低温物理吸附技术

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

低温物理吸附技术

——表面积和孔结构表征

多孔材料的最大特点在于它具有“孔”,“分子筛”一词来源于此(不在于骨架结构,而在于骨架所围成的孔穴),因此,“孔”分析(沸石的吸附能力测量)提供了最简单并且最直接的表征方法,其性质表征包括两方面:骨架(或固体壁部分)和孔穴部分骨架部分包括:(1)结构,揭示样品的结晶性,晶系,空间群,晶胞中的原子坐标,成绩和超结构(2)化学组成及组成的均匀性(3)对性质有影响的杂质(4)对性质有影响的结构不完整性(缺陷等)孔穴部分包括孔径,孔体积,比表面,孔尺寸分布,孔穴形状等等。

目前来讲有关孔的性质都是通过低温物理吸附来测定。吸附法是让一种吸附质分子吸附在待测粉末样品(吸附剂)表面,根据吸附量的多少来评价待测粉末样品的比表面及孔隙分布大小的方法。低温吸附是指在恒定温度下,在平衡状态时,一定的气体压力,对应于固体表面一定的吸附量,改变压力可改变吸附量。平衡吸附量岁压力而变化的曲线成为吸附等温线,对吸附等温线的研究与测定不仅可以获取有关吸附剂和吸附质性质的信息,还可以计算固体的比表面和孔径分布

1.原理

1.1吸附模型

低温氮吸附容量法测催化剂比表面积的理论依据就是Langmuir

方程和BET方程.

朗格缪尔吸附模型假定条件为:(1)吸附是单分子层的,即一个吸附位置只吸附一个分子。(2)被吸附分子间没有相互作用力。(3)吸附剂表面是均匀的。在一定温度和压力下,吸附剂-吸附质系统达到吸附平衡时,吸附速率与脱附速率相等,即达到了动态吸附平衡,吸附剂表面被吸附的位置可表示为:θ=K1P/(1+K1P) (1) 若以V表示气体分压为P下的吸附量;V m表示所有吸附位置被占满时的饱和吸附量;K1为朗格缪尔常数,则θ=V/V m( 2) 由(1)、(2)式可演变为P/V=P/V m+1/K1V m,以P/V为纵坐标,P为横坐标作图,可得一条直线,从该直线斜率1/Vm可以求出形成单分子层的吸附量。但是,由于很多情况下吸附剂表面都是多分子层吸附,由此必须引入BET方程,计算出多分子层的饱和吸附量V m。

BET模型假定条件:(1)吸附剂表面可扩展到多分子层吸附。(2)被吸附组分之间无相互作用力,而吸附层之间的分子力为范德华力。(3)吸附剂表面均匀。(4)第一层吸附热为物理吸附热,第二层为液化热。

(5)总吸附量为各层吸附量的总和,每一层都符合Langmuir公式。在以上假设基础上推导出的BET方程为:P/V(P0-P)=1/V m C+(C-1)/V m C*P/P0(3) 式中V:达到吸附平衡时的平衡吸附量;Vm:第一层单分子层的饱和吸附量;P:吸附质的平衡分压;P0:吸附温度下吸附质的饱和蒸汽压;C:与吸附热有关的常数。

1.2表面积计算

BET计算表面积As 的公式:As=(Vm/22414)Naσ;其中Vm 为

单分子层体积(根据测得的吸附体积,相对压力等计算得出);22414为砌体的摩尔体积,Na为阿伏加德罗常数,σ为每个吸附质分子锁覆盖的面积,氮气分子一般取为0.162nm3.通常BET法适于相对压力的范围为0.05-0.35

1.3孔径分布计算

气体吸附法孔径分布测定利用的是毛细冷凝和体积等效交换原理。毛细凝聚模型是指在毛细管内,液体弯月面上的平衡蒸汽压P小于筒温度下的饱和蒸汽压P0,即在低于P0的压力下,毛细孔内就可以产生凝聚液,而且吸附质压力P/ P0与发生凝聚的孔的直径—一一对应,孔径越小,产生凝聚液所需的压力也越小,其一一对应关系有凯尔文(kelvin)方程Rk=-0.414/log(P/ P0),当压力低于一定的P/ P0时,半径大于Rk的孔中凝聚液汽化并脱附出来,通过测定样品在不同P/ P0 下凝聚氮气量,可绘制等温脱附线。然后再按照圆柱孔模型计算出孔径分布,测量范围一般是2-50nm。

2吸附平衡等温线

吸附平衡等温线就是以压力为横坐标,恒温条件下吸附质在吸附剂上的吸附量为纵坐标的曲线,通常用比压p/p0 表示压力,p为真实气体的真实压力,p0 为气体在测量温度下的饱和蒸汽压,吸附平衡等温线可分为吸附和脱附两部分,吸附平衡等温线的形状与材料的孔组织结构有关

2.1吸附平衡等温线分类

根据IUPAC的分类,吸附平衡等温线有六种不同的类型,其中4

种类型适用于多孔材料。但只有四种类型(Ⅰ,Ⅱ,Ⅳ,Ⅵ)适用于多孔材料,曲线如下图:

微孔材料(包括多数沸石和类沸石分子筛)的吸附平衡等温线为Ⅰ型,由于吸附质与孔壁之间的强相互作用,吸附开始在很低的相对压力下,但由于吸附的分子间的相互作用,完全填满孔穴则需稍高

一点的相对压力,在较

低的相对压力下(<0.3,

氮气吸附)微孔填充不

会观察到毛细管凝聚

现象,很难与单分子层

吸附过程区分开来,一

旦微孔填满后,外表面

继续吸附,在高比压区

的吸附行为与介孔和

大孔固体相同。

一定条件下,超

微孔固体(包括沸石和类沸石分子筛)的吸附平衡等温线为Ⅵ型,如果孔在能量上是均已的,那么吸附应该发生自爱很在的一段压力范围内,如国孔表面具有机组能量不等的吸附活性点,吸附过程将是分布进行的,吸附等温线呈现台阶,每一台阶代表一组能量相同的吸附点,此类等温线只有那些结构和组成和组成十分严格的晶体上对某些吸附质在一定条件下的吸

附才会出现。

介孔材料(包括MCM-41,MCM-48和SBA系列介孔材料)多呈现Ⅳ型吸附平衡等温线,在较低的相对压力下发生的吸附主要是单分子层吸附,然后是多层吸附,至压力足以发生毛细管凝聚时,吸附等值线上表现为一个突越,介孔的孔径越大,毛细管凝聚发生的压力越高,之后则是外表面吸附。

大孔材料的吸附平衡等温线为Ⅱ型,低比压区的吸附与介孔材料相同,单层

吸附与多层

吸附之间没

有明显的界

限,与Ⅳ型吸

附平衡等温

线的最大差

别是没有毛

细管凝聚现

象发生,在中

等压力(比

压)下没有明显的突越。

2.2迟滞效应

若吸附-脱附不完全可逆,则吸附-脱附等温线是不重合的,这一现象成为迟滞效应。多发生在Ⅳ型线上,IUPAC将迟滞环分为四类

相关文档
最新文档