本题可根据函数解析式的结构特点,构造使解析式有意义的不等式(组),进而解不等式求解.[解] (1)要使函数有意义,需满足|x |-2≠0.|x |≠2,即x ≠±2, 所以原函数的定义域为{x |x ≠±2}.(2)要使函数有意义,需满足⎩⎪⎨⎪⎧ 5-x ≥0x -5≥0,即⎩⎪⎨⎪⎧x ≤5x ≥5,∴只有x =5使函数有意义,所以原函数的定义域是{5}. (3)要使函数有意义,需满足 ⎩⎪⎨⎪⎧x +1≠0,|x |-x >0,x +6>0,即⎩⎪⎨⎪⎧x ≠-1,x <0,x >-6,∴-6<x <0且x ≠-1,又x ∈Z , ∴x =-5,-4,-3,-2.因此,所求函数的定义域为{-5,-4,-3,-2}.1.求下列函数的定义域. (1)y =x +1+12-x ;(2)y =x -1x +1. 解:(1)使y =x +1+12-x有意义, 则⎩⎪⎨⎪⎧ x +1≥0,2-x ≠0,∴⎩⎪⎨⎪⎧x ≥-1,x ≠2. ∴y =x +1+12-x的定义域是{x |x ≥-1且x ≠2}. (2)要使函数有意义,则⎩⎪⎨⎪⎧x -1≥0,x +1>0,解得⎩⎪⎨⎪⎧x ≥1,x >-1.∴x ≥1,∴函数y =x -1x +1的定义域为[1,+∞).[例2] (1)y =2x +1,x ∈{1,2,3,4}; (2)y =1-x 2; (3)y =1+1x +1(x >0).[思路点拨] 求函数的值域就是求函数值的取值集合.[解] (1)x =1时,y =3;x =2时,y =5;x =3时,y =7;x =4时,y =9. 所以函数y =2x +1,x ∈{1,2,3,4}的值域为{3,5,7,9}. (2)因为1-x 2≤1,所以y =1-x 2的值域为(-∞,1].(3)∵x +1>1,∴0<1x +1<1,∴1<1+1x +1<2, ∴y =1+1x +1的值域为(1,2).2.求下列函数的值域.(1)y =2x -4x +3;(2)y =x 2-6x +6,x ∈[1,6).解:(1)y =2(x +3)-10x +3=2-10x +3.∵x +3≠0,∴10x +3≠0,∴y ≠2.∴函数的值域为{y |y ∈R ,y ≠2}.(2)法一:配方,得y =x 2-6x +6=(x -3)2-3. ∵x ∈[1,6),∴0≤(x -3)2<9, ∴-3≤y <6.∴函数的值域为{y |-3≤y <6}. 法二:配方,得y =(x -3)2-3. ∵x ∈[1,6),结合图,∴函数的值域为{y |-3≤y <6}.1.函数y =x 2-2x 的定义域为{0,1,2,3},那么其值域为( ) A .{-1,0,3} B .{0,1,2,3} C .{y |-1≤y ≤3}D .{y |0≤y ≤3}解析:选A 由对应关系y =x 2-2x 得,0→0,1→-1,2→0,3→3,所以值域为{-1,0,3}. 2.函数f (x )=13x -1+4-x +2的定义域为( )A.(-∞,4] B .(1,4]C .(-∞,-1)∪(1,4)D .(-∞,1)∪(1,4]解析:选D 要使函数f (x )=13x -1+4-x +2有意义,需满足⎩⎪⎨⎪⎧x -1≠0,4-x ≥0,解得⎩⎪⎨⎪⎧x ≠1,x ≤4,即x <1或1<x ≤4, ∴函数的定义域是(-∞,1)∪(1,4]. 3.函数f (x )=1+x2+x(x >0)的值域是( ) A .(-∞,1) B .(1,+∞) C.⎝⎛⎭⎫12,1D.⎝⎛⎭⎫0,12 解析:选C ∵f (x )=1+x 2+x =x +2-1x +2=1-1x +2在(0,+∞)上为增函数,∴f (x )∈⎝⎛⎭⎫12,1. 4.函数f (x )=1|x |-3+4-x 的定义域是(用区间表示)________. 解析:只要⎩⎪⎨⎪⎧ |x |-3≠04-x ≥0,∴⎩⎪⎨⎪⎧x ≠±3,x ≤4.∴定义域为(-∞,-3)∪(-3,3)∪(3,4]. 答案:(-∞,-3)∪(-3,3)∪(3,4] 5.函数y =x +x +1的值域是________.解析:因y =x +x +1为增函数,且x ≥-1,则y ≥-1. 答案:[-1,+∞) 6.已知函数f (x )=1-x +|2+x |2x +4的定义域为A ,函数g (x )的定义域为B =[-1,1),求A ∩B ,A ∪B ,B ∪(∁R A ).解:由已知得⎩⎪⎨⎪⎧1-x ≥02x +4>0,∴-2<x ≤1.∴A =(-2,1].∴∁R A =(-∞,-2]∪(1,+∞). 又∵B =[-1,1),∴A ∩B =[-1,1),A ∪B =(-2,1],B ∪(∁R A )=(-∞,-2]∪[-1,1)∪(1,+∞).求函数值域常用的方法有哪些?观察法:对于一些简单的函数,通过对解析式的简单变形和观察,来求出函数的值域;隔离常数法:对于分式函数y =ax +b cx +d(ad ≠bc ),可先分离出一个常数,即y =ac +bc -ad c 2x +d c ,所以其值域为⎩⎨⎧⎭⎬⎫y ⎪⎪y ∈R ,且y ≠a c.配方法:对于二次函数在其定义域范围内的值域问题,可用配方法来求.同时要结合二次函数的图象来求解,注意给定区间可能在对称轴同侧或包含对称轴.一、选择题 1.已知f (x )=1x +1,则f [f (x )]的定义域为( ) A .{x |x ∈R 且x ≠-2} B .{x |x ∈R 且x ≠-1}C .{x |x ∈R 且x ≠-1且x ≠-2}D .{x |x ∈R 且x ≠0且x ≠-1} 解析:选C ∵f [ f (x )]=1f (x )+1=11x +1+1=x +1x +2(x +1≠0),∴f [ f (x )]有意义,则⎩⎪⎨⎪⎧x +1≠0,x +2≠0,x ∈R.∴其定义域{x |x ∈R 且x ≠-1且x ≠-2}. 2.函数y =1-x +x 的定义域为( ) A .{x |x ≤1} B .{x |x ≥0} C .{x |x ≥1或x ≤0}D .{x |0≤x ≤1}解析:选D 使y =1-x +x 有意义,则⎩⎪⎨⎪⎧1-x ≥0,x ≥0.∴0≤x ≤1, ∴该函数的定义域为{x |0≤x ≤1}. 3.函数y =2x -32x +3的值域是( )A .(-∞,-1)∪(-1,+∞)B .(-∞,1)∪(1,+∞)C .(-∞,0)∪(0,+∞)D .(-∞,0)∪(1,+∞)解析:选B 对函数y =2x -32x +3隔离常数得,y =1-62x +3, ∴y ≠1,即值域为(-∞,1)∪(1,+∞).4.若函数f (x )=x 2-3x -4的定义域为[0,m ],值域为⎣⎡⎦⎤-254,-4,则m 的取值范围是( )A .(0,4] B.⎣⎡⎦⎤32,4 C.⎣⎡⎦⎤32,3D.⎣⎡⎭⎫32,+∞解析:选C 由二次函数的对称性可求得. 二、填空题5.已知f (x +1)的定义域为[1,2],则f (x )的定义域为________. 解析:∵f (x +1)的定义域为[1,2].∴1≤x ≤2,2≤x +1≤3.∴f (x )的定义域为[2,3]. ∴f (x )中2≤x ≤3,∴4≤x ≤9. 答案:[4,9]6.将长为a 的铁丝折成矩形,则面积y 与一边长x 的函数关系式为________,定义域为________.解析:由于边长为x ,则邻边长为a -2x 2,∴y =x ⎝⎛⎭⎫a 2-x ,∵x >0,a2-x >0, ∴0<x <a2.答案:y =-x 2+a 2x ⎩⎨⎧⎭⎬⎫x|0<x <a 2三、解答题7.求下列函数的定义域. (1)y =-x2x 2-3x -2;(2)y =x -1·1-x ; (3)y =31-1-x;(4)y =x 2-3+5-x 2.解:(1)由题意得⎩⎪⎨⎪⎧-x ≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧x ≤0,x ≠2且x ≠-12, ∴函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤0且x ≠-12. (2)由题意得⎩⎪⎨⎪⎧x -1≥0,1-x ≥0,解得x =1.∴函数的定义域为{x |x =1}.(3)由题意得⎩⎨⎧1-1-x ≠0,1-x ≥0,解得⎩⎪⎨⎪⎧x ≠0,x ≤1.∴函数的定义域为{x |x ≤1且x ≠0}.(4)由题意得⎩⎪⎨⎪⎧ x 2-3≥0,5-x 2≥0,解得⎩⎪⎨⎪⎧x 2≥3,x 2≤5.∴函数的定义域为{x |3≤x ≤5或-5≤x ≤-3}. 8.求函数f (x )=1x -x (1≤x ≤4)的值域.解:因为函数y =1x 和y =-x 在区间[1,4]上都单调递减,所以函数f (x )=1x -x 在区间[1,4]上是减函数.于是f (4)≤f (x )≤f (1),即值域为⎣⎡⎦⎤-74,0.。

函数定义域值域经典习题及答案练习题

函数定义域值域经典习题及答案练习题

函数定义域值域经典习题及答案练习题1.求函数的定义域1) 求下列函数的定义域:a) $y=\frac{x^2-2x-15}{x+3-3}$b) $y=1-\frac{1}{x-1}$c) $y=\frac{1}{1+(x-1)}+\frac{(2x-1)+4-x^2}{2}$2) 设函数$f(x)$的定义域为$[0.1]$,则函数$f(x^2)$的定义域为$[0.1]$;函数$f(x-2)$的定义域为$[-2.1]$;函数$f(x+1)$的定义域为$[-2.3]$,则函数$f(2x-1)$的定义域为$[0.5]$;函数$f(-2)$的定义域为$[0.1]$。

3) 已知函数$f(x)=\sqrt{\frac{x-1}{x+1}}$,则函数$f\left(\frac{1}{x}\right)$的定义域为$x\neq0$。

2.求函数的值域5) 求下列函数的值域:a) $y=x^2+2x-3$,$x\in\mathbb{R}$b) $y=x^2+2x-3$,$x\in[1.2]$c) $y=\frac{3x-1}{x+1}$d) $y=\begin{cases}0.& x<5\\ \frac{1}{x+1}。

& x\geq 5\end{cases}$e) $y=\frac{5x^2+9x+4}{x^2-1}$f) $y=x-3+x+1$g) $y=x^2-x$h) $y=-x^2+4x+5$i) $y=4-\frac{x^2+4x+5}{x^2-1}$6) 已知函数$f(x)=\frac{2x^2+ax+b}{x^2+1}$的值域为$[1.3]$,求$a$和$b$的值。

3.求函数的解析式1) 已知函数$f(x-1)=x^2-4x$,求函数$f(x)$和$f(2x+1)$的解析式。

2) 已知$f(x)$是二次函数,且$f(x+1)+f(x-1)=2x^2-4x$,求$f(x)$的解析式。

上海财经大学《高等数学》习题一及解答

上海财经大学《高等数学》习题一及解答

11(1)1y x =[解] 由⎩⎨⎧≥-≠,01,02x x 得 =D [1,0)(0,1]-⋃. (2))5lg(1312x x x y -+-+-=. [解] 由⎪⎪⎩⎪⎪⎨⎧≠->-≠-≥-,15,05,03,02x x x x 得 =D [2,3)(3,4)(4,5)⋃⋃.(3)1arcsin2x y -=.[解] 由⎪⎩⎪⎨⎧>--≤-,02,1|21|2x x x 得 =D ]3,2(.(4) x y x-+=1ln arccos 21.[解] 由⎪⎩⎪⎨⎧>-≤-≠,01,1|1ln |,0x x x 得 =D ]1,0()0,1[22--⋃-e e .(5)⎩⎨⎧><+=0,lg 032x x x x y ,.[解] =D ),0()0,(∞+⋃-∞.(6)xey xln 111-+=.[解] 由⎩⎨⎧≠->,0ln 1,0x x 得 =D ),(),0(∞+⋃e e .上海财经大学《高等数学》习题一及解答22.已知)(x f y =的定义域是]1,0[,求下列函数的定义域: (1))4(-x f .[解] 因为)(x f , 10≤≤x ,故)4(-x f , 140≤-≤x ,得54≤≤x ,即 =D [4,5].(2))(lg x f .[解] 因为)(x f , 10≤≤x ,故)(lg x f , 1lg 0≤≤x ,得101≤≤x ,即 =D [1,10].(3))(sin x f .[解] 因为)(x f , 10≤≤x ,故)(sin x f , 1sin 0≤≤x ,得ππ)12(2+≤≤k x k ,( ,2,1,0±±=k ), 即 =D [2,(21)](0,1,2,)k k k ππ+=±±.3. (1)设x x x f +-=11)(,求)1(+x f 与)1(x f . [解] 2)1(1)1(1)1(+-=+++-=+x xx x x f ; 111111)1(+-=+-=x x xx xf . (2)设221)1(x x x x f +=+, 求)1(-x f . [解] 由于2)1()1(2-+=+xx x x f , 故122)1()1(22--=--=-x x x x f . (3)设421)1(xx x x f +=-,求)(x f . [解] 由于2)1(111)1(222+-=+=-xx x xxx f , 故21)(2+=x x f .(4)设222(1)ln 2x f x x -=-,且[()]ln f x x ϕ=,求)(x ϕ.3[解] 由于1)1(1)1(ln )1(222---+=-x x x f , 得x x x x f ln 1)(1)(ln )]([=+-=ϕϕϕ,故11)(-+=x x x ϕ. 4.讨论下列函数的奇偶性:(1)x xxx f cos sin )(+=. [解] 由于)cos()sin()(x x x x f -+--=-)(cos sin x f x xx=+=, 故)(x f 为偶函数.(2)x x x x f tan 1)(2+-=.[解] 由于)tan(1)()(2x x x x f -+---=-)(tan 12x f x x x -=---=, 故)(x f 为奇函数.(3))1()(x x x f -=.[解] 由于)()1()](1[)(x f x x x x x f ≠+-=---=-,)()(x f x f -≠-, 故)(x f 为非奇非偶函数.(4) )1ln()(2x x x f -+=.[解] 由于=--+-=-)](1)(ln[)(2x x x f =++)1ln(2x x xx -+11ln2)()1ln(2x f x x -=-+-=,故)(x f 为奇函数.5.已知)(x f 是以2为周期的周期函数,且在]2,0[上有2)(x x f =,求)(x f 在]6,0[ 上的表达式.[解] 由于)4()2()(+=+=x f x f x f ,所以)()2()4(x f x f x f =-=-, 当]2,0[∈x 时,]4,2[2∈-x ,]6,4[4∈-x ;故 ⎪⎩⎪⎨⎧≤<-≤<-≤≤=64,)4(42,)2(20,)(222x x x x x x x f .46. 求下列函数的反函数: (1)x y -=9.[解] 由于x y -=9,得29y x -=,故反函数为)0(,92≥-=x x y .(2)122+=x xy .[解] 由于122+=x x y ,得y y x -=12,即y y x -=1log 2,故反函数为x xy -=1log 2.(3)⎩⎨⎧-=21xx y ,)0()0(≥<x x . [解] 由0<x 时,1-=x y ,得1+=y x ,即1+=x y , 由0≥x 时,2x y =,得y x =,即x y =,故反函数为⎩⎨⎧≥-<+=0,1,1)(x x x x x f .(4)2xx e e y --=.[解] 由于2x x e e y --=,得012)(2=--x x ye e ,即12+±=y y e x (负值舍去),故反函数为)1ln(2++=x x y .7. 指出下列各函数是由哪些基本初等函数复合而成: (1)x y 2sin ln =.[解] x y 2sin ln =,由u y ln =,及2v u =,和x v sin =复合而成.(2)xy cos 5=.[解] xy cos5=,由uy 5=,及v u cos =,和x v =复合而成.(3)xe y 1arctan =.[解] xe y 1arctan =,由u y arctan =,及ve u =,和xv 1=复合而成.5(4)x y ln cos 2=.[解] x y ln cos 2=,由2u y =,及v u cos =,和x v ln =复合而成.8.(1)设⎪⎩⎪⎨⎧≥+<-=1||,11||,1)(22x x x x x f ,求))((x f f .[解] 由于⎪⎩⎪⎨⎧≥+<-=1|)(|,1)]([1|)(|,)]([1))((22x f x f x f x f x f f ,当1||0<<x 时,11|)(|2<-=x x f ,||]1[1)]([1))((222x x x f x f f =--=-=,当1||=x 时,2)(=x f ,51)]([))((2=+=x f x f f 当0=x 时,1)(=x f ,21)]([))((2=+=x f x f f , 当1||>x 时,11|)(|2>+=x x f ,221)1(1)]([))((24222++=++=+=x x x x f x f f ,所以⎪⎩⎪⎨⎧≥++=<<=1||,220,21||0,||))((24x x x x x x x f f .(2)设⎩⎨⎧≥<+=0,10,1)(x x x x f ,求))((x f f . [解] 由于⎩⎨⎧≥<+=0)(,10)(,)(1))((x f x f x f x f f ,当1-<x 时,01)(<+=x x f , x x f x f f +=+=2)(1))((, 当01<≤-x 时,01)(≥+=x x f , 1))((=x f f , 当0≥x 时,01)(>=x f ,1))((=x f f , 所以⎩⎨⎧-≥-<+=1,11,2))((x x x x f f .6(3)设2||)(x x x f +=,⎩⎨⎧≥<=0,0,)(2x x x x x g ,求))((x g f . [解] 由于2|)(|)())((x g x g x g f +=,当0<x 时,0)(<=x x g , 02))((=-=xx x g f , 当0≥x 时,0)(2≥=x x g ,2222))((x x x x g f =+=,所以⎩⎨⎧≥<=0,0,0))((2x x x x g f .9. 分别讨论函数)sin lg(x a y -=,当 2=a , 21=a , 2-=a 时 ,是否为复 合函数?如果是复合函数,写出它的定义域. [解] 由于u y lg =,其定义域 ),0(+∞=y D ;当2=a 时,函数x a u sin -=的值域 ]3,1[=u f ,Φ≠⋂u y f D , 故)sin 2lg(x y -=是复合函数, 由0sin 2>-x ,得定义域),(∞+-∞;当21=a 时,函数x a u sin -=的值域 ]23,21[-=u f ,Φ≠⋂u y f D ,)sin 21lg(x y -=是复合函数,由0sin 21>-x ,得定义域)62,22[ππππ+-k k ,)(Z k ∈; 当2-=a 时,函数x a u sin -=的值域]1,3[--=u f ,Φ=⋂u y f D ,)sin 21lg(x y -=不构成复合函数.10.某化肥厂日产量最多为m 吨,已知固定成本为a 元,每多生产1吨化肥,成本增 k 元.若每吨化肥的售价为p 元,试写出利润与产量的函数关系式.[解] 设日产量为x 吨,则成本函数kx a x C +=)(,([0,])x m ∈,7收益函数px x R =)(,([0,])x m ∈,利润函数a x k p x C x R x L --=-=)()()()(,([0,])x m ∈.11.生产某种产品,固定成本为2(万元),每多生产1(百台),成本增加1(万元), 已知需求函数为=Q 20-4p (其中p 表示产品的价格,Q 表示需求量),假设产销平衡.试写出(1)成本函数;(2)收益函数;(3)利润函数. [解] 成本函数Q Q C +=2)(, 收益函数2415)(Q Q pQ Q R -==, 利润函数2441)()()(2-+-=-=Q Q Q C Q R Q L . 12.某商场以每件a 元的价格出售某种商品,若顾客一次购买50件以上,则超出50 件以上的以每件0.8a 元的优惠价出售,试将一次成交的销售收入表示成销售量x 的函数.[解] ⎩⎨⎧>-+≤<=50,)50(8.050500,)(x x a a x ax x R .13.某运输公司规定货物的吨公里运价为:不超过a 公里,每公里k 元,超过a 公里, 超出部分为每公里k 54元,试求运价m 与里程s 之间的函数关系式. [解] ⎪⎩⎪⎨⎧>-+≤≤=a s a s k ak a s ks m ,)(540,. 14. 用数列极限的定义验证: (1) 21121lim=++∞→n n n .[解] 0>∀ε,要使ε<+=-++)12(21|21121|n n n 成立,即2141->εn , 取]2141[-=εN , 可见,,0>∀ε]2141[-=∃εN ,当N n >时,有ε<-++|21121|n n 成立,8所以 21121lim=++∞→n n n .(2) 0)1(lim =-+∞→n n n . [解] 0>∀ε,要使ε<<++=-+nnn n n 2111|1|成立,即241ε>n , 取]41[2ε=N , 可见,,0>∀ε]41[2ε=∃N ,当N n >时,有ε=<-+|1|n n 成立, 所以 0)1(lim =-+∞→n n n .(3) 11lim 2=+∞→nn n .[解] 0>∀ε,要使ε<<++=-+22221)1(1|11|nn n n n n 成立,即ε21>n ,取]21[ε=N ,可见,,0>∀ε]21[ε=∃N ,当N n >时,有ε<-+|11|2n n 成立, 所以 11lim 2=+∞→nn n .(4) 112lim 22=++-∞→n n n n .[解] 0>∀ε,要使ε<<+++=-++-n n n n n n n 213|112|222成立,即ε1>n ,取]2[ε=N ,可见,,0>∀ε]2[ε=∃N ,当N n >时,有ε<-++-|112|22n n n 成立, 所以 112lim 22=++-∞→n n n n .15. 求)21(lim k k k n nnn n +++∞→ .(k 为常数)9[解] 由于2121lim21lim )21(lim -∞→-∞→∞→=+=+++k n k n kk k n n n n n n n n ⎪⎪⎩⎪⎪⎨⎧>=<∞=2,02,212,k k k .16.(1)设141151312-+++=n x n ,求n n x ∞→lim . [解] 由于141151312-+++=n x n )12)(12(1531311+-++⨯+⨯=n n )]121121()5131()311[(21+--++-+-=n n )1211(21+--=n ,所以=+-=∞→∞→)1211(lim 21lim n x n n n 21.(2)设nn nn n x n ++++++=2222211 ,求n n x ∞→lim . [解] 由于n n nn n x n ++++++=2222211 )1(2)1(112112222++=++++++≤n n n n n n n , n n nn n x n ++++++=2222211 )(2)1(212222n n n n n n n nn n n ++=++++++≥ , 而21)1(2)1(lim2=++∞→n n n n ,21)(2)1(lim 2=++∞→n n n n n ,由夹逼定理,所以=++++++=∞→∞→)2211(lim lim 222nn nn n x n n n 21. 17. 利用数列极限存在准则(夹逼定理)证明: (1) 111lim =+∞→nn . [解] 由于n n 11111+<+<,而11lim =∞→n ,1)11(lim =+∞→nn ,由夹逼定理,所以111lim =+∞→n n .(2) 3)321(lim 1=++∞→nn n n .10[解] 由于n nnnnn nn33)33()321()3(3111=⋅<++<=,而33lim =∞→n ,333lim =⋅∞→n n ,由夹逼定理,所以3)321(lim 1=++∞→nnn n .18. 设数列{}n a,证明:n n a ∞→lim 存在,并求此极限值.[解]先证明lim n n a →∞存在:(1)显然{}n a 单调增加,即1+<n n a a 成立; (2)再证明数列{}n a 有界.因为221<=a ,22222212=+<+=+=a a , ,故2<n a ,即数列{}n a 有上界.由单调有界数列必有极限,得n n a ∞→lim 存在,不妨设lim n n a A →∞=,下面求出A .由于12-+=n n a a ,两边取极限得A A +=2,即022=--A A ,解得2=A ,或1-=A .根据收敛数列的保号性的推论可知A 大于零,所以lim 2n n a →∞=.19. 设11=x ,12-=n n x x ,证明:n n x ∞→lim 存在,并求此极限值.[解]先证明n n x ∞→lim 存在:(1)用数学归纳法证明数列}{n x 单调增加. 11=x ,2212==x x ,显然21x x <; 假设k k x x <-1成立,于是02211<-=--+k k k k x x x x ,即1+<k k x x 成立;故数列}{n x 单调增加,即1+<n n x x 成立; (2)再证明数列}{n x 有界.因为211<=x ,222212=⋅<=x x , ,故2<n x ,即数列}{n x 有上界.由单调有界数列必有极限,得n n x ∞→lim 存在,不妨设A x n n =∞→lim ,下面求出A .11由于12-=n n x x ,两边取极限得A A ⋅=2,即022=-A A ,解得2=A ,或0=A .根据收敛数列的保号性的推论可知A 大于零,所以2lim =∞→n n x .20. 设nnn x x x f +=∞→1lim )((0>x ),求)(x f .[解] 由于=+=∞→n n n x x x f 1lim )(⎪⎪⎩⎪⎪⎨⎧>=<<1,11,2110,0x x x . 21. 用函数极限的定义验证: (1) 0sin lim=+∞→xx x .[解] 0ε∀> ,要使ε<≤xx x 1|sin |,即21ε>x ,取21ε=M ,可见,0>∀ε,21ε=∃M ,当M x >时,有ε<|sin |xx 成立,所以 0sin lim=+∞→xx x .(2) 313lim212x x x →∞+=+.[解] 0ε∀> ,要使ε<-<+=-++)1||2(21|)12(|21|231213|x x x x , 即)121(21||+>εx ,取11(1)22M ε=+, 可见,0>∀ε,∃11(1)22M ε=+ ,当M x >||时,有ε<-++|231213|x x 成立, 所以 313lim212x x x →∞+=+.(3)3lim(31)8x x →-=.12[解] 0ε∀> ,要使ε<-=--|3|3|8)13(|x x ,取3εδ=,可见,0>∀ε,3εδ=∃ ,当δ<-<|3|0x 时,有ε<--|8)13(|x 成立,所以 3lim(31)8x x →-=.(4)21241lim221=+--→x x x . [解] 本题1241)(2+-=x x x f 在21-=x 处没有定义,但不影响函数在该点极限存在.0ε∀> ,要使ε<--=+=+=-+-|)21(|2|21|2|12||21241|2x x x x x ,取2εδ=,可见,0>∀ε,2εδ=∃ ,当δ<--<|)21(|0x 时,有ε<-+-|21241|2x x 成立,所以 21241lim221=+--→x x x . 22. 设1|1|)(--=x x x f ,求)(lim 1x f x →.[解] 本题⎩⎨⎧><-=1,11,1)(x x x f ,在1=x 处左右两侧)(x f 的表达式不同,故求1=x 处的极限,需考虑左右极限.而1)1(lim )(lim 11-=-=--→→x x x f ,11lim )(lim 11==++→→x x x f , ≠-→)(lim 1x f x )(lim 1x f x +→, 所以)(lim 1x f x →不存在.23. 设2()121x e f x x x ⎧⎪=+⎨⎪+⎩,1100≥<<≤x x x ,求(1))(lim 0x f x →;(2))(lim 1x f x →;(3)2lim ()x f x →.[解] 本题在0=x 和1=x 处左右两侧)(x f 的表达式不同,故求0=x 和1=x 处的极限,需考虑左右极限.而1lim )(lim 0==--→→x x x e x f ,1)1(lim )(lim 2=+=++→→x x f x x ,=-→)(lim 1x f x 1)(lim 1=+→x f x ,13所以1)(lim 0=→x f x .又2)1(lim )(lim 211=+=--→→x x f x x ,3)12(lim )(lim 11=+=++→→x x f x x ,≠-→)(lim 1x f x )(lim 1x f x +→, 所以)(lim 1x f x →不存在.2lim ()x f x →5)12(lim 2=+=→x x .24. 1111)(-+=x ex f ,求)(lim 1x f x →.[解] 本题)(x f 中含有特殊函数11-x e,故求1=x 处的极限,需考虑左右极限.由于0lim 111=-→-x x e ,∞=-→+111lim x x e ;所以111lim )(lim 1111=+=-→→--x x x ex f ,011lim )(lim 1111=+=-→→++x x x ex f ,得≠-→)(lim 1x f x )(lim 1x f x +→,故)(lim 1x f x →不存在. 25. 利用函数极限存在准则(夹逼定理)证明: (1) 11lim 0=+→n x x .[解] 由于求0→x 的极限,故可设11<<-x .当0>x 时,有x x n +<+<111;当0<x 时,有111<+<+n x x , 而11lim 0=→x ,1)1(lim 0=+→x x ,由夹逼定理,所以11lim 0=+→n x x .(2) 1]1[lim 0=+→xx x . [解] 由于求+→0x 的极限, 又x x x 1]1[11≤<-,当0>x 时,有1]1[)11(≤<-xx x x , 而1)1(lim )11(lim 00=-=-++→→x x x x x ,11lim 0=+→x ,由夹逼定理,所以1]1[lim 0=+→xx x .1426. 计算下列极限:(1)220()lim h x h x h→+-.[解] 原式 h h x hx h x h h 2)2(lim )(lim022000=+=-+=→→. (2)4x →. [解] 原式 4)2(lim 24lim4400=+=--=→→x x x x x .(3)32lim3x x →--.[解] 令t x =+35,则53-=t x ,原式 121221lim 82lim220032=++=--=→→t t t t t t .(4)2111lim(1)222nn →∞++++. [解] 原式 2211)211(1lim1=--⋅=+∞→n n . (5)))1(1321211(lim +++⋅+⋅∞→n n n .[解] 原式 1)111(lim )]111()3121()211[(lim =+-=+-+-+-=∞→∞→n n n n n .(6))21(lim 222nnn n n +++∞→ . [解] 原式 212)1(lim 2=+=∞→n nn n .15(7)221lim 21x x x x →∞--+.[解] 原式 212lim 22==∞→∞∞x x x .(8)232lim 35x x xx x →∞+-+.[解] 原式 0lim 32==∞→∞∞xx x .(9)n .[解] 原式 12lim22lim=+=++=∞→∞∞∞→nn n nn n n n .(10)3113lim()11x x x →---. [解] 原式 11)2(lim 12lim2100321-=+++-=--+=→→∞-∞xx x x x x x x . (11))121(lim 0xx x xx ---+→.[解] 原式 111lim )1(lim 00=--=--=++→→∞-∞x x x x x x .(12))2(lim 22++-∞→x x x x .[解] 令t x -=,则原式 )2(lim 22+-=+∞→t t t t ,再令ut 1=,16原式 12112lim 211lim 2000220-=++-=+-=++→→∞-∞uu u u u . 27. 若0)11(lim 2=--++∞→b ax x x x ,求b a ,求的值.[解] 由左边01)1()()1(lim 2=+-++--=∞→x b x b a x a x ,得⎩⎨⎧=+=-001b a a ,故1=a ,1-=b .28. 计算下列极限: (1)x x x cot lim 0→.[解] 原式 xxx x sin cos lim00→∞⋅=1)cos sin (lim 00=⋅=→x x x x . (2)xxx 3arcsin 2lim 0→.[解] 令t x =arcsin ,则t x sin =,原式 t t t sin 32lim0→=32=. (3)xx x x 2sin 3553lim 2++∞→.[解] 令t x =2,则t x 2=,原式 56)sin 310512(lim 00=⋅++=→∞⋅t t t t t .(4)n nn x 2sin 2lim ∞→,(x 为不等于零的常数).[解]原式 x xx x nnn =⋅=∞→∞⋅)22sin (lim 0. (5)xxx -→ππsin lim .[解]原式 1)sin(lim0=--=→xx x πππ.17(6)xx x cos 1lim 0-+→.[解]原式 2sin 2lim 2xx x +→=2sin2lim 0xx x +→=22sin 2lim 20==+→x xx .(7)xx xx x 3sin 2sin lim 0+-→.[解]原式 x x x x x 3sin 12sin 1lim00+-=→4133sin 3122sin 21lim 0-=+-=→xx x x x . (8)01lim sin x x→-.[解]原式 )111sin (lim 00++⋅=→x x x x 21=. (9)xx x 20)1(lim -→.[解]原式 =-=→∞xx x 201)1(lim 2210})](1{[(lim ---→=-+e x xx .(10)12)21(lim -∞→-xx x.[解]原式 ])21()21[(lim 121-∞→--+=∞x x xx 1112})21(])21{[(lim ----∞→=--+=e xx xx . (11)21lim()xx x x→∞+. [解]原式 x x x 21)11[(lim +=∞→∞22])11[(lim e xx x =+=∞→.18(12)xx x sec 22)cos 1(lim +→π.[解]原式 2cos 121])cos 1[(lim x x x +=→∞π2e =.(13)xxx xe 10)1(lim +→.[解]原式 e xe xxe xe xx =+=→∞])1[(lim 101.(14)确定c ,使9)(lim =-+∞→xx cx c x . [解]左边 c cx cxcc x x e cx c2221])21[(lim =-+=--∞→∞, 故92=c e ,得3ln =c .(15)[]lim ln(1)ln x x x x →+∞+-.[解]左边 1ln )11ln(lim )1ln(lim 10==+=+=+∞→+∞→∞⋅∞e xx x x x x x . (16)nn n n )11(lim 2++∞→. [解]原式 =++=∞→∞n n n n )11(lim 21nn n n n )1111(lim 2+--++∞→ n n n n n n))11)1(21(lim 2++++-+=∞→1)11)(1(22)11)(1(222]))11)1(21[(lim -++++--++++∞→=++++-+=e n n n nnn n n nnn n n n .29. 当0→x 时,确定无穷小a x a -+3)0(>a 对于x 的阶数.19[解]因为 aa x a x a x a x x 211lim lim 30330=++=-+→→; 所以,当0→x 时,无穷小a x a -+3)0(>a 是x 的3阶无穷小.30. 若当0→x 时,112-+ax 与x 2sin 为等价无穷小量,求a 的值.[解]因为当0→x 时,112-+ax ~ 22ax ,x 2sin ~ 2x ,故122lim sin 11lim 220220===-+→→a x ax xax x x ,所以,2=a . 31. 计算下列极限:(1)xx x x 1sin 1lim 32+∞→.[解]因为当∞→x 时,01→x ,故132+x x ~ x 1,x 1sin ~ x 1, 所以01lim 1sin 1lim 232==+∞→∞→xx x x x x .(2)21sin)4(lim 22--→x x x . [解]因为当2→x 时,0)4(lim 22=-→x x ,而∞→-21x ,但1|21sin |≤-x ,所以021sin )4(lim 22=--→x x x .(3)201coslimsin x x x x →. [解]因为当0→x 时,x sin ~ x ,0lim sin lim 2020==→→xx x x x x20而∞→x 1,但1|1cos |≤x, 所以0sin 1coslim20=→x x x x .(4)xx xx x sin sin 2lim -+∞→.[解]因为当∞→x 时,01lim=∞→x x ,但1|sin |≤x , 故0)sin 1(lim sin lim ==∞→∞→x x x x x x ,所以=-+∞→x x x x x sin sin 2lim 2sin 1sin 2lim=-+∞→x xx x x . 或[解] 原式22lim ==∞→∞∞x xx . (5)3231lim 1sin x x x x→∞-.[解]因为当∞→x 时,01→x ,21sin x ~ 21x, 所以,原式33lim 13lim==-=∞→∞∞∞→x xxx x x .(6))sin 1(sin lim x x x -++∞→.[解] 原式21sin 21cos2lim xx x x x -+++=+∞→)1(21sin 21cos 2lim x x x x x ++++=+∞→,当+∞→x 时,0)1(21sinlim =+++∞→x x x ,1|21cos|≤++xx ,所以,0)sin 1(sin lim =-++∞→x x x .(7)axa x ax 2tan2sinlim π-→. [解] 令t a x =-2,则a t x +=2,原式 πππa at t a t t t t -=-=-=→→00lim tansin lim .21(8))1sin 1)(11(tan sin lim32-+-+-→x x xx x .[解] 原式)1sin 1)(11()cos 11(sin lim 320-+-+-⋅=→x x x x xxx x x x x cos )1sin 1)(11()cos 1(sin lim32-+-+-⋅-=→,因为当0→x 时,1132-+x ~ 32x ,1sin 1-+x ~ 2sin x ~ 2x,x cos 1-~ 22x , 所以,原式3cos 232lim 220-=⋅⋅⋅-=→xxx xx x . 32.讨论下列函数在指定点处的连续性: (1)⎩⎨⎧≥-<=-1,21,)(1x x x e x f x ,在1=x 处.[解] 因为1)2()1(1=-==x x f ,1lim )(lim 111==-→→--x x x e x f , 1)2(lim )(lim 11=-=++→→x x f x x , 即==-→)(lim )1(1x f f x )(lim 1x f x +→, 所以,)(x f 在点1=x 处连续.(2)⎪⎩⎪⎨⎧=≠=0,00,1sin )(2x x xx x f , 在0x =处. [解] 因为0)0(=f ,又当0→x 时,∞→x 1,而0lim 20=→x x ,1|1sin |≤x,所以,01sin lim )(lim 200==→→x x x f x x ,即)(lim )0(0x f f x →=,所以,)(x f 在点0=x 处连续.22(3)⎪⎩⎪⎨⎧=≠=-0,00,)(1x x e x f x,在0=x 处.[解] 因为0)0(=f ,∞==-→→--xx x e x f 10lim )(lim , 0lim )(lim 1==-→→++xx x e x f ,即≠=+→)(lim )0(0x f f x)(lim 0x f x -→, 所以,)(x f 在点0=x 处不连续.(4) )1()1(21lim )(--∞→++=x n x n n e e x x x f ,在1=x 处.[解] 因为⎪⎩⎪⎨⎧<=>=++=--∞→1,1,11,1lim)(2)1()1(2x x x x x e e x x x f x n x n n , 而 1)1(=f ,1lim )(lim 11==--→→x x f x x , 1lim )(lim 211==++→→x x f x x , 即==-→)(lim )1(1x f f x )(lim 1x f x +→, 所以,)(x f 在点1=x 处连续.33. 确定k 的值,使)(x f 在0=x 处连续:(1)⎪⎩⎪⎨⎧=≠⋅=0,,1cos sin )(x k x xx x f . [解] 因为k f =)0(, 又当0→x 时,∞→x 1,而0sin lim 0=→x x ,1|1cos |≤x ,23故01cossin lim )(lim 0==→→xx x f x x , 所以,当0=k 时,有)0()(lim 0f x f x =→,即)(x f 在点0=x 处连续.(2) ⎪⎩⎪⎨⎧=≠<<--=0,0,2121,)31ln()(2x k x x x x f x . [解] 因为k f =)0(,又∞=-=→→120)31ln(lim )(lim xx x x x f 6ln })]3(1ln{[(lim 66310-==-+---→e x xx ,所以,当6-=k 时,有)0()(lim 0f x f x =→,即)(x f 在点0=x 处连续.(3) ⎪⎩⎪⎨⎧=≠-+-+=0,,1111)(3x k x x x x f .[解] 因为k f =)0(,又=-+-+=→→1111lim )(lim 30x x x f x x 3223lim 0=→x x x , 所以,当32=k 时,有)0()(lim 0f x f x =→,即)(x f 在点0=x 处连续.34. 指出下列函数的连续区间: (1)241)(xx f -=.[解] 因为)(x f 是初等函数,它的定义区间就是连续区间, 所以,连续区间即为 )2,2(-.(2)⎪⎩⎪⎨⎧≥-<<-+--=0,301,112)(sin x e x x x x x f x .[解] 因为)(x f 是分段函数,24当01<<-x 时,xx x +--112是连续的;当0>x 时,3sin -x e 也是连续的,因此只须考察分段点0=x 处的连续性;由于2)3()0(0sin -=-==x x e f ,xx xx f x x +--=--→→112lim )(lim 02)11(lim 0-=++--=-→x x x , 2)3(lim )(lim sin 0-=-=++→→xx x e x f , 即==+→)(lim )0(0x f f x)(lim 0x f x -→, 故)(x f 在点0=x 处连续,所以,连续区间即为 ),1(∞-.(3)⎪⎪⎩⎪⎪⎨⎧≤<--≤≤<≤-=32,2)2sin(21,110,11)(x x x x x x x f . [解] 因为)(x f 是分段函数,当10<<x 时,11-x 是连续的;当21<<x 时,1是连续的, 当32<<x 时,2)2sin(--x x 也是连续的,因此只须考察分段点1=x 及2=x 处的连续性;由于 1)1(=f ,∞=-=--→→11lim )(lim 11x x f x x , 11lim )(lim 11==++→→x x x f ,25即≠=+→)(lim )0(0x f f x)(lim 0x f x -→, 故)(x f 在点1=x 处不连续;而 1)2(=f ,11lim )(lim 22==--→→x x x f , 12)2sin(lim )(lim 22=--=++→→x x x f x x ,即==+→)(lim )2(2x f f x)(lim 2x f x -→, 故)(x f 在点2=x 处连续; 又)0(111lim )(lim 0f x x f x x =-=-=++→→,)3(1sin 2)2sin(lim )(lim 33f x x x f x x ==--=--→→,所以,连续区间即为 [0,1),[1,3].35. 设1lim )(2212+++=-∞→n n n x bxax x x f 为连续函数,试求a 和b 的值. [解] ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-<>-=--=++<<-+=11,11,211,2111,)(2x x xx b a x b a x bx ax x f 或 ,因为)(x f 为连续函数,所以)(x f 在1=x 及1-=x 处连续;由于 21)1(++=b a f , b a bx ax x f x x +=+=--→→)(lim )(lim 211, 11lim )(lim 11==++→→xx f x x ,26即==+→)(lim )1(1x f f x )(lim 1x f x -→,得1=+b a ; 而 21)1(--=-b a f , 11lim )(lim 11-==---→-→xx f x x , b a bx ax x f x x -=+=++-→-→)(lim )(lim 211,即==-+-→)(lim )1(1x f f x )(lim 1x f x --→,得1-=-b a ; 所以,0=a ,1=b .36.指出下列函数的间断点,并指明其类型 (1)xx xx f -=2sin )(. [解] 因为)(x f 是初等函数,定义域为),1()1,0()0,(+∞-∞ ,在0x =,1=x 处孤立无定义.在0=x 处,因为1)1(sin lim)(lim 0-=-=→→x x xx f x x ,所以,0=x 是第一类可去间断点.在1=x 处,因为∞=-=→→)1(sin lim)(lim 11x x xx f x x ,所以,1=x 是第二类无穷间断点.(2)⎪⎪⎩⎪⎪⎨⎧≠>-=<-=1,0,1sin 0,00),1ln(1)(x x x x x x x x x f .[解] 因为)(x f 是它是分段函数, 其定义域为),1()1,(+∞-∞ ,0x =为分段点,1=x 处孤立无定义.当0<x 时,)1ln(1x x -是连续的;当1,0≠>x x 时,1sin -x x也是连续的,因此只须考察分段点0=x 处的性质.27由于 1ln )1ln(1lim )(lim 100-==-=-→→--e x xx f x x ,01sin lim )(lim 00=-=++→→x xx f x x , 可见, 0x =处左右极限都存在但不相等,所以0=x 是)(x f 的第一类跳跃间断点.在1=x 处,因为∞=-=→→1sin lim )(lim 11x xx f x x , 所以,1=x 是第二类无穷间断点.(3)⎪⎪⎩⎪⎪⎨⎧=≠+-=0,10,1212)(11x x x f x x . [解] 因为)(x f 是它是分段函数, 0x =为分段点, 当0≠x 时,121211+-xx是连续的,因此只须考察分段点0=x 处的性质.又)(x f 含特殊函数x12,故0x =处极限应该考虑左、右极限.由于 11212lim 110-=+--→xxx ,11212lim 110=+-+→xxx ,可见, 0x =处左右极限都存在但不相等,所以0=x 是)(x f 的第一类跳跃间断点.(4)11()1x xf x e-=-.[解] 因为)(x f 是初等函数,定义域为),1()1,0()0,(+∞-∞ ,在0x =,1=x 处孤立无定义.在0=x 处,因为∞=-=-→→111lim)(lim x x x x ex f ,所以,0=x 是第二类无穷间断点.在1=x 处,由于28111lim )(lim 111=-=-→→--x xx x ex f ,011lim )(lim 111=-=-→→++x xx x ex f ,可见, 1=x 处左右极限都存在但不相等,所以1=x 是)(x f 的第一类跳跃间断点.37. 试确定a 和b 的值,使)1)(()(---=x a x be xf x 有无穷间断点0=x 和可去间断点1=x .[解] 因为)(x f 是初等函数,定义域为a x ≠及1≠x ,在a x =,1=x 处孤立无定义. 由于0=x 为无穷间断点,)1)((lim)(lim 00---=→→x a x be xf x x x ∞=, 故0=a .又由于1=x 为可去间断点,)1)((lim )(lim 11---=→→x a x b e x f x x x )1(lim1--=→x x be x x , 上式应为型,即0)(lim 1=-→b e x x ,故e b =.38. 设)(x f 对一切21,x x 满足)()()(2121x f x f x x f +=+,并且)(x f 在0=x 处连续,证明函数)(x f 在任意点0x 处连续.[解] 由于)(x f 对一切21,x x 满足)()()(2121x f x f x x f +=+,将021==x x 代入上式,有)0(2)0(f f =,即0)0(=f ,因为)(x f 在0=x 处连续,所以0)0()(lim 0==→f x f x ,又=∆→∆y x 0lim =-∆+→∆)]()([lim 000x f x x f x 0)(lim 0=∆→∆x f x ,所以,函数)(x f 在任意点0x 处连续39. 设)(x f 在闭区间],[b a 上连续,b x x x a n <<<<< 21,则在],[1n x x 上至少存在一点ξ,使得nx f x f x f f n )()()()(21+++=ξ.[解]由于)(x f 在],[b a 上连续,且b x x x a n <<<<< 21,故)(x f 在],[1n x x 上连续.由最值定理可知,在],[1n x x 上)(x f 有最大值M 与最小值m ,即得1()m f x M ≤≤,29M x f m n ≤≤)(,于是,可得M nx f x f x f m n ≤+++≤)()()(21 ;由介值定理可知,)(x f 在],[1n x x 上至少存在一点ξ,使得nx f x f x f f n )()()()(21+++=ξ.40.设2)(-=xe xf ,试证:在)2,0(内至少有一点ξ,使得ξξ=)(f .[解]令x e x x f x F x--=-=2)()(,由于)(x F 为初等函数,显然在]2,0[上连续,且01)0()0(<-==f F ,042)2()2(2>-=-=e f F .由零值定理可知,)2,0(内至少有一点ξ,使得0)(=ξF ,即ξξ=)(f . 41.试证:方程0sin =--b x a x (其中b a ,为正常数)至少有一个不超过b a +的正根.[解]令b x a x x f --=sin )(,由于)(x f 为初等函数,显然在],0[b a +上连续,且0)0(<-=b f ,0)]sin(1[)(≥+-=+b a a b a f .当1)sin(≠+b a 时,0)]sin(1[)(>+-=+b a a b a f ,由零值定理可知,),0(b a +内至少有一点ξ,使得0)(=ξf ;当1)sin(=+b a 时,0)]sin(1[)(=+-=+b a a b a f ,即b a +=ξ,使得0)(=ξf ; 综上,ξ],0(b a +∈,使得0)(=ξf ,即方程0sin =--b x a x 至少有一个不超过b a +的正根.42. 设321,,a a a 均为正数,3210λλλ<<<,试证方程0332211=-+-+-λλλx a x a x a 有两个实根,并判定这两个根的范围. [解]由于332211λλλ-+-+-x a x a x a ))()(())(())(())((321213312321λλλλλλλλλ-----+--+--=x x x x x a x x a x x a .令))(())(())(()(213312321λλλλλλ--+--+--=x x a x x a x x a x F ,由于)(x F 为初等函数,显然)(x F 分别在],[21λλ及],[32λλ上连续,且 0))(()(312111>--=λλλλλa f , 0))(()(131222<--=λλλλλa f ,300))(()(231333>--=λλλλλa f ,)(x F 在],[21λλ上由零值定理可知,在),(21λλ内至少有一点1ξ,使得0)(1=ξF , )(x F 在],[32λλ上由零值定理可知,在),(32λλ内至少有一点2ξ,使得0)(2=ξF ;又)(x F 为二次多项式函数,至多有两个零点.综上,)(x F 有两个零点,他们分别在),(21λλ与),(32λλ内,即方程0332211=-+-+-λλλx a x a x a 有两个实根,分别在),(21λλ与),(32λλ内. 43. 设函数)(x f 在]1,0[上连续且非负,而0)1()0(==f f ,试证:对于)1,0(内的 任意实数l ,必存在一点)1,0(0∈x ,使得)()(00l x f x f +=. [解]令)()()(l x f x f x F +-=,由于)(x f 在]1,0[上连续,所以)(x F 在]1,0[l -上连续,且0)()()0()0(<-=-=l f l f f F ,0)1()1()1()1(>-=--=-l f f l f l F .由零值定理可知,⊂-)1,0(l )1,0(内至少有一点0x ,使得0)(0=x F , 即)()(00l x f x f +=.故对于)1,0(内的任意实数l ,必存在一点)1,0(0∈x ,使得)()(00l x f x f +=.。

高考函数第一讲 定义域的求法

高考函数第一讲 定义域的求法

高考函数第一讲 定义域的求法一、含分式的函数在求含分式的函数的定义域时,要注意两点:(1)分式的分母一定不能为0;(2)绝对不能先化简后求函数定义域。

例一、求下列函数的定义域: (1)211x f (x );x -=+ (2)1f (x )(x =-二、含偶次根式的函数:注意:(1)求含偶次根式的函数的定义域时,注意偶次根式的被开方数不小于0,通过求不等式来求其定义域;(2)在研究函数时,常常用到区间的概念,它是数学中常用的术语和符号,注意区间的开闭情况。

例二、求函数y a =为不等于0的常数)的定义域。

三、含对数式的函数:例三、若函数22x x y lg(m )-=+-的定义域是R ,求m 的取值范围。

四、复合型函数:注意:函数是由一些基本初等函数通过四则运算而得到的,则它的定义域是各基本初等函数定义域的交集,通过列不等式组来实现。

例四、求函数03(x )y +=+的定义域。

变式训练:求下列函数的定义域:1()y =23()y x =+ 131()y x=-14122()y x x =---5()f (x )=621()y a r c s i n (x )=-五、抽象函数:(一) 已知f (x )的定义域,求f[g(x)]的定义域。

其解法是:若f (x )的定义域为a x b ≤≤,则f[g(x)]中a g(x )b ≤≤,从中解出x 的取值范围即为f[g(x)]的定义域。

例五、设函数f (x )的定义域为[]01.,则(1)函数2f (x )的定义域为_____________; (2)函数2f ()-的定义域为_______________________.练习:1、 已知f (x )的定义域为[]13,,则1f (x )-的定义域是_____________________.2、 已知函数f (x )的定义域为(0,1),则函数112f (x )-的定义域是______________.3、 设函数y=f (x )的定义域为A=[)4,+∞,给出下列函数:216244xy f (x ),y f (),y f (y f (),x=-===-其定义域仍为A 的有( ) A 、1个 B 、2个 C 、3个 D 、4个 4、(江西卷3)若函数y f (x )=的定义域是[]02,,则函数21f (x )g(x )x =-的定义域是( )A 、[]01,B 、[)01,C 、[)(]0114,,D 、()01, (二)已知f[g(x)]的定义域,求f (x )的定义域:其解法是:若f[g(x)]的定义域为m x n ≤≤,则由m x n ≤≤确定g (x )的范围即为f (x )的定义域。

1求下列函数的定义域

1求下列函数的定义域

练习1.1(p41)1.求下列函数的定义域 (4)15812++=x x y解: 练习1.3(p48)1.求下列函数的定义域 (1)23x y -=解:(5)()1ln 1+=x y解: (2)52ln +=x y 解:(6)1412-+-=x xy 解:练习1.5(p63)1.市场中某种商品的需求函数为q d =25-p ,而该种商品的供给函数为340p 320q s -=。

试求市场均衡价格和市场均衡数量。

学生订证教师批注3.设某商品的成本函数是线性函数,并已知产量为零时,成本为100元,产量为100时成本为400元,试求:(1)成本函数和固定成本;(2)产量为200时的总成本和平均成本。

解:5.设某商品的成本函数和收入函数分别为C=7+2q+q2,R=10q试求:(1)该商品的利润函数;(2)销量为4时的总利润及平均利润;(3)销量为10时是盈利还是亏损?解:4.设某商品的需求函数为q=1000-5p,试求该商品的收入函数R(q),并求销量为200件时的总收入。

解:习题1(p64) 1.求下列函数的定义域:(1)29141xxy-++=解:学生订证教师批注(2))5lg(1x y -=解: 3.设⎩⎨⎧<-≥+-=0x,10x ,1)(2x x x x f求f(1),f(-2),f(0)解:(3)1112--=x y解:4.在直角坐标系中作出下列函数的图形:(1) y=x 2-6x +9 解:2.已知函数21)1(xx f =+,求f(x),f(0),f(-1), ⎪⎭⎫ ⎝⎛x f 1 解:(2) y=2x +1 解:学生订证教师批注(3) y=ln(x+1)解:(2)f(x)=2x,g(x)=|x|解:(4) y=3cosx解:(3)f(x)=365 2-+-x xx,g(x)=x-2 解:5.下列各对函数是否相同,为什么?(1)f(x)=lnx2,g(x)=2lnx解:6.判断下列函数的奇偶性:(1)y=x4+x2+1解:学生订证教师批注(2)y=x 3+x -1 解: (2) 2tan ln x y =解:(3)xxy +-=11ln 解:(3) xe y 5tan = 解:8.将下列复合函数分解为基本初等函数的复合运算或四则运算: (1) xe y sin =解:(4)()x y lg lg = 解:学生订证教师批注11.生产者向市场提供某种商品的供给函数为962-=pq s ,其中qs 为该商品的供给量,p 为该商品的市场价格,而该商品的需求量满足p q d -=204。

人B函数学案2 函数的定义域、值域

人B函数学案2  函数的定义域、值域

【分析】要求使函数表达式有意义的自变量的取值范围, 可考虑列不等式或不等式组. 【解析】(1) 令

x≥0,
1 7x ≥0,


x≥0,
1 x≤ , 7
∴0≤x≤17.
∴函数的定义域为 x { |0≤x≤
1 }. 7
返回
(2)


x+1≠0, |x|-x>0,


x≠-1, x<0,
∴x<0,且x≠-1.
7.因为x=0,1,2,3,4.
所以f(0)=-3,f(1)=-1,f(2)=5,f(3)=15,f(4)=29.
故f(x)的值域为{-3,-1,5,15,29}.
返回
返回
返回
返回
x 3 . 2 5 x 0
解得-5≤x≤5且x≠±3.
故函数的定义域为{x|-5≤x≤5且x≠±3}.
返回
学点二
抽象函数的定义域
(1)已知函数f(x)的定义域是[0,4],求函数f(x+5)的定 义域; (2)已知函数f(x-2)的定义域是[1,+∞),求函数 义域.
x f( ) 的定 2
(6)由实际问题确定的函数,其定义域由自变量的实 际意义确定.
(7)定义域一般应该用集合或区间表示.后面我们还 要学到一些基本的初等函数,它们对定义域有特殊的要 求,由它们参与的复合函数的定义域又被赋予新的含义, 如对数函数等.
返回
3.求函数的值域的方法有哪些? 求函数的值域是一个比较复杂的问题,虽然给定了函数 的定义域及其对应法则以后,值域就应该完全确定了,但 求值域特别要注意方法,常用的方法有 (1)观察法.通过对函数解析式的简单变形,利用熟知的 基本函数的值域,或利用函数图象的“最高点”和“最 低点”,观察求得函数的值域,这就是观察法. (2)配方法.对二次函数型的解析式可先进行配方,在充 分注意到自变量取值范围的情况下,利用求二次函数的 值域的方法求函数的值域,这就是配方法. (3)判别式法.将函数视为关于自变量的二次方程,利用 判别式求函数值的范围,常用于求一些“分式”函数、 无理函数等的值域,使用此法要特别注意自变量的取值 范围.

正弦余弦函数的定义域值域

正弦余弦函数的定义域值域

当 cos x 1 时函数 y = cosx + 1,x∈该R函数
取得最小值ymin 1 1 0 此时x的的集吗值合?域
{x x 2kπ ,k Z}
12
(2)当 sin2x 1时函数 y = - 3sin2x,x∈R
取得最大值 ymax 3(1) 3 ,此时
2x 2k ,k Z , x k ,k Z
当 x (2k 1)π .(k Z) 时, ymin 1
5
y
y
1
1
o
2
2
-1
3 2
2
x
2
o
2
-1
3
2
x
2
y=sinx,x[0, 2]
y=cosx,x[0, 2]
(4)正负值区间:
sin x 0 x (2k ,(2k 1) )k Z;
sin x 0 x ((2k 1) ,2(k 1) )k Z;
2
2
定义域为{ x | 2k x 2函数的定义域:
(3) y 1 1 sin x
(3)解:由已知,得 1+ sinx≠≠ 0
解 得 x≠ ≠ 3 2k , k Z
2
所以原函数的定义域为
x|
x
≠≠
3 2
2k
,
k
Z
10
例1 求下列函数的定义域:
2 自变量x的集合为
{x|
x
k
4
,kZ}
4
当 sin2x 1 时函数 y = - 3sin2x,x∈R
取得最小值 ymax 3(1) 3 ,此时
2x 2k ,k Z , x k ,k Z
2 自变量x的集合为
{x|
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 函 数
练习1.1(p41)
1.求下列函数的定义域 (4)15
81
2++=x x y
解: 练习1.3(p48)
1.求下列函数的定义域 (1)23x y -=
解:
(5)()
1ln 1
+=x y
解: (2)52ln +=x y 解:
(6)141
2
-+-=x x y
解:
练习1.5(p63)
1.市场中某种商品的需求函数为q d =25-p ,而该种商品的供给函数为3
40p 3
20q s -=。

试求市场均衡价格和
市场均衡数量。

学生订证
教师批注
第一章函数
3.设某商品的成本函数是线性函数,并已知产量为零时,成本为100元,产量为100时成本为400元,试求:(1)成本函数和固定成本;(2)产量为200时的总成本和平均成本。

解:5.设某商品的成本函数和收入函数分别为
C=7+2q+q2,R=10q
试求:(1)该商品的利润函数;(2)销量为4时的总利润及平均利润;(3)销量为10时是盈利还是亏损?
解:
4.设某商品的需求函数为q=1000-5p,试求该商品的收入函数R(q),并求销量为200件时的总收入。

解:
习题1(p64) 1.求下列函数的定义域:
(1)
2
9
1
4
1
x
x
y
-
+
+
=
解:
学生订证
教师批注
第一章 函 数
(2))
5lg(1
x y -=
解: 3.设⎩⎨⎧<-≥+-=0x
,10
x ,1)(2x x x x f
求f(1),f(-2),f(0)
解:
(3)1
112
--=x y
解:
4.在直角坐标系中作出下列函数的图形: (1) y=x 2-6x +9 解:
2.已知函数2
1)1(x
x f =+,求f(x),f(0),f(-1), ⎪⎭
⎫ ⎝⎛x f 1 解:
(2) y=2x +1 解:
学生订证
教师批注
第一章 函 数
(3) y=ln(x+1) 解:
(2)f(x)=2
x ,g(x)=|x|
解:
(4) y=3cosx
解:(3)f(x)=
36
5 2
-+
-x x
x
,g(x)=x-2 解:
5.下列各对函数是否相同,为什么?
(1)f(x)=lnx2,g(x)=2lnx
解:6.判断下列函数的奇偶性:(1)y=x4+x2+1
解:
学生订证教师批注第一章函数
(2)y=x3+x-1 解:(2) 2
tan
ln x
y=
解:
(3)x
x
y +-=11ln 解:
(3) x
e y 5tan = 解:
8.将下列复合函数分解为基本初等函数的复合运算或四则运算: (1) x
e y sin =
解:
(4)()x y lg lg = 解:
学生订证
教师批注
第一章 函 数
11.生产者向市场提供某种商品的供给函数为962
-=p
q s ,其中qs 为该商品的供给量,p 为该
商品的市场价格,而该商品的需求量满足
p q d -=204。

求该种商品的市场均衡价格和市
场均衡数量。

解:
14.某商品的成本函数和收入函数分别为
C=18-7q +q 2
R=4q
试求:(1)该商品的盈亏平衡点;(2)该商品销量为5时的利润;(3) 该商品销量为10时能否盈利? 解:
学生订证
教师批注
本章作业成绩 交作业时间 批改时间 批改教师签名
年 月 日
年 月 日
倚窗远眺,目光目光尽处必有一座山,那影影绰绰的黛绿色的影,是春天的颜色。

周遭流岚升腾,没露出那真实的面孔。

面对那流转的薄雾,我会幻想,那里有一个世外桃源。

在天阶夜色凉如水的夏夜,我会静静地,静静地,等待一场流星雨的来临…
许下一个愿望,不乞求去实现,至少,曾经,有那么一刻,我那还未枯萎的,青春的,诗意的心,在我最美的年华里,同星空做了一次灵魂的交流…
秋日里,阳光并不刺眼,天空是一碧如洗的蓝,点缀着飘逸的流云。

偶尔,一片飞舞的落叶,会飘到我的窗前。

斑驳的印迹里,携刻着深秋的颜色。

在一个落雪的晨,这纷纷扬扬的雪,飘落着一如千年前的洁白。

窗外,是未被污染的银白色世界。

我会去迎接,这人间的圣洁。

在这流转的岁月里,有着流转的四季,还有一颗流转的心,亘古不变的心。

相关文档
最新文档